JP2004033809A - Wastewater treatment method using microorganisms - Google Patents

Wastewater treatment method using microorganisms Download PDF

Info

Publication number
JP2004033809A
JP2004033809A JP2002190500A JP2002190500A JP2004033809A JP 2004033809 A JP2004033809 A JP 2004033809A JP 2002190500 A JP2002190500 A JP 2002190500A JP 2002190500 A JP2002190500 A JP 2002190500A JP 2004033809 A JP2004033809 A JP 2004033809A
Authority
JP
Japan
Prior art keywords
microorganisms
wastewater
specific
carrier
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002190500A
Other languages
Japanese (ja)
Inventor
Hideo Miyazaki
宮崎 英男
Takatoshi Ishikawa
石川 隆利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002190500A priority Critical patent/JP2004033809A/en
Publication of JP2004033809A publication Critical patent/JP2004033809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method which substantially reduces hardly biodegradable COD in wastewater and treats COD at a low cost. <P>SOLUTION: Microorganisms for decomposing a hardly biodegradable compound are immobilized on a carrier and immobilized microorganisms are allowed to get mixed with activated sludge to treat organic wastewater of a high concentration. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、微生物を用いた高濃度有機廃水の処理方法であり、特に微生物によりCODを低減する方法に関する。とりわけ無電解メッキ廃水及び各種洗浄廃水の廃水処理に関する。
【0002】
【従来の技術】
難生分解性のキレート剤は、工業用石鹸、写真産業、パルプ工業、メッキ工業等の諸分野で汎用されている。これらの諸分野から排出される産業廃水は、難生分解性であることに加えて、該キレート剤が環境中に存在する重金属を抽出し、これらが表層水、具体的には河川水や地下水中に取り込まれる懸念が指摘されていて、例えばドイツでは難生分解性のキレート剤の排出を自主規制している。日本では現時点ではその使用・排出に係る規制は無いが、難生分解性のキレート剤が廃水のCOD値を嵩上げするので、CODの規制の上から難生分解性のキレート剤を含有する廃水のCOD値が問題となっている。
【0003】
一方、界面活性剤は微生物分解され難い代表的な化合物の一つであり、工業用洗剤及び家庭用洗剤に多く含まれ、終末処理場で分解しきれず、COD値を規制値以下にできないので、上記キレート剤と同様のCOD負荷の問題が生じている。そのほかにも、例えば電機、機械産業における有機塩素化合物混入廃水や有機化学工場に於ける有機溶剤含有廃水をはじめ、難生分解性の物質を使用する事業所では、その廃水について同様のCOD負荷問題を抱えている。
【0004】
これら難生分解性化合物は、従来の活性汚泥処理では殆ど分解されないので、COD規制値以下とするためには廃水を希釈してから排出する希釈法がもっとも一般的な対処方法であるが、希釈法はコストが高いだけでなく、排出されるCODの総量は変わらない。そのため、排水中のCODを実質的に低減する本質的な解決手段が望まれている。
この解決手段として、オゾン分解法や電解酸化法による廃水処理は可能ではあるが、処理コストが大きいことが制約となっている。
【0005】
【発明が解決しようとする課題】
本発明は、上記した背景からなされたものであり、その目的は、難生分解性の廃水中のCODを実質的に低減させ、かつ低コストで処理可能な廃水処理方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、上記の問題について、その解決手段を鋭意検討した結果、下記の方法によって課題を解決できることを見出した。すなわち本発明は下記の通りである。
【0007】
1.高濃度有機廃水を処理する廃水処理方法であって、難生分解性化合物を分解する微生物を担体に固定化し、該固定化された微生物を活性汚泥と混在させることを特徴とする廃水処理方法。
【0008】
2.固定化された難生分解性化合物を分解する微生物と活性汚泥由来の微生物との固体数の比率が0.1〜10.0であることを特徴とする上記1に記載の廃水処理方法。
【0009】
3.高濃度有機廃水が難生分解性キレート剤を含有する廃水であることを特徴とする上記1又は2に記載の廃水処理方法。
4.高濃度有機廃水が界面活性剤を含有する廃水であることを特徴とする上記1又は2に記載の廃水処理方法。
5.高濃度有機廃水が無電解メッキの廃水であることを特徴とする上記1又は2に記載の廃水処理方法。
6.高濃度有機廃水が各種製造業の洗浄工程から排出される洗浄廃水であることを特徴とする上記1又は2に記載の廃水処理方法。
【0010】
7.難生分解性化合物を分解する微生物がEDTAを分解可能な菌であることを特徴とする上記1〜6のいずれかに記載の廃水処理方法。
8.難生分解性化合物を分解する微生物が界面活性剤を分解可能な菌であることを特徴とする上記1〜6のいずれかに記載の廃水処理方法。
【0011】
上記の本発明は、高濃度有機廃水の処理において、難生分解性化合物を分解する微生物を包括固定化することによって活性汚泥と混在させてもその生物分解機能を維持できることを見出したことに基づいた発明であり、その特徴は、このような難生分解性化合物を分解する微生物と活性汚泥の微生物とが両者ともに機能する混在形態を通常の活性汚泥処理装置を用いて実現させたことであり、その結果、廃水中のBODのみでなく、難生分解性化合物由来のCODも低減させることが可能となり、極めて低コストで水質規制に対処することを可能としたことである。
活性汚泥処理とCOD低減処理を同時に行なえる本発明の方法は、BOD値とCOD値がともに高い高濃度有機廃水に対して、とくに効果的で低コストに廃水処理を施すことができる。
したがって、この廃液処理方法は、上記3〜6に記した典型的な廃水例に限定されることなく難生分解性化合物含有廃水に広く適用することができる。
以下、本発明の詳細を実施の形態を通じてさらに説明する。
【0012】
【発明の実施の形態】
以下の本明細書の記述においては、「生分解」を単に「分解」、「難生分解」を単に「難分解」、「難生分解性の化合物」を「特定化合物」、「特定化合物を分解可能な微生物」を「特定微生物」、と呼ぶこともある。生物処理観点から述べる個所では、分解作用を営む「微生物」を「分解菌」又は単に「菌」と呼ぶこともある。
【0013】
本明細書において、難生分解性化合物すなわち特定化合物とは、従来の活性汚泥ではほとんど分解されない化合物を指しており、具体的にはMITI法で生分解試験を行ったときの生分解率が50%以下の化合物を指している。その中でも、本発明の廃水処理方法は、上記試験法による生分解率25%以下、あるいは15%以下、さらには10%以下の生分解率が極度に低い化合物を生分解により除去するのにも効果的である。
【0014】
本明細書において高濃度有機廃水とは、有機の特定化合物をそのままでは放流できない濃度レベルで含有する廃水を指す。具体的には、特定化合物をCOD規制値を超えて含有している工業用石鹸含有廃水、EDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)、PDTA(1,3−プロパンジアミン四酢酸)等の有機アミノカルボン酸類を含む写真処理関連の廃水、パルプ工業やメッキ工業等の施設からの難生分解性のキレート剤含有廃水、中でも無電解メッキ廃水、工業用洗剤及び家庭用洗剤を扱う施設からの界面活性剤含有廃水、電機・機械産業施設からの有機塩素系溶剤含有廃水、有機化学工場からの有機溶剤含有廃水、食品工業の洗浄廃水などの廃水が挙げられる。しかし、本発明が対象としている廃水は、これらに限定されることなく難生分解性の有機化合物すなわち特定化合物を直接放流できないレベルで含有するいずれの廃水であってもよい。
高濃度有機廃水のCOD値は、当該地域の排出規制レベルを超えているが、多く場合20ppmから数万ppmにわたっており、より多くの場合に100から1000ppm程度である。
【0015】
(特定微生物)
上記の特定化合物を分解可能な微生物すなわち特定微生物について説明する。特定微生物は、個々の特定化合物ごとにそれを分解できる特定の分解菌があり、ある特定化合物に対して適合する特定微生物の組み合わせとなっている。
例えば、特定化合物が芳香族炭化水素系化合物(例えば、フェノール類)有機溶剤(例えば、トルエン、トリクロロエチレンなど)、有機塩素化合物(例えばダイオキシン、PCBなど)等に対しては、これらを分解するPseudomonas属に属する細菌、Methylosinus、Methylomonas、Methylobacterium、Hethylocystis、Alcaligenes、Mycobacterium、Nitrosomonas、Xanthomonas、Spirillum、Vibrio、Bacterium、Achromobacter、Acinetobacter、Flavobacterium、Chromobacterium、Desulfovibrio、Desulfotomaculum、Micrococcus、Sarcina、Bacillus、Streptomyces、Nocardia、Corynebacterium、Pseudobacterium、Arthrobacter、Brevibacterium、Saccharomyces、Lactobacillusの各属に属する微生物等を当該特定微生物として用いることがきる。
【0016】
また、EDTAなどの金属キレート剤やそれらが重金属と錯結合した重金属キレートなどを分解する能力を有する特定微生物には、バチルス属に属する細菌として、バチルス エディタビダス(Bacillus editabidus) 、バチルス サブチリス(Bacillus subtilis) 、バチルス メガテリウム(Bacillus megaterium) 、バチルス スファエリカス(Bacillus sphaericus) などがあげられる。これらは、例えば、Bacillus edtabidus−1(微工研菌寄 第13449号)、Bacillus subtilis NRIC 0068 、B. megaterium NRIC 1009 、B. sphaericus NRIC 1013 などとして容易に入手することができる。
【0017】
別のEDTA分解能を有する特定微生物としては、特開昭58−43782号に記載のシュードモナス属やアルカリゲネス属、Applid and Environmental Microbiology vol.56,p.3346−3353(1990)に記載のアグロバクテリウム属の菌種、Applid and Environmental Microbiology vol.58,No.2,Feb.1992,p.671−676に記載のGram−negative isolateが挙げられる。これらのうち、例えば、シュードモナス・エディタビダス(Pseudomonas editabidus) は、Pseudomonas editabidus−1(微工研菌寄第13634号)として入手できる。
【0018】
さらに別のEDTA分解能を有する微生物としては、海洋性菌類であるバチルス・エディタビダス(Bacillus editabidus)及びメソフィロバクター・エディタビダス(Mesophilobacter editabidus) が挙げられる。この有機アミノカルボン酸類分解菌バチルス・エディタビダス(Bacilluseditabidus)は、Bacilluseditabidus −M1(微工研菌寄第14868号)及びBacillus editabidus −M2(微工研菌寄第14869号)の属する種である。又、有機アミノカルボン酸類分解菌メソフィロバクター・エディタビダス(Mesophilobacter editabidus) は、Mesophilobacter editabidus−M3(微工研菌寄第14870号)の属する種である。
【0019】
界面活性剤分解性菌としては、例えばUS4274954号公報に記載のシュウドモナスフルオレッセンス3p(atcc31483)を挙げることができる。これらの微生物の適用対象となる廃水は、例えば、アニオン系、ノニオン系あるいはカチオン系の界面活性剤含有排水、とりわけいわゆるハードな界面活性剤と呼ばれる生分解性に乏しい界面活性剤含有排水、なかでもスルホン酸基含有界面活性剤含有排水である。
【0020】
また、フェノール類やクレゾール類化合物を分解する微生物としては、例えばUS4352886号及び4556638号公報に記載のシュウドモナスプチダcb−173(atcc31800)を挙げることができる。これらの微生物の適用対象となる廃水は、例えば、フェノール樹脂工場排水、クレゾール樹脂工場排水、ビスフェノールAなどから得られるポリフェノール類の工場排水や、それらのフェノール系樹脂を扱う製版工程やフォトレジスト形成工程から排出されるフェノール類含有排水である。
【0021】
なお、投与される特定微生物としては、既に単離されている上記微生物のほか、土壌等から目的に応じて新たにスクリーニングしたものも利用でき、複数の株の混合系でもよい。なお、スクリーニングにより分離したものの場合それが未同定のものでも良い。
【0022】
(活性汚泥)
本発明に用いる活性汚泥は、一般に用いられているいずれの汚泥であってもよく、特定の標準汚泥である必要はない。例えば、都市下水の終末処理場、工場その他の大型施設の端末廃水処理場などから入手した返送汚泥を処理対象の廃水で馴化した汚泥を用いることができる。
【0023】
(特定微生物の 担持・固定化)
特定微生物は難分解性化合物を分解するとはいうものの、特定微生物を単純に従来の活性汚泥槽に混在させたのでは、活性汚泥槽に従来から存在する微生物が優勢に活動し、特定微生物の活動が抑制され、特定化合物の分解が進まなかった。本発明者は、活性汚泥槽の中でも特定微生物が活動する条件や方法を種々検討したところ、特定微生物を適当な担体に 担持させると活性汚泥中の微生物から保護され、活動を持続できることが判った。したがって本発明の廃水処理方法では、特定微生物をその活性を持続できるような担体に担持させた形態を採用しているのが特徴で、とりわけ包括固定化させた形態が好ましい。担体に 担持させた形態の下では特定微生物と活性汚泥の微生物の両者ともに機能する状態で活性汚泥槽中に混在する。
【0024】
本発明では、上記のように特定微生物の活性を持続できる形態として、担体に担持させて活性汚泥槽に添加するが、特定微生物を 担持させる形態としては、担体表面への単なる吸着による 担持でもよいが、固定化担体に担持させる、すなわち微生物が担体内に固定化して容易に逃散しない形で 担持させると、さらに有利である。すなわち固定化担体への 担持は、微生物の活性が高くなり、分解期間が短縮されるため、より好ましい態様である。
【0025】
微生物担持用担体としては、いずれの公知材料をも使用できるが、有用微生物の効果的な担持という点から、担体表面に微生物が強く吸着するもの、微生物を微小孔隙中へ侵入させることにより保持力を高めることができるような多孔性のもの、ミクロ粒子が凝集して実質的に吸着あるいは吸蔵表面を増大させたものが望ましい。
具体的には、セルロース、デキストラン、アガロースのような多糖類;コラーゲン、ゼラチン、アルブミンなどの不活化蛋白質;イオン交換樹脂、ポリビニルクロライドのような合成高分子化合物;セラミックスや多孔性ガラスなどの無機物;寒天、アルギン酸、カラギーナンなどの天然炭水化物;さらにはセルロースアセテート、ポリアクリルアミド、ポリビニルアルコール、エポキシ樹脂、光硬化性樹脂、ポリエステル、ポリスチレン、ポリウレタンなど包括担体とし得る高分子化合物などがあげられる。また、リグニン、デンプン、キチン、キトサン、濾紙、木片等からなるものも利用できる。
【0026】
特定微生物の 担持・固定化の中でも、とくに微生物が担体物質中に取り込まれた 担持形態、すなわち包括固定化、がとくに好ましい。
包括固定化の好ましい担体の形状としては、ほぼ球状、ほぼ立方体状、ほぼ直方体状、円筒状あるいはチューブ状であり、なかでも製造し易いほぼ球状、あるいは比面積を大きくできるほぼ直方体状であることが好ましい。担体の製造方法としては、既知の任意の方法を用いることができる。例えば微生物と担体物質(又はその前駆体)の混合溶液を不溶解性液体中に滴下して液体中で液滴を固化させて微生物 担持担体粒子の分散物を作る方法、微生物と担体物質(又はその前駆体)の混合溶液を低温化、ゲル化剤や固化剤の添加などの方法で固化させた後、固化体を適当なサイズに裁断して微生物を 担持した直方体粒子を得る方法、微生物と担体物質(又はその前駆体)の混合溶液を押し出しノズルから不溶解性液体中に注入して液体中で固化させて微生物 担持担体の糸状の固化物を得てこれを適当に裁断して円筒状粒子を作る方法、またこのときの押し出し成形のダイを環状として円環状(チューブ状)の微生物 担持担体粒子を得る方法を挙げることができる。
【0027】
包括固定化法の特徴は、菌体を高濃度に保持できるため、処理効率を向上させることができ、増殖の遅い菌を固定化できることである。また、pH、温度等の条件変化に対する耐性が広く、高負荷状態にも耐え得ることでもある。包括固定化法としては、アクリルアミド法、寒天−アクリルアミド法、PVA−ホウ酸法、PVA−冷凍法、光硬化性樹脂法、アクリル系合成高分子樹脂法、ポリアクリル酸ソーダ法、アルギン酸ナトリウム法、K−カラギーナン法等、微生物を閉じ込めることができ、担体中で微生物の活性を維持しつつ、物理的強度が大きく長時間の使用に耐え得るものならば種類を問わない。
【0028】
最も一般的には、合成高分子の含水ゲル中に固定化する方法が挙げられる。含水ゲル中に固定化する具体的方法は、担体の成形を、種汚泥を担体溶液或いは担体前駆物質溶液と混合した後、固定液或いは架橋剤液中に滴下して行う方法、固化する前に型に入れて成形する方法、固化した後に成形する方法等がある。このような成形法により、担体を球、円柱、立方体、長方体等のペレット状にする。この場合、担体の表面に凸凹をつけてもよい。ペレットの粒径としては、0.1〜5mm程度が良く、粒径が0.1mmより小さい場合には、担体と処理水の固液分離が困難になり、粒径が5mmより大きい場合には、担体内部まで酸素が拡散しなくなり、担体内部の微生物の生存が困難になる。
使用し得る高分子含水ゲルとしては、カラギーナン、アルギン酸、エチルサクシニル化セルロースのような多糖類やコラーゲン等の天然有機高分子物質、ポリエチレングリコールプレポリマー(PEG)、ポリビニルアルコール(PVA)、ポリアクリルアミド等の合成高分子樹脂、その他、常温放置又は微生物が死滅しない程度の温度で固化し、固化後に微生物を液中に放出しないものであれば、任意の高分子物質を使用することができる。
【0029】
含水ゲルへの包括固定化法の代表例としてアクリルアミド法の場合の微生物固定化ゲルの調製法について説明する。固定化ゲルは、架橋剤(例えば、N,N’−メチレンビスアクリルアミド)を含有したアクリルアミドモノマー溶液と細菌(MLSS 20,000ppm程度の濃縮菌体)とを懸濁し、重合促進剤(例えば、N,N,N’,N’−テトラメチルエチレンジアミン)、重合開始剤(例えば、過硫酸カリウム)を添加し、3mm径の塩化ビニル製チューブ等の成型形に入れ、20℃で重合し、重合終了後、成型形から押し出し、一定の長さに切断して得られる。固定化ゲルの表面の細孔は、細菌より小さいため、包括固定化した細菌はリークしにくく、内部で増殖し、自己分解する。土壌中の汚染成分のみが細孔よりゲル内部に入り込み、内部の細菌により処理される。
合成高分子の含水ゲル中に固定化する方法は、特開平10−263575号公報にも開示されている。
【0030】
また、別の包括固定化方法としては、活性炭粒子に固定化する方法が挙げられる。
使用される活性炭としては、木炭、石炭、コークス、ヤシガラ、樹脂、石油ピッチなどを原料として製造されたものをあげることができ、これら木質系、石炭系、樹脂系、ピッチ系などの各種原料炭化物を、ガス賦活法、水蒸気賦活法、塩化亜鉛やリン酸などの薬品で賦活する薬品賦活法などの方法により賦活したものが好ましい。なかでも、木質系の活性炭は、表面及び内部に網目構造を有しているため、微生物が棲息しやすく、かつ有機物や臭い成分の吸着能に優れており、しかも機械的強度にも優れているので好ましい。木質系の活性炭を薬品賦活したものはさらに好ましい。
【0031】
活性炭の品質としては、充填比重が0.10〜0.70g/cc、好ましくは0.15〜0.60g/cc、比表面積が300〜2800m/g、好ましくは600〜2500m/g、細孔半径10nm〜500μmの範囲の細孔容積が0.1〜2.5ml/g、好ましくは0.15〜2.5ml/gのものが好適である。活性炭の粒子径は、あまり小さいと処理水の固液分離が困難となり、あまり大きいと廃水との接触面積が小さくなるので、0.1〜8mmのものが実用的であり好ましい。
活性炭中に固定化する方法は、特開平11−77074号公報にも開示されている。
【0032】
また、さらに別の包括固定化方法としては、特定微生物を炭素繊維布に固定化する方法もある。担体として用いられる炭素繊維は、例えば、石炭ピッチを高温で熔融紡糸し、不融炭素化して得られる繊維である。好ましくは、径1〜30μmの炭素繊維からなる厚さ0.3〜6.0mm、単位重量20〜300g/mの炭素繊維製布を用いる。
微生物担体を炭素繊維製とすれば、活性汚泥処理槽内での特定微生物の寿命が長い担体とすることができ、かつ単位面積当たりの微生物量を多くできるので、特定化合物の生物処理効率の向上を図ることができる。
【0033】
微生物担体を形成する炭素繊維製布の炭素繊維径、接合材料、布の厚さ、布の単位重量などは、微生物の付着量、被処理水の流れやすさ、微生物担体の作成しやすさ及び強度などを勘案して適当に選択することができる。例えば、径1〜30μmの炭素繊維からなる厚さ0.3〜6.0mm、単位重量20〜300g/mの炭素繊維布であれば、長期間使用しても強度劣化せず且つ生物処理槽の固定床に適する微生物担体が形成できる。
【0034】
これらの 担持法とくに固定化法のより具体的な方法については「微生物固定化法による排水処理」須藤隆一編著(産業用水調査会)、稲森悠平の「生物膜法による排水処理の高度・効率化の動向」,水質汚濁研究,vol.13,No.9,1990,p.563−574、稲森悠平らの「高度水処理技術開発の動向・課題・展望」,用水と廃水,vol.34,No.10,1992,P.829−835 などに記載されている。
【0035】
微生物担持担体としては、上記した担体のほかに土壌浄化用微生物製剤Biotrack DOLや SurfCleanなど,界面活性剤分解用のDC1738CW、また、メチルフェノール類を含むフェノール類やクレゾール類化合物を分解する能力を有する製剤としてDC1002CG及びDC1738CWなどの製剤(いずれもサイブロンケミカルズ日本(株))を用いることができる。
【0036】
特定微生物及び活性汚泥中の微生物の濃度と濃度比の最適範囲は、特定微生物、特定化合物及び廃水の性質によって変化するので、それぞれの場合について選択される。
一般的には、特定微生物は廃水1mあたり乾燥重量で10g〜50kg  好ましくは20g〜5000g程度含有させる。また、活性汚泥中の微生物は通常用いられる濃度で含有させる。特定微生物と活性汚泥由来の微生物との数比を0.1〜10.0に調整する。その具体的な調整方法は後述する.
【0037】
上記の本発明の廃水処理方法によって、高いCOD値の廃水を特定の微生物および通常の活性汚泥を用いて具体的には100〜数万ppmの廃水のCOD値を半減あるいは数ppm程度までに低減させることができる。
【0038】
(廃水処理)
特定微生物の添加方法は、微生物 担持担体が処理槽内に均一に分散されるように添加がなされる限り、いかなる方法であってもよい。例えば、処理槽の曝気または攪拌機等による攪拌を行ないながら、微生物 担持担体を手動で直接投入してもよい。
【0039】
廃水を処理する処理槽の容量と滞留期間は、廃水量によって異なるが、一般的には処理槽における廃水の滞留時間が0.2日から20日程度になるように調整される。特に滞留時間が0.5日から5日程度になるように調整されるのが好ましい。
特定微生物および活性汚泥の処理は、pH、DO(溶存酸素)、処理前後のCOD値等を測定して管理する。pHは4.0〜8.5、好ましくは4.5〜8.0であり、廃水の性質に応じて更に狭い管理幅が選択される。DOは5.0mg/l〜15.0mg/l、好ましくは7.0mg/l〜13.0mg/lである。pHは、酸またはアルカリの添加により、DOは曝気量の調節によって制御できる。
【0040】
特定化合物の濃度測定は、直接の定量も可能であろうが、管理上の実際的方法としては、濃度に対応する値としてCODを用いるのが実際的である。CODの測定は、活性汚泥槽の入口と出口の双方の濃度を測定する方法が好ましい。
【0041】
廃水処理操作の状況はCODの測定によってモニターしてCOD値を測定する装置としては、例えば(株)COS製OD−1000/1100、HORIBA製CODA−211/212、日立ハイテクノロジーズ製平沼全自動COD測定装置 COD−1500等の市販装置が挙げられるが、これらに限定されず、COD値を測定できる装置であればよい。
【0042】
活性汚泥槽には、活性汚泥中の微生物や特定微生物の活動状態に応じて、必要によりそれぞれ適当量の栄養源を投与して、両微生物の活性を維持する。
栄養源は、微生物の生育に適当な炭素源、窒素源或いは有機栄養源無機塩からなる。有機栄養源としてポリペプトン、酵母エキス、肉エキス、糖蜜等、無機栄養源として各種リン酸塩、マグネシウム塩などが投与され、その添加量は、有機栄養源は廃水量の0.001〜5質量%、好ましくは0.01〜1質量%であり、無機栄養源は有機栄養源の0.1〜1 質量%程度である。この量は、限定的ではなく、廃水の性質や状態によって適宜選択される。
【0043】
栄養源を投与する際の添加方法は、処理槽内に均一に分散すべく添加がなされれる限り方法は問わない。例えば、栄養源を水溶液の形で投与する場合は、処理槽を曝気または攪拌機等による攪拌を行いながら、送液ポンプ或いは手動にて溶液タンク或いは容器より添加するのがよく、粉体等の固形のまま投与する場合には投入ホッパーや運搬器具を介して投入できる。
【0044】
また、場合によってはカラギーナン、アルギン酸などの、ゲル状包括担体に栄養物を含有させて徐放効果を発揮させることもでき、その方法としては、1)栄養物を含む溶液とゲル化材料(カラギーナン、アルギン酸など)を含む溶液と混合した後、2)ゲル化とともに担体を形成させて 担持担体を得る方法などがある。
【0045】
活性汚泥槽内の特定微生物の活動が低下してきた場合、栄養源を添加して、数日間、COD値の変化をモニターし、低下程度が回復しない場合、対象の微生物の添加を行なうのが望ましい。微生物を添加してもCOD値の低下程度が回復しない場合は、何らかのトラブルが発生したと考えられるため、緊急対応として、希釈放流措置が取れるような、システムが望ましい。その間に菌の活性低下の要因解析と対応策を進める。
【0046】
微生物の数は通常のコロニー計数法で求めることができる。即ち、希釈した微生物懸濁液を平板寒天培地上に撒いて培養し、生じるコロニーの数から生菌数を算出する。
具体的な実験方法については種々の成書に記載されているが、例えば「図解 微生物実験マニュアル」(安藤昭一著、技報堂出版)がある。なお、特定の微生物数
のみを計測する際には、寒天培地に0.1%〜0.5%の特定化合物、即ちEDTA分解可能な菌の場合はEDTAを、界面活性剤分解可能な菌の場合は該界面活性剤を含有させた培地を用い、そこで生じたコロニー数をもって特定の微生物数を算出する。
【0047】
特定の微生物と活性汚泥由来の微生物との数比を0.1〜10.0に調整するためには、特定の微生物が分解する廃液中の特定化合物含量および他成分の量比を調整することで行なう。このためにはあらかじめ該量比を変化させたモデル廃液に、ほぼ同数の特定の微生物と活性汚泥由来の微生物を添加、常温で振盪培養2日後に、微生物数を測定し、該数比が0.1〜10.0になるところの廃液を選定し、それらの廃液中の特定化合物含量および他成分の量比をもって調整範囲を定めれば良い。なお、好ましい成分比は廃液種によって異なるので、該成分量比を規定することは一概にはできず、上記方法により、各廃液種に応じ定める必要がある。
【0048】
【実施例】
以下、実施例により本発明をより具体的に説明するが、これらは本発明の範囲をなんら限定するものではない。
【0049】
(実施例1)
[試験1]
<微生物の馴化培養>
EDTAの銅錯体を含む下記培養液500mlを120℃で20分間オートクレーブにて殺菌後、この培地に下記菌株を接種し、37℃で5日間静置培養を行った。
培養液組成:
ポリペプトン    0.5%
酵母エキス     0.1%
Cu−EDTA           0.1%
1/30Mリン酸緩衝液 500ml
pH  6.0
菌株:Pseudomonas editabidus−1 (微工研菌寄 第13634号)
【0050】
培養後、滅菌したガーゼを用いてろ過し、得られた担持担体を滅菌水で洗浄後以下の実験に用いた。
【0051】
無電解メッキ廃液
以下のモデル廃液を調整した。
EDTA 2Na          600ppm
硫酸銅       100ppm
ホルマリン(37%)      70ppm
硫酸ナトリウム   300ppm
炭酸ナトリウム     80ppm
ギ酸ナトリウム   100ppm
pH        7.4
本モデル廃液のCODは1200ppm  であった。
【0052】
このモデル廃液を2lの連続型処理槽に入れ、富士写真フイルム(株)足柄工場の終末処理施設から調達した返送汚泥20g、および上記0.1%Cu−EDTA培地で馴化・担持固定したEDTA分解菌(乾燥重量で800mg相当)を添加後、回分型処理を2日間行なうに当り、EDTA分解菌を活性化するための栄養源として、ポリペプトンと酵母エキスを表1に示す濃度で用いた。処理後のCOD値も同表に記載した。
【0053】
【表1】

Figure 2004033809
【0054】
栄養源の供給レベルを異にする1〜5のいずれの条件でも、COD値の低下が見られたが、特にEDTA分解菌と活性汚泥由来の微生物との数比が本発明に好都合な0.1〜10.0の範囲にある試験2〜4の条件下ではCOD値の低減が顕著であった。
【0055】
(実施例2)
実施例1の処理を回分式から連続式に変え、5日間の連続処理を行なった。廃液の平均滞留時間は1.6日とした。結果を表2に示す。
【0056】
【表2】
Figure 2004033809
【0057】
EDTA分解菌と活性汚泥由来の微生物との数比が本発明に好都合な0.1〜10.0の範囲にある試験2〜4の条件下ではCOD値の低減が顕著であった。微生物固体数比が上記範囲の外である試験1及び5でも効果は少ないが、CODが減少し、発明の効果が認められた。
【0058】
(実施例3)
微生物の培養・担体への固定化
ノニルフェノール(和光純薬工業製p−n−Nonylphenol Standard)およびエチレングリコール(和光純薬工業製)を含む下記培養液500mlを120℃で20分間オートクレーブにて殺菌した。この培地に微生物製剤DC1004TX(ノボザイムズバイオロジカルズジャパン)から抽出した界面活性剤分解菌株を接種し、更に微生物担持担体としてバイオチューブ(新日本製鉄製)50mlを加え、37℃で3日間振盪培養を行った。
【0059】
ノニルフェノール  0.1%
エチレングリコール 0.2%
1/30Mリン酸緩衝液 500ml
pH                7.0
【0060】
培養後、滅菌したガーゼを用いてろ過し、得られた担持担体を滅菌水で洗浄後以下の実験に用いた。
【0061】
洗浄廃液
洗浄廃液として以下のモデル廃液を調整した。
モデル洗浄廃液
ポリエチレングリコールノニルフェニルエーテル 400ppm
(EMALEX NP8.5 日本エマルジョン(株)製)
クエン酸                    50ppm
ケイ酸ナトリウム               100ppm
炭酸ナトリウム                 50ppm
pH                       8.1本モデル廃液のCODは150ppm であった。
【0062】
このモデル廃液を500mlの連続型処理槽に入れ、富士写真フイルム(株)足柄工場の終末処理施設から調達した返送汚泥10gおよび上記の培地で培養した界面活性剤分解菌(乾燥重量で400mg)を添加後、連続処理を5日間行なうに当り、界面活性剤分解菌を活性化するための栄養源として、ノニルフェノールとエチレングリコールを表3に示す濃度で用いた。
なお、連続処理における廃液の平均滞留時間は2日とした。
処理後のCOD値を同表に記載した。
【0063】
【表3】
Figure 2004033809
【0064】
栄養源の供給レベルを異にする1〜5のいずれの条件でも、COD値の低下が見られたが、特にEDTA分解菌と活性汚泥由来の微生物との数比が本発明に好都合な0.1〜10.0の範囲にある試験2〜4の条件下ではCOD値の低減が顕著であった。
【0065】
【発明の効果】
難生分解性化合物を分解する微生物を担体に固定化させ、これを活性汚泥と混在させて処理する本発明の高濃度有機廃水の廃水処理方法によって、難生分解性化合物を効果的に分解してCOD値を低下させることができる。とくに難生分解性化合物を分解する微生物と活性汚泥由来の微生物との数比が0.1〜10.0の範囲にあるときに効果が大きい。[0001]
[Industrial application fields]
The present invention relates to a method for treating highly concentrated organic wastewater using microorganisms, and more particularly to a method for reducing COD by microorganisms. In particular, it relates to wastewater treatment of electroless plating wastewater and various cleaning wastewater.
[0002]
[Prior art]
Refractory chelating agents are widely used in various fields such as industrial soap, photographic industry, pulp industry, and plating industry. Industrial wastewater discharged from these fields is not only biodegradable, but the chelating agent extracts heavy metals present in the environment, and these are extracted from surface water, specifically river water and groundwater. Concerns have been pointed out that, for example, Germany voluntarily regulates the release of non-biodegradable chelating agents. At present, there is no regulation on the use and discharge in Japan. However, since the hardly biodegradable chelating agent raises the COD value of the wastewater, wastewater containing the hardly biodegradable chelating agent is regulated by COD regulations. The COD value is a problem.
[0003]
On the other hand, surfactants are one of the typical compounds that are difficult to be decomposed by microorganisms, and are contained in a lot of industrial detergents and household detergents. They cannot be completely decomposed at the final treatment plant, and the COD value cannot be reduced below the regulation value. The same problem of COD loading as that of the chelating agent occurs. In addition, for example, wastewater containing organic chlorinated compounds in the electrical machinery and machinery industries and wastewater containing organic solvents in organic chemical factories and other establishments that use materials that are hardly biodegradable, have similar COD load problems. Have
[0004]
Since these hardly biodegradable compounds are hardly decomposed by the conventional activated sludge treatment, the dilution method of diluting and discharging the wastewater is the most common countermeasure to reduce the COD regulation value or less. The law is not only costly, but the total amount of COD emitted does not change. Therefore, an essential solution that substantially reduces COD in waste water is desired.
As a means for solving this problem, wastewater treatment by an ozonolysis method or electrolytic oxidation method is possible, but the treatment cost is high.
[0005]
[Problems to be solved by the invention]
The present invention has been made from the above-described background, and an object of the present invention is to provide a wastewater treatment method capable of substantially reducing COD in hardly biodegradable wastewater and treating at low cost. .
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the means for solving the above problems, the present inventor has found that the problems can be solved by the following method. That is, the present invention is as follows.
[0007]
1. A wastewater treatment method for treating high-concentration organic wastewater, comprising immobilizing a microorganism capable of decomposing a hardly biodegradable compound on a carrier, and mixing the immobilized microorganism with activated sludge.
[0008]
2. 2. The wastewater treatment method according to 1 above, wherein the ratio of the number of solids between the microorganism that decomposes the immobilized hardly biodegradable compound and the microorganism derived from activated sludge is 0.1 to 10.0.
[0009]
3. 3. The wastewater treatment method according to 1 or 2 above, wherein the high-concentration organic wastewater is wastewater containing a hardly biodegradable chelating agent.
4). 3. The wastewater treatment method according to 1 or 2 above, wherein the high-concentration organic wastewater is a wastewater containing a surfactant.
5). 3. The wastewater treatment method according to 1 or 2 above, wherein the high-concentration organic wastewater is electroless plating wastewater.
6). 3. The wastewater treatment method according to 1 or 2 above, wherein the high-concentration organic wastewater is cleaning wastewater discharged from cleaning processes of various manufacturing industries.
[0010]
7). 7. The wastewater treatment method according to any one of 1 to 6, wherein the microorganism that degrades the hardly biodegradable compound is a bacterium capable of degrading EDTA.
8). 7. The wastewater treatment method according to any one of 1 to 6, wherein the microorganism that degrades the hardly biodegradable compound is a fungus capable of degrading the surfactant.
[0011]
The present invention is based on the finding that in the treatment of highly concentrated organic wastewater, the biodegradation function can be maintained even when mixed with activated sludge by comprehensively immobilizing microorganisms that decompose hardly biodegradable compounds. The feature of the present invention is that a mixed form in which both microorganisms that decompose such hardly biodegradable compounds and microorganisms of activated sludge function is realized using a normal activated sludge treatment apparatus. As a result, not only the BOD in the wastewater but also the COD derived from the hardly biodegradable compound can be reduced, and the water quality regulation can be dealt with at an extremely low cost.
The method of the present invention capable of performing activated sludge treatment and COD reduction treatment at the same time is particularly effective and can be performed at low cost on highly concentrated organic wastewater having a high BOD value and COD value.
Therefore, the waste liquid treatment method is not limited to the typical waste water examples described in 3 to 6 above, and can be widely applied to the hardly biodegradable compound-containing waste water.
Hereinafter, the details of the present invention will be further described through embodiments.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the following description of the present specification, “biodegradation” is simply “degradation”, “refractory biodegradation” is simply “refractory degradation”, “refractory biodegradable compounds” is “specific compounds”, “specific compounds are The “degradable microorganism” may be called “specific microorganism”. In the section described from the viewpoint of biological treatment, the “microorganism” that performs the decomposing action is sometimes referred to as “decomposing fungus” or simply “fungus”.
[0013]
In the present specification, the hardly biodegradable compound, that is, the specific compound refers to a compound that is hardly decomposed by the conventional activated sludge. Specifically, the biodegradation rate when the biodegradation test is performed by the MITI method is 50. % Refers to a compound of less than Among them, the wastewater treatment method of the present invention is also capable of removing a compound having an extremely low biodegradation rate of 25% or less, or 15% or less, or even 10% or less by biodegradation by the above test method. It is effective.
[0014]
In the present specification, the high-concentration organic wastewater refers to wastewater containing a specific level of organic compound at a concentration level that cannot be discharged as it is. Specifically, industrial soap-containing wastewater containing specific compounds in excess of COD regulation values, EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), PDTA (1,3-propanediaminetetraacetic acid), etc. From wastewater related to photographic processing containing organic aminocarboxylic acids, wastewater containing refractory chelating agents from facilities such as pulp industry and plating industry, especially from facilities handling electroless plating wastewater, industrial detergents and household detergents Wastewater containing surfactants, organic chlorine-containing wastewater from electrical and machinery industry facilities, organic solvent-containing wastewater from organic chemical factories, and washing wastewater from the food industry. However, the wastewater targeted by the present invention is not limited to these and may be any wastewater containing a hardly biodegradable organic compound, that is, a specific compound at a level at which it cannot be directly discharged.
The COD value of high-concentration organic wastewater exceeds the emission regulation level of the region, but often ranges from 20 ppm to tens of thousands of ppm, and in many cases is about 100 to 1000 ppm.
[0015]
(Specific microorganism)
A microorganism capable of degrading the specific compound, that is, a specific microorganism will be described. The specific microorganism has a specific degrading bacterium capable of decomposing it for each specific compound, and is a combination of specific microorganisms suitable for a specific compound.
For example, when a specific compound is an aromatic hydrocarbon compound (for example, phenol), an organic solvent (for example, toluene, trichloroethylene, etc.), an organic chlorine compound (for example, dioxin, PCB, etc.), etc., the Pseudomonas genus that decomposes them bacteria belonging to, Methylosinus, Methylomonas, Methylobacterium, Hethylocystis, Alcaligenes, Mycobacterium, Nitrosomonas, Xanthomonas, Spirillum, Vibrio, bacterium, Achromobacter, Acinetobacter, Flavobacterium, Chromobacterium, Desulfovibrio, Desulfo omaculum, Micrococcus, Sarcina, Bacillus, Streptomyces, Nocardia, Corynebacterium, kill Pseudobacterium, Arthrobacter, Brevibacterium, Saccharomyces, the microorganisms belonging to the genus Lactobacillus be used as the specific microorganism.
[0016]
In addition, specific microorganisms having the ability to decompose metal chelating agents such as EDTA and heavy metal chelates complexed with heavy metals include bacteria belonging to the genus Bacillus, such as Bacillus editabidus and Bacillus subtilis. Bacillus megaterium, Bacillus sphaericus and the like. These include, for example, Bacillus edtabidus-1 (Mikken Kenkyu No. 13449), Bacillus subtilis NRIC 0068, B.I. megaterium NRIC 1009, B.I. It can be easily obtained as sphaericus NRIC 1013 or the like.
[0017]
Other specific microorganisms having EDTA resolution include the genus Pseudomonas, Alkaligenes, and Applied and Environmental Microbiology vol. 56, p. 3346-3353 (1990), Applied and Environmental Microbiology vol. 58, no. 2, Feb. 1992, p. Gram-negative isolate of 671-676 is mentioned. Among these, for example, Pseudomonas editabidus (Pseudomonas editabidus-1) can be obtained as Pseudomonas editabidus-1 (No. 13634).
[0018]
Still other microorganisms having EDTA resolution include the marine fungi Bacillus editavidus and Mesophyllobacter editavidus. This organic aminocarboxylic acid-degrading bacterium, Bacillus ditabidus, is a species to which Bacillus ditabidus-M1 (Makukenkenyoku No. 14868) and Bacillus edititadus-M2 (Mikokenkenyokuyoku 14869) belong. In addition, the organic aminocarboxylic acid-degrading bacterium Mesophylobacter editidadus is a species to which Mesophyllobacter editidas-M3 (Mikoken Bacterium No. 14870) belongs.
[0019]
Examples of the surfactant-degrading bacterium include Pseudomonas fluorescens 3p (atcc 31483) described in US Pat. No. 4,274,954. The wastewater to which these microorganisms are applied includes, for example, anionic, nonionic or cationic surfactant-containing wastewater, particularly surfactant-containing wastewater with poor biodegradability, so-called hard surfactant, among others. It is a wastewater containing a sulfonic acid group-containing surfactant.
[0020]
Examples of microorganisms that degrade phenols and cresol compounds include Pseudomonas putida cb-173 (atcc 31800) described in US Pat. Nos. 4,352,886 and 4,556,638. The wastewater to which these microorganisms are applied includes, for example, phenolic resin factory effluent, cresol resin factory effluent, polyphenols industrial effluent obtained from bisphenol A, etc., plate making processes and photoresist forming processes that handle these phenolic resins This wastewater contains phenols.
[0021]
As the specific microorganism to be administered, in addition to the above-mentioned microorganisms that have already been isolated, those newly screened according to the purpose from soil or the like can be used, and a mixed system of a plurality of strains may be used. In addition, in the case of separated by screening, it may be unidentified.
[0022]
(Activated sludge)
The activated sludge used in the present invention may be any sludge that is generally used, and need not be a specific standard sludge. For example, it is possible to use sludge that has been acclimatized with wastewater to be treated from return sludge obtained from a terminal wastewater treatment plant of a municipal sewage, a factory or other large facility.
[0023]
(Support and immobilization of specific microorganisms)
Although specific microorganisms degrade persistent compounds, if the specific microorganisms are simply mixed in a conventional activated sludge tank, the microorganisms existing in the activated sludge tank are active, and the activities of specific microorganisms Was suppressed, and the decomposition of the specific compound did not proceed. The present inventor has examined various conditions and methods for the action of specific microorganisms in the activated sludge tank, and found that if the specific microorganisms are supported on an appropriate carrier, they are protected from the microorganisms in the activated sludge and can continue their activities. . Therefore, the wastewater treatment method of the present invention is characterized by adopting a form in which a specific microorganism is supported on a carrier capable of sustaining its activity, and a form in which it is entrapped and immobilized is particularly preferred. Under the condition of being supported on the carrier, both the specific microorganisms and the microorganisms of the activated sludge function in a mixed state in the activated sludge tank.
[0024]
In the present invention, as described above, the activity of the specific microorganism can be sustained and added to the activated sludge tank while being supported on the carrier. However, the specific microorganism may be supported by simple adsorption on the surface of the carrier. However, it is more advantageous if it is supported on an immobilization support, that is, it is supported in a form in which microorganisms are immobilized in the support and do not easily escape. That is, loading on the immobilization carrier is a more preferable embodiment because the activity of microorganisms is increased and the degradation period is shortened.
[0025]
Any known material can be used as the carrier for supporting microorganisms. However, from the viewpoint of effective support of useful microorganisms, microorganisms strongly adsorb on the surface of the carrier, holding power by allowing microorganisms to enter micropores. It is desirable to have a porous material that can increase the surface property, and a material that microparticles aggregate to substantially increase the adsorption or occlusion surface.
Specifically, polysaccharides such as cellulose, dextran, and agarose; inactivated proteins such as collagen, gelatin, and albumin; synthetic polymer compounds such as ion exchange resins and polyvinyl chloride; inorganic substances such as ceramics and porous glass; Examples include natural carbohydrates such as agar, alginic acid, and carrageenan; and polymer compounds that can be used as a comprehensive carrier such as cellulose acetate, polyacrylamide, polyvinyl alcohol, epoxy resin, photocurable resin, polyester, polystyrene, and polyurethane. Moreover, what consists of lignin, starch, chitin, chitosan, filter paper, a piece of wood, etc. can also be utilized.
[0026]
Among the support and immobilization of specific microorganisms, a support form in which microorganisms are incorporated into a carrier material, that is, comprehensive immobilization is particularly preferable.
The preferred shape of the carrier for inclusion immobilization is approximately spherical, approximately cubic, approximately rectangular parallelepiped, cylindrical or tube-shaped, and is most likely to be manufactured approximately spherical or approximately rectangular parallelepiped that can increase the specific area. Is preferred. Any known method can be used as a method for producing the carrier. For example, a method of making a dispersion of microorganism-supported carrier particles by dripping a mixed solution of a microorganism and a carrier substance (or a precursor thereof) into an insoluble liquid and solidifying the liquid droplets in the liquid, or a microorganism and a carrier substance (or A method of obtaining a cuboid particle carrying microorganisms by cutting the solidified body into an appropriate size after solidifying the mixed solution of the precursor) by a method such as lowering the temperature or adding a gelling agent or a solidifying agent; The mixed solution of the carrier substance (or its precursor) is extruded into an insoluble liquid from the nozzle and solidified in the liquid to obtain a filamentous solidified product of the microorganism-carrying carrier, which is appropriately cut into a cylindrical shape Examples thereof include a method of producing particles, and a method of obtaining an annular (tube-shaped) microorganism-supporting carrier particle by setting the extrusion die at this time to be circular.
[0027]
The feature of the entrapping immobilization method is that the bacterial cells can be maintained at a high concentration, so that the treatment efficiency can be improved and the slow-growing bacteria can be immobilized. In addition, it has a wide tolerance against changes in conditions such as pH and temperature, and can withstand high load conditions. As the comprehensive immobilization method, acrylamide method, agar-acrylamide method, PVA-boric acid method, PVA-freezing method, photocurable resin method, acrylic synthetic polymer resin method, polyacrylic acid soda method, sodium alginate method, Any method can be used as long as it can confine microorganisms such as the K-carrageenan method, has a high physical strength and can withstand long-time use while maintaining the activity of the microorganisms in the carrier.
[0028]
Most commonly, a method of immobilization in a hydrogel of a synthetic polymer can be mentioned. A specific method for immobilizing in a hydrous gel is a method in which the carrier is formed by mixing seed sludge with a carrier solution or a carrier precursor solution and then dropping it into a fixing solution or a crosslinking agent solution. There are a method of molding in a mold, a method of molding after solidification, and the like. By such a molding method, the carrier is formed into pellets such as spheres, cylinders, cubes, and cuboids. In this case, the surface of the carrier may be uneven. The particle size of the pellet is preferably about 0.1 to 5 mm. If the particle size is smaller than 0.1 mm, solid-liquid separation of the carrier and the treated water becomes difficult. If the particle size is larger than 5 mm, In addition, oxygen does not diffuse to the inside of the carrier, making it difficult for microorganisms inside the carrier to survive.
Examples of water-containing polymer gels that can be used include natural organic polymer substances such as polysaccharides and collagen such as carrageenan, alginic acid, and ethyl succinylated cellulose, polyethylene glycol prepolymer (PEG), polyvinyl alcohol (PVA), polyacrylamide, and the like. Any polymer material can be used as long as it is solidified at room temperature or at a temperature at which microorganisms do not die, and does not release microorganisms into the liquid after solidification.
[0029]
A method for preparing a microorganism-immobilized gel in the case of the acrylamide method will be described as a representative example of the entrapping immobilization method on a hydrous gel. The immobilization gel suspends an acrylamide monomer solution containing a cross-linking agent (for example, N, N′-methylenebisacrylamide) and bacteria (concentrated cells of MLSS of about 20,000 ppm), and a polymerization accelerator (for example, N , N, N ′, N′-tetramethylethylenediamine) and a polymerization initiator (for example, potassium persulfate) are added to a molded shape such as a 3 mm diameter vinyl chloride tube and polymerized at 20 ° C. to complete the polymerization. After that, it is obtained by extruding from a mold and cutting it into a certain length. Since the pores on the surface of the immobilized gel are smaller than the bacteria, the entrapped and immobilized bacteria are unlikely to leak, grow inside and self-decompose. Only contaminating components in the soil enter the gel through the pores and are treated by the bacteria inside.
A method for immobilizing a synthetic polymer in a hydrous gel is also disclosed in JP-A-10-263575.
[0030]
Further, as another entrapping immobilization method, a method of immobilizing on activated carbon particles can be mentioned.
Examples of activated carbon used include charcoal, coal, coke, coconut husk, resin, petroleum pitch, and other raw material carbides such as wood, coal, resin, and pitch. Are preferably activated by a method such as a gas activation method, a water vapor activation method, or a chemical activation method that activates with a chemical such as zinc chloride or phosphoric acid. Among them, wood-based activated carbon has a network structure on the surface and inside, so that microorganisms are easily inhabited, and it has an excellent ability to adsorb organic substances and odor components, and also has excellent mechanical strength. Therefore, it is preferable. What activated the wood type activated carbon chemically is still more preferable.
[0031]
As the quality of the activated carbon, the filling specific gravity is 0.10 to 0.70 g / cc, preferably 0.15 to 0.60 g / cc, the specific surface area is 300 to 2800 m 2 / g, preferably 600 to 2500 m 2 / g, A pore volume having a pore radius in the range of 10 nm to 500 μm is 0.1 to 2.5 ml / g, preferably 0.15 to 2.5 ml / g. If the particle size of the activated carbon is too small, solid-liquid separation of the treated water becomes difficult, and if it is too large, the contact area with the waste water becomes small.
A method for immobilization in activated carbon is also disclosed in JP-A-11-77074.
[0032]
As another entrapping immobilization method, there is a method of immobilizing a specific microorganism on a carbon fiber cloth. The carbon fiber used as the carrier is, for example, a fiber obtained by melt spinning a coal pitch at a high temperature to make it infusible carbon. Preferably, a carbon fiber cloth made of carbon fiber having a diameter of 1 to 30 μm and having a thickness of 0.3 to 6.0 mm and a unit weight of 20 to 300 g / m 2 is used.
If the microbial carrier is made of carbon fiber, the life of the specific microorganism in the activated sludge treatment tank can be made longer, and the amount of microorganism per unit area can be increased, improving the biological treatment efficiency of the specific compound. Can be achieved.
[0033]
The carbon fiber diameter of the carbon fiber cloth forming the microbial carrier, the bonding material, the thickness of the cloth, the unit weight of the cloth, etc. are the amount of microorganisms attached, the ease of water to be treated, the ease of making the microbial carrier and It can be selected appropriately in consideration of strength and the like. For example, a carbon fiber cloth made of carbon fiber having a diameter of 1 to 30 μm and having a thickness of 0.3 to 6.0 mm and a unit weight of 20 to 300 g / m 2 does not deteriorate in strength even when used for a long period of time and is biologically treated. A microbial carrier suitable for the fixed bed of the tank can be formed.
[0034]
For more specific methods of these loading methods, especially the immobilization method, “Wastewater treatment by microbial immobilization method” edited by Ryuichi Sudo (Industrial Water Research Committee), Kohei Inamori's “Enhancement and efficiency of wastewater treatment by biofilm method” Trends in Water Pollution Research, vol. 13, no. 9, 1990, p. 563-574, Sadao Inamori's “Trends / Problems / Prospects of Advanced Water Treatment Technology Development”, Water and Wastewater, vol. 34, no. 10, 1992, p. 829-835.
[0035]
In addition to the above-mentioned carriers, microorganism-supporting carriers include DC1738CW for decomposing surfactants, such as soil preparation microorganism preparations Biotrack DOL and SurfClean, and the ability to decompose phenols and cresol compounds including methylphenols. As the preparation, preparations such as DC1002CG and DC1738CW (both are Cyblon Chemicals Japan Co., Ltd.) can be used.
[0036]
The optimum concentration and concentration ratio of microorganisms in the specific microorganisms and activated sludge vary depending on the characteristics of the specific microorganisms, the specific compounds and the waste water, and are selected for each case.
Generally, the specific microorganism is contained in a dry weight of 10 g to 50 kg, preferably about 20 g to 5000 g per 1 m 3 of waste water. Moreover, the microorganisms in the activated sludge are contained at a concentration usually used. The number ratio of specific microorganisms to microorganisms derived from activated sludge is adjusted to 0.1 to 10.0. The specific adjustment method will be described later.
[0037]
By the above-described wastewater treatment method of the present invention, the wastewater having a high COD value is specifically reduced to a half or several ppm by using a specific microorganism and ordinary activated sludge. Can be made.
[0038]
(Waste water treatment)
The specific microorganism may be added by any method as long as the addition is performed so that the microorganism-supporting carrier is uniformly dispersed in the treatment tank. For example, the microorganism-supporting carrier may be directly and manually added while aeration of the treatment tank or stirring with a stirrer or the like.
[0039]
The capacity of the treatment tank for treating the waste water and the residence period vary depending on the amount of waste water, but are generally adjusted so that the residence time of the waste water in the treatment tank is about 0.2 to 20 days. In particular, it is preferable to adjust the residence time to be about 0.5 to 5 days.
The treatment of specific microorganisms and activated sludge is managed by measuring pH, DO (dissolved oxygen), COD values before and after treatment, and the like. The pH is 4.0 to 8.5, preferably 4.5 to 8.0, and a narrower management range is selected depending on the nature of the wastewater. DO is 5.0 mg / l to 15.0 mg / l, preferably 7.0 mg / l to 13.0 mg / l. The pH can be controlled by adding acid or alkali, and the DO can be controlled by adjusting the amount of aeration.
[0040]
The concentration measurement of a specific compound may be directly quantified, but as a practical method for management, it is practical to use COD as a value corresponding to the concentration. The COD is preferably measured by measuring the concentration at both the inlet and outlet of the activated sludge tank.
[0041]
Waste water treatment operation status is monitored by measuring COD and the COD value is measured by, for example, OD-1000 / 1100 manufactured by COS, CODA-211 / 212 manufactured by HORIBA, Hiranuma fully automatic COD manufactured by Hitachi High-Technologies Corporation. Although measuring apparatus COD-1500 etc. are mentioned, it is not limited to these, What is necessary is just an apparatus which can measure a COD value.
[0042]
Depending on the activity state of microorganisms in the activated sludge and the specific microorganisms, an appropriate amount of nutrient source is administered to the activated sludge tank as necessary to maintain the activity of both microorganisms.
The nutrient source is a carbon source, nitrogen source or organic nutrient source inorganic salt suitable for the growth of microorganisms. Polypeptone, yeast extract, meat extract, molasses, etc. are administered as organic nutrient sources, and various phosphates, magnesium salts, etc. are administered as inorganic nutrient sources. The added amount of organic nutrient sources is 0.001-5 mass% of the amount of wastewater. The inorganic nutrient source is about 0.1 to 1% by mass of the organic nutrient source. This amount is not limited and is appropriately selected depending on the nature and state of the wastewater.
[0043]
The method of adding the nutrient source is not particularly limited as long as the addition is performed so as to disperse uniformly in the treatment tank. For example, when administering a nutrient source in the form of an aqueous solution, it is preferable to add the solution from a solution tank or a container by a liquid feed pump or manually while aeration or stirring with a stirrer is performed. When it is administered as it is, it can be injected through an input hopper or a transport device.
[0044]
Further, depending on the case, it is also possible to exert a sustained release effect by adding a nutrient to a gel-like inclusion carrier such as carrageenan or alginic acid. As the method, 1) a solution containing the nutrient and a gelled material (carrageenan And a solution containing alginic acid, etc.), and 2) forming a carrier together with gelation to obtain a supported carrier.
[0045]
If the activity of specific microorganisms in the activated sludge tank has declined, it is desirable to add nutrient sources and monitor changes in COD values for several days. If the degree of decline does not recover, it is desirable to add the target microorganisms . If the degree of decrease in the COD value does not recover even when microorganisms are added, it is considered that some trouble has occurred. Therefore, a system that can take dilution and discharge measures as an emergency response is desirable. In the meantime, we will analyze the cause of the decrease in bacterial activity and take countermeasures.
[0046]
The number of microorganisms can be determined by a normal colony counting method. That is, the diluted microorganism suspension is plated on a plate agar medium and cultured, and the number of viable bacteria is calculated from the number of colonies formed.
Specific experimental methods are described in various books. For example, there is “Illustration Microbial Experiment Manual” (written by Shoichi Ando, published by Gihodo). When measuring only the number of specific microorganisms, 0.1% to 0.5% of a specific compound in the agar medium, that is, EDTA in the case of EDTA-degradable bacteria, In some cases, a medium containing the surfactant is used, and the number of specific microorganisms is calculated from the number of colonies generated there.
[0047]
In order to adjust the number ratio between specific microorganisms and microorganisms derived from activated sludge to 0.1 to 10.0, adjust the specific compound content and the ratio of other components in the waste liquid that the specific microorganisms decompose. To do. For this purpose, approximately the same number of specific microorganisms and activated sludge-derived microorganisms are added to the model waste liquid whose amount ratio has been changed in advance, and the number of microorganisms is measured after 2 days of shaking culture at room temperature. It is sufficient to select waste liquids that are from .1 to 10.0, and to determine the adjustment range based on the specific compound content in these waste liquids and the quantity ratio of other components. In addition, since a preferable component ratio changes with waste liquid types, it cannot unconditionally define this component amount ratio, It is necessary to determine according to each waste liquid type by the said method.
[0048]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, these do not limit the scope of the present invention at all.
[0049]
(Example 1)
[Test 1]
<Adaptation culture of microorganisms>
The following culture solution containing 500 ml of EDTA copper complex was sterilized in an autoclave at 120 ° C. for 20 minutes, and the medium was inoculated with the following strain, followed by stationary culture at 37 ° C. for 5 days.
Culture solution composition:
Polypeptone 0.5%
Yeast extract 0.1%
Cu-EDTA 0.1%
1 / 30M phosphate buffer 500ml
pH 6.0
Strain: Pseudomonas editabidus-1 (Microtechnological Bacteria No. 13634)
[0050]
After culturing, the mixture was filtered using sterilized gauze, and the obtained carrier was washed with sterilized water and used in the following experiments.
[0051]
The following model waste liquid was prepared.
EDTA 2Na 600ppm
Copper sulfate 100ppm
Formalin (37%) 70ppm
Sodium sulfate 300ppm
Sodium carbonate 80ppm
Sodium formate 100ppm
pH 7.4
The COD of this model waste liquid was 1200 ppm.
[0052]
This model waste liquid is placed in a 2 l continuous treatment tank, and 20g of returned sludge procured from the terminal treatment facility of Fuji Photo Film Co., Ltd. Ashigara Factory and EDTA decomposition conditioned and supported by the 0.1% Cu-EDTA medium are used. Polypeptone and yeast extract were used at the concentrations shown in Table 1 as nutrient sources for activating EDTA-degrading bacteria when batch-type treatment was performed for 2 days after adding fungi (corresponding to 800 mg in dry weight). The COD value after the treatment is also shown in the same table.
[0053]
[Table 1]
Figure 2004033809
[0054]
Although the COD value was decreased under any of the conditions 1 to 5 where the supply levels of the nutrient sources were different, the number ratio of EDTA-degrading bacteria and microorganisms derived from activated sludge was particularly favorable for the present invention. Under the conditions of tests 2 to 4 in the range of 1 to 10.0, the reduction of the COD value was significant.
[0055]
(Example 2)
The treatment of Example 1 was changed from a batch type to a continuous type, and a continuous treatment for 5 days was performed. The average residence time of the waste liquid was 1.6 days. The results are shown in Table 2.
[0056]
[Table 2]
Figure 2004033809
[0057]
Under the conditions of Tests 2 to 4 in which the number ratio of EDTA-degrading bacteria to microorganisms derived from activated sludge is in the range of 0.1 to 10.0 which is convenient for the present invention, the reduction in COD value was remarkable. Tests 1 and 5 in which the ratio of the number of microbial solids was outside the above range were also less effective, but the COD decreased and the effect of the invention was recognized.
[0058]
(Example 3)
500 ml of the following culture solution containing nonylphenol (p-n-Nylphenol Standard manufactured by Wako Pure Chemical Industries) and ethylene glycol (manufactured by Wako Pure Chemical Industries) was sterilized in an autoclave at 120 ° C. for 20 minutes. . The medium is inoculated with a surfactant-degrading strain extracted from the microbial preparation DC1004TX (Novozymes Biologicals Japan), and 50 ml of biotube (manufactured by Nippon Steel Corporation) is added as a microorganism-supporting carrier, followed by shaking at 37 ° C. for 3 days. Culture was performed.
[0059]
Nonylphenol 0.1%
Ethylene glycol 0.2%
1 / 30M phosphate buffer 500ml
pH 7.0
[0060]
After culturing, the mixture was filtered using sterilized gauze, and the obtained carrier was washed with sterilized water and used in the following experiments.
[0061]
Cleaning waste liquid The following model waste liquid was prepared as cleaning waste liquid.
Model washing waste polyethylene glycol nonyl phenyl ether 400ppm
(EMALEX NP8.5 Nippon Emulsion Co., Ltd.)
Citric acid 50ppm
Sodium silicate 100ppm
Sodium carbonate 50ppm
The COD of the pH 8.1 model waste liquid was 150 ppm.
[0062]
This model waste liquid is put into a 500 ml continuous treatment tank, and 10 g of returned sludge procured from the terminal treatment facility of Fuji Photo Film Co., Ltd. Ashigara Factory and a surfactant-degrading bacterium cultured in the above medium (400 mg in dry weight) After the addition, nonylphenol and ethylene glycol were used at the concentrations shown in Table 3 as nutrient sources for activating the surfactant-degrading bacteria during the continuous treatment for 5 days.
Note that the average residence time of the waste liquid in the continuous treatment was 2 days.
The COD value after the treatment is shown in the same table.
[0063]
[Table 3]
Figure 2004033809
[0064]
Although the COD value was decreased under any of the conditions 1 to 5 where the supply levels of the nutrient sources were different, the number ratio of EDTA-degrading bacteria and microorganisms derived from activated sludge was particularly favorable for the present invention. Under the conditions of tests 2 to 4 in the range of 1 to 10.0, the reduction of the COD value was significant.
[0065]
【The invention's effect】
The highly biodegradable compound is effectively decomposed by the wastewater treatment method of high concentration organic wastewater of the present invention, in which microorganisms that degrade the hardly biodegradable compound are immobilized on a carrier and mixed with activated sludge. Thus, the COD value can be reduced. In particular, the effect is great when the number ratio between the microorganisms that decompose the hardly biodegradable compounds and the microorganisms derived from activated sludge is in the range of 0.1 to 10.0.

Claims (1)

高濃度有機廃水を処理する廃水処理方法であって、難生分解性化合物を分解する微生物を担体に固定化し、該固定化された微生物を活性汚泥と混在させることを特徴とする廃水処理方法。A wastewater treatment method for treating high-concentration organic wastewater, comprising immobilizing a microorganism capable of decomposing a hardly biodegradable compound on a carrier and mixing the immobilized microorganism with activated sludge.
JP2002190500A 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms Pending JP2004033809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190500A JP2004033809A (en) 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190500A JP2004033809A (en) 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms

Publications (1)

Publication Number Publication Date
JP2004033809A true JP2004033809A (en) 2004-02-05

Family

ID=31700405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190500A Pending JP2004033809A (en) 2002-06-28 2002-06-28 Wastewater treatment method using microorganisms

Country Status (1)

Country Link
JP (1) JP2004033809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004292A1 (en) * 2006-07-06 2008-01-10 Hitachi Plant Technologies, Ltd. Inclusive immobilization support, wastewater disposal apparatus and wastewater disposal method using the inclusive immobilization support
KR100889783B1 (en) * 2007-09-20 2009-03-20 양승창 Method for highly biologically the waste-water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
KR101998047B1 (en) * 2019-03-05 2019-07-08 이성찬 Method of treating waste water using of aerobic and thermophilic microbes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004292A1 (en) * 2006-07-06 2008-01-10 Hitachi Plant Technologies, Ltd. Inclusive immobilization support, wastewater disposal apparatus and wastewater disposal method using the inclusive immobilization support
KR101299485B1 (en) 2006-07-06 2013-08-29 가부시키가이샤 히다찌 플랜트 테크놀로지 Inclusive immobilization support, wastewater disposal apparatus and wastewater disposal method using the inclusive immobilization support
KR100889783B1 (en) * 2007-09-20 2009-03-20 양승창 Method for highly biologically the waste-water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
KR101998047B1 (en) * 2019-03-05 2019-07-08 이성찬 Method of treating waste water using of aerobic and thermophilic microbes

Similar Documents

Publication Publication Date Title
Cruz et al. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment
Aneez Ahamad et al. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes
Mollaei et al. Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations
Pai et al. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate
US6905288B2 (en) Method of remedying contaminated soil by microorganism
Lim et al. Shielding immobilized biomass cryogel beads with powdered activated carbon for the simultaneous adsorption and biodegradation of 4-chlorophenol
JP5046183B2 (en) Method for culturing and acclimatizing 1,4-dioxane-degrading bacteria, method for producing 1,4-dioxane-degrading bacteria-immobilized carrier, wastewater treatment method and apparatus
Shin et al. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment
US7238271B2 (en) Method for treating organic wastewater containing aminopolycarboxylic acid
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
Ramteke et al. Removal of benzene, toluene and xylene (BTX) from wastewater using immobilized modified prepared activated sludge (MPAS)
Bandhyopadhyay et al. Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation
Liu et al. Start-up of a membrane bioreactor bioaugmented with genetically engineered microorganism for enhanced treatment of atrazine containing wastewater
JP2004033809A (en) Wastewater treatment method using microorganisms
Sun et al. Enhanced Aerobic Sludge Granulation by Seeding Concentrated Activated Sludge with Ca‐Alginate Gel
JP2004033808A (en) Wastewater treatment method using microorganisms
KR100961667B1 (en) A method for treating dyeing wastewater by using porous polyurethane foam media comprising carbonaceous materials obtained from carbonization of sludges and white?rot fungi
JP2005087860A (en) Treatment method for leachate from industrial waste disposal plant
Bustos‐Terrones et al. Kinetics of a fixed bed reactor with immobilized microorganisms for the removal of organic matter and phosphorous
JP2010158649A (en) Wastewater treatment method
JPS6352556B2 (en)
Hernández‐Esparza et al. Removal of High Phenol Concentrations with Adapted Activated Sludge in Suspended Form and Entrapped in Calcium Alginate/Cross‐Linked Poly (N‐vinyl pyrrolidone) Hydrogels
CN104342428A (en) Artificial zoogloea and preparation method thereof
JP2003311258A (en) On-site restoration method and apparatus of contaminated soil by means of micro-organism
See et al. Evaluation of o-cresol removal using PVA-cryogel-immobilised biomass enhanced by PAC