JP2004033808A - Wastewater treatment method using microorganisms - Google Patents

Wastewater treatment method using microorganisms Download PDF

Info

Publication number
JP2004033808A
JP2004033808A JP2002190499A JP2002190499A JP2004033808A JP 2004033808 A JP2004033808 A JP 2004033808A JP 2002190499 A JP2002190499 A JP 2002190499A JP 2002190499 A JP2002190499 A JP 2002190499A JP 2004033808 A JP2004033808 A JP 2004033808A
Authority
JP
Japan
Prior art keywords
microorganisms
wastewater
tank
specific
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002190499A
Other languages
Japanese (ja)
Inventor
Hideo Miyazaki
宮崎 英男
Takatoshi Ishikawa
石川 隆利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002190499A priority Critical patent/JP2004033808A/en
Publication of JP2004033808A publication Critical patent/JP2004033808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method which substantially reduces hardly biodegradable COD in wastewater and treats COD at a low cost. <P>SOLUTION: In a wastewater treatment method for treating organic wastewater of a high concentration using at least two wastewater treatment tanks arranged in series, microorganisms for decomposing a hardly biodegradable compound are allowed to get mixed with activated sludge in at least one of the wastewater treatment tanks. Especially, the microorganisms for decomposing the hardly biodegradable compound are allowed to get mixed in the second tank. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、微生物を用いた高濃度有機廃水の処理方法であり、特に微生物によりCODを低減する方法に関する。とりわけ無電解メッキ廃水及び各種洗浄廃水の廃水処理に関する。
【0002】
【従来の技術】
難生分解性のキレート剤は、工業用石鹸、写真産業、パルプ工業、メッキ工業等の諸分野で汎用されている。これらの諸分野から排出される産業廃水は、難生分解性であることに加えて、これらが表層水、具体的には河川水や地下水中に取り込まれる懸念が指摘されていて、例えばドイツでは難生分解性のキレート剤の排出を自主規制している。日本では現時点ではその使用・排出に係る規制は無いが、難生分解性のキレート剤が廃水のCOD値を嵩上げするので、CODの規制の上から難生分解性のキレート剤を含有する廃水のCOD値が問題となっている。
【0003】
一方、界面活性剤は微生物分解され難い代表的な化合物の一つであり、工業用洗剤及び家庭用洗剤に多く含まれ、終末処理場で分解しきれず、COD値を規制値以下にできないので、上記キレート剤と同様のCOD負荷の問題が生じている。そのほかにも、例えば電機、機械産業における有機塩素化合物混入廃水や有機化学工場に於ける有機溶剤含有廃水をはじめ、難生分解性の物質を使用する事業所では、その廃水について同様のCOD負荷問題を抱えている。
【0004】
これら難生分解性化合物は、従来の活性汚泥処理では殆ど分解されないので、COD規制値以下とするためには廃水を希釈してから排出する希釈法がもっとも一般的な対処方法であるが、希釈法はコストが高いだけでなく、排出されるCODの総量は変わらない。そのため、排水中のCODを実質的に低減する本質的な解決手段が望まれている。
この解決手段として、オゾン分解法や電解酸化法による廃水処理は可能ではあるが、処理コストが大きいことが制約となっている。
【0005】
【発明が解決しようとする課題】
本発明は、上記した背景からなされたものであり、その目的は、難生分解性の廃水中のCODを実質的に低減させ、かつ低コストで処理可能な廃水処理方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、上記の問題について、その解決手段を鋭意検討した結果、下記の方法によって課題を解決できることを見出した。すなわち本発明は下記の通りである。
【0007】
1.直列に配置した少なくとも2つの廃水処理槽を用いて高濃度有機廃水を処理する廃水処理方法であって、該廃水処理槽の少なくとも一つに難生分解性化合物を分解する微生物を活性汚泥と混在させることを特徴とする廃水処理方法。
【0008】
2.廃水処理槽の第2槽以降に難生分解性化合物を分解する微生物を活性汚泥と混在させることを特徴とする上記1に記載の廃水処理方法。
3.難生分解性化合物を分解する微生物と活性汚泥由来の微生物との混在比が個体数の比で0.1〜10であることを特徴とする上記1又は2に記載の廃水処理方法。
【0009】
4.高濃度有機廃水が難生分解性キレート剤を含有する廃水であることを特徴とする上記1〜3のいずれかに記載の廃水処理方法。
5.高濃度有機廃水が界面活性剤を含有する廃水であることを特徴とする上記1〜3のいずれかに記載の廃水処理方法。
6.高濃度有機廃水が無電解メッキの廃水であることを特徴とする上記1〜3のいずれかに記載の廃水処理方法。
7.高濃度有機廃水が各種製造業の洗浄工程から排出される洗浄廃水であることを特徴とする上記1〜3のいずれかに記載の廃水処理方法。
【0010】
8.難生分解性化合物を分解する微生物がEDTAを分解可能な菌であることを特徴とする上記1〜7のいずれかに記載の廃水処理方法。
9.難生分解性化合物を分解する微生物が界面活性剤を分解可能な菌であることを特徴とする上記1〜7のいずれかに記載の廃水処理方法。
【0011】
上記の本発明の特徴は、廃水の生分解処理過程の少なくとも一部で難生分解性化合物を分解する微生物を活性汚泥と混在させたことであり、このような混在形態は従来行なわれなかったことである。本発明は、難生分解性化合物を分解する微生物と活性汚泥の微生物とが両者ともに機能する状態で混在させることが可能な条件があることを見出したことに基づく発明でもある。両者を混在させることによって通常の活性汚泥処理装置を用いて難生分解性化合物由来のCODも低減させることが可能となり、極めて低コストで水質規制に対処することが可能となった。
しかも本発明の方法によれば、活性汚泥処理とCOD低減処理を同時に行なえて高濃度有機廃水中のBODをも低減できるので、BOD値とCOD値がともに高い高濃度有機廃水の処理にはとくに効果的で低コストの方法となる。
この廃液処理方法は、上記4〜7に記した典型的な廃水例に限定されることなく難生分解性化合物含有廃水に広く適用することができる。
以下、本発明の詳細を実施の形態を通じてさらに説明する。
【0012】
【発明の実施の形態】
以下の本明細書の記述においては、「生分解」を単に「分解」、「難生分解」を単に「難分解」、「難生分解性の化合物」を「特定化合物」、「特定化合物を分解可能な微生物」を「特定微生物」、と呼ぶこともある。生物処理観点から述べる個所では、分解作用を営む「微生物」を「分解菌」又は単に「菌」と呼ぶこともある。
【0013】
本明細書において、難生分解性化合物すなわち特定化合物とは、従来の活性汚泥ではほとんど分解されない化合物を指しており、具体的にはMITI法で生分解試験を行ったときの生分解率が50%以下の化合物を指している。その中でも、本発明の廃水処理方法は、上記試験法による生分解率25%以下、あるいは15%以下、さらには10%以下の生分解率が極度に低い化合物を生分解により除去するのにも効果的である。
【0014】
本明細書において高濃度有機廃水とは、有機の特定化合物をそのままでは放流できない濃度レベルで含有する廃水を指す。具体的には、特定化合物をCOD規制値を超えて含有している工業用石鹸含有廃水、EDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)、PDTA(1,3−プロパンジアミン四酢酸)等の有機アミノカルボン酸類を含む写真処理関連の廃水、パルプ工業やメッキ工業等の施設からの難生分解性のキレート剤含有廃水、中でも無電解メッキ廃水、工業用洗剤及び家庭用洗剤を扱う施設からの界面活性剤含有廃水、電機・機械産業施設からの有機塩素系溶剤含有廃水、有機化学工場からの有機溶剤含有廃水、食品工業の洗浄廃水などの廃水が挙げられる。しかし、本発明が対象としている廃水は、これらに限定されることなく難生分解性の有機化合物すなわち特定化合物を直接放流できないレベルで含有するいずれの廃水であってもよい。
高濃度有機廃水のCOD値は、当該地域の排出規制レベルを超えているが、多く場合20ppmから数万ppmにわたっており、より多くの場合に100から1000ppm程度である。
【0015】
(特定微生物)
上記の特定化合物を分解可能な微生物すなわち特定微生物について説明する。特定微生物は、個々の特定化合物ごとにそれを分解できる特定の分解菌があり、ある特定化合物に対して適合する特定微生物の組み合わせとなっている。
例えば、特定化合物が芳香族炭化水素系化合物(例えば、フェノール類)有機溶剤(例えば、トルエン、トリクロロエチレンなど)、有機塩素化合物(例えばダイオキシン、PCBなど)等に対しては、これらを分解するPseudomonas属に属する細菌、Methylosinus、Methylomonas、Methylobacterium、Hethylocystis、Alcaligenes、Mycobacterium、Nitrosomonas、Xanthomonas、Spirillum、Vibrio、Bacterium、Achromobacter、Acinetobacter、Flavobacterium、Chromobacterium、Desulfovibrio、Desulfotomaculum、Micrococcus、Sarcina、Bacillus、Streptomyces、Nocardia、Corynebacterium、Pseudobacterium、Arthrobacter、Brevibacterium、Saccharomyces、Lactobacillusの各属に属する微生物等を当該特定微生物として用いることがきる。
【0016】
また、EDTAなどの金属キレート剤やそれらが重金属と錯結合した重金属キレートなどを分解する能力を有する特定微生物には、バチルス属に属する細菌として、バチルス エディタビダス(Bacillus editabidus) 、バチルス サブチリス(Bacillus subtilis) 、バチルス メガテリウム(Bacillus megaterium) 、バチルス スファエリカス(Bacillus sphaericus) などがあげられる。これらは、例えば、Bacillus edtabidus−1(微工研菌寄 第13449号)、Bacillus subtilis NRIC 0068 、B. megaterium NRIC 1009 、B. sphaericus NRIC 1013 などとして容易に入手することができる。
【0017】
別のEDTA分解能を有する特定微生物としては、特開昭58−43782号に記載のシュードモナス属やアルカリゲネス属、Applid and Environmental Microbiology vol.56,p.3346−3353(1990)に記載のアグロバクテリウム属の菌種、Applid and Environmental Microbiology vol.58,No.2,Feb.1992,p.671−676に記載のGram−negative isolateが挙げられる。これらのうち、例えば、シュードモナス・エディタビダス(Pseudomonas editabidus) は、Pseudomonas editabidus−1(微工研菌寄第13634号)として入手できる。
【0018】
さらに別のEDTA分解能を有する微生物としては、海洋性菌類であるバチルス・エディタビダス(Bacillus editabidus)及びメソフィロバクター・エディタビダス(Mesophilobacter editabidus) が挙げられる。この有機アミノカルボン酸類分解菌バチルス・エディタビダス(Bacilluseditabidus)は、Bacilluseditabidus −M1(微工研菌寄第14868号)及びBacillus editabidus −M2(微工研菌寄第14869号)の属する種である。又、有機アミノカルボン酸類分解菌メソフィロバクター・エディタビダス(Mesophilobacter editabidus) は、Mesophilobacter editabidus−M3(微工研菌寄第14870号)の属する種である。
【0019】
界面活性剤分解性菌としては、例えばUS4274954号公報に記載のシュウドモナスフルオレッセンス3p(atcc31483)を挙げることができる。これらの微生物の適用対象となる廃水は、例えば、アニオン系、ノニオン系あるいはカチオン系の界面活性剤含有排水、とりわけいわゆるハードな界面活性剤と呼ばれる生分解性に乏しい界面活性剤含有排水、なかでもスルホン酸基含有界面活性剤含有排水である。
【0020】
また、フェノール類やクレゾール類化合物を分解する微生物としては、例えばUS4352886号及び4556638号公報に記載のシュウドモナスプチダcb−173(atcc31800)を挙げることができる。これらの微生物の適用対象となる廃水は、例えば、フェノール樹脂工場排水、クレゾール樹脂工場排水、ビスフェノールAなどから得られるポリフェノール類の工場排水や、それらのフェノール系樹脂を扱う製版工程やフォトレジスト形成工程から排出されるフェノール類含有排水である。
【0021】
なお、投与される特定微生物としては、既に単離されている上記微生物のほか、土壌等から目的に応じて新たにスクリーニングしたものも利用でき、複数の株の混合系でもよい。なお、スクリーニングにより分離したものの場合それが未同定のものでも良い。
【0022】
(活性汚泥)
本発明に用いる活性汚泥は、一般に用いられているいずれの汚泥であってもよく、特定の標準汚泥である必要はない。例えば、都市下水の終末処理場、工場その他の大型施設の端末廃水処理場などから入手した返送汚泥を処理対象の廃水で馴化した汚泥を用いることができる。
【0023】
(活性汚泥と特定微生物の混在の形態)
特定微生物は難分解性化合物を分解するとはいうものの、単純に従来の活性汚泥槽に特定微生物を添加しても、一般には活性汚泥槽に従来から存在する微生物が優勢に活動し、特定微生物の活動が抑制され、特定化合物の分解が進まなかった。本発明者は、活性汚泥槽の中でも特定微生物が活動する条件や方法を種々検討した結果、活性汚泥槽中に難生分解性化合物を分解し得る特定微生物と活性汚泥の微生物とを両者ともに機能する状態で混在できる条件があることが判った。したがって、本発明の廃水処理方法の特徴とは、両者を活性汚泥槽中に共存させて特定化合物の分解を行う方法であって、このような共存の条件は、(1)両微生物の濃度と濃度比の最適化、(2)特定微生物の添加段階の選択、(3)特定微生物を活性を持続できるような担体に担持させた形態の採用、(4)とりわけ包括固定化の採用のいずれか又はそれらの組み合わせである。
【0024】
(1)の両微生物の濃度と濃度比の最適範囲は、特定微生物、特定化合物及び廃水の性質によって最適比は変化するので、それぞれの場合について条件が選択される。
一般的には、特定微生物は廃水1mあたり乾燥重量で10g〜50kg  好ましくは20g〜5000g程度含有させる。また、活性汚泥中の微生物は通常用いられる濃度で含有させる。
活性汚泥中の微生物と特定微生物の固体数の比は、両微生物が混在している個所において0.005〜200、多くの場合に好ましくは0.05〜20、より好ましくは0.1〜10の比率が選択される。
(2)の特定微生物の添加段階の選択については、活性汚泥中の微生物の活動が活性汚泥処理のはじめの段階で活発であり、生分解の進行と共に次第にその活性が減少することを利用して、特定微生物を廃水処理の進行の途中に添加する方法、具体的には第2槽以降に添加することにより、特定化合物の分解が十分に進行する。
【0025】
本発明は、特定微生物を活性汚泥槽に直接添加することを排除するものではないが、(3)の特定微生物の活性持続可能な形態としては、担体に担持された形で添加する方法が効果的である。特定微生物を 担持させる場合は、担体表面への単なる吸着による 担持でもよいが、固定化担体に担持させるとさらに有利である。すなわち固定化担体を用いると微生物の活性が高くなり、分解期間が短縮されるため、この形態がより好ましい態様である。
とりわけ、上記(4)に挙げた微生物を包括固定化して添加する形態が微生物の活動を安定かつ活性化する。上記(3)及び(4)の具体的方法としては、公知の各種方法を用いることができる。
上記の本発明の廃水処理方法によって、高いCOD値の廃水を特定の微生物および通常の活性汚泥を用いて具体的には100〜数万ppmの廃水のCOD値を半減あるいは数ppm程度までに低減させることができる。
【0026】
<特定微生物担持用担体及び担持方法>
次ぎに、上記(3)及び(4)に挙げた特定微生物担持用担体及び担持方法について説明する。
微生物担持用担体としては、特定微生物を 担持して汚染土壌に投与できる材料であれば、いずれの公知材料をも使用できるが、有用微生物の効果的な担持という点から、担体表面に微生物が強く吸着するもの、微生物を微小孔隙中へ侵入させることにより保持力を高めることができるような多孔性のもの、ミクロ粒子が凝集して実質的に吸着あるいは吸蔵表面を増大させたものが望ましい。
具体的には、セルロース、デキストラン、アガロースのような多糖類;コラーゲン、ゼラチン、アルブミンなどの不活化蛋白質;イオン交換樹脂、ポリビニルクロライドのような合成高分子化合物;セラミックスや多孔性ガラスなどの無機物;寒天、アルギン酸、カラギーナンなどの天然炭水化物;さらにはセルロースアセテート、ポリアクリルアミド、ポリビニルアルコール、エポキシ樹脂、光硬化性樹脂、ポリエステル、ポリスチレン、ポリウレタンなど包括担体とし得る高分子化合物などがあげられる。また、リグニン、デンプン、キチン、キトサン、濾紙、木片等からなるものも利用できる。
【0027】
特定微生物の 担持・固定化の中でも、とくに微生物が担体物質中に取り込まれた 担持形態、すなわち包括固定化、がとくに好ましい。
好ましい担体の形状としては、ほぼ球状、ほぼ立方体状、ほぼ直方体状、円筒状あるいはチューブ状であり、なかでも製造し易いほぼ球状、あるいは比面積を大きくできるほぼ直方体状であることが好ましい。担体の製造方法としては、既知の任意の方法を用いることができる。例えば微生物と担体物質(又はその前駆体)の混合溶液を不溶解性液体中に滴下して液体中で液滴を固化させて微生物 担持担体粒子の分散物を作る方法、微生物と担体物質(又はその前駆体)の混合溶液を低温化、ゲル化剤や固化剤の添加などの方法で固化させた後、固化体を適当なサイズに裁断して微生物を 担持した直方体粒子を得る方法、微生物と担体物質(又はその前駆体)の混合溶液を押し出しノズルから不溶解性液体中に注入して液体中で固化させて微生物 担持担体の糸状の固化物を得てこれを適当に裁断して円筒状粒子を作る方法、またこのときの押し出し成形のダイを環状として円環状(チューブ状)の微生物 担持担体粒子を得る方法を挙げることができる。
【0028】
包括固定化法の特徴は、菌体を高濃度に保持できるため、処理効率を向上させることができ、増殖の遅い菌を固定化できることである。また、pH、温度等の条件変化に対する耐性が広く、高負荷状態にも耐え得ることでもある。包括固定化法としては、アクリルアミド法、寒天−アクリルアミド法、PVA−ホウ酸法、PVA−冷凍法、光硬化性樹脂法、アクリル系合成高分子樹脂法、ポリアクリル酸ソーダ法、アルギン酸ナトリウム法、K−カラギーナン法等、微生物を閉じ込めることができ、担体中で微生物の活性を維持しつつ、物理的強度が大きく長時間の使用に耐え得るものならば種類を問わない。
【0029】
最も一般的には、合成高分子の含水ゲル中に固定化する方法が挙げられる。含水ゲル中に固定化する具体的方法は、担体の成形を、種汚泥を担体溶液或いは担体前駆物質溶液と混合した後、固定液或いは架橋剤液中に滴下して行う方法、固化する前に型に入れて成形する方法、固化した後に成形する方法等がある。このような成形法により、担体を球、円柱、立方体、長方体等のペレット状にする。この場合、担体の表面に凸凹をつけてもよい。ペレットの粒径としては、0.1〜5mm程度が良く、粒径が0.1mmより小さい場合には、担体と処理水の固液分離が困難になり、粒径が5mmより大きい場合には、担体内部まで酸素が拡散しなくなり、担体内部の微生物の生存が困難になる。
使用し得る高分子含水ゲルとしては、カラギーナン、アルギン酸、エチルサクシニル化セルロースのような多糖類やコラーゲン等の天然有機高分子物質、ポリエチレングリコールプレポリマー(PEG)、ポリビニルアルコール(PVA)、ポリアクリルアミド等の合成高分子樹脂、その他、常温放置又は微生物が死滅しない程度の温度で固化し、固化後に微生物を液中に放出しないものであれば、任意の高分子物質を使用することができる。
【0030】
含水ゲルへの包括固定化法の代表例としてアクリルアミド法の場合の微生物固定化ゲルの調製法について説明する。固定化ゲルは、架橋剤(例えば、N,N’−メチレンビスアクリルアミド)を含有したアクリルアミドモノマー溶液と細菌(MLSS 20,000ppm程度の濃縮菌体)とを懸濁し、重合促進剤(例えば、N,N,N’,N’−テトラメチルエチレンジアミン)、重合開始剤(例えば、過硫酸カリウム)を添加し、3mm径の塩化ビニル製チューブ等の成型形に入れ、20℃で重合し、重合終了後、成型形から押し出し、一定の長さに切断して得られる。固定化ゲルの表面の細孔は、細菌より小さいため、包括固定化した細菌はリークしにくく、内部で増殖し、自己分解する。土壌中の汚染成分のみが細孔よりゲル内部に入り込み、内部の細菌により処理される。
合成高分子の含水ゲル中に固定化する方法は、特開平10−263575号公報にも開示されている。
【0031】
また、別の包括固定化方法としては、活性炭粒子に固定化する方法が挙げられる。
使用される活性炭としては、木炭、石炭、コークス、ヤシガラ、樹脂、石油ピッチなどを原料として製造されたものをあげることができ、これら木質系、石炭系、樹脂系、ピッチ系などの各種原料炭化物を、ガス賦活法、水蒸気賦活法、塩化亜鉛やリン酸などの薬品で賦活する薬品賦活法などの方法により賦活したものが好ましい。なかでも、木質系の活性炭は、表面及び内部に網目構造を有しているため、微生物が棲息しやすく、かつ有機物や臭い成分の吸着能に優れており、しかも機械的強度にも優れているので好ましい。木質系の活性炭を薬品賦活したものはさらに好ましい。
【0032】
活性炭の品質としては、充填比重が0.10〜0.70g/cc、好ましくは0.15〜0.60g/cc、比表面積が300〜2800m/g、好ましくは600〜2500m/g、細孔半径10nm〜500μmの範囲の細孔容積が0.1〜2.5ml/g、好ましくは0.15〜2.5ml/gのものが好適である。活性炭の粒子径は、あまり小さいと処理水の固液分離が困難となり、あまり大きいと廃水との接触面積が小さくなるので、0.1〜8mmのものが実用的であり好ましい。
活性炭中に固定化する方法は、特開平11−77074号公報にも開示されている。
【0033】
また、さらに別の包括固定化方法としては、特定微生物を炭素繊維布に固定化する方法もある。担体として用いられる炭素繊維は、例えば、石炭ピッチを高温で熔融紡糸し、不融炭素化して得られる繊維である。好ましくは、径1〜30μmの炭素繊維からなる厚さ0.3〜6.0mm、単位重量20〜300g/mの炭素繊維製布を用いる。
微生物担体を炭素繊維製とすれば、活性汚泥槽内での特定微生物の寿命が長い担体とすることができ、かつ単位面積当たりの微生物量を多くできるので、特定化合物の生物処理効率の向上を図ることができる。
【0034】
微生物担体を形成する炭素繊維製布の炭素繊維径、接合材料、布の厚さ、布の単位重量などは、微生物の付着量、被処理水の流れやすさ、微生物担体の作成しやすさ及び強度などを勘案して適当に選択することができる。例えば、径1〜30μmの炭素繊維からなる厚さ0.3〜6.0mm、単位重量20〜300g/mの炭素繊維布であれば、長期間使用しても強度劣化せず且つ生物処理槽の固定床に適する微生物担体が形成できる。
【0035】
これらの 担持法とくに固定化法のより具体的な方法については「微生物固定化法による排水処理」須藤隆一編著(産業用水調査会)、稲森悠平の「生物膜法による排水処理の高度・効率化の動向」,水質汚濁研究,vol.13,No.9,1990,p.563−574、稲森悠平らの「高度水処理技術開発の動向・課題・展望」,用水と廃水,vol.34,No.10,1992,P.829−835 などに記載されている。
【0036】
微生物担持担体としては、上記した担体のほかに土壌浄化用微生物製剤Biotrack DOLや SurfCleanなど,界面活性剤分解用のDC1738CW、また、メチルフェノール類を含むフェノール類やクレゾール類化合物を分解する能力を有する製剤としてDC1002CG及びDC1738CWなどの製剤(いずれもサイブロンケミカルズ日本(株))を用いることができる。
【0037】
上記の本発明の廃水処理方法によって、高いCOD値の廃水を特定の微生物および通常の活性汚泥を用いて具体的には100〜数万ppmの廃水のCOD値を半減あるいは数ppm程度までに低減させることができる。
【0038】
(廃水処理)
特定微生物の添加方法は、処理槽内に均一に分散すべく添加がなされる限り、いかなる方法であってもよい。例えば、処理槽の曝気または攪拌機等による攪拌を行ないながら、微生物を収納容器から手動で直接投入してもよい。
【0039】
廃水を処理する複数処理槽全体の容量と滞留期間は、廃水量によって異なるが、一般的には複数処理槽全体における廃水の滞留時間が0.2日から20日程度になるように調整される。特に滞留時間が0.5日から5日程度になるように調整されるのが好ましい。
また、構成処理槽数には制限は無いが、効率、装置費用の観点から2ないし3槽が好ましい。
特定微生物および活性汚泥の処理は、pH、DO(溶存酸素)、処理前後のCOD値等を測定して管理する。pHは4.0〜8.5、好ましくは4.5〜8.0であり、廃水の性質に応じて更に狭い管理幅が選択される。DOは5.0mg/l〜15.0mg/l、好ましくは7.0mg/l〜13.0mg/lである。pHは、酸またはアルカリの添加により、DOは曝気量の調節によって制御できる。
【0040】
特定化合物の濃度測定は、直接の定量も可能であろうが、管理上の実際的方法としては、濃度に対応する値としてCODを用いるのが実際的である。CODの測定は、第一の活性汚泥槽への入口と最終槽からの出口の双方の濃度を測定する方法が好ましい。ただし廃水が特定化合物に起因するCOD以外に生分解性物質に起因するCODも多く含む場合は、活性汚泥槽への流入口での測定に代えて特定微生物を投入する槽への流入口で測定するのがよく、さらに好ましくは、第一の活性汚泥槽への入口と最終槽からの出口に加えて特定微生物の投入槽流入口においても測定することが望ましい。
【0041】
廃水処理操作の状況はCODの測定によってモニターしてCOD値を測定する装置としては、例えば(株)COS製OD−1000/1100、HORIBA製CODA−211/212、日立ハイテクノロジーズ製平沼全自動COD測定装置 COD−1500等の市販装置が挙げられるが、これらに限定されず、COD値を測定できる装置であればよい。
【0042】
活性汚泥槽には、活性汚泥中の微生物や特定微生物の活動状態に応じて、必要によりそれぞれ適当量の栄養源を投与して、両微生物の活性を維持する。
栄養源は、微生物の生育に適当な炭素源、窒素源或いは有機栄養源無機塩からなる。有機栄養源としてポリペプトン、酵母エキス、肉エキス、糖蜜等、無機栄養源として各種リン酸塩、マグネシウム塩などが投与され、その添加量は、有機栄養源は廃水量の0.001〜5質量%、好ましくは0.01〜1質量%であり、無機栄養源は有機栄養源の0.1〜1 質量%程度である。この量は、限定的ではなく、廃水の性質や状態によって適宜選択される。
【0043】
栄養源を投与する際の添加方法は、処理槽内に均一に分散すべく添加がなされれる限り方法は問わない。例えば、栄養源を水溶液の形で投与する場合は、処理槽を曝気または攪拌機等による攪拌を行いながら、送液ポンプ或いは手動にて溶液タンク或いは容器より添加するのがよく、粉体等の固形のまま投与する場合には投入ホッパーや運搬器具を介して投入できる。
【0044】
また、カラギーナン、アルギン酸などの、ゲル状包括担体に栄養物を含有させて徐放効果を発揮させることもでき、その方法としては、1)栄養物を含む溶液とゲル化材料(カラギーナン、アルギン酸など)を含む溶液と混合した後、2)ゲル化とともに担体を形成させて 担持担体を得る方法などがある。
活性汚泥槽内の特定微生物の活動が低下してきた場合、栄養源を添加して、数日間、COD値の変化をモニターし、低下程度が回復しない場合、対象の微生物の添加を行なうのが望ましい。微生物を添加してもCOD値の低下程度が回復しない場合は、何らかのトラブルが発生したと考えられるため、緊急対応として、希釈放流措置が取れるような、システムが望ましい。その間に菌の活性低下の要因解析と対応策を進める。
【0045】
【実施例】
以下、実施例により本発明をより具体的に説明するが、これらは本発明の範囲をなんら限定するものではない。
【0046】
(実施例1)
[試験1]
<微生物の馴化培養>
EDTAの銅錯体を含む下記培養液500mlを120℃で20分間オートクレーブにて殺菌後、この培地に下記菌株を接種し、37℃で5日間静置培養を行った。
培養液組成:
ポリペプトン    0.5%
酵母エキス     0.1%
Cu−EDTA           0.1%
1/30Mリン酸緩衝液 500ml
pH  6.0
菌株:Pseudomonas editabidus−1 (微工研菌寄 第13634号)
【0047】
培養後、滅菌したガーゼを用いてろ過し、得られた担持担体を滅菌水で洗浄後以下の実験に用いた。
【0048】
<無電解メッキ廃液>
無電解メッキ廃液のモデル廃液として下記組成の液を調製した。
無電解メッキモデル廃液
EDTA 2Na       1000ppm
硫酸銅       200ppm
ホルマリン(37%)    80ppm
硫酸ナトリウム  500ppm
炭酸ナトリウム   90ppm
ギ酸ナトリウム  150ppm
pH      7.4
本モデル廃液のCODは1900ppmであった。
【0049】
<第2槽の調製>
上記のモデル廃液を2lの連続型処理槽に入れ、富士写真フイルム(株)足柄工場の終末処理施設から調達した返送汚泥50gを添加後、回分型処理を3日間行なった。ここで得られた処理水を別の2lの連続型処理槽(第2槽)に入れた。なお本処理液のCOD値は1700ppmであった。
【0050】
<廃水処理装置の準備>
上記回分型処理を行なった連続型処理槽を第1槽とし、上記モデル廃液が連続的に供給される連続処理に切り替えた。第1槽で処理された液が上記回分処理で調製した液が充填された第2槽に流入するように接続した。
第2槽には上記0.1%Cu−EDTA培地で馴化した菌(乾燥重量で400mg)を添加した。
【0051】
<廃液処理試験>
上記モデル廃液を、25ml/時間の速度で第1槽に流入させ、第2槽を直列に連結した2槽構成の処理装置によって連続処理を行なった。
連続処理開始後、7日、14日、21日、40日後の排出液のCOD値を以下に示す。
【0052】
【表1】

Figure 2004033808
【0053】
[試験2]
一方で、同じ2槽接続連続型槽を用い、上記第1槽と第2槽の内容物を入れ替えた以外は同一条件下で処理を続けた。40日処理後のCOD値は220ppmであって試験1の結果より高い残留CODを示したが、原廃水のCODの88%以上を低減できた。
[比較試験]
比較試験として、第1槽にも第2槽同様、上記回分処理した処理水を2l入れ、活性汚泥を加えないで、上記馴化菌を第1槽にも第2槽同様添加した比較試験を行ったところ、40日処理後のCOD値は1500ppm程度までにしか下がらなかった。
【0054】
以上の試験結果から、活性汚泥と特定微生物が混在する本発明の廃液処理方法によって特定化合物が顕著に分解され、とくに第2槽に特定微生物を添加した試験1の場合に効果が大きいことが判る。一方、両微生物が混在しない比較試験条件の条件ではCOD値の低下は僅かであった。
【0055】
(実施例2)
実施例1と同様に、但し上記馴化した特定微生物は、高分子担体(バイオチューブ 新日本製鉄製)に担持させて添加した(菌体添加量は実施例1と同じく乾燥質量400mgとなるようにした)。担体の投入量は菌体の50倍とした。
実施例1と同様に40日までのCOD値を測定した。
【0056】
【表2】
Figure 2004033808
【0057】
結果を実施例1と比較すれば、特定微生物そのものを添加する実施例1の方法より、固定化担体を用いる本実施例の方がより効率的にCODが低下しているのがわかる。
【0058】
(実施例3)
実施例2と同じ実験を菌株を以下のものに変えて行なった。
菌株:Bacillus editabidus−1 (微工研菌寄 第13449号)
結果を以下に示す。本発明によれば菌種を上記のものに変えても良好な結果が得られることがわかる。
【0059】
【表3】
Figure 2004033808
【0060】
(実施例4)
[試験1]
界面活性剤であるポリエチレングリコールノニルフェノール(平均エトキシ基数8.5)の400ppm溶液を洗浄廃水のモデル廃液として調製した。本モデル廃液のCODは980ppmであった。
このモデル廃液を2lの連続型処理槽に入れ、富士写真フイルム(株)足柄工場の終末処理施設から調達した返送汚泥40gを添加後、回分型処理を3日間行なった。ここで得られた処理水を別の2lの連続型処理槽(第2槽)に入れた。なお本処理液のCOD値は900ppmであった。
上記回分型処理を行なった連続型処理槽を第1槽とし連続処理に切り替えた。ここで第1槽で処理されたモデル廃液が第2槽に流入するように接続した。
第2槽には微生物製剤BI−CHEM1004TX(サイブロン・ケミカルズ日本(株))から抽出した界面活性剤分解菌(乾燥重量で500mg)を実施例2で用いた高分子担体に担体/菌体質量比50で担持して添加した。
上記モデル廃液を、20ml/時間の速度で第1槽に流入させ、2槽連結した活性汚泥槽によって連続処理を行なった。
連続処理開始後、10日、20日、30日、60日後の排出液のCOD値を以下に示す。
【0061】
【表4】
Figure 2004033808
【0062】
[試験2]
一方で、同じ2槽接続連続型槽を用い、上記第1槽と第2槽の内容物が入れ替わった以外は同じ条件下での処理を行った。60日処理後のCOD値は300ppmで上記の試験1の結果よりも高い残留CODであり、分解率は約69%であった。[比較試験]
比較試験として、第1槽にも第2槽同様、上記回分処理した処理水を2l入れ、活性汚泥を加えないで、上記馴化菌を第1槽にも第2槽同様添加した比較試験を行ったところ、60日処理後のCOD値は600ppm程度までにしか下がらなかった分解率約39%)。
【0063】
【発明の効果】
廃水処理槽の少なくとも一つに難生分解性化合物を分解する微生物を活性汚泥と混在させることを特徴とする本発明の廃水処理方法によって、難生分解性化合物を効果的に分解してCOD値を低下させることができる。とくに直列に接続した活性汚泥槽の第2槽に上記微生物を添加したときに効果が顕著である。[0001]
[Industrial application fields]
The present invention relates to a method for treating highly concentrated organic wastewater using microorganisms, and more particularly to a method for reducing COD by microorganisms. In particular, it relates to wastewater treatment of electroless plating wastewater and various cleaning wastewater.
[0002]
[Prior art]
Refractory chelating agents are widely used in various fields such as industrial soap, photographic industry, pulp industry, and plating industry. Industrial wastewater discharged from these fields is not only biodegradable, but there are concerns that they will be taken into surface water, specifically river water and groundwater. It voluntarily regulates the discharge of non-biodegradable chelating agents. At present, there is no regulation on the use and discharge in Japan. However, since the hardly biodegradable chelating agent raises the COD value of the wastewater, wastewater containing the hardly biodegradable chelating agent is regulated by COD regulations. The COD value is a problem.
[0003]
On the other hand, surfactants are one of the typical compounds that are difficult to be decomposed by microorganisms, and are contained in a lot of industrial detergents and household detergents. They cannot be completely decomposed at the final treatment plant, and the COD value cannot be reduced below the regulation value. The same problem of COD loading as that of the chelating agent occurs. In addition, for example, wastewater containing organic chlorinated compounds in the electrical machinery and machinery industries and wastewater containing organic solvents in organic chemical factories and other establishments that use materials that are hardly biodegradable, have similar COD load problems. Have
[0004]
Since these hardly biodegradable compounds are hardly decomposed by the conventional activated sludge treatment, the dilution method of diluting and discharging the wastewater is the most common countermeasure to reduce the COD regulation value or less. The law is not only costly, but the total amount of COD emitted does not change. Therefore, an essential solution that substantially reduces COD in waste water is desired.
As a means for solving this problem, wastewater treatment by an ozonolysis method or electrolytic oxidation method is possible, but the treatment cost is high.
[0005]
[Problems to be solved by the invention]
The present invention has been made from the above-described background, and an object of the present invention is to provide a wastewater treatment method capable of substantially reducing COD in hardly biodegradable wastewater and treating at low cost. .
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the means for solving the above problems, the present inventor has found that the problems can be solved by the following method. That is, the present invention is as follows.
[0007]
1. A wastewater treatment method for treating high-concentration organic wastewater using at least two wastewater treatment tanks arranged in series, wherein at least one of the wastewater treatment tanks is mixed with activated sludge with microorganisms that decompose hardly biodegradable compounds A wastewater treatment method characterized in that
[0008]
2. 2. The wastewater treatment method according to 1 above, wherein a microorganism that decomposes a hardly biodegradable compound is mixed with activated sludge after the second tank of the wastewater treatment tank.
3. 3. The wastewater treatment method according to 1 or 2 above, wherein the mixing ratio of the microorganisms that decompose the hardly biodegradable compound and the microorganisms derived from activated sludge is 0.1 to 10 in terms of the number of individuals.
[0009]
4). 4. The wastewater treatment method according to any one of 1 to 3, wherein the high-concentration organic wastewater is wastewater containing a hardly biodegradable chelating agent.
5). 4. The wastewater treatment method according to any one of 1 to 3, wherein the high-concentration organic wastewater is wastewater containing a surfactant.
6). 4. The wastewater treatment method according to any one of 1 to 3, wherein the high-concentration organic wastewater is electroless plating wastewater.
7). 4. The wastewater treatment method according to any one of 1 to 3, wherein the high-concentration organic wastewater is cleaning wastewater discharged from cleaning processes of various manufacturing industries.
[0010]
8). 8. The wastewater treatment method according to any one of 1 to 7 above, wherein the microorganism that degrades the hardly biodegradable compound is a fungus capable of degrading EDTA.
9. 8. The wastewater treatment method according to any one of 1 to 7 above, wherein the microorganism that degrades the hardly biodegradable compound is a fungus capable of degrading the surfactant.
[0011]
The above-mentioned feature of the present invention is that microorganisms that decompose hardly biodegradable compounds are mixed with activated sludge in at least part of the biodegradation process of wastewater, and such a mixed form has not been conventionally performed. That is. The present invention is also an invention based on the finding that there are conditions that allow the microorganisms that decompose the hardly biodegradable compounds and the microorganisms of the activated sludge to be mixed in a state where both function. By mixing both, COD derived from a hardly biodegradable compound can be reduced using a normal activated sludge treatment apparatus, and water quality regulations can be dealt with at an extremely low cost.
Moreover, according to the method of the present invention, the activated sludge treatment and the COD reduction treatment can be performed simultaneously to reduce the BOD in the high-concentration organic wastewater. It is an effective and low cost method.
This waste liquid treatment method is not limited to the typical waste water examples described in 4 to 7 above and can be widely applied to waste water containing hardly biodegradable compounds.
Hereinafter, the details of the present invention will be further described through embodiments.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the following description of the present specification, “biodegradation” is simply “degradation”, “refractory biodegradation” is simply “refractory degradation”, “refractory biodegradable compounds” is “specific compounds”, “specific compounds are The “degradable microorganism” may be called “specific microorganism”. In the section described from the viewpoint of biological treatment, the “microorganism” that performs the decomposing action is sometimes referred to as “decomposing fungus” or simply “fungus”.
[0013]
In the present specification, the hardly biodegradable compound, that is, the specific compound refers to a compound that is hardly decomposed by the conventional activated sludge. Specifically, the biodegradation rate when the biodegradation test is performed by the MITI method is 50. % Refers to a compound of less than Among them, the wastewater treatment method of the present invention is also capable of removing a compound having an extremely low biodegradation rate of 25% or less, or 15% or less, or even 10% or less by biodegradation by the above test method. It is effective.
[0014]
In the present specification, the high-concentration organic wastewater refers to wastewater containing a specific level of organic compound at a concentration level that cannot be discharged as it is. Specifically, industrial soap-containing wastewater containing specific compounds in excess of COD regulation values, EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), PDTA (1,3-propanediaminetetraacetic acid), etc. From wastewater related to photographic processing containing organic aminocarboxylic acids, wastewater containing refractory chelating agents from facilities such as pulp industry and plating industry, especially from facilities handling electroless plating wastewater, industrial detergents and household detergents Wastewater containing surfactants, organic chlorine-containing wastewater from electrical and machinery industry facilities, organic solvent-containing wastewater from organic chemical factories, and washing wastewater from the food industry. However, the wastewater targeted by the present invention is not limited to these and may be any wastewater containing a hardly biodegradable organic compound, that is, a specific compound at a level at which it cannot be directly discharged.
The COD value of high-concentration organic wastewater exceeds the emission regulation level of the region, but often ranges from 20 ppm to tens of thousands of ppm, and in many cases is about 100 to 1000 ppm.
[0015]
(Specific microorganism)
A microorganism capable of degrading the specific compound, that is, a specific microorganism will be described. The specific microorganism has a specific degrading bacterium capable of decomposing it for each specific compound, and is a combination of specific microorganisms suitable for a specific compound.
For example, when a specific compound is an aromatic hydrocarbon compound (for example, phenol), an organic solvent (for example, toluene, trichloroethylene, etc.), an organic chlorine compound (for example, dioxin, PCB, etc.), etc., the Pseudomonas genus that decomposes them bacteria belonging to, Methylosinus, Methylomonas, Methylobacterium, Hethylocystis, Alcaligenes, Mycobacterium, Nitrosomonas, Xanthomonas, Spirillum, Vibrio, bacterium, Achromobacter, Acinetobacter, Flavobacterium, Chromobacterium, Desulfovibrio, Desulfo omaculum, Micrococcus, Sarcina, Bacillus, Streptomyces, Nocardia, Corynebacterium, kill Pseudobacterium, Arthrobacter, Brevibacterium, Saccharomyces, the microorganisms belonging to the genus Lactobacillus be used as the specific microorganism.
[0016]
In addition, specific microorganisms having the ability to decompose metal chelating agents such as EDTA and heavy metal chelates complexed with heavy metals include bacteria belonging to the genus Bacillus, such as Bacillus editabidus and Bacillus subtilis. Bacillus megaterium, Bacillus sphaericus and the like. These include, for example, Bacillus edtabidus-1 (Mikken Kenkyu No. 13449), Bacillus subtilis NRIC 0068, B.I. megaterium NRIC 1009, B.I. It can be easily obtained as sphaericus NRIC 1013 or the like.
[0017]
Other specific microorganisms having EDTA resolution include the genus Pseudomonas, Alkaligenes, and Applied and Environmental Microbiology vol. 56, p. 3346-3353 (1990), Applied and Environmental Microbiology vol. 58, no. 2, Feb. 1992, p. Gram-negative isolate of 671-676 is mentioned. Among these, for example, Pseudomonas editabidus (Pseudomonas editabidus-1) can be obtained as Pseudomonas editabidus-1 (No. 13634).
[0018]
Still other microorganisms having EDTA resolution include the marine fungi Bacillus editavidus and Mesophyllobacter editavidus. This organic aminocarboxylic acid-degrading bacterium, Bacillus ditabidus, is a species to which Bacillus ditabidus-M1 (Makukenkenyoku No. 14868) and Bacillus edititadus-M2 (Mikokenkenyokuyoku 14869) belong. In addition, the organic aminocarboxylic acid-degrading bacterium Mesophylobacter editidadus is a species to which Mesophyllobacter editidas-M3 (Mikoken Bacterium No. 14870) belongs.
[0019]
Examples of the surfactant-degrading bacterium include Pseudomonas fluorescens 3p (atcc 31483) described in US Pat. No. 4,274,954. The wastewater to which these microorganisms are applied includes, for example, anionic, nonionic or cationic surfactant-containing wastewater, particularly surfactant-containing wastewater with poor biodegradability, so-called hard surfactant, among others. It is a wastewater containing a sulfonic acid group-containing surfactant.
[0020]
Examples of microorganisms that degrade phenols and cresol compounds include Pseudomonas putida cb-173 (atcc 31800) described in US Pat. Nos. 4,352,886 and 4,556,638. The wastewater to which these microorganisms are applied includes, for example, phenolic resin factory effluent, cresol resin factory effluent, polyphenols industrial effluent obtained from bisphenol A, etc., plate making processes and photoresist forming processes that handle these phenolic resins This wastewater contains phenols.
[0021]
As the specific microorganism to be administered, in addition to the above-mentioned microorganisms that have already been isolated, those newly screened according to the purpose from soil or the like can be used, and a mixed system of a plurality of strains may be used. In addition, in the case of separated by screening, it may be unidentified.
[0022]
(Activated sludge)
The activated sludge used in the present invention may be any sludge that is generally used, and need not be a specific standard sludge. For example, it is possible to use sludge that has been acclimatized with wastewater to be treated from return sludge obtained from a terminal wastewater treatment plant of a municipal sewage, a factory or other large facility.
[0023]
(Mixed form of activated sludge and specific microorganisms)
Although specific microorganisms decompose persistent compounds, even if a specific microorganism is simply added to a conventional activated sludge tank, in general, microorganisms existing in the activated sludge tank will prevail, and The activity was suppressed and the decomposition of the specific compound did not proceed. As a result of various investigations on conditions and methods for the action of specific microorganisms in the activated sludge tank, the present inventor has found that both the specific microorganism capable of degrading the hardly biodegradable compounds and the microorganisms of the activated sludge function in the activated sludge tank. It was found that there is a condition that can be mixed in the state. Therefore, the feature of the wastewater treatment method of the present invention is a method of decomposing a specific compound by coexisting them in an activated sludge tank, and the conditions for such coexistence are (1) the concentration of both microorganisms and Concentration ratio optimization, (2) Selection of specific microorganism addition stage, (3) Adoption of a form in which a specific microorganism is supported on a carrier capable of sustaining activity, (4) In particular, inclusion immobilization Or a combination thereof.
[0024]
The optimum range of the concentration and concentration ratio of both microorganisms in (1) varies depending on the properties of the specific microorganism, the specific compound, and the wastewater, and the conditions are selected for each case.
Generally, the specific microorganism is contained in a dry weight of 10 g to 50 kg, preferably about 20 g to 5000 g per 1 m 3 of waste water. Moreover, the microorganisms in the activated sludge are contained at a concentration usually used.
The ratio of the number of solids of the microorganisms in the activated sludge and the specific microorganisms is 0.005 to 200, preferably 0.05 to 20 in many cases, more preferably 0.1 to 10 in the place where both microorganisms are mixed. Ratio is selected.
Regarding the selection of the specific microorganism addition stage of (2), the activity of microorganisms in the activated sludge is active at the beginning of the activated sludge treatment, and its activity gradually decreases with the progress of biodegradation. The method of adding the specific microorganisms during the progress of the wastewater treatment, specifically, the addition of the specific microorganisms in the second and subsequent tanks allows the specific compound to sufficiently decompose.
[0025]
The present invention does not exclude adding the specific microorganism directly to the activated sludge tank, but the method of adding the specific microorganism in the form supported on the carrier is effective as the active form of the specific microorganism of (3). Is. When the specific microorganism is supported, it may be supported by simple adsorption on the surface of the carrier, but it is more advantageous if it is supported on an immobilized carrier. That is, when an immobilization carrier is used, the activity of microorganisms is increased and the degradation period is shortened, so this form is a more preferred aspect.
In particular, the form of entrapping and adding the microorganisms listed in (4) above stabilizes and activates the activities of the microorganisms. As the specific methods of the above (3) and (4), various known methods can be used.
By the above-described wastewater treatment method of the present invention, the wastewater having a high COD value is specifically reduced to a half or several ppm by using a specific microorganism and ordinary activated sludge. Can be made.
[0026]
<Support for supporting specific microorganism and supporting method>
Next, the specific microorganism-supporting carrier and supporting method mentioned in the above (3) and (4) will be described.
As the carrier for supporting microorganisms, any known material can be used as long as it is a material that supports specific microorganisms and can be administered to contaminated soil. However, in terms of effective support of useful microorganisms, microorganisms are strongly present on the surface of the carrier. Those that adsorb, those that are porous so that the holding power can be enhanced by allowing microorganisms to enter the micropores, and those that substantially increase the adsorption or occlusion surface by agglomeration of microparticles are desirable.
Specifically, polysaccharides such as cellulose, dextran, and agarose; inactivated proteins such as collagen, gelatin, and albumin; synthetic polymer compounds such as ion exchange resins and polyvinyl chloride; inorganic substances such as ceramics and porous glass; Examples include natural carbohydrates such as agar, alginic acid, and carrageenan; and polymer compounds that can be used as a comprehensive carrier such as cellulose acetate, polyacrylamide, polyvinyl alcohol, epoxy resin, photocurable resin, polyester, polystyrene, and polyurethane. Moreover, what consists of lignin, starch, chitin, chitosan, filter paper, a piece of wood, etc. can also be utilized.
[0027]
Among the support and immobilization of specific microorganisms, a support form in which microorganisms are incorporated into a carrier material, that is, comprehensive immobilization is particularly preferable.
The shape of the preferred carrier is approximately spherical, approximately cubic, approximately cuboid, cylindrical, or tube-shaped, and is preferably approximately spherical that is easy to manufacture, or approximately cuboid that can increase the specific area. Any known method can be used as a method for producing the carrier. For example, a method of making a dispersion of microorganism-supported carrier particles by dripping a mixed solution of a microorganism and a carrier substance (or a precursor thereof) into an insoluble liquid and solidifying the liquid droplets in the liquid, or a microorganism and a carrier substance (or A method of obtaining a cuboid particle carrying microorganisms by cutting the solidified body into an appropriate size after solidifying the mixed solution of the precursor) by a method such as lowering the temperature or adding a gelling agent or a solidifying agent; The mixed solution of the carrier substance (or its precursor) is extruded into an insoluble liquid from the nozzle and solidified in the liquid to obtain a filamentous solidified product of the microorganism-carrying carrier, which is appropriately cut into a cylindrical shape Examples thereof include a method of producing particles, and a method of obtaining an annular (tube-shaped) microorganism-supporting carrier particle by setting the extrusion die at this time to be circular.
[0028]
The feature of the entrapping immobilization method is that the bacterial cells can be maintained at a high concentration, so that the treatment efficiency can be improved and the slow-growing bacteria can be immobilized. In addition, it has a wide tolerance against changes in conditions such as pH and temperature, and can withstand high load conditions. As the comprehensive immobilization method, acrylamide method, agar-acrylamide method, PVA-boric acid method, PVA-freezing method, photocurable resin method, acrylic synthetic polymer resin method, polyacrylic acid soda method, sodium alginate method, Any method can be used as long as it can confine microorganisms such as the K-carrageenan method, has a high physical strength and can withstand long-time use while maintaining the activity of the microorganisms in the carrier.
[0029]
Most commonly, a method of immobilization in a hydrogel of a synthetic polymer can be mentioned. A specific method for immobilizing in a hydrous gel is a method in which the carrier is formed by mixing seed sludge with a carrier solution or a carrier precursor solution and then dropping it into a fixing solution or a crosslinking agent solution. There are a method of molding in a mold, a method of molding after solidification, and the like. By such a molding method, the carrier is formed into pellets such as spheres, cylinders, cubes, and cuboids. In this case, the surface of the carrier may be uneven. The particle size of the pellet is preferably about 0.1 to 5 mm. If the particle size is smaller than 0.1 mm, solid-liquid separation of the carrier and the treated water becomes difficult. If the particle size is larger than 5 mm, In addition, oxygen does not diffuse to the inside of the carrier, making it difficult for microorganisms inside the carrier to survive.
Examples of water-containing polymer gels that can be used include natural organic polymer substances such as polysaccharides and collagen such as carrageenan, alginic acid, and ethyl succinylated cellulose, polyethylene glycol prepolymer (PEG), polyvinyl alcohol (PVA), polyacrylamide, and the like. Any polymer material can be used as long as it is solidified at room temperature or at a temperature at which microorganisms do not die, and does not release microorganisms into the liquid after solidification.
[0030]
A method for preparing a microorganism-immobilized gel in the case of the acrylamide method will be described as a representative example of the entrapping immobilization method on a hydrous gel. The immobilization gel suspends an acrylamide monomer solution containing a cross-linking agent (for example, N, N′-methylenebisacrylamide) and bacteria (concentrated cells of MLSS of about 20,000 ppm), and a polymerization accelerator (for example, N , N, N ′, N′-tetramethylethylenediamine) and a polymerization initiator (for example, potassium persulfate) are added to a molded shape such as a 3 mm diameter vinyl chloride tube and polymerized at 20 ° C. to complete the polymerization. After that, it is obtained by extruding from a mold and cutting it into a certain length. Since the pores on the surface of the immobilized gel are smaller than the bacteria, the entrapped and immobilized bacteria are unlikely to leak, grow inside and self-decompose. Only contaminating components in the soil enter the gel through the pores and are treated by the bacteria inside.
A method for immobilizing a synthetic polymer in a hydrous gel is also disclosed in JP-A-10-263575.
[0031]
Further, as another entrapping immobilization method, a method of immobilizing on activated carbon particles can be mentioned.
Examples of activated carbon used include charcoal, coal, coke, coconut husk, resin, petroleum pitch, and other raw material carbides such as wood, coal, resin, and pitch. Are preferably activated by a method such as a gas activation method, a water vapor activation method, or a chemical activation method that activates with a chemical such as zinc chloride or phosphoric acid. Among them, wood-based activated carbon has a network structure on the surface and inside, so that microorganisms are easily inhabited, and it has an excellent ability to adsorb organic substances and odor components, and also has excellent mechanical strength. Therefore, it is preferable. What activated the wood type activated carbon chemically is still more preferable.
[0032]
As the quality of the activated carbon, the filling specific gravity is 0.10 to 0.70 g / cc, preferably 0.15 to 0.60 g / cc, the specific surface area is 300 to 2800 m 2 / g, preferably 600 to 2500 m 2 / g, A pore volume having a pore radius in the range of 10 nm to 500 μm is 0.1 to 2.5 ml / g, preferably 0.15 to 2.5 ml / g. If the particle size of the activated carbon is too small, solid-liquid separation of the treated water becomes difficult, and if it is too large, the contact area with the waste water becomes small.
A method for immobilization in activated carbon is also disclosed in JP-A-11-77074.
[0033]
As another entrapping immobilization method, there is a method of immobilizing a specific microorganism on a carbon fiber cloth. The carbon fiber used as the carrier is, for example, a fiber obtained by melt spinning a coal pitch at a high temperature to make it infusible carbon. Preferably, a carbon fiber cloth made of carbon fiber having a diameter of 1 to 30 μm and having a thickness of 0.3 to 6.0 mm and a unit weight of 20 to 300 g / m 2 is used.
If the microbial carrier is made of carbon fiber, it can be a carrier with a long lifetime of the specific microorganisms in the activated sludge tank, and the amount of microorganisms per unit area can be increased, so that the biological treatment efficiency of specific compounds can be improved. Can be planned.
[0034]
The carbon fiber diameter of the carbon fiber cloth forming the microbial carrier, the bonding material, the thickness of the cloth, the unit weight of the cloth, etc. are the amount of microorganisms attached, the ease of water to be treated, the ease of making the microbial carrier and It can be selected appropriately in consideration of strength and the like. For example, a carbon fiber cloth made of carbon fiber having a diameter of 1 to 30 μm and having a thickness of 0.3 to 6.0 mm and a unit weight of 20 to 300 g / m 2 does not deteriorate in strength even when used for a long period of time and is biologically treated. A microbial carrier suitable for the fixed bed of the tank can be formed.
[0035]
For more specific methods of these loading methods, especially the immobilization method, “Wastewater treatment by microbial immobilization method” edited by Ryuichi Sudo (Industrial Water Research Committee), Kohei Inamori's “Enhancement and efficiency of wastewater treatment by biofilm method” Trends in Water Pollution Research, vol. 13, no. 9, 1990, p. 563-574, Sadao Inamori's “Trends / Problems / Prospects of Advanced Water Treatment Technology Development”, Water and Wastewater, vol. 34, no. 10, 1992, p. 829-835.
[0036]
In addition to the above-mentioned carriers, microorganism-supporting carriers include DC1738CW for decomposing surfactants, such as soil preparation microorganism preparations Biotrack DOL and SurfClean, and the ability to decompose phenols and cresol compounds including methylphenols. As the preparation, preparations such as DC1002CG and DC1738CW (both are Cyblon Chemicals Japan Co., Ltd.) can be used.
[0037]
By the above-described wastewater treatment method of the present invention, the wastewater having a high COD value is specifically reduced to a half or several ppm by using a specific microorganism and ordinary activated sludge. Can be made.
[0038]
(Waste water treatment)
The specific microorganism may be added by any method as long as the specific microorganism is added so as to be uniformly dispersed in the treatment tank. For example, the microorganisms may be manually added directly from the storage container while aeration of the processing tank or stirring with a stirrer or the like.
[0039]
The capacity and residence time of the entire treatment tank for treating waste water vary depending on the amount of waste water, but in general, the residence time of waste water in the whole treatment tank is adjusted to be about 0.2 to 20 days. . In particular, it is preferable to adjust the residence time to be about 0.5 to 5 days.
Moreover, although there is no restriction | limiting in the number of structure processing tanks, 2 thru | or 3 tanks are preferable from a viewpoint of efficiency and apparatus cost.
The treatment of specific microorganisms and activated sludge is managed by measuring pH, DO (dissolved oxygen), COD values before and after treatment, and the like. The pH is 4.0 to 8.5, preferably 4.5 to 8.0, and a narrower management range is selected depending on the nature of the wastewater. DO is 5.0 mg / l to 15.0 mg / l, preferably 7.0 mg / l to 13.0 mg / l. The pH can be controlled by adding acid or alkali, and the DO can be controlled by adjusting the amount of aeration.
[0040]
The concentration measurement of a specific compound may be directly quantified, but as a practical method for management, it is practical to use COD as a value corresponding to the concentration. The COD is preferably measured by measuring the concentrations of both the inlet to the first activated sludge tank and the outlet from the final tank. However, if the wastewater contains a lot of COD due to biodegradable substances in addition to COD due to the specific compound, it will be measured at the inlet to the tank into which the specific microorganism is introduced instead of the measurement at the inlet to the activated sludge tank. More preferably, in addition to the inlet to the first activated sludge tank and the outlet from the final tank, it is desirable to measure at the inlet of the specific microorganism.
[0041]
Waste water treatment operation status is monitored by measuring COD and the COD value is measured by, for example, OD-1000 / 1100 manufactured by COS, CODA-211 / 212 manufactured by HORIBA, Hiranuma fully automatic COD manufactured by Hitachi High-Technologies Corporation. Although measuring apparatus COD-1500 etc. are mentioned, it is not limited to these, What is necessary is just an apparatus which can measure a COD value.
[0042]
Depending on the activity state of microorganisms in the activated sludge and the specific microorganisms, an appropriate amount of nutrient source is administered to the activated sludge tank as necessary to maintain the activity of both microorganisms.
The nutrient source is a carbon source, nitrogen source or organic nutrient source inorganic salt suitable for the growth of microorganisms. Polypeptone, yeast extract, meat extract, molasses, etc. are administered as organic nutrient sources, and various phosphates, magnesium salts, etc. are administered as inorganic nutrient sources. The added amount of organic nutrient sources is 0.001-5 mass% of the amount of wastewater. The inorganic nutrient source is about 0.1 to 1% by mass of the organic nutrient source. This amount is not limited and is appropriately selected depending on the nature and state of the wastewater.
[0043]
The method of adding the nutrient source is not particularly limited as long as the addition is performed so as to disperse uniformly in the treatment tank. For example, when administering a nutrient source in the form of an aqueous solution, it is preferable to add the solution from a solution tank or a container by a liquid feed pump or manually while aeration or stirring with a stirrer is performed. When it is administered as it is, it can be injected through an input hopper or a transport device.
[0044]
In addition, nutrients can be included in gel-like inclusion carriers such as carrageenan and alginic acid to exert a sustained release effect. The methods include 1) solutions containing nutrients and gelling materials (such as carrageenan and alginic acid). And 2) after mixing with a solution containing 2) to form a carrier together with gelation to obtain a supported carrier.
If the activity of specific microorganisms in the activated sludge tank has declined, it is desirable to add nutrient sources and monitor changes in COD values for several days. If the degree of decline does not recover, it is desirable to add the target microorganisms . If the degree of decrease in the COD value does not recover even when microorganisms are added, it is considered that some trouble has occurred. Therefore, a system that can take dilution and discharge measures as an emergency response is desirable. In the meantime, we will analyze the cause of the decrease in bacterial activity and take countermeasures.
[0045]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, these do not limit the scope of the present invention at all.
[0046]
(Example 1)
[Test 1]
<Adaptation culture of microorganisms>
The following culture solution containing 500 ml of EDTA copper complex was sterilized in an autoclave at 120 ° C. for 20 minutes, and the medium was inoculated with the following strain, followed by stationary culture at 37 ° C. for 5 days.
Culture solution composition:
Polypeptone 0.5%
Yeast extract 0.1%
Cu-EDTA 0.1%
1 / 30M phosphate buffer 500ml
pH 6.0
Strain: Pseudomonas editabidus-1 (Microtechnological Bacteria No. 13634)
[0047]
After culturing, the mixture was filtered using sterilized gauze, and the obtained carrier was washed with sterilized water and used in the following experiments.
[0048]
<Electroless plating waste liquid>
A liquid having the following composition was prepared as a model waste liquid of the electroless plating waste liquid.
Electroless plating model waste liquid EDTA 2Na 1000ppm
Copper sulfate 200ppm
Formalin (37%) 80ppm
Sodium sulfate 500ppm
Sodium carbonate 90ppm
Sodium formate 150ppm
pH 7.4
The COD of this model waste liquid was 1900 ppm.
[0049]
<Preparation of the second tank>
The above model waste liquid was placed in a 2 l continuous processing tank, and after adding 50 g of returned sludge procured from the terminal treatment facility of Fuji Photo Film Co., Ltd. Ashigara Factory, batch processing was performed for 3 days. The treated water obtained here was put in another 2 l continuous treatment tank (second tank). The COD value of this treatment liquid was 1700 ppm.
[0050]
<Preparation of wastewater treatment equipment>
The continuous processing tank that performed the batch type processing was used as the first tank, and the continuous processing was switched to the continuous processing in which the model waste liquid was continuously supplied. It connected so that the liquid processed by the 1st tank might flow in into the 2nd tank filled with the liquid prepared by the said batch process.
Bacteria (400 mg in dry weight) conditioned with the 0.1% Cu-EDTA medium were added to the second tank.
[0051]
<Waste liquid treatment test>
The said model waste liquid was poured into the 1st tank at the speed | rate of 25 ml / hour, and the continuous process was performed with the processing apparatus of the 2 tank structure which connected the 2nd tank in series.
The COD values of the effluent after 7 days, 14 days, 21 days and 40 days after the start of the continuous treatment are shown below.
[0052]
[Table 1]
Figure 2004033808
[0053]
[Test 2]
On the other hand, the process was continued on the same conditions except having replaced the contents of the said 1st tank and the 2nd tank using the same 2 tank connection continuous type tank. The COD value after treatment for 40 days was 220 ppm, indicating a higher residual COD than the result of Test 1, but it was possible to reduce 88% or more of the COD of the raw wastewater.
[Comparison test]
As a comparative test, 2 liters of the above treated water was added to the first tank as well as the second tank, and the conditioned bacteria were added to the first tank as well as the second tank without adding activated sludge. As a result, the COD value after the 40-day treatment decreased only to about 1500 ppm.
[0054]
From the above test results, it can be seen that the specific compound is remarkably decomposed by the waste liquid treatment method of the present invention in which activated sludge and specific microorganisms coexist, and the effect is particularly great in the case of Test 1 in which the specific microorganism is added to the second tank. . On the other hand, the COD value decreased only slightly under the comparative test conditions where both microorganisms were not mixed.
[0055]
(Example 2)
As in Example 1, except that the conditioned specific microorganism was added to a polymer carrier (BioTube made by Nippon Steel Corporation) and added (the amount of added bacterial cells was 400 mg in dry mass as in Example 1). did). The input amount of the carrier was 50 times that of the bacterial cells.
The COD values up to 40 days were measured in the same manner as in Example 1.
[0056]
[Table 2]
Figure 2004033808
[0057]
Comparing the results with Example 1, it can be seen that COD is more efficiently reduced in this Example using an immobilization carrier than in the method of Example 1 in which the specific microorganism itself is added.
[0058]
(Example 3)
The same experiment as in Example 2 was performed by changing the strain to the following.
Strain: Bacillus editabidus-1
The results are shown below. According to the present invention, it can be seen that good results can be obtained even if the bacterial species is changed to the above.
[0059]
[Table 3]
Figure 2004033808
[0060]
Example 4
[Test 1]
A 400 ppm solution of polyethylene glycol nonylphenol (average ethoxy group number 8.5), which is a surfactant, was prepared as a model wastewater for washing wastewater. The COD of this model waste liquid was 980 ppm.
This model waste liquid was put into a 2 l continuous processing tank, and after adding 40 g of returned sludge procured from the terminal treatment facility of Fuji Photo Film Co., Ltd. Ashigara Factory, batch mold processing was performed for 3 days. The treated water obtained here was put in another 2 l continuous treatment tank (second tank). The COD value of this treatment liquid was 900 ppm.
The continuous processing tank which performed the said batch type process was made into the 1st tank, and it switched to the continuous processing. Here, the model waste liquid treated in the first tank was connected so as to flow into the second tank.
In the second tank, a surfactant-degrading bacterium (500 mg in dry weight) extracted from the microbial preparation BI-CHEM1004TX (Cybron Chemicals Japan Co., Ltd.) was used as the polymer carrier used in Example 2 as a carrier / cell mass ratio. 50 supported and added.
The model waste liquid was flowed into the first tank at a rate of 20 ml / hour, and was continuously treated by an activated sludge tank connected to two tanks.
The COD values of the effluent 10 days, 20 days, 30 days and 60 days after the start of the continuous treatment are shown below.
[0061]
[Table 4]
Figure 2004033808
[0062]
[Test 2]
On the other hand, the same 2 tank connection continuous type tank was used, and the process was performed under the same conditions except that the contents of the first tank and the second tank were replaced. The COD value after the 60-day treatment was 300 ppm, which was a higher residual COD than the result of Test 1 above, and the decomposition rate was about 69%. [Comparison test]
As a comparative test, 2 liters of the above treated water was added to the first tank as well as the second tank, and the conditioned bacteria were added to the first tank as well as the second tank without adding activated sludge. As a result, the COD value after the 60-day treatment was reduced only to about 600 ppm, and the decomposition rate was about 39%).
[0063]
【The invention's effect】
According to the wastewater treatment method of the present invention, a COD value is obtained by effectively decomposing a hardly biodegradable compound by mixing the activated sludge with a microorganism that decomposes the hardly biodegradable compound in at least one of the wastewater treatment tanks. Can be reduced. The effect is particularly remarkable when the microorganism is added to the second tank of the activated sludge tank connected in series.

Claims (1)

直列に配置した少なくとも2つの廃水処理槽を用いて高濃度有機廃水を処理する廃水処理方法であって、該廃水処理槽の少なくとも一つに難生分解性化合物を分解する微生物を活性汚泥と混在させることを特徴とする廃水処理方法。A wastewater treatment method for treating high-concentration organic wastewater using at least two wastewater treatment tanks arranged in series, wherein at least one of the wastewater treatment tanks is mixed with activated sludge with microorganisms that decompose hardly biodegradable compounds A wastewater treatment method characterized in that
JP2002190499A 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms Pending JP2004033808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190499A JP2004033808A (en) 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190499A JP2004033808A (en) 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms

Publications (1)

Publication Number Publication Date
JP2004033808A true JP2004033808A (en) 2004-02-05

Family

ID=31700404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190499A Pending JP2004033808A (en) 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms

Country Status (1)

Country Link
JP (1) JP2004033808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142192A (en) * 2004-11-18 2006-06-08 Kurita Water Ind Ltd Apparatus for treating organic sulfur compound-containing drainage
JP2009072737A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd METHOD FOR TREATING WASTE LIQUID CONTAINING OIL AND FAT, alpha-STARCH, AND beta-STARCH
JP2011056410A (en) * 2009-09-10 2011-03-24 Panasonic Corp Method for treating organic wastewater and method for suppressing generation of excess sludge
EP3578275A1 (en) * 2018-06-05 2019-12-11 MWK Bionik GmbH Biological degradation of organic halogen compounds in polluted waters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142192A (en) * 2004-11-18 2006-06-08 Kurita Water Ind Ltd Apparatus for treating organic sulfur compound-containing drainage
JP4670322B2 (en) * 2004-11-18 2011-04-13 栗田工業株式会社 Wastewater treatment equipment containing organic sulfur compounds
JP2009072737A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd METHOD FOR TREATING WASTE LIQUID CONTAINING OIL AND FAT, alpha-STARCH, AND beta-STARCH
JP2011056410A (en) * 2009-09-10 2011-03-24 Panasonic Corp Method for treating organic wastewater and method for suppressing generation of excess sludge
EP3578275A1 (en) * 2018-06-05 2019-12-11 MWK Bionik GmbH Biological degradation of organic halogen compounds in polluted waters

Similar Documents

Publication Publication Date Title
Cruz et al. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment
Aneez Ahamad et al. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes
US6905288B2 (en) Method of remedying contaminated soil by microorganism
JP5046183B2 (en) Method for culturing and acclimatizing 1,4-dioxane-degrading bacteria, method for producing 1,4-dioxane-degrading bacteria-immobilized carrier, wastewater treatment method and apparatus
Lim et al. Shielding immobilized biomass cryogel beads with powdered activated carbon for the simultaneous adsorption and biodegradation of 4-chlorophenol
CN1199712A (en) Waste water treatment apparatus
Shin et al. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
Ramteke et al. Removal of benzene, toluene and xylene (BTX) from wastewater using immobilized modified prepared activated sludge (MPAS)
US7238271B2 (en) Method for treating organic wastewater containing aminopolycarboxylic acid
Sevillano et al. Feasibility study of degradation of phenol in a fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier
Bandhyopadhyay et al. Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation
JP2004033808A (en) Wastewater treatment method using microorganisms
Bustos‐Terrones et al. Kinetics of a fixed bed reactor with immobilized microorganisms for the removal of organic matter and phosphorous
KR100961667B1 (en) A method for treating dyeing wastewater by using porous polyurethane foam media comprising carbonaceous materials obtained from carbonization of sludges and white?rot fungi
JP2005087860A (en) Treatment method for leachate from industrial waste disposal plant
JP2004033809A (en) Wastewater treatment method using microorganisms
JPS6352556B2 (en)
Hernández‐Esparza et al. Removal of High Phenol Concentrations with Adapted Activated Sludge in Suspended Form and Entrapped in Calcium Alginate/Cross‐Linked Poly (N‐vinyl pyrrolidone) Hydrogels
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
CN104342428A (en) Artificial zoogloea and preparation method thereof
KR102020554B1 (en) Method and apparatus for reusing inorganic wastewater
Bae et al. Microbial evaluation for biodegradability of recalcitrant organic in textile wastewater using an immobilized-cell activated sludge process
Deveci Treatibility of Wastewater Containing 2, 4 Dichlorophenol Using Aclimated Activated Sludge Microorganisms in Packed Upflow Column Bioreactor.
JP2003311258A (en) On-site restoration method and apparatus of contaminated soil by means of micro-organism