JP2004032584A - 歪補償回路 - Google Patents
歪補償回路 Download PDFInfo
- Publication number
- JP2004032584A JP2004032584A JP2002189054A JP2002189054A JP2004032584A JP 2004032584 A JP2004032584 A JP 2004032584A JP 2002189054 A JP2002189054 A JP 2002189054A JP 2002189054 A JP2002189054 A JP 2002189054A JP 2004032584 A JP2004032584 A JP 2004032584A
- Authority
- JP
- Japan
- Prior art keywords
- distortion
- signal
- output
- phase shift
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Amplifiers (AREA)
Abstract
【課題】移動体通信システムの送信機で用いる歪補償回路であって、超伝導フィルタで発生する相互変調歪みを効率よく補償できる歪補償回路を提供する。
【解決手段】歪信号生成部14で、超電導フィルタ12で発生すると予想される相互変調歪みの逆特性である歪信号を出力し、加算部13で、入力信号と当該歪信号を合成して超電導フィルタ12に出力することで、超電導フィルタ12において発生する相互変調歪みを補償する歪補償回路である。
【選択図】 図1
【解決手段】歪信号生成部14で、超電導フィルタ12で発生すると予想される相互変調歪みの逆特性である歪信号を出力し、加算部13で、入力信号と当該歪信号を合成して超電導フィルタ12に出力することで、超電導フィルタ12において発生する相互変調歪みを補償する歪補償回路である。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、超電導フィルタを備えた無線信号の送信機で用いられる歪補償回路に係り、特に超電導フィルタで発生する歪成分を補償する歪補償回路に関する。
【0002】
【従来の技術】
携帯電話等の移動体通信システムでは、利用者及び通信容量の増大に伴い、周波数資源の有効活用が求められている。このため隣接する周波数からの電波干渉を低減し、所望の周波数の無線信号を高感度に受信できるシステムが要求されている。
この要求を実現する手段の一つとして近年、基地局用のフィルタに超電導フィルタが有望視されている。
【0003】
超電導フィルタは、誘電体基板上に超電導薄膜を堆積させた構造を有するフィルタであり、低損失で急峻な減衰特性を有することを特徴とするものである。超電導フィルタを用いることによって、容易に超電導薄膜の表面抵抗をゼロに近づけることができ、必要な周波数の電波を効率よく通過させることができる。
【0004】
また、超電導フィルタにおいて、超電導薄膜の表面抵抗はオームの法則に従わず、二流体モデルで表されることが知られている。当該二流体モデルによれば、超電導体は超電導状態下では、常電導電子及び超電導電子の二種類の伝導電子が存在し、これらの伝導電子の存在確率は温度に依存する。また、超電導体の表面抵抗は、これらの伝導電子における導電率を用いて表わされ、且つ非線形であるため、超電導体は非線形な出力特性を有する。
このため、超電導フィルタにフィルタ帯域内の高周波(正弦波)を入力すると、上記非線形特性に起因して、入力信号の他に3次、5次等の高調波が発生する。
【0005】
また、移動体通信システムでは、複数の異なる周波数を用いて無線送信を行うことが一般的であるため、超電導フィルタにおける非線形特性に起因して、これらの周波数の間で相互変調が発生する。上記高調波及び上記相互変調の発生により、超電導フィルタの出力は線形特性とはならず、歪成分が含まれた状態で出力されることになる。
【0006】
図8は超電導フィルタの出力特性を示した説明図である。図8において、超電導フィルタ81はフィルタ帯域内にある周波数f0、f1の信号を通過させる。また、図中に信号の周波数別のスペクトラム分布を示している。
図8において、超電導フィルタ81に入力前の信号(図では入力信号)には、周波数f0及びf1の信号が含まれているが、超電導フィルタ81の非線形特性により、超電導フィルタ81から出力された信号(図では出力信号)には、相互変調により発生した、周波数がそれぞれ2f0−f1、2f1−f0となる3次相互変調歪が含まれる。超電導フィルタからの出力信号には、他にも5次以降の相互変調歪及び高調波による歪が含まれるが、図8のグラフではこれらは省略している。
【0007】
上述したように、超電導フィルタから直接出力される信号には歪成分が含まれているため、当該信号をこのまま無線通信に用いると、受信時における無線信号の受信特性が劣化する。このため移動体通信システムでは、上記歪成分を補償するための手段を講じる必要がある。
【0008】
超電導体で発生する歪を補償するための従来の技術として、平成11年1月19日公開の特表平11−500879号「高温超電導体デバイスの電力処理能力を向上させる方法」(出願人:スーパーコンダクター・テクノロジーズ・インコーポレイテッド、発明者:マッタイ,ジョージ・エル他)では、高温超電導材料から形成される中央導体が、二つの誘電体に挟まれており、且つ中央導体のエッジ部分が空気又は真空に面した構成のデバイスとすることで、中央導体における表面抵抗の線型性を向上させる方法が提案されている。
【0009】
参考として、平成11年5月31日公開の特許第2898317号「磁気共鳴装置」(出願人:コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ、発明者:ヨハネス ヘンドリック デン ボエフ)では、超電導マグネットを磁気発生装置として用い、対象物(人体)からの磁気共鳴信号を受信し、対象物における水及び脂肪に起因する共鳴信号の歪みに対して、当該歪に対し反作用する逆歪み関数を決定し、当該関数を用いて共鳴信号を歪ませることにより、共鳴信号の非線形歪みを補償する磁気共鳴装置が提案されている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の技術である特表平11−500879号に記載の方法では、超電導体の線型性を向上するためには、超電導体を含んだデバイスを新たに製作しなければならず、費用及び労力がかかるため、効率よく歪を補償できるものとはなっていない。
【0011】
本発明は上記実情に鑑みて為されたもので、超電導フィルタで発生する歪成分を効率よく補償できる歪補償回路を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記従来例の問題点を解決するための本発明は、通信システムの送信機で用いる歪補償回路であって、送信対象の入力信号のうち、特定の周波数帯域内の信号を出力する超電導フィルタと、超電導フィルタにおいて入力信号に対して発生する相互変調歪の逆特性を歪信号として出力する歪信号生成部と、超電導フィルタの前段又は後段に接続され、超電導フィルタに入力される信号又は超電導フィルタから出力される信号と歪信号とを合成し、合成結果を出力信号として出力する合成部と、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように歪信号生成部に対して歪信号の減衰制御及び移相制御を行う歪信号制御部とを有するものであり、超電導フィルタで発生する相互変調歪を効率よく補償することができる。
【0013】
また、通信システムの送信機で用いる歪補償回路であって、移動体通信システムの送信機で用いる歪補償回路であって、送信対象の入力信号の出力を増幅する電力増幅器と、電力増幅器から出力された信号のうち、特定の周波数帯域内の信号を出力信号として出力する超電導フィルタと、増幅器に入力される信号に対して減衰制御及び移相制御を行い、増幅器及び超電導フィルタにおいて入力信号に対して発生する歪の逆特性を含ませる減衰/移相制御部と、入力信号の電力値及び増幅器及び超電導フィルタ周辺の温度に基づいて、減衰制御における減衰量及び移相制御における移相量を決定して減衰/移相制御部に出力し、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように減衰量及び移相量を更新する歪制御部とを有するものであり、増幅器及び超電導フィルタで発生する歪を同時に効率よく補償することができる。
【0014】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら説明する。
本発明の実施の形態に係る歪補償回路は、複数種の周波数からなる入力信号を送信する送信機において、入力信号の電力値に基づいて超電導フィルタで発生すると予想される歪信号を生成して、入力信号と逆特性で出力する歪信号生成部を有し、当該超電導フィルタから出力された入力信号と、当該歪信号を合成して、入力信号の歪補償を行うものであり、効率よく容易に超電導フィルタで発生する歪成分を補償できる。
【0015】
尚、請求項における合成部は図1及び図2の加算部13に相当し、歪信号制御部は図1及び図2の制御部15、図3の制御部25、歪検出回路28及び電力検出器29に、減衰/移相制御部は図7の歪生成部32に、歪制御部は図7の電力検出器36、A/D変換器37、温度センサ38、A/D変換器39、ATT制御テーブル記憶回路40、移相制御テーブル記憶回路41、D/A変換器42及び43、歪補償テーブル更新制御回路44及び歪検出回路45にそれぞれ相当する。
【0016】
以下、本発明の実施の形態に係る歪補償回路について、実施例毎に説明する。
まず、本発明の第1の実施の形態の検波回路の構成について、図1を用いて説明する。図1は、本発明の第1の実施の形態に係る歪補償回路(以下、第1の歪補償回路)の構成ブロック図である。また、図1における(a)〜(d)は、入力信号の周波数別のスペクトラム分布を示している。
第1の歪補償回路は、超電導フィルタ11と、歪信号生成部12と、制御部13と、遅延部14と、加算部15とから構成される。また、第1の歪補償回路において、遅延部11から加算部13までの一連の経路を本線系、歪信号生成部14を含む経路を制御系と称する。
【0017】
まず、第1の歪補償回路の各部の構成について説明する。
遅延部11は、送信の対象である、複数種の周波数からなるアナログ信号(以下、入力信号)を一定時間遅延させて、超電導フィルタ12に出力する。遅延部11は、本線系と制御系における入力信号の処理の時間差を解消し、加算部13への入力信号及び歪信号の入力同期を図るために設けられている。
【0018】
超電導フィルタ12は、導体が超電導材料で形成されたフィルタであり、遅延部11から出力される入力信号のうち、帯域幅にある周波数の信号のみを通過させて、加算部13に出力する。
【0019】
加算部13は、超電導フィルタ12から出力される帯域制限後の入力信号と、歪信号生成部14で生成、出力される歪信号とを合成して、出力信号として出力する。
【0020】
歪信号生成部14は、遅延部11に入力される入力信号及び制御部15から出力される制御信号に基づいて、超電導フィルタ12で発生すると予想される相互変調による歪成分の逆特性を生成し、歪信号として加算部13に出力する。
歪信号生成部14は、非線形素子を用いて歪信号を発生させるものであり、基本波成分は歪成分に対し十分減衰されて出力される。
【0021】
制御部15は、送信制御部(図示せず)から出力される無線送信に用いるキャリア周波数の情報等の制御情報、温度センサ(図示せず)から出力される超電導フィルタ12の周辺温度等の周辺環境情報又はフィードバックされた出力信号に基づいて、歪信号の振幅及び位相の制御に関する制御信号を歪信号生成部14に出力する。
【0022】
次に、第1の歪補償回路の動作について、図1を用いて説明する。尚、第1の歪補償回路では、入力信号は周波数f0及びf1の周波数の信号を含んでおり、超電導フィルタ12の帯域幅には上記周波数が含まれるものとする。
複数種の周波数からなる入力信号は、第1の歪補償回路において、まず遅延部11及び歪信号生成部14に出力される。このときの入力信号のスペクトラム分布は、図1(a)の通りに示される。
【0023】
遅延部11に出力された入力信号は、一定時間遅延された後、超電導フィルタ12に出力され、帯域制限がかけられて加算部13に出力される。従来の技術で説明したように、超電導フィルタ12から出力される信号には、高調波及び相互変調による歪が含まれる。一般に送信機における入力信号はレベルが低いため、高調波による歪は問題とならないほど小さい。
【0024】
超電導フィルタ12から出力される、相互変調を受けた入力信号のスペクトラム分布は、図1(b)の通りに示される。図1(b)に示すように、相互変調を受けた入力信号には、周波数f0及びf1の他に、周波数2f0−f1、2f1−f0の3次相互変調歪が含まれることが分かる。尚、超電導フィルタ12から出力された入力信号には、3次相互変調歪の他、5次以降の相互変調歪が含まれるが、図1(b)ではこれらは省略している。
【0025】
また、歪信号生成部14は、遅延部11の前段で分岐して入力された入力信号と、制御部15から出力される制御信号とに基づいて、超電導フィルタ12で発生する相互変調による歪成分を生成し、歪信号として加算部15に出力する。歪信号生成部14から出力される、歪信号のスペクトラム分布は、図1(c)に示す通りとなる。
歪信号の生成にあたり、歪信号生成部14は、非線形素子を用いて歪信号を発生する。
【0026】
制御部15は、送信制御部から出力される無線送信に用いるキャリア周波数の情報等の制御情報や、温度センサから出力される超電導フィルタ12の周辺温度等の周辺環境情報が入力されると、これらの因子による歪の変動に対応するよう、歪信号の振幅及び位相を制御させる旨の制御信号を、歪信号生成部14に出力する。
【0027】
さらに、制御部15には、加算部13から出力された出力信号がフィードバックして入力される。制御部15は、出力信号に含まれる歪成分を検出し、当該歪成分が最小となるように、歪信号の振幅及び位相を制御させる旨の制御信号を、歪信号生成部14に出力する。歪信号生成部14は、制御部15から出力される制御信号に基づいて、歪信号の振幅及び位相の制御を行う。
制御部15は、制御情報、周辺環境情報又は歪成分の検出結果と制御する振幅量及び移相量の条件を関連付けて記憶したテーブルを用意し、当該テーブルから対応する条件を読み出して、制御信号に反映させるようにしてもよい。
【0028】
加算部13は、超電導フィルタ12によって帯域制限された入力信号及び歪信号生成部14から出力された歪信号を合成し、出力信号として出力する。加算部13では、歪の含まれた入力信号と、入力信号と歪成分の逆特性を示す歪信号とが合成されることで、入力信号中の歪が相殺される。出力信号のスペクトラム分布は、図1(d)の通りに示され、3次相互変調歪が補償されたことが確認できる。以上が第1の歪補償回路の動作である。
【0029】
第1の歪補償回路は、超電導フィルタ12によって入力信号に帯域制限がかけられた後に、歪信号生成部14から出力された歪信号を合成することで、超電導フィルタ12から出力された、歪成分を含む入力信号の歪補償を実現できる。
このような構成としたことで、第1の歪補償回路は、超電導フィルタ12の構成を変更することなく、歪補償を行うことができ、効率よく容易に超電導フィルタで発生する歪を補償できる。
【0030】
また第1の歪補償回路は、出力信号に歪成分が含まれている場合にも、当該歪成分を最小とするように歪信号を調整して出力することができるため、温度の変動や経年劣化等による通信環境の変動に対しても柔軟に歪補償を行うことができる。
【0031】
次に、本発明の第2の実施の形態に係る歪補償回路(以下、第2の歪補償回路)について、図2を用いて説明する。図2は、第2の歪補償回路の構成ブロック図である。尚、図1の歪補償回路と同一の構成である部分については、同一の符号を付して説明する。
第2の歪補償回路は、第1の歪補償回路における加算部13を超電導フィルタ12の前段に設置したものである。すなわち、図2の歪補償回路は、超電導フィルタ12において帯域制限がかけられる前に、前もって入力信号に対して歪信号を合成することで、超電導フィルタ12から歪成分のない出力信号を得ようとするものである。
【0032】
第2の歪補償回路のように、超電導フィルタ12への出力前に入力信号に歪信号を合成しても、図2(d)に示されるような、歪成分の含まれない出力信号を得ることができる。また、第2の歪補償回路は、入力信号の周波数又は超電導フィルタ12周辺の温度に変動が発生しても、第1の歪補償回路と同様、制御部15からの制御信号によって、歪信号生成部14は変動に対応して歪信号を調整して出力することができる。
よって第2の歪補償回路は、第1の歪補償回路と同一の効果を奏するものである。
【0033】
以下、超電導フィルタのAM−AM変換及びAM−PM変換に起因する歪みを補償できる歪補償回路である、本発明の第3の実施の形態に係る歪補償回路(以下、第3の歪補償回路)について説明する。
第3の歪補償回路の構成について、図3〜図6を用いて説明する。図3は、第3の歪補償回路の構成ブロック図であり、図4は、歪信号生成部24の構成ブロック図であり、図5は、制御部25の構成ブロック図であり、図6は、歪検出回路28の構成ブロック図である。第3の歪補償回路の基本的な構成は、第1の歪補償回路と同様であるが、制御部25は入力信号の電力値に基づいて、歪信号生成部24で生成される歪信号の減衰制御及び移相制御を行う点が第1の歪補償回路と異なっている。
【0034】
第3の歪補償回路は、図3に示すように、遅延部21と、超電導フィルタ22と、合成器23と、歪信号生成部24と、制御部25と、分配器26と、電力検出器29と、歪検出回路28と、分配器27とから構成される。また、第3の歪補償回路において、遅延部21から合成器23までの一連の経路を本線系、それ以外の構成を含む経路を制御系と称する。
【0035】
また、歪信号生成部24は、図4に示すように、3次歪発生器241と、可変減衰器242と、移相器243と、増幅器244とから構成されている。
また、制御部25は、図5に示すように、A/D変換器251−1及び251−2と、テーブル更新制御部252と、ATT(ATTenuator)制御テーブル記憶回路253と、移相制御テーブル記憶回路254と、D/A変換器255−1及び255−2とから構成されている。
また、歪検出回路28は、図6に示すように、ミキサ281と、帯域フィルタ282と、包絡線検波器283と、中心周波数発振器284とから構成されている。
【0036】
次に、第3の歪補償回路の各部の構成について説明する。
遅延部21は、分配器26から出力された入力信号を一定時間遅延させて、超電導フィルタ22に出力する。遅延部21は、本線系と制御系における入力信号の処理の時間差を解消し、合成器23への入力信号及び歪信号の入力同期を図るために設けられている。
【0037】
超電導フィルタ22は、導体が超電導材料で形成されたフィルタであり、遅延部21から出力される入力信号のうち、帯域幅にある周波数の信号のみを通過させて、合成器23に出力する。
【0038】
合成器23は、第1の歪補償回路における加算部13に相当し、超電導フィルタ22から出力される帯域制限後の入力信号と、歪信号生成部24で生成、出力される減衰制御及び位相制御済みの3次相互変調歪信号とを合成して、出力信号として出力する。
【0039】
歪信号生成部24は、分配器26から出力される入力信号に基づいて、超電導フィルタ12で発生すると予想される3次相互変調による歪成分の逆特性を生成し、3次相互変調歪信号として合成器23に出力する。
また歪信号生成部24は、制御部25から出力される減衰制御信号又は移相制御信号に基づいて、3次相互変調歪信号の減衰制御及び移相制御を行う。
【0040】
制御部25は、電力検出器29から出力された入力信号の電力値に基づいて、歪信号生成部24で生成、出力される歪信号の減衰量及び移相(位相変動)量を決定し、これらの量に対応した減衰制御信号及び移相制御信号を歪信号生成部24に出力する。
また、制御部25は、入力信号の電力値及び歪検出回路28から出力された出力信号の歪成分の電力値に基づいて、歪信号の減衰量及び移相量を更新する。
【0041】
分配器26は、入力信号を遅延部21及び電力検出器29とに分配して出力する。
電力検出器29は、分配器26から出力された入力信号の電力値を包絡線検波によって検出し、検出結果である電力値のアナログデータを制御部25に出力する。
歪検出回路28は、分配器27から出力された出力信号から、出力信号に含まれる歪成分の電力値を、包絡線検波によって検出し、検出結果を制御部25に出力する。
分配器27は、合成器23から出力された出力信号を、歪検出回路28及び第3の歪補償回路の出力端子に出力する。
【0042】
図4の歪信号生成部24において、3次歪発生器241は、分配器26から出力される入力信号に基づいて、超電導フィルタ22で発生する3次相互変調歪信号を生成、出力する。
3次歪発生器241は、非線形素子により3次相互変調歪信号を発生させるものであり、基本波成分は歪成分に対し十分減衰されて出力される。
【0043】
可変減衰器242は、制御部25から出力される減衰制御信号に基づいて、3次歪発生器241から出力される3次相互変調歪信号の減衰制御を行う。可変減衰器242は、減衰制御を行うことによって、3次相互変調歪信号の振幅を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
【0044】
移相器243は、制御部25から出力される移相制御信号に基づいて、3次歪発生器241から出力される3次相互変調歪信号の移相制御を行う。移相器243は、移相制御を行うことによって、3次相互変調歪信号の位相を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
【0045】
増幅器244は、可変減衰器242及び移相器243において減衰制御及び移相制御が行われた3次相互変調歪信号を、入力信号に含まれる歪成分と同レベルとなるよう増幅して、合成器23へ出力する。
【0046】
図5の制御部25において、A/D変換器251−1は、電力検出器29から出力されたアナログデータである入力信号の電力値をデジタル変換し、テーブル更新制御部252、ATT制御テーブル記憶回路253及び移相制御テーブル記憶回路254に出力する。
A/D変換器251−2は、歪検出回路から出力された歪成分の電力値をデジタル変換し、テーブル更新制御部252及びATT制御テーブル記憶回路253に出力する。
【0047】
テーブル更新制御部252は、A/D変換器251−1、251−2から出力される入力信号の電力値及び歪成分の電力値に基づいて、ATT制御テーブル記憶回路253及び移相制御テーブル記憶回路254に対し、各記憶回路で格納されているテーブルの内容を更新する旨の制御信号を出力する。このような制御を行うことで、第3の歪補償回路は、温度変化や経年劣化による超電導フィルタ22の出力特性の変化に対応して、歪補償を精度よく行うことができる。
【0048】
ATT制御テーブル記憶回路253には、入力信号の電力値と、歪信号の減衰量とが対応付けられて記憶されたテーブルが格納されている。ATT制御テーブル記憶回路253は、A/D変換器251−1から出力される入力信号の電力値に基づいて、当該テーブルから対応する歪信号の減衰量を読み出して、当該減衰量だけ減衰させる旨の減衰制御信号をD/A変換器255−1に出力する。
また、ATT制御テーブル記憶回路253は、テーブル更新制御部252から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている減衰量のデータを変更する。
【0049】
移相制御テーブル記憶回路254には、入力信号の電力値と、歪信号の移相量とが対応付けられて記憶されたテーブルが格納されている。移相制御テーブル記憶回路254は、A/D変換器251−1から出力された入力信号の電力値に基づいて、当該テーブルから対応する歪信号の移相量を読み出して、当該移相量だけ移相制御を行わせる旨の移相制御信号をD/A変換器255−1に出力する。
また、移相制御テーブル記憶回路254は、テーブル更新制御部252から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている移相量のデータを変更する。
【0050】
D/A変換器255−1は、ATT制御テーブル記憶回路253から出力された減衰制御信号をアナログ変換し、歪信号生成部24に出力する。
D/A変換器255−2は、移相制御テーブル記憶回路254から出力された移相制御信号をアナログ変換し、歪信号生成部24に出力する。
【0051】
図6の歪検出回路28において、ミキサ281は、分配器27から出力される出力信号と、中心周波数発振器284から出力される入力信号の必要帯域の中心周波数(以下、中心周波数)とを混合し、混合結果を帯域フィルタ282に出力する。
【0052】
帯域フィルタ282は、ミキサ281から出力された、中心周波数が混合された出力信号に対し、中心周波数の帯域外の周波数信号についてのみ通過させて、包絡線検波器285に出力する。すなわち帯域フィルタ282は、出力信号のうち、送信に用いられる帯域の周波数信号を除いて、歪成分のみを通過させるものである。
【0053】
包絡線検波器283は、帯域フィルタ282から出力される、出力信号における歪成分の包絡線検波を行ってアナログデータである歪成分の電力値を検出し、検出結果を制御部25へ出力する。
中心周波数発振器284は、ミキサ281に対し、中心周波数の信号を出力する。
【0054】
次に、第3の歪補償回路の動作について、図3〜図6を用いて説明する。
図3において、複数種の周波数からなる入力信号は、第3の歪補償回路において、まず分配器26に入力され、さらに遅延部21、歪信号生成部24及び電力検出器29とに分配されて出力される。
【0055】
分配器26から遅延部21に出力された入力信号は、一定時間遅延された後、超電導フィルタ12に出力され、帯域制限がかけられて合成部23に出力される。超電導フィルタ12から出力される信号には、相互変調による歪みが含まれる。一般に送信機における入力信号はレベルが低いため、高調波による歪は問題とならないほど小さい。
【0056】
図4の歪信号生成部14において、分配器26から出力された入力信号は、まず3次歪発振器241に入力される。3次歪発振器241は、入力信号の電力値に基づいて、超電導フィルタ22で発生すると予想される3次相互変調歪信号を生成、出力する。
3次相互変調歪信号の生成にあたり、3次歪発生器241は、非線形素子により3次相互変調歪信号を発生する。
【0057】
可変減衰器242は、制御部25から出力された減衰制御信号に基づいて、3次相互変調歪信号に対して減衰制御を行う。可変減衰器242は、減衰制御信号に含まれる減衰量だけ、3次相互変調歪信号の減衰を行う。可変減衰器242による減衰制御によって、3次相互変調歪信号の振幅を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
【0058】
また、移相器243は、制御部25から出力された移相制御信号に基づいて、3次相互変調歪信号に対して移相制御を行う。移相器242は、移相制御信号に含まれる移相量だけ、3次相互変調歪信号の移相を行う。移相器242による移相制御によって、3次相互変調歪信号の位相を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
制御部25における制御信号の出力方法については、後述する。
【0059】
減衰制御及び移相制御が行われた3次相互変調歪信号は、増幅器244において入力信号に含まれる歪成分と同レベルとなるよう増幅された後、合成器23に出力される。
【0060】
図3において、合成器23は、超電導フィルタ22によって帯域制限された入力信号及び歪信号生成部24から出力された3次相互変調歪信号を合成し、出力信号として分配器27に出力する。加算部13では、歪の含まれた入力信号と、入力信号と逆特性で出力された3次相互変調歪信号とが合成されることで、入力信号中の歪が相殺され、3次相互変調歪みが補償される。
【0061】
次に、第3の歪補償回路における、制御部25の動作について説明する。まず、減衰制御信号及び移相制御信号の出力動作について説明する。
分配器26から出力された入力信号は、電力検出器29において包絡線検波が行われることで、電力値が検出される。電力検出器29は、検出結果である電力値のアナログデータを、制御部25に出力する。
【0062】
図5の制御部25において、入力信号の電力値のアナログデータは、まずA/D変換器251−1に入力される。A/D変換器251−1では、電力値はデジタルデータに変換され、テーブル更新制御部252、ATT制御テーブル記憶回路253及び移相制御テーブル記憶回路254に出力される。
【0063】
ATT制御テーブル記憶回路253は、デジタルデータの電力値が入力されると、自己に格納されているテーブルから当該電力値に対応する減衰量を読み出し、当該減衰量だけ減衰する旨の減衰制御信号をD/A変換器255−1に出力する。
D/A変換器255−1は、減衰制御信号をアナログ変換して、歪信号生成部24の可変減衰器242に出力する。
【0064】
移相制御テーブル記憶回路254は、デジタルデータの電力値が入力されると、自己に格納されているテーブルから当該電力値に対応する移相量を読み出し、当該移相量だけ移相制御を行う旨の移相制御信号をD/A変換器255−2に出力する。
D/A変換器255−2は、移相制御信号をアナログ変換して、歪信号生成部24の移相器243に出力する。
【0065】
制御部25において、ATT制御テーブル記憶回路253は、電力値に対応する減衰量を読み出し、減衰制御信号として出力することで、3次相互変調歪信号の振幅を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせることができる。また、移相制御テーブル記憶回路254は、電力値に対応する移相量を読み出し、移相制御信号として出力することで、3次相互変調歪信号の位相を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせることができる。これにより、第3の歪補償回路は、3次相互変調歪みを補償することができる。
【0066】
次に、減衰量及び移相量の更新動作について説明する。
図3において、合成器23で合成され、歪の補償された出力信号は、分配器27に出力される。分配器27は、出力信号を歪検出回路28及び第3の歪補償回路の出力端子に分配して出力する。
図6の歪検出回路28において、出力信号は、まずミキサ281に入力される。ミキサ281は、出力信号と、中心周波数発振器284から出力される中心周波数信号とを混合し、帯域フィルタ282に出力する。中心周波数信号は、入力信号の必要帯域の中心となる周波数の信号であるため、ミキサ28によって出力信号は、中心周波数が増幅される。
【0067】
ミキサ281から出力された出力信号は、帯域フィルタ282において、中心周波数の帯域外の周波数、すなわち歪成分のみが通過され、包絡線検波器283によってアナログデータである歪成分の電力値が検出される。
包絡線検波器283において検出された歪成分の電力値は、制御部25に出力される。
【0068】
図5の制御部において、歪成分の電力値は、まずA/D変換器251−2に入力される。A/D変換器251−2では、電力値はデジタルデータに変換され、テーブル更新制御部252に出力される。
テーブル更新制御部252は、歪成分の電力値と、A/D変換器251−1から出力された、入力信号の電力値とを参照する。歪成分の電力値が規定値以上であるような場合、テーブル更新制御部252は、当該歪成分の電力値が最小となるよう、ATT制御テーブル記憶回路253のテーブルに記憶されている減衰量と、移相制御テーブル記憶回路254のテーブルに記憶されている移相量の値を更新することで、テーブルの更新を行う。
【0069】
減衰量及び移相量の更新にあたり、テーブル更新制御部252では、予め減衰量又は移相量をパラメータとして持ち、且つ評価値が歪み成分の電力値であるような評価関数を記憶しておく。
更新方法として、テーブル更新制御部252は、入力信号の電力値を参照し、当該電力値に基づいて、ATT制御テーブル記憶回路253のテーブルから対応する減衰量を、移相制御テーブル記憶回路254のテーブルから対応する移相量を読み出す。そして読み出した減衰量又は移相量をパラメータの初期値として、パラメータの修正及び評価値の評価を繰り返し行って、評価値が最小となるような減衰量及び移相量を求める。
評価値が最小となるようなパラメータの値の算出方法として、テーブル更新制御部252は、最急降下法又はLMS(Least Mean Square)法等の適応アルゴリズムを用いてもよい。
【0070】
最後にテーブル更新制御部252は、読み出しを行った減衰量を求められた減衰量に変更する旨の制御信号を、ATT制御テーブル記憶回路253に出力し、テーブルへの書き込みを行わせ、読み出しを行った移相量を求められた移相量に変更する旨の制御信号を、移相制御テーブル記憶回路254に出力し、テーブルへの書き込みを行わせる。
【0071】
テーブルの更新が行われると、制御部25は以後、更新されたテーブルを用いて、入力信号の電力値に基づいて、減衰量及び移相量の決定及び制御信号の出力を行う。
上述したテーブルの更新制御を行うことで、第3の歪補償回路は、温度変化や経年劣化等が原因で超電導フィルタ22の出力特性の変化し、歪が発生した場合でも、減衰量及び移相量を調整して更新することにより、当該出力特性の変化に柔軟に対応して、歪補償を精度よく行うことができる。
【0072】
第3の歪補償回路において、歪信号生成部24の3次歪発生器241は、3次相互変調歪だけでなく、より高次(5次、7次等)の相互変調歪の実測値を入力信号の電力値と関連付けてテーブルに記憶させ、入力信号の電力値に対応した高次の相互変調の実測値を読み出させて、歪信号を出力させるようにしてもよく、可変減衰器242及び移相器243は、高次の相互変調歪信号に対する減衰量及び移相量を調整させるようにしてもよい。
【0073】
また、制御部25は、高次の相互変調歪信号に対応した減衰量及び移相量の決定にあたり、高次の相互変調歪信号に対応した減衰量及び移相量をATT制御テーブル記憶回路253や移相制御テーブル記憶回路254にそれぞれ記憶させ、対応するものを読み出すようにしてもよく、又は既存の減衰量及び移相量に基づいて、最急降下法或いはLMS法によって、評価関数を用いた歪の評価を行いながら最適な減衰量及び移相量を決定するようにしてもよい。
【0074】
また、第3の歪補償回路において、超電導フィルタ22を合成器23の後段に設置し、超電導フィルタ22において帯域制限がかけられる前に、前もって入力信号に対して3次相互変調歪信号を合成するようにしてもよい。
【0075】
第3の歪補償回路は、制御部25において、入力信号の電力値に基づいて、当該電力値に対応する減衰量及び移相量とを決定し、当該減衰量及び移相量だけ制御させる旨の制御信号を出力し、歪信号生成部24において3次相互変調歪信号に対し、制御信号に基づいて当該減衰量及び移相量の調整を行った後に、超電導フィルタ22によって帯域制限のかけられた入力信号と合成することで、超電導フィルタ22による3次相互変調歪みを含む入力信号の歪補償を実現できる。
【0076】
ここで、半導体デバイスの非線形特性を特徴付けるものであるAM(Amplitude Modulation)−AM変換及びAM−PM(Phase Modulation)変換について図9を用いて説明する。図9は、非線形特性を有する増幅器の入出力特性の説明図である。図9において、左側の縦軸は増幅器から出力される信号の振幅を、右側の縦軸は増幅器から出力される信号の位相を示している。
例えば通常の増幅器は、飽和出力レベルと呼ばれる出力レベルを超えることはなく、出力信号の振幅(以下、出力振幅)が増大するに従って、図9(a)に示すように、出力特性はカーブを描くようになり、図9(b)の直線で示される理想特性からのずれが大きくなる現象が生じる。このような出力振幅の飽和特性はAM−AM変換と呼ばれる。
【0077】
また、入力信号の振幅(以下、入力振幅)によって、出力信号の位相(以下、出力位相)も変化し、図9(c)に示すように、出力振幅が増大するに従って出力位相が回転する現象も生じる。このような特性はAM−PM変換と呼ばれる。
AM−AM変換及びAM−PM変換は、増幅器、発振器等のような、大電力の信号を扱うマイクロ波半導体回路に用いる半導体デバイスを評価するパラメータとして従来より用いられている。
【0078】
また、AM−AM変換及びAM−PM変換は、半導体デバイスの非線形特性を表すものであり、このような特性が原因となって、送信帯域外への電力の漏れや、送信スペクトルの劣化を招き、通信信号に歪みが発生することとなる。
移動体通信システムの送信機では大電力の無線信号を扱うため、当該送信機で超電導フィルタを用いる場合には、超電導フィルタのAM−AM変換及びAM−PM変換を考慮して、これらの特性に起因する歪みを補償する必要がある。
また、移動体通信システムの送信機では、大電力の無線信号を扱うため、出力の大きい増幅器を回路内に設けることが一般的である。したがって、送信機で用いる歪補償回路は、増幅器で発生する歪についても同時に補償できるようにすることも考慮しなければならない。
【0079】
次に、本発明の第4の実施の形態に係る歪補償回路(以下、第4の歪補償回路)について、図7を用いて説明する。図7は、第4の歪補償回路の構成ブロック図である。
第4の歪補償回路は、増幅器及び超電導フィルタの通過前に入力信号に対して振幅制御及び移相制御を行うことによって、増幅器及び超電導フィルタで発生するAM−AM変換による振幅歪み及びAM−PM変換による位相歪みを補償するものである。
【0080】
第4の歪補償回路は、遅延部31と、歪生成部32と、増幅器(図ではPA(Power Amplifier))33と、超電導フィルタ34と、分配器35と、電力検出器36と、A/D変換器37と、温度センサ38と、A/D変換器39と、ATT制御テーブル記憶回路40と、移相制御テーブル記憶回路41と、D/A変換器42及び43と、歪補償テーブル更新制御回路44と、歪検出回路45とから構成される。また、歪生成部32は、可変減衰器(図ではATT)321と、移相器322とから構成されている。また、第4の歪補償回路において、遅延部31から超電導フィルタ34までの一連の経路を本線系、これ以外の構成を含む経路を制御系と称する。
【0081】
次に、第4の歪補償回路の各部の構成について説明する。
遅延部31は、入力信号を一定時間遅延させて、歪生成部32に出力する。遅延部31は、本線系と制御系における入力信号の処理の時間差を解消するために設けられている。
【0082】
歪生成部32は、遅延部31から出力される入力信号に対し、ATT制御テーブル記憶回路40から出力される減衰制御信号に基づいて減衰制御を行い、移相制御テーブル記憶回路41から出力される移相制御信号に基づいて移相制御を行って、増幅器33に出力する。
歪生成部32は、減衰制御によって、PA33及び超電導フィルタ34のAM−AM特性による振幅歪みの逆特性を、移相制御によって、PA33及び超電導フィルタ34のAM−PM特性による位相歪みの逆特性を入力信号に与える。
【0083】
増幅器33は、電力増幅器であり、歪生成部32から出力される、減衰制御及び位相制御済みの入力信号を増幅し、増幅した入力信号を超電導フィルタ34に出力する。
超電導フィルタ34は、導体が超電導材料で形成されたフィルタであり、増幅器33から出力される入力信号のうち、帯域幅にある周波数の信号のみを通過させて、分配器35に出力する。
【0084】
電力検出器36は、分配された入力信号の電力値を包絡線検波によって検出し、検出結果である電力値のアナログデータをA/D変換器37に出力する。
A/D変換器37は、電力検出器36から出力されたアナログデータである入力信号の電力値をデジタル変換し、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力する。
【0085】
温度センサ38は、増幅器38及び超電導フィルタ34周辺の温度を計測し、計測結果である温度データをアナログデータとしてA/D変換器39に出力する。
A/D変換器39は、温度センサ38から出力されたアナログデータである温度データをデジタル変換し、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力する。
【0086】
ATT制御テーブル記憶回路40には、入力信号の電力値と、増幅器33及び超電導フィルタ34の周囲の温度と、入力信号の減衰量とが対応付けられて記憶されたテーブルが格納されている。テーブルに格納されている減衰量は、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みを補償するためのものである。
ATT制御テーブル記憶回路40は、A/D変換器37から出力される入力信号の電力値と、A/D変換器39から出力される、増幅器33及び超電導フィルタ34の周囲の温度データに基づいて、当該テーブルから対応する歪信号の減衰量を読み出して、当該減衰量だけ減衰する旨の減衰制御信号をD/A変換器42に出力する。
また、ATT制御テーブル記憶回路40は、歪補償テーブル更新制御回路44から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている減衰量のデータを変更する。
【0087】
移相制御テーブル記憶回路41には、入力信号の電力値と、増幅器33及び超電導フィルタ34の周囲の温度と、入力信号の移相量とが対応付けられて記憶されたテーブルが格納されている。テーブルに格納されている移相量は、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みを補償するためのものである。
移相制御テーブル記憶回路41は、A/D変換器37から出力された入力信号の電力値と、A/D変換器39から出力される、増幅器33及び超電導フィルタ34の周囲の温度データに基づいて、当該テーブルから対応する歪信号の移相量を読み出して、当該移相量だけ移相制御を行う旨の移相制御信号をD/A変換器43に出力する。
また、移相制御テーブル記憶回路41は、歪補償テーブル更新制御部44から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている移相量のデータを変更する。
【0088】
D/A変換器42は、ATT制御テーブル記憶回路42から出力された減衰制御信号をアナログ変換し、歪生成部32に出力する。
D/A変換器43は、移相制御テーブル記憶回路254から出力された移相制御信号をアナログ変換し、歪生成部32に出力する。
【0089】
歪補償テーブル更新制御部44は、A/D変換器37から出力される入力信号の電力値、A/D変換器39から出力される、増幅器33及び超電導フィルタ34の周囲の温度データ及び歪検出回路45から出力される歪成分の電力値に基づいて、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に対し、各記憶回路で格納されているテーブルの内容を更新する旨の制御信号を出力する。このような制御を行うことで、第4の歪補償回路は、温度変化又は経年劣化による超電導フィルタ22の出力特性の変化に対応して、歪補償を精度よく行うことができる。
【0090】
歪検出回路45は、分配器35から出力された出力信号から、出力信号に含まれる歪成分の電力値を、包絡線検波によって検出し、検出結果をデジタルデータに変換して歪補償テーブル更新制御回路44に出力する。歪検出回路45の構成は、第3の歪補償回路における歪検出回路28の構成に加えて、検出結果をデジタルデータに変換するためのD/A変換器を設けたものである。
【0091】
歪生成部32において、可変減衰器321は、D/A変換器42から出力される減衰制御信号に基づいて、入力信号の減衰制御を行う。可変減衰器321は、減衰制御を行うことによって、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みの逆特性を入力信号に与える。
【0092】
移相器322は、D/A変換器43から出力される移相制御信号に基づいて、入力信号の移相制御を行う。移相器322は、移相制御を行うことによって、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みの逆特性を入力信号に与える。
【0093】
次に、第4の歪補償回路の動作について、図7を用いて説明する。
図7において、無線周波数の入力信号は、第4の歪補償回路において、まず遅延部31及び電力検出器36とに分配されて出力される。
遅延部31に分配された入力信号は、一定時間遅延された後、歪生成部32に出力される。
【0094】
歪生成部32において、可変減衰器321は、D/A変換器42を介してATT制御テーブル記憶回路40から出力された減衰制御信号に基づいて、入力信号に対して減衰制御を行う。可変減衰器242は、減衰制御信号に含まれる減衰量だけ、入力信号の減衰を行う。可変減衰器242による減衰制御によって、増幅器33及び超電導フィルタ34のAM−AM特性による振幅歪みの逆特性が入力信号に与えられる。
【0095】
また、移相器322は、D/A変換器43を介して移相制御テーブル記憶回路41から出力された移相制御信号に基づいて、入力信号に対して移相制御を行う。移相器322は、移相制御信号に含まれる移相量だけ、入力信号の移相を行う。移相器242による移相制御によって、増幅器33及び超電導フィルタ34のAM−PM特性による位相歪みの逆特性が入力信号に与えられる。
ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41における各種制御信号の出力方法については、後述する。
【0096】
歪生成部32において減衰制御及び移相制御が行われた入力信号は、増幅器33において増幅され、さらに超電導フィルタ34において帯域制限がかけられて分配器35に出力される。増幅器33及び超電導フィルタ34から出力される信号には、これらの素子の入出力特性に起因する高調波による歪み、AM−AM変換による振幅歪み及びAM−PM変換による位相歪みとが含まれる。第4の歪補償回路でも、第1〜第3の歪補償回路の場合と同様に、高調波による歪は問題とならないほど小さい
【0097】
既述したように、入力信号は歪生成部32において、増幅器33及び超電導フィルタ34による、AM−AM特性による振幅歪みの逆特性と、AM−PM特性による位相歪みの逆特性とが与えられている。
入力信号は、増幅器33及び超電導フィルタ34を通過することによって、増幅部33及び超電導フィルタ34で発生する歪成分と、入力信号に含まれる振幅歪み及び移相歪みの逆特性とが合成されて、入力信号中の歪が相殺され、AM−AM変換による振幅歪みと、AM−PM変換による位相歪みが補償される。超電導フィルタ34によって帯域制限のかけられた入力信号は、出力信号として分配器35に出力される。
【0098】
次に、第4の歪補償回路における、制御系の動作について説明する。まず、減衰制御信号及び移相制御信号の出力動作について説明する。
電力検出器36に分配された入力信号は、電力検出器36において包絡線検波が行われ、電力値が検出される。電力検出器36は、検出結果である電力値のアナログデータを、A/D変換器37に出力する。
A/D変換器37において、電力値はデジタルデータに変換され、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力される。
【0099】
また、増幅器33及び超電導フィルタ34の周囲の温度を計測する温度センサ38は、温度の計測結果をアナログデータの温度データとして、A/D変換器39に出力する。A/D変換器39は、当該温度データをデジタルデータに変換し、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力する。
【0100】
ATT制御テーブル記憶回路40は、デジタルデータの電力値及び温度データが入力されると、自己に格納されているテーブルから対応する減衰量を読み出し、当該減衰量だけ減衰する旨の減衰制御信号をD/A変換器42に出力する。ATT制御テーブル記憶回路40のテーブルに記憶されている減衰量は、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みに相当する。
D/A変換器42は、減衰制御信号をアナログ変換して、歪生成部32の可変減衰器321に出力する。
【0101】
移相制御テーブル記憶回路41は、デジタルデータの電力値及び温度データが入力されると、自己に格納されているテーブルから対応する移相量を読み出し、当該移相量だけ移相制御を行う旨の移相制御信号をD/A変換器43に出力する。移相制御テーブル記憶回路41のテーブルに記憶されている移相量は、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みに相当する。
D/A変換器43は、移相制御信号をアナログ変換して、歪生成部32の移相器322に出力する。
【0102】
ATT制御テーブル記憶回路40は、電力値及び温度データ対応する減衰量を読み出し、減衰制御信号として出力することで、入力信号に上記振幅歪みの逆特性を与えることができる。また、移相制御テーブル記憶回路41は、電力値及び温度データに対応する移相量を読み出し、移相制御信号として出力することで、入力信号に上記位相歪みの逆特性を与えることができる。これにより、第4の歪補償回路は、増幅器33及び超電導フィルタ34におけるAM−AM変換による振幅歪み及びAM−PM変換による位相歪みを補償することができる。
【0103】
次に、減衰量及び移相量の更新動作について説明する。
超電導フィルタ34から出力された、歪の補償された出力信号は、分配器35に出力される。分配器35は、出力信号を歪検出回路45及び第4の歪補償回路の出力端子に分配して出力する。
歪検出回路45は、分配器35から出力された出力信号から、出力信号に含まれる歪成分の電力値を、包絡線検波によって検出し、検出結果をデジタルデータに変換して歪補償テーブル更新制御回路44に出力する。
【0104】
歪補償テーブル更新制御回路44は、歪検出回路45から出力された歪成分の電力値と、A/D変換器37から出力された入力信号の電力値と、A/D変換器39から出力された温度データを参照する。歪成分の電力値が規定値以上であるような場合、歪補償テーブル更新制御回路44は、当該歪成分の電力値が最小となるよう、ATT制御テーブル記憶回路40のテーブルに記憶されている減衰量と、移相制御テーブル記憶回路41のテーブルに記憶されている移相量の値を更新することで、テーブルの更新を行う。
【0105】
減衰量及び移相量の更新にあたり、歪補償テーブル更新制御部44では、予め減衰量又は移相量をパラメータとして持ち、且つ評価値が歪み成分の電力値であるような評価関数を記憶しておく。
更新方法として、歪補償テーブル更新制御部44は、入力信号の電力値及び温度データを参照し、当該電力値に基づいて、ATT制御テーブル記憶回路40のテーブルから対応する減衰量を、移相制御テーブル記憶回路41のテーブルから対応する移相量を読み出す。そして読み出した減衰量又は移相量をパラメータの初期値として、パラメータの修正及び評価値の評価を繰り返し行って、評価値が最小となるような減衰量及び移相量を求める。
評価値が最小となるようなパラメータの値の算出方法として、歪補償テーブル更新制御部44は、最急降下法又はLMS(Least Mean Square)法等の適応アルゴリズムを用いてもよい。
【0106】
最後に歪補償テーブル更新制御部44は、読み出しを行った減衰量を求められた減衰量に変更する旨の制御信号を、ATT制御テーブル記憶回路40に出力し、テーブルへの書き込みを行わせ、読み出しを行った移相量を求められた移相量に変更する旨の制御信号を、移相制御テーブル記憶回路41に出力し、テーブルへの書き込みを行わせる。
【0107】
テーブルの更新が行われると、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41は以後、更新されたテーブルを用いて、入力信号の電力値及び温度データに基づいて、減衰量及び移相量の決定及び制御信号の出力を行う。
上述したテーブルの更新制御を行うことで、第4の歪補償回路は、増幅部33又は超電導フィルタ34の周囲の温度変化や経年劣化等が原因で、増幅器33又は超電導フィルタ22の出力特性の変化し、歪が発生した場合でも、減衰量及び移相量を調整して更新することにより、当該出力特性の変化に柔軟に対応して、歪補償を精度よく行うことができる。
【0108】
第4の歪補償回路では、増幅器33及び超電導フィルタ34の両方におけるAM−AM変換による振幅歪み及びAM−PM変換による位相歪みを同時に補償できるような減衰量及び移相量を決定して、入力信号に制御を行うが、例えば超電動フィルタ34において、AM−AM変換又はAM−PM変換が増幅器33のそれと異なる特性を有する場合には、減衰量及び移相量が最適なものとならず、歪補償が十分に行われない場合が考えられる。
このような場合においても、上述した歪補償テーブル更新制御部44における更新方法として、例えば最急降下法のような適応アルゴリズムを用いることによって、評価値の値を比較することで、最適な減衰量及び移相量を得ることができる。
【0109】
また、第4の歪補償回路では、温度データを温度センサ83から直接入手する他に、予め温度と電圧値の関係を示した統計データまたは温度特性等に基づいて、適応アルゴリズムを用いることによって温度変化を予測し、予測結果を温度データとして用いるようにしてもよい。
この場合、温度特性が未定乗数を含む関数で近似できるような場合には、その未定乗数をLMS法等で算出して、算出された乗数を用いて温度変化を予測するようにすることで、温度変化の予測を迅速化できる。
【0110】
第4の歪補償回路は、ATT制御テーブル記憶回路40は、入力信号の電力値及び温度データに基づいて、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みを補償するための減衰量を決定して、当該減衰量だけ制御させる旨の制御信号を出力し、移相制御テーブル記憶回路41は、入力信号の電力値及び温度データに基づいて、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みを補償する移相量とを決定し、当該移相量だけ制御させる旨の制御信号を出力し、入力信号に対し、歪生成部32において制御信号に基づいて当該減衰量及び移相量の調整を行った後に、増幅器33での増幅及び超電導フィルタ34での帯域制限を行うことで、増幅器33及び超電導フィルタ34による振幅歪み及び位相歪みを含む入力信号の歪補償を実現できる。
このような構成としたことで、第4の歪補償回路は、増幅器34による振幅歪み及び位相歪みに対する歪補償も合わせて行うことができ、送信機の回路構成に則してより精度の高い歪補償を行うことができる。
【0111】
また、本発明においては、入力信号が高周波である場合について説明したが、本発明の歪補償回路は、入力信号がBB(BaseBand)やIF(Intermediate Frequency:中間周波数)である場合にも適用してよい。
【0112】
上述したように、本発明の実施の形態に係る歪補償回路によれば、超伝導フィルタで発生すると予測される相互変調歪の逆特性である歪信号を出力し、超電導フィルタの前段において入力信号と合成するか、又は超伝導フィルタの後段において帯域制限のかけられた入力信号と合成することで、超伝導フィルタで発生する相互変調歪を効率よく補償できる効果がある。
また、歪補償後の出力信号に含まれる歪成分の電力値に基づいて、当該歪信号を最小にするように歪信号の調整を行って歪信号を出力することで、通信環境の変化にも容易に対応して歪補償を行うことができる効果がある。
【0113】
また、増幅器及び超伝導フィルタで発生すると予測されるAM−AM変換による振幅歪みの逆特性及びAM−PM変換による位相歪みの逆特性を入力信号に与え、当該入力信号を増幅器によって増幅し、且つ超伝導フィルタによって帯域制限をかけることによって、増幅器及び超伝導フィルタで発生する振幅歪み及び位相歪を同時に効率よく補償できる効果がある。
【0114】
【発明の効果】
本発明によれば、通信システムの送信機で用いる歪補償回路において、送信対象の入力信号のうち、特定の周波数帯域内の信号を出力する超電導フィルタと、超電導フィルタにおいて入力信号に対して発生する相互変調歪の逆特性を歪信号として出力する歪信号生成部と、超電導フィルタの前段又は後段に接続され、超電導フィルタに入力される信号又は超電導フィルタから出力される信号と歪信号とを合成し、合成結果を出力信号として出力する合成部と、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように歪信号生成部に対して歪信号の減衰制御及び移相制御を行う歪信号制御部とを有する歪補償回路としているので、超電導フィルタで発生する相互変調歪を効率よく補償できる効果がある。
【0115】
また、本発明によれば、通信システムの送信機で用いる歪補償回路において、送信対象の入力信号の出力を増幅する電力増幅器と、電力増幅器から出力された信号のうち、特定の周波数帯域内の信号を出力信号として出力する超電導フィルタと、増幅器に入力される信号に対して減衰制御及び移相制御を行い、増幅器及び超電導フィルタにおいて入力信号に対して発生する歪の逆特性を含ませる減衰/移相制御部と、入力信号の電力値及び増幅器及び超電導フィルタ周辺の温度に基づいて、減衰制御における減衰量及び移相制御における移相量を決定して減衰/移相制御部に出力し、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように減衰量及び移相量を更新する歪制御部とを有する歪補償回路としているので、増幅器及び超電導フィルタで発生する歪を同時に効率よく補償できる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る歪補償回路の構成ブロック図である。
【図2】本発明の第2の実施の形態に係る歪補償回路の構成ブロック図である。
【図3】本発明の第3の実施の形態に係る歪補償回路の構成ブロック図である。
【図4】本発明の第3の実施の形態に係る歪補償回路における、歪信号生成部24の構成ブロック図である。
【図5】本発明の第3の実施の形態に係る歪補償回路における、制御部25の構成ブロック図である。
【図6】
本発明の第3の実施の形態に係る歪補償回路における、歪検出回路28の構成
ブロック図である。
【図7】
本発明の第4の実施の形態に係る歪補償回路の構成ブロック図である。
【図8】
超電導フィルタの出力特性を示した説明図である。
【図9】
非線形特性を有する増幅器の入出力特性の説明図である。
【符号の説明】
11,21,31…遅延部、 12,22,34…超電導フィルタ、 13,23…加算部、 14,24…歪信号生成部、 15,25…制御部、 26,27,35…分配器、 28…歪検出回路、 29,36…電力検出器、 32…歪生成部、 33…増幅器、 37,39…A/D変換器、 38…温度センサ、 40…ATT制御テーブル記憶回路、 41…移相制御テーブル記憶回路、 42,43…D/A変換器、 44…歪補償テーブル更新制御回路、 45…歪検出回路
【発明の属する技術分野】
本発明は、超電導フィルタを備えた無線信号の送信機で用いられる歪補償回路に係り、特に超電導フィルタで発生する歪成分を補償する歪補償回路に関する。
【0002】
【従来の技術】
携帯電話等の移動体通信システムでは、利用者及び通信容量の増大に伴い、周波数資源の有効活用が求められている。このため隣接する周波数からの電波干渉を低減し、所望の周波数の無線信号を高感度に受信できるシステムが要求されている。
この要求を実現する手段の一つとして近年、基地局用のフィルタに超電導フィルタが有望視されている。
【0003】
超電導フィルタは、誘電体基板上に超電導薄膜を堆積させた構造を有するフィルタであり、低損失で急峻な減衰特性を有することを特徴とするものである。超電導フィルタを用いることによって、容易に超電導薄膜の表面抵抗をゼロに近づけることができ、必要な周波数の電波を効率よく通過させることができる。
【0004】
また、超電導フィルタにおいて、超電導薄膜の表面抵抗はオームの法則に従わず、二流体モデルで表されることが知られている。当該二流体モデルによれば、超電導体は超電導状態下では、常電導電子及び超電導電子の二種類の伝導電子が存在し、これらの伝導電子の存在確率は温度に依存する。また、超電導体の表面抵抗は、これらの伝導電子における導電率を用いて表わされ、且つ非線形であるため、超電導体は非線形な出力特性を有する。
このため、超電導フィルタにフィルタ帯域内の高周波(正弦波)を入力すると、上記非線形特性に起因して、入力信号の他に3次、5次等の高調波が発生する。
【0005】
また、移動体通信システムでは、複数の異なる周波数を用いて無線送信を行うことが一般的であるため、超電導フィルタにおける非線形特性に起因して、これらの周波数の間で相互変調が発生する。上記高調波及び上記相互変調の発生により、超電導フィルタの出力は線形特性とはならず、歪成分が含まれた状態で出力されることになる。
【0006】
図8は超電導フィルタの出力特性を示した説明図である。図8において、超電導フィルタ81はフィルタ帯域内にある周波数f0、f1の信号を通過させる。また、図中に信号の周波数別のスペクトラム分布を示している。
図8において、超電導フィルタ81に入力前の信号(図では入力信号)には、周波数f0及びf1の信号が含まれているが、超電導フィルタ81の非線形特性により、超電導フィルタ81から出力された信号(図では出力信号)には、相互変調により発生した、周波数がそれぞれ2f0−f1、2f1−f0となる3次相互変調歪が含まれる。超電導フィルタからの出力信号には、他にも5次以降の相互変調歪及び高調波による歪が含まれるが、図8のグラフではこれらは省略している。
【0007】
上述したように、超電導フィルタから直接出力される信号には歪成分が含まれているため、当該信号をこのまま無線通信に用いると、受信時における無線信号の受信特性が劣化する。このため移動体通信システムでは、上記歪成分を補償するための手段を講じる必要がある。
【0008】
超電導体で発生する歪を補償するための従来の技術として、平成11年1月19日公開の特表平11−500879号「高温超電導体デバイスの電力処理能力を向上させる方法」(出願人:スーパーコンダクター・テクノロジーズ・インコーポレイテッド、発明者:マッタイ,ジョージ・エル他)では、高温超電導材料から形成される中央導体が、二つの誘電体に挟まれており、且つ中央導体のエッジ部分が空気又は真空に面した構成のデバイスとすることで、中央導体における表面抵抗の線型性を向上させる方法が提案されている。
【0009】
参考として、平成11年5月31日公開の特許第2898317号「磁気共鳴装置」(出願人:コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ、発明者:ヨハネス ヘンドリック デン ボエフ)では、超電導マグネットを磁気発生装置として用い、対象物(人体)からの磁気共鳴信号を受信し、対象物における水及び脂肪に起因する共鳴信号の歪みに対して、当該歪に対し反作用する逆歪み関数を決定し、当該関数を用いて共鳴信号を歪ませることにより、共鳴信号の非線形歪みを補償する磁気共鳴装置が提案されている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の技術である特表平11−500879号に記載の方法では、超電導体の線型性を向上するためには、超電導体を含んだデバイスを新たに製作しなければならず、費用及び労力がかかるため、効率よく歪を補償できるものとはなっていない。
【0011】
本発明は上記実情に鑑みて為されたもので、超電導フィルタで発生する歪成分を効率よく補償できる歪補償回路を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記従来例の問題点を解決するための本発明は、通信システムの送信機で用いる歪補償回路であって、送信対象の入力信号のうち、特定の周波数帯域内の信号を出力する超電導フィルタと、超電導フィルタにおいて入力信号に対して発生する相互変調歪の逆特性を歪信号として出力する歪信号生成部と、超電導フィルタの前段又は後段に接続され、超電導フィルタに入力される信号又は超電導フィルタから出力される信号と歪信号とを合成し、合成結果を出力信号として出力する合成部と、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように歪信号生成部に対して歪信号の減衰制御及び移相制御を行う歪信号制御部とを有するものであり、超電導フィルタで発生する相互変調歪を効率よく補償することができる。
【0013】
また、通信システムの送信機で用いる歪補償回路であって、移動体通信システムの送信機で用いる歪補償回路であって、送信対象の入力信号の出力を増幅する電力増幅器と、電力増幅器から出力された信号のうち、特定の周波数帯域内の信号を出力信号として出力する超電導フィルタと、増幅器に入力される信号に対して減衰制御及び移相制御を行い、増幅器及び超電導フィルタにおいて入力信号に対して発生する歪の逆特性を含ませる減衰/移相制御部と、入力信号の電力値及び増幅器及び超電導フィルタ周辺の温度に基づいて、減衰制御における減衰量及び移相制御における移相量を決定して減衰/移相制御部に出力し、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように減衰量及び移相量を更新する歪制御部とを有するものであり、増幅器及び超電導フィルタで発生する歪を同時に効率よく補償することができる。
【0014】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら説明する。
本発明の実施の形態に係る歪補償回路は、複数種の周波数からなる入力信号を送信する送信機において、入力信号の電力値に基づいて超電導フィルタで発生すると予想される歪信号を生成して、入力信号と逆特性で出力する歪信号生成部を有し、当該超電導フィルタから出力された入力信号と、当該歪信号を合成して、入力信号の歪補償を行うものであり、効率よく容易に超電導フィルタで発生する歪成分を補償できる。
【0015】
尚、請求項における合成部は図1及び図2の加算部13に相当し、歪信号制御部は図1及び図2の制御部15、図3の制御部25、歪検出回路28及び電力検出器29に、減衰/移相制御部は図7の歪生成部32に、歪制御部は図7の電力検出器36、A/D変換器37、温度センサ38、A/D変換器39、ATT制御テーブル記憶回路40、移相制御テーブル記憶回路41、D/A変換器42及び43、歪補償テーブル更新制御回路44及び歪検出回路45にそれぞれ相当する。
【0016】
以下、本発明の実施の形態に係る歪補償回路について、実施例毎に説明する。
まず、本発明の第1の実施の形態の検波回路の構成について、図1を用いて説明する。図1は、本発明の第1の実施の形態に係る歪補償回路(以下、第1の歪補償回路)の構成ブロック図である。また、図1における(a)〜(d)は、入力信号の周波数別のスペクトラム分布を示している。
第1の歪補償回路は、超電導フィルタ11と、歪信号生成部12と、制御部13と、遅延部14と、加算部15とから構成される。また、第1の歪補償回路において、遅延部11から加算部13までの一連の経路を本線系、歪信号生成部14を含む経路を制御系と称する。
【0017】
まず、第1の歪補償回路の各部の構成について説明する。
遅延部11は、送信の対象である、複数種の周波数からなるアナログ信号(以下、入力信号)を一定時間遅延させて、超電導フィルタ12に出力する。遅延部11は、本線系と制御系における入力信号の処理の時間差を解消し、加算部13への入力信号及び歪信号の入力同期を図るために設けられている。
【0018】
超電導フィルタ12は、導体が超電導材料で形成されたフィルタであり、遅延部11から出力される入力信号のうち、帯域幅にある周波数の信号のみを通過させて、加算部13に出力する。
【0019】
加算部13は、超電導フィルタ12から出力される帯域制限後の入力信号と、歪信号生成部14で生成、出力される歪信号とを合成して、出力信号として出力する。
【0020】
歪信号生成部14は、遅延部11に入力される入力信号及び制御部15から出力される制御信号に基づいて、超電導フィルタ12で発生すると予想される相互変調による歪成分の逆特性を生成し、歪信号として加算部13に出力する。
歪信号生成部14は、非線形素子を用いて歪信号を発生させるものであり、基本波成分は歪成分に対し十分減衰されて出力される。
【0021】
制御部15は、送信制御部(図示せず)から出力される無線送信に用いるキャリア周波数の情報等の制御情報、温度センサ(図示せず)から出力される超電導フィルタ12の周辺温度等の周辺環境情報又はフィードバックされた出力信号に基づいて、歪信号の振幅及び位相の制御に関する制御信号を歪信号生成部14に出力する。
【0022】
次に、第1の歪補償回路の動作について、図1を用いて説明する。尚、第1の歪補償回路では、入力信号は周波数f0及びf1の周波数の信号を含んでおり、超電導フィルタ12の帯域幅には上記周波数が含まれるものとする。
複数種の周波数からなる入力信号は、第1の歪補償回路において、まず遅延部11及び歪信号生成部14に出力される。このときの入力信号のスペクトラム分布は、図1(a)の通りに示される。
【0023】
遅延部11に出力された入力信号は、一定時間遅延された後、超電導フィルタ12に出力され、帯域制限がかけられて加算部13に出力される。従来の技術で説明したように、超電導フィルタ12から出力される信号には、高調波及び相互変調による歪が含まれる。一般に送信機における入力信号はレベルが低いため、高調波による歪は問題とならないほど小さい。
【0024】
超電導フィルタ12から出力される、相互変調を受けた入力信号のスペクトラム分布は、図1(b)の通りに示される。図1(b)に示すように、相互変調を受けた入力信号には、周波数f0及びf1の他に、周波数2f0−f1、2f1−f0の3次相互変調歪が含まれることが分かる。尚、超電導フィルタ12から出力された入力信号には、3次相互変調歪の他、5次以降の相互変調歪が含まれるが、図1(b)ではこれらは省略している。
【0025】
また、歪信号生成部14は、遅延部11の前段で分岐して入力された入力信号と、制御部15から出力される制御信号とに基づいて、超電導フィルタ12で発生する相互変調による歪成分を生成し、歪信号として加算部15に出力する。歪信号生成部14から出力される、歪信号のスペクトラム分布は、図1(c)に示す通りとなる。
歪信号の生成にあたり、歪信号生成部14は、非線形素子を用いて歪信号を発生する。
【0026】
制御部15は、送信制御部から出力される無線送信に用いるキャリア周波数の情報等の制御情報や、温度センサから出力される超電導フィルタ12の周辺温度等の周辺環境情報が入力されると、これらの因子による歪の変動に対応するよう、歪信号の振幅及び位相を制御させる旨の制御信号を、歪信号生成部14に出力する。
【0027】
さらに、制御部15には、加算部13から出力された出力信号がフィードバックして入力される。制御部15は、出力信号に含まれる歪成分を検出し、当該歪成分が最小となるように、歪信号の振幅及び位相を制御させる旨の制御信号を、歪信号生成部14に出力する。歪信号生成部14は、制御部15から出力される制御信号に基づいて、歪信号の振幅及び位相の制御を行う。
制御部15は、制御情報、周辺環境情報又は歪成分の検出結果と制御する振幅量及び移相量の条件を関連付けて記憶したテーブルを用意し、当該テーブルから対応する条件を読み出して、制御信号に反映させるようにしてもよい。
【0028】
加算部13は、超電導フィルタ12によって帯域制限された入力信号及び歪信号生成部14から出力された歪信号を合成し、出力信号として出力する。加算部13では、歪の含まれた入力信号と、入力信号と歪成分の逆特性を示す歪信号とが合成されることで、入力信号中の歪が相殺される。出力信号のスペクトラム分布は、図1(d)の通りに示され、3次相互変調歪が補償されたことが確認できる。以上が第1の歪補償回路の動作である。
【0029】
第1の歪補償回路は、超電導フィルタ12によって入力信号に帯域制限がかけられた後に、歪信号生成部14から出力された歪信号を合成することで、超電導フィルタ12から出力された、歪成分を含む入力信号の歪補償を実現できる。
このような構成としたことで、第1の歪補償回路は、超電導フィルタ12の構成を変更することなく、歪補償を行うことができ、効率よく容易に超電導フィルタで発生する歪を補償できる。
【0030】
また第1の歪補償回路は、出力信号に歪成分が含まれている場合にも、当該歪成分を最小とするように歪信号を調整して出力することができるため、温度の変動や経年劣化等による通信環境の変動に対しても柔軟に歪補償を行うことができる。
【0031】
次に、本発明の第2の実施の形態に係る歪補償回路(以下、第2の歪補償回路)について、図2を用いて説明する。図2は、第2の歪補償回路の構成ブロック図である。尚、図1の歪補償回路と同一の構成である部分については、同一の符号を付して説明する。
第2の歪補償回路は、第1の歪補償回路における加算部13を超電導フィルタ12の前段に設置したものである。すなわち、図2の歪補償回路は、超電導フィルタ12において帯域制限がかけられる前に、前もって入力信号に対して歪信号を合成することで、超電導フィルタ12から歪成分のない出力信号を得ようとするものである。
【0032】
第2の歪補償回路のように、超電導フィルタ12への出力前に入力信号に歪信号を合成しても、図2(d)に示されるような、歪成分の含まれない出力信号を得ることができる。また、第2の歪補償回路は、入力信号の周波数又は超電導フィルタ12周辺の温度に変動が発生しても、第1の歪補償回路と同様、制御部15からの制御信号によって、歪信号生成部14は変動に対応して歪信号を調整して出力することができる。
よって第2の歪補償回路は、第1の歪補償回路と同一の効果を奏するものである。
【0033】
以下、超電導フィルタのAM−AM変換及びAM−PM変換に起因する歪みを補償できる歪補償回路である、本発明の第3の実施の形態に係る歪補償回路(以下、第3の歪補償回路)について説明する。
第3の歪補償回路の構成について、図3〜図6を用いて説明する。図3は、第3の歪補償回路の構成ブロック図であり、図4は、歪信号生成部24の構成ブロック図であり、図5は、制御部25の構成ブロック図であり、図6は、歪検出回路28の構成ブロック図である。第3の歪補償回路の基本的な構成は、第1の歪補償回路と同様であるが、制御部25は入力信号の電力値に基づいて、歪信号生成部24で生成される歪信号の減衰制御及び移相制御を行う点が第1の歪補償回路と異なっている。
【0034】
第3の歪補償回路は、図3に示すように、遅延部21と、超電導フィルタ22と、合成器23と、歪信号生成部24と、制御部25と、分配器26と、電力検出器29と、歪検出回路28と、分配器27とから構成される。また、第3の歪補償回路において、遅延部21から合成器23までの一連の経路を本線系、それ以外の構成を含む経路を制御系と称する。
【0035】
また、歪信号生成部24は、図4に示すように、3次歪発生器241と、可変減衰器242と、移相器243と、増幅器244とから構成されている。
また、制御部25は、図5に示すように、A/D変換器251−1及び251−2と、テーブル更新制御部252と、ATT(ATTenuator)制御テーブル記憶回路253と、移相制御テーブル記憶回路254と、D/A変換器255−1及び255−2とから構成されている。
また、歪検出回路28は、図6に示すように、ミキサ281と、帯域フィルタ282と、包絡線検波器283と、中心周波数発振器284とから構成されている。
【0036】
次に、第3の歪補償回路の各部の構成について説明する。
遅延部21は、分配器26から出力された入力信号を一定時間遅延させて、超電導フィルタ22に出力する。遅延部21は、本線系と制御系における入力信号の処理の時間差を解消し、合成器23への入力信号及び歪信号の入力同期を図るために設けられている。
【0037】
超電導フィルタ22は、導体が超電導材料で形成されたフィルタであり、遅延部21から出力される入力信号のうち、帯域幅にある周波数の信号のみを通過させて、合成器23に出力する。
【0038】
合成器23は、第1の歪補償回路における加算部13に相当し、超電導フィルタ22から出力される帯域制限後の入力信号と、歪信号生成部24で生成、出力される減衰制御及び位相制御済みの3次相互変調歪信号とを合成して、出力信号として出力する。
【0039】
歪信号生成部24は、分配器26から出力される入力信号に基づいて、超電導フィルタ12で発生すると予想される3次相互変調による歪成分の逆特性を生成し、3次相互変調歪信号として合成器23に出力する。
また歪信号生成部24は、制御部25から出力される減衰制御信号又は移相制御信号に基づいて、3次相互変調歪信号の減衰制御及び移相制御を行う。
【0040】
制御部25は、電力検出器29から出力された入力信号の電力値に基づいて、歪信号生成部24で生成、出力される歪信号の減衰量及び移相(位相変動)量を決定し、これらの量に対応した減衰制御信号及び移相制御信号を歪信号生成部24に出力する。
また、制御部25は、入力信号の電力値及び歪検出回路28から出力された出力信号の歪成分の電力値に基づいて、歪信号の減衰量及び移相量を更新する。
【0041】
分配器26は、入力信号を遅延部21及び電力検出器29とに分配して出力する。
電力検出器29は、分配器26から出力された入力信号の電力値を包絡線検波によって検出し、検出結果である電力値のアナログデータを制御部25に出力する。
歪検出回路28は、分配器27から出力された出力信号から、出力信号に含まれる歪成分の電力値を、包絡線検波によって検出し、検出結果を制御部25に出力する。
分配器27は、合成器23から出力された出力信号を、歪検出回路28及び第3の歪補償回路の出力端子に出力する。
【0042】
図4の歪信号生成部24において、3次歪発生器241は、分配器26から出力される入力信号に基づいて、超電導フィルタ22で発生する3次相互変調歪信号を生成、出力する。
3次歪発生器241は、非線形素子により3次相互変調歪信号を発生させるものであり、基本波成分は歪成分に対し十分減衰されて出力される。
【0043】
可変減衰器242は、制御部25から出力される減衰制御信号に基づいて、3次歪発生器241から出力される3次相互変調歪信号の減衰制御を行う。可変減衰器242は、減衰制御を行うことによって、3次相互変調歪信号の振幅を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
【0044】
移相器243は、制御部25から出力される移相制御信号に基づいて、3次歪発生器241から出力される3次相互変調歪信号の移相制御を行う。移相器243は、移相制御を行うことによって、3次相互変調歪信号の位相を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
【0045】
増幅器244は、可変減衰器242及び移相器243において減衰制御及び移相制御が行われた3次相互変調歪信号を、入力信号に含まれる歪成分と同レベルとなるよう増幅して、合成器23へ出力する。
【0046】
図5の制御部25において、A/D変換器251−1は、電力検出器29から出力されたアナログデータである入力信号の電力値をデジタル変換し、テーブル更新制御部252、ATT制御テーブル記憶回路253及び移相制御テーブル記憶回路254に出力する。
A/D変換器251−2は、歪検出回路から出力された歪成分の電力値をデジタル変換し、テーブル更新制御部252及びATT制御テーブル記憶回路253に出力する。
【0047】
テーブル更新制御部252は、A/D変換器251−1、251−2から出力される入力信号の電力値及び歪成分の電力値に基づいて、ATT制御テーブル記憶回路253及び移相制御テーブル記憶回路254に対し、各記憶回路で格納されているテーブルの内容を更新する旨の制御信号を出力する。このような制御を行うことで、第3の歪補償回路は、温度変化や経年劣化による超電導フィルタ22の出力特性の変化に対応して、歪補償を精度よく行うことができる。
【0048】
ATT制御テーブル記憶回路253には、入力信号の電力値と、歪信号の減衰量とが対応付けられて記憶されたテーブルが格納されている。ATT制御テーブル記憶回路253は、A/D変換器251−1から出力される入力信号の電力値に基づいて、当該テーブルから対応する歪信号の減衰量を読み出して、当該減衰量だけ減衰させる旨の減衰制御信号をD/A変換器255−1に出力する。
また、ATT制御テーブル記憶回路253は、テーブル更新制御部252から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている減衰量のデータを変更する。
【0049】
移相制御テーブル記憶回路254には、入力信号の電力値と、歪信号の移相量とが対応付けられて記憶されたテーブルが格納されている。移相制御テーブル記憶回路254は、A/D変換器251−1から出力された入力信号の電力値に基づいて、当該テーブルから対応する歪信号の移相量を読み出して、当該移相量だけ移相制御を行わせる旨の移相制御信号をD/A変換器255−1に出力する。
また、移相制御テーブル記憶回路254は、テーブル更新制御部252から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている移相量のデータを変更する。
【0050】
D/A変換器255−1は、ATT制御テーブル記憶回路253から出力された減衰制御信号をアナログ変換し、歪信号生成部24に出力する。
D/A変換器255−2は、移相制御テーブル記憶回路254から出力された移相制御信号をアナログ変換し、歪信号生成部24に出力する。
【0051】
図6の歪検出回路28において、ミキサ281は、分配器27から出力される出力信号と、中心周波数発振器284から出力される入力信号の必要帯域の中心周波数(以下、中心周波数)とを混合し、混合結果を帯域フィルタ282に出力する。
【0052】
帯域フィルタ282は、ミキサ281から出力された、中心周波数が混合された出力信号に対し、中心周波数の帯域外の周波数信号についてのみ通過させて、包絡線検波器285に出力する。すなわち帯域フィルタ282は、出力信号のうち、送信に用いられる帯域の周波数信号を除いて、歪成分のみを通過させるものである。
【0053】
包絡線検波器283は、帯域フィルタ282から出力される、出力信号における歪成分の包絡線検波を行ってアナログデータである歪成分の電力値を検出し、検出結果を制御部25へ出力する。
中心周波数発振器284は、ミキサ281に対し、中心周波数の信号を出力する。
【0054】
次に、第3の歪補償回路の動作について、図3〜図6を用いて説明する。
図3において、複数種の周波数からなる入力信号は、第3の歪補償回路において、まず分配器26に入力され、さらに遅延部21、歪信号生成部24及び電力検出器29とに分配されて出力される。
【0055】
分配器26から遅延部21に出力された入力信号は、一定時間遅延された後、超電導フィルタ12に出力され、帯域制限がかけられて合成部23に出力される。超電導フィルタ12から出力される信号には、相互変調による歪みが含まれる。一般に送信機における入力信号はレベルが低いため、高調波による歪は問題とならないほど小さい。
【0056】
図4の歪信号生成部14において、分配器26から出力された入力信号は、まず3次歪発振器241に入力される。3次歪発振器241は、入力信号の電力値に基づいて、超電導フィルタ22で発生すると予想される3次相互変調歪信号を生成、出力する。
3次相互変調歪信号の生成にあたり、3次歪発生器241は、非線形素子により3次相互変調歪信号を発生する。
【0057】
可変減衰器242は、制御部25から出力された減衰制御信号に基づいて、3次相互変調歪信号に対して減衰制御を行う。可変減衰器242は、減衰制御信号に含まれる減衰量だけ、3次相互変調歪信号の減衰を行う。可変減衰器242による減衰制御によって、3次相互変調歪信号の振幅を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
【0058】
また、移相器243は、制御部25から出力された移相制御信号に基づいて、3次相互変調歪信号に対して移相制御を行う。移相器242は、移相制御信号に含まれる移相量だけ、3次相互変調歪信号の移相を行う。移相器242による移相制御によって、3次相互変調歪信号の位相を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせる。
制御部25における制御信号の出力方法については、後述する。
【0059】
減衰制御及び移相制御が行われた3次相互変調歪信号は、増幅器244において入力信号に含まれる歪成分と同レベルとなるよう増幅された後、合成器23に出力される。
【0060】
図3において、合成器23は、超電導フィルタ22によって帯域制限された入力信号及び歪信号生成部24から出力された3次相互変調歪信号を合成し、出力信号として分配器27に出力する。加算部13では、歪の含まれた入力信号と、入力信号と逆特性で出力された3次相互変調歪信号とが合成されることで、入力信号中の歪が相殺され、3次相互変調歪みが補償される。
【0061】
次に、第3の歪補償回路における、制御部25の動作について説明する。まず、減衰制御信号及び移相制御信号の出力動作について説明する。
分配器26から出力された入力信号は、電力検出器29において包絡線検波が行われることで、電力値が検出される。電力検出器29は、検出結果である電力値のアナログデータを、制御部25に出力する。
【0062】
図5の制御部25において、入力信号の電力値のアナログデータは、まずA/D変換器251−1に入力される。A/D変換器251−1では、電力値はデジタルデータに変換され、テーブル更新制御部252、ATT制御テーブル記憶回路253及び移相制御テーブル記憶回路254に出力される。
【0063】
ATT制御テーブル記憶回路253は、デジタルデータの電力値が入力されると、自己に格納されているテーブルから当該電力値に対応する減衰量を読み出し、当該減衰量だけ減衰する旨の減衰制御信号をD/A変換器255−1に出力する。
D/A変換器255−1は、減衰制御信号をアナログ変換して、歪信号生成部24の可変減衰器242に出力する。
【0064】
移相制御テーブル記憶回路254は、デジタルデータの電力値が入力されると、自己に格納されているテーブルから当該電力値に対応する移相量を読み出し、当該移相量だけ移相制御を行う旨の移相制御信号をD/A変換器255−2に出力する。
D/A変換器255−2は、移相制御信号をアナログ変換して、歪信号生成部24の移相器243に出力する。
【0065】
制御部25において、ATT制御テーブル記憶回路253は、電力値に対応する減衰量を読み出し、減衰制御信号として出力することで、3次相互変調歪信号の振幅を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせることができる。また、移相制御テーブル記憶回路254は、電力値に対応する移相量を読み出し、移相制御信号として出力することで、3次相互変調歪信号の位相を、対応する超電導フィルタ22の3次相互変調歪みの逆特性に合わせることができる。これにより、第3の歪補償回路は、3次相互変調歪みを補償することができる。
【0066】
次に、減衰量及び移相量の更新動作について説明する。
図3において、合成器23で合成され、歪の補償された出力信号は、分配器27に出力される。分配器27は、出力信号を歪検出回路28及び第3の歪補償回路の出力端子に分配して出力する。
図6の歪検出回路28において、出力信号は、まずミキサ281に入力される。ミキサ281は、出力信号と、中心周波数発振器284から出力される中心周波数信号とを混合し、帯域フィルタ282に出力する。中心周波数信号は、入力信号の必要帯域の中心となる周波数の信号であるため、ミキサ28によって出力信号は、中心周波数が増幅される。
【0067】
ミキサ281から出力された出力信号は、帯域フィルタ282において、中心周波数の帯域外の周波数、すなわち歪成分のみが通過され、包絡線検波器283によってアナログデータである歪成分の電力値が検出される。
包絡線検波器283において検出された歪成分の電力値は、制御部25に出力される。
【0068】
図5の制御部において、歪成分の電力値は、まずA/D変換器251−2に入力される。A/D変換器251−2では、電力値はデジタルデータに変換され、テーブル更新制御部252に出力される。
テーブル更新制御部252は、歪成分の電力値と、A/D変換器251−1から出力された、入力信号の電力値とを参照する。歪成分の電力値が規定値以上であるような場合、テーブル更新制御部252は、当該歪成分の電力値が最小となるよう、ATT制御テーブル記憶回路253のテーブルに記憶されている減衰量と、移相制御テーブル記憶回路254のテーブルに記憶されている移相量の値を更新することで、テーブルの更新を行う。
【0069】
減衰量及び移相量の更新にあたり、テーブル更新制御部252では、予め減衰量又は移相量をパラメータとして持ち、且つ評価値が歪み成分の電力値であるような評価関数を記憶しておく。
更新方法として、テーブル更新制御部252は、入力信号の電力値を参照し、当該電力値に基づいて、ATT制御テーブル記憶回路253のテーブルから対応する減衰量を、移相制御テーブル記憶回路254のテーブルから対応する移相量を読み出す。そして読み出した減衰量又は移相量をパラメータの初期値として、パラメータの修正及び評価値の評価を繰り返し行って、評価値が最小となるような減衰量及び移相量を求める。
評価値が最小となるようなパラメータの値の算出方法として、テーブル更新制御部252は、最急降下法又はLMS(Least Mean Square)法等の適応アルゴリズムを用いてもよい。
【0070】
最後にテーブル更新制御部252は、読み出しを行った減衰量を求められた減衰量に変更する旨の制御信号を、ATT制御テーブル記憶回路253に出力し、テーブルへの書き込みを行わせ、読み出しを行った移相量を求められた移相量に変更する旨の制御信号を、移相制御テーブル記憶回路254に出力し、テーブルへの書き込みを行わせる。
【0071】
テーブルの更新が行われると、制御部25は以後、更新されたテーブルを用いて、入力信号の電力値に基づいて、減衰量及び移相量の決定及び制御信号の出力を行う。
上述したテーブルの更新制御を行うことで、第3の歪補償回路は、温度変化や経年劣化等が原因で超電導フィルタ22の出力特性の変化し、歪が発生した場合でも、減衰量及び移相量を調整して更新することにより、当該出力特性の変化に柔軟に対応して、歪補償を精度よく行うことができる。
【0072】
第3の歪補償回路において、歪信号生成部24の3次歪発生器241は、3次相互変調歪だけでなく、より高次(5次、7次等)の相互変調歪の実測値を入力信号の電力値と関連付けてテーブルに記憶させ、入力信号の電力値に対応した高次の相互変調の実測値を読み出させて、歪信号を出力させるようにしてもよく、可変減衰器242及び移相器243は、高次の相互変調歪信号に対する減衰量及び移相量を調整させるようにしてもよい。
【0073】
また、制御部25は、高次の相互変調歪信号に対応した減衰量及び移相量の決定にあたり、高次の相互変調歪信号に対応した減衰量及び移相量をATT制御テーブル記憶回路253や移相制御テーブル記憶回路254にそれぞれ記憶させ、対応するものを読み出すようにしてもよく、又は既存の減衰量及び移相量に基づいて、最急降下法或いはLMS法によって、評価関数を用いた歪の評価を行いながら最適な減衰量及び移相量を決定するようにしてもよい。
【0074】
また、第3の歪補償回路において、超電導フィルタ22を合成器23の後段に設置し、超電導フィルタ22において帯域制限がかけられる前に、前もって入力信号に対して3次相互変調歪信号を合成するようにしてもよい。
【0075】
第3の歪補償回路は、制御部25において、入力信号の電力値に基づいて、当該電力値に対応する減衰量及び移相量とを決定し、当該減衰量及び移相量だけ制御させる旨の制御信号を出力し、歪信号生成部24において3次相互変調歪信号に対し、制御信号に基づいて当該減衰量及び移相量の調整を行った後に、超電導フィルタ22によって帯域制限のかけられた入力信号と合成することで、超電導フィルタ22による3次相互変調歪みを含む入力信号の歪補償を実現できる。
【0076】
ここで、半導体デバイスの非線形特性を特徴付けるものであるAM(Amplitude Modulation)−AM変換及びAM−PM(Phase Modulation)変換について図9を用いて説明する。図9は、非線形特性を有する増幅器の入出力特性の説明図である。図9において、左側の縦軸は増幅器から出力される信号の振幅を、右側の縦軸は増幅器から出力される信号の位相を示している。
例えば通常の増幅器は、飽和出力レベルと呼ばれる出力レベルを超えることはなく、出力信号の振幅(以下、出力振幅)が増大するに従って、図9(a)に示すように、出力特性はカーブを描くようになり、図9(b)の直線で示される理想特性からのずれが大きくなる現象が生じる。このような出力振幅の飽和特性はAM−AM変換と呼ばれる。
【0077】
また、入力信号の振幅(以下、入力振幅)によって、出力信号の位相(以下、出力位相)も変化し、図9(c)に示すように、出力振幅が増大するに従って出力位相が回転する現象も生じる。このような特性はAM−PM変換と呼ばれる。
AM−AM変換及びAM−PM変換は、増幅器、発振器等のような、大電力の信号を扱うマイクロ波半導体回路に用いる半導体デバイスを評価するパラメータとして従来より用いられている。
【0078】
また、AM−AM変換及びAM−PM変換は、半導体デバイスの非線形特性を表すものであり、このような特性が原因となって、送信帯域外への電力の漏れや、送信スペクトルの劣化を招き、通信信号に歪みが発生することとなる。
移動体通信システムの送信機では大電力の無線信号を扱うため、当該送信機で超電導フィルタを用いる場合には、超電導フィルタのAM−AM変換及びAM−PM変換を考慮して、これらの特性に起因する歪みを補償する必要がある。
また、移動体通信システムの送信機では、大電力の無線信号を扱うため、出力の大きい増幅器を回路内に設けることが一般的である。したがって、送信機で用いる歪補償回路は、増幅器で発生する歪についても同時に補償できるようにすることも考慮しなければならない。
【0079】
次に、本発明の第4の実施の形態に係る歪補償回路(以下、第4の歪補償回路)について、図7を用いて説明する。図7は、第4の歪補償回路の構成ブロック図である。
第4の歪補償回路は、増幅器及び超電導フィルタの通過前に入力信号に対して振幅制御及び移相制御を行うことによって、増幅器及び超電導フィルタで発生するAM−AM変換による振幅歪み及びAM−PM変換による位相歪みを補償するものである。
【0080】
第4の歪補償回路は、遅延部31と、歪生成部32と、増幅器(図ではPA(Power Amplifier))33と、超電導フィルタ34と、分配器35と、電力検出器36と、A/D変換器37と、温度センサ38と、A/D変換器39と、ATT制御テーブル記憶回路40と、移相制御テーブル記憶回路41と、D/A変換器42及び43と、歪補償テーブル更新制御回路44と、歪検出回路45とから構成される。また、歪生成部32は、可変減衰器(図ではATT)321と、移相器322とから構成されている。また、第4の歪補償回路において、遅延部31から超電導フィルタ34までの一連の経路を本線系、これ以外の構成を含む経路を制御系と称する。
【0081】
次に、第4の歪補償回路の各部の構成について説明する。
遅延部31は、入力信号を一定時間遅延させて、歪生成部32に出力する。遅延部31は、本線系と制御系における入力信号の処理の時間差を解消するために設けられている。
【0082】
歪生成部32は、遅延部31から出力される入力信号に対し、ATT制御テーブル記憶回路40から出力される減衰制御信号に基づいて減衰制御を行い、移相制御テーブル記憶回路41から出力される移相制御信号に基づいて移相制御を行って、増幅器33に出力する。
歪生成部32は、減衰制御によって、PA33及び超電導フィルタ34のAM−AM特性による振幅歪みの逆特性を、移相制御によって、PA33及び超電導フィルタ34のAM−PM特性による位相歪みの逆特性を入力信号に与える。
【0083】
増幅器33は、電力増幅器であり、歪生成部32から出力される、減衰制御及び位相制御済みの入力信号を増幅し、増幅した入力信号を超電導フィルタ34に出力する。
超電導フィルタ34は、導体が超電導材料で形成されたフィルタであり、増幅器33から出力される入力信号のうち、帯域幅にある周波数の信号のみを通過させて、分配器35に出力する。
【0084】
電力検出器36は、分配された入力信号の電力値を包絡線検波によって検出し、検出結果である電力値のアナログデータをA/D変換器37に出力する。
A/D変換器37は、電力検出器36から出力されたアナログデータである入力信号の電力値をデジタル変換し、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力する。
【0085】
温度センサ38は、増幅器38及び超電導フィルタ34周辺の温度を計測し、計測結果である温度データをアナログデータとしてA/D変換器39に出力する。
A/D変換器39は、温度センサ38から出力されたアナログデータである温度データをデジタル変換し、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力する。
【0086】
ATT制御テーブル記憶回路40には、入力信号の電力値と、増幅器33及び超電導フィルタ34の周囲の温度と、入力信号の減衰量とが対応付けられて記憶されたテーブルが格納されている。テーブルに格納されている減衰量は、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みを補償するためのものである。
ATT制御テーブル記憶回路40は、A/D変換器37から出力される入力信号の電力値と、A/D変換器39から出力される、増幅器33及び超電導フィルタ34の周囲の温度データに基づいて、当該テーブルから対応する歪信号の減衰量を読み出して、当該減衰量だけ減衰する旨の減衰制御信号をD/A変換器42に出力する。
また、ATT制御テーブル記憶回路40は、歪補償テーブル更新制御回路44から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている減衰量のデータを変更する。
【0087】
移相制御テーブル記憶回路41には、入力信号の電力値と、増幅器33及び超電導フィルタ34の周囲の温度と、入力信号の移相量とが対応付けられて記憶されたテーブルが格納されている。テーブルに格納されている移相量は、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みを補償するためのものである。
移相制御テーブル記憶回路41は、A/D変換器37から出力された入力信号の電力値と、A/D変換器39から出力される、増幅器33及び超電導フィルタ34の周囲の温度データに基づいて、当該テーブルから対応する歪信号の移相量を読み出して、当該移相量だけ移相制御を行う旨の移相制御信号をD/A変換器43に出力する。
また、移相制御テーブル記憶回路41は、歪補償テーブル更新制御部44から出力されるテーブルの内容を更新する旨の制御信号に基づいて、テーブルに記憶されている移相量のデータを変更する。
【0088】
D/A変換器42は、ATT制御テーブル記憶回路42から出力された減衰制御信号をアナログ変換し、歪生成部32に出力する。
D/A変換器43は、移相制御テーブル記憶回路254から出力された移相制御信号をアナログ変換し、歪生成部32に出力する。
【0089】
歪補償テーブル更新制御部44は、A/D変換器37から出力される入力信号の電力値、A/D変換器39から出力される、増幅器33及び超電導フィルタ34の周囲の温度データ及び歪検出回路45から出力される歪成分の電力値に基づいて、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に対し、各記憶回路で格納されているテーブルの内容を更新する旨の制御信号を出力する。このような制御を行うことで、第4の歪補償回路は、温度変化又は経年劣化による超電導フィルタ22の出力特性の変化に対応して、歪補償を精度よく行うことができる。
【0090】
歪検出回路45は、分配器35から出力された出力信号から、出力信号に含まれる歪成分の電力値を、包絡線検波によって検出し、検出結果をデジタルデータに変換して歪補償テーブル更新制御回路44に出力する。歪検出回路45の構成は、第3の歪補償回路における歪検出回路28の構成に加えて、検出結果をデジタルデータに変換するためのD/A変換器を設けたものである。
【0091】
歪生成部32において、可変減衰器321は、D/A変換器42から出力される減衰制御信号に基づいて、入力信号の減衰制御を行う。可変減衰器321は、減衰制御を行うことによって、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みの逆特性を入力信号に与える。
【0092】
移相器322は、D/A変換器43から出力される移相制御信号に基づいて、入力信号の移相制御を行う。移相器322は、移相制御を行うことによって、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みの逆特性を入力信号に与える。
【0093】
次に、第4の歪補償回路の動作について、図7を用いて説明する。
図7において、無線周波数の入力信号は、第4の歪補償回路において、まず遅延部31及び電力検出器36とに分配されて出力される。
遅延部31に分配された入力信号は、一定時間遅延された後、歪生成部32に出力される。
【0094】
歪生成部32において、可変減衰器321は、D/A変換器42を介してATT制御テーブル記憶回路40から出力された減衰制御信号に基づいて、入力信号に対して減衰制御を行う。可変減衰器242は、減衰制御信号に含まれる減衰量だけ、入力信号の減衰を行う。可変減衰器242による減衰制御によって、増幅器33及び超電導フィルタ34のAM−AM特性による振幅歪みの逆特性が入力信号に与えられる。
【0095】
また、移相器322は、D/A変換器43を介して移相制御テーブル記憶回路41から出力された移相制御信号に基づいて、入力信号に対して移相制御を行う。移相器322は、移相制御信号に含まれる移相量だけ、入力信号の移相を行う。移相器242による移相制御によって、増幅器33及び超電導フィルタ34のAM−PM特性による位相歪みの逆特性が入力信号に与えられる。
ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41における各種制御信号の出力方法については、後述する。
【0096】
歪生成部32において減衰制御及び移相制御が行われた入力信号は、増幅器33において増幅され、さらに超電導フィルタ34において帯域制限がかけられて分配器35に出力される。増幅器33及び超電導フィルタ34から出力される信号には、これらの素子の入出力特性に起因する高調波による歪み、AM−AM変換による振幅歪み及びAM−PM変換による位相歪みとが含まれる。第4の歪補償回路でも、第1〜第3の歪補償回路の場合と同様に、高調波による歪は問題とならないほど小さい
【0097】
既述したように、入力信号は歪生成部32において、増幅器33及び超電導フィルタ34による、AM−AM特性による振幅歪みの逆特性と、AM−PM特性による位相歪みの逆特性とが与えられている。
入力信号は、増幅器33及び超電導フィルタ34を通過することによって、増幅部33及び超電導フィルタ34で発生する歪成分と、入力信号に含まれる振幅歪み及び移相歪みの逆特性とが合成されて、入力信号中の歪が相殺され、AM−AM変換による振幅歪みと、AM−PM変換による位相歪みが補償される。超電導フィルタ34によって帯域制限のかけられた入力信号は、出力信号として分配器35に出力される。
【0098】
次に、第4の歪補償回路における、制御系の動作について説明する。まず、減衰制御信号及び移相制御信号の出力動作について説明する。
電力検出器36に分配された入力信号は、電力検出器36において包絡線検波が行われ、電力値が検出される。電力検出器36は、検出結果である電力値のアナログデータを、A/D変換器37に出力する。
A/D変換器37において、電力値はデジタルデータに変換され、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力される。
【0099】
また、増幅器33及び超電導フィルタ34の周囲の温度を計測する温度センサ38は、温度の計測結果をアナログデータの温度データとして、A/D変換器39に出力する。A/D変換器39は、当該温度データをデジタルデータに変換し、歪補償テーブル更新制御回路44、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41に出力する。
【0100】
ATT制御テーブル記憶回路40は、デジタルデータの電力値及び温度データが入力されると、自己に格納されているテーブルから対応する減衰量を読み出し、当該減衰量だけ減衰する旨の減衰制御信号をD/A変換器42に出力する。ATT制御テーブル記憶回路40のテーブルに記憶されている減衰量は、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みに相当する。
D/A変換器42は、減衰制御信号をアナログ変換して、歪生成部32の可変減衰器321に出力する。
【0101】
移相制御テーブル記憶回路41は、デジタルデータの電力値及び温度データが入力されると、自己に格納されているテーブルから対応する移相量を読み出し、当該移相量だけ移相制御を行う旨の移相制御信号をD/A変換器43に出力する。移相制御テーブル記憶回路41のテーブルに記憶されている移相量は、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みに相当する。
D/A変換器43は、移相制御信号をアナログ変換して、歪生成部32の移相器322に出力する。
【0102】
ATT制御テーブル記憶回路40は、電力値及び温度データ対応する減衰量を読み出し、減衰制御信号として出力することで、入力信号に上記振幅歪みの逆特性を与えることができる。また、移相制御テーブル記憶回路41は、電力値及び温度データに対応する移相量を読み出し、移相制御信号として出力することで、入力信号に上記位相歪みの逆特性を与えることができる。これにより、第4の歪補償回路は、増幅器33及び超電導フィルタ34におけるAM−AM変換による振幅歪み及びAM−PM変換による位相歪みを補償することができる。
【0103】
次に、減衰量及び移相量の更新動作について説明する。
超電導フィルタ34から出力された、歪の補償された出力信号は、分配器35に出力される。分配器35は、出力信号を歪検出回路45及び第4の歪補償回路の出力端子に分配して出力する。
歪検出回路45は、分配器35から出力された出力信号から、出力信号に含まれる歪成分の電力値を、包絡線検波によって検出し、検出結果をデジタルデータに変換して歪補償テーブル更新制御回路44に出力する。
【0104】
歪補償テーブル更新制御回路44は、歪検出回路45から出力された歪成分の電力値と、A/D変換器37から出力された入力信号の電力値と、A/D変換器39から出力された温度データを参照する。歪成分の電力値が規定値以上であるような場合、歪補償テーブル更新制御回路44は、当該歪成分の電力値が最小となるよう、ATT制御テーブル記憶回路40のテーブルに記憶されている減衰量と、移相制御テーブル記憶回路41のテーブルに記憶されている移相量の値を更新することで、テーブルの更新を行う。
【0105】
減衰量及び移相量の更新にあたり、歪補償テーブル更新制御部44では、予め減衰量又は移相量をパラメータとして持ち、且つ評価値が歪み成分の電力値であるような評価関数を記憶しておく。
更新方法として、歪補償テーブル更新制御部44は、入力信号の電力値及び温度データを参照し、当該電力値に基づいて、ATT制御テーブル記憶回路40のテーブルから対応する減衰量を、移相制御テーブル記憶回路41のテーブルから対応する移相量を読み出す。そして読み出した減衰量又は移相量をパラメータの初期値として、パラメータの修正及び評価値の評価を繰り返し行って、評価値が最小となるような減衰量及び移相量を求める。
評価値が最小となるようなパラメータの値の算出方法として、歪補償テーブル更新制御部44は、最急降下法又はLMS(Least Mean Square)法等の適応アルゴリズムを用いてもよい。
【0106】
最後に歪補償テーブル更新制御部44は、読み出しを行った減衰量を求められた減衰量に変更する旨の制御信号を、ATT制御テーブル記憶回路40に出力し、テーブルへの書き込みを行わせ、読み出しを行った移相量を求められた移相量に変更する旨の制御信号を、移相制御テーブル記憶回路41に出力し、テーブルへの書き込みを行わせる。
【0107】
テーブルの更新が行われると、ATT制御テーブル記憶回路40及び移相制御テーブル記憶回路41は以後、更新されたテーブルを用いて、入力信号の電力値及び温度データに基づいて、減衰量及び移相量の決定及び制御信号の出力を行う。
上述したテーブルの更新制御を行うことで、第4の歪補償回路は、増幅部33又は超電導フィルタ34の周囲の温度変化や経年劣化等が原因で、増幅器33又は超電導フィルタ22の出力特性の変化し、歪が発生した場合でも、減衰量及び移相量を調整して更新することにより、当該出力特性の変化に柔軟に対応して、歪補償を精度よく行うことができる。
【0108】
第4の歪補償回路では、増幅器33及び超電導フィルタ34の両方におけるAM−AM変換による振幅歪み及びAM−PM変換による位相歪みを同時に補償できるような減衰量及び移相量を決定して、入力信号に制御を行うが、例えば超電動フィルタ34において、AM−AM変換又はAM−PM変換が増幅器33のそれと異なる特性を有する場合には、減衰量及び移相量が最適なものとならず、歪補償が十分に行われない場合が考えられる。
このような場合においても、上述した歪補償テーブル更新制御部44における更新方法として、例えば最急降下法のような適応アルゴリズムを用いることによって、評価値の値を比較することで、最適な減衰量及び移相量を得ることができる。
【0109】
また、第4の歪補償回路では、温度データを温度センサ83から直接入手する他に、予め温度と電圧値の関係を示した統計データまたは温度特性等に基づいて、適応アルゴリズムを用いることによって温度変化を予測し、予測結果を温度データとして用いるようにしてもよい。
この場合、温度特性が未定乗数を含む関数で近似できるような場合には、その未定乗数をLMS法等で算出して、算出された乗数を用いて温度変化を予測するようにすることで、温度変化の予測を迅速化できる。
【0110】
第4の歪補償回路は、ATT制御テーブル記憶回路40は、入力信号の電力値及び温度データに基づいて、増幅器33及び超電導フィルタ34のAM−AM変換による振幅歪みを補償するための減衰量を決定して、当該減衰量だけ制御させる旨の制御信号を出力し、移相制御テーブル記憶回路41は、入力信号の電力値及び温度データに基づいて、増幅器33及び超電導フィルタ34のAM−PM変換による位相歪みを補償する移相量とを決定し、当該移相量だけ制御させる旨の制御信号を出力し、入力信号に対し、歪生成部32において制御信号に基づいて当該減衰量及び移相量の調整を行った後に、増幅器33での増幅及び超電導フィルタ34での帯域制限を行うことで、増幅器33及び超電導フィルタ34による振幅歪み及び位相歪みを含む入力信号の歪補償を実現できる。
このような構成としたことで、第4の歪補償回路は、増幅器34による振幅歪み及び位相歪みに対する歪補償も合わせて行うことができ、送信機の回路構成に則してより精度の高い歪補償を行うことができる。
【0111】
また、本発明においては、入力信号が高周波である場合について説明したが、本発明の歪補償回路は、入力信号がBB(BaseBand)やIF(Intermediate Frequency:中間周波数)である場合にも適用してよい。
【0112】
上述したように、本発明の実施の形態に係る歪補償回路によれば、超伝導フィルタで発生すると予測される相互変調歪の逆特性である歪信号を出力し、超電導フィルタの前段において入力信号と合成するか、又は超伝導フィルタの後段において帯域制限のかけられた入力信号と合成することで、超伝導フィルタで発生する相互変調歪を効率よく補償できる効果がある。
また、歪補償後の出力信号に含まれる歪成分の電力値に基づいて、当該歪信号を最小にするように歪信号の調整を行って歪信号を出力することで、通信環境の変化にも容易に対応して歪補償を行うことができる効果がある。
【0113】
また、増幅器及び超伝導フィルタで発生すると予測されるAM−AM変換による振幅歪みの逆特性及びAM−PM変換による位相歪みの逆特性を入力信号に与え、当該入力信号を増幅器によって増幅し、且つ超伝導フィルタによって帯域制限をかけることによって、増幅器及び超伝導フィルタで発生する振幅歪み及び位相歪を同時に効率よく補償できる効果がある。
【0114】
【発明の効果】
本発明によれば、通信システムの送信機で用いる歪補償回路において、送信対象の入力信号のうち、特定の周波数帯域内の信号を出力する超電導フィルタと、超電導フィルタにおいて入力信号に対して発生する相互変調歪の逆特性を歪信号として出力する歪信号生成部と、超電導フィルタの前段又は後段に接続され、超電導フィルタに入力される信号又は超電導フィルタから出力される信号と歪信号とを合成し、合成結果を出力信号として出力する合成部と、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように歪信号生成部に対して歪信号の減衰制御及び移相制御を行う歪信号制御部とを有する歪補償回路としているので、超電導フィルタで発生する相互変調歪を効率よく補償できる効果がある。
【0115】
また、本発明によれば、通信システムの送信機で用いる歪補償回路において、送信対象の入力信号の出力を増幅する電力増幅器と、電力増幅器から出力された信号のうち、特定の周波数帯域内の信号を出力信号として出力する超電導フィルタと、増幅器に入力される信号に対して減衰制御及び移相制御を行い、増幅器及び超電導フィルタにおいて入力信号に対して発生する歪の逆特性を含ませる減衰/移相制御部と、入力信号の電力値及び増幅器及び超電導フィルタ周辺の温度に基づいて、減衰制御における減衰量及び移相制御における移相量を決定して減衰/移相制御部に出力し、出力信号に含まれる歪成分の電力値に基づいて、歪成分を低減させるように減衰量及び移相量を更新する歪制御部とを有する歪補償回路としているので、増幅器及び超電導フィルタで発生する歪を同時に効率よく補償できる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る歪補償回路の構成ブロック図である。
【図2】本発明の第2の実施の形態に係る歪補償回路の構成ブロック図である。
【図3】本発明の第3の実施の形態に係る歪補償回路の構成ブロック図である。
【図4】本発明の第3の実施の形態に係る歪補償回路における、歪信号生成部24の構成ブロック図である。
【図5】本発明の第3の実施の形態に係る歪補償回路における、制御部25の構成ブロック図である。
【図6】
本発明の第3の実施の形態に係る歪補償回路における、歪検出回路28の構成
ブロック図である。
【図7】
本発明の第4の実施の形態に係る歪補償回路の構成ブロック図である。
【図8】
超電導フィルタの出力特性を示した説明図である。
【図9】
非線形特性を有する増幅器の入出力特性の説明図である。
【符号の説明】
11,21,31…遅延部、 12,22,34…超電導フィルタ、 13,23…加算部、 14,24…歪信号生成部、 15,25…制御部、 26,27,35…分配器、 28…歪検出回路、 29,36…電力検出器、 32…歪生成部、 33…増幅器、 37,39…A/D変換器、 38…温度センサ、 40…ATT制御テーブル記憶回路、 41…移相制御テーブル記憶回路、 42,43…D/A変換器、 44…歪補償テーブル更新制御回路、 45…歪検出回路
Claims (2)
- 通信システムの送信機で用いる歪補償回路であって、送信対象の入力信号のうち、特定の周波数帯域内の信号を出力する超電導フィルタと、前記超電導フィルタにおいて前記入力信号に対して発生する相互変調歪の逆特性を歪信号として出力する歪信号生成部と、
前記超電導フィルタの前段又は後段に接続され、前記超電導フィルタに入力される信号又は前記超電導フィルタから出力される信号と前記歪信号とを合成し、合成結果を出力信号として出力する合成部と、
前記出力信号に含まれる歪成分の電力値に基づいて、前記歪成分を低減させるように前記歪信号生成部に対して前記歪信号の減衰制御及び移相制御を行う歪信号制御部とを有することを特徴とする歪補償回路。 - 通信システムの送信機で用いる歪補償回路であって、送信対象の入力信号の出力を増幅する電力増幅器と、
前記電力増幅器から出力された信号のうち、特定の周波数帯域内の信号を出力信号として出力する超電導フィルタと、
前記増幅器に入力される信号に対して減衰制御及び移相制御を行い、前記増幅器及び前記超電導フィルタにおいて前記入力信号に対して発生する歪の逆特性を含ませる減衰/移相制御部と、
前記入力信号の電力値及び前記増幅器及び前記超電導フィルタ周辺の温度に基づいて、前記減衰制御における減衰量及び前記移相制御における移相量を決定して前記減衰/移相制御部に出力し、前記出力信号に含まれる歪成分の電力値に基づいて、前記歪成分を低減させるように前記減衰量及び前記移相量を更新する歪制御部とを有することを特徴とする歪補償回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002189054A JP2004032584A (ja) | 2002-06-28 | 2002-06-28 | 歪補償回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002189054A JP2004032584A (ja) | 2002-06-28 | 2002-06-28 | 歪補償回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004032584A true JP2004032584A (ja) | 2004-01-29 |
Family
ID=31183571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002189054A Pending JP2004032584A (ja) | 2002-06-28 | 2002-06-28 | 歪補償回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004032584A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5245822B2 (ja) * | 2006-04-21 | 2013-07-24 | 日本電気株式会社 | 電力増幅器 |
-
2002
- 2002-06-28 JP JP2002189054A patent/JP2004032584A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5245822B2 (ja) * | 2006-04-21 | 2013-07-24 | 日本電気株式会社 | 電力増幅器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2258604C (en) | Predistortion for a non-linear channel in the high-frequency region | |
US8055217B2 (en) | Adaptive complex gain predistorter for a transmitter | |
KR100864196B1 (ko) | 비선형 이득 특성 및 메모리 효과를 가진 rf 전력증폭기를 선형화하기 위한 디지털 전치왜곡 시스템 및 방법 | |
US8030997B2 (en) | Resource efficient adaptive digital pre-distortion system | |
JP4279453B2 (ja) | 広帯域予わい線形化方法及び装置 | |
US7333561B2 (en) | Postdistortion amplifier with predistorted postdistortion | |
US7330517B2 (en) | Amplifier linearization using non-linear predistortion | |
JP4855267B2 (ja) | 信号取出回路およびそれを有する歪み補償増幅器 | |
US7409007B1 (en) | Method and apparatus for reducing adjacent channel power in wireless communication systems | |
US20080139141A1 (en) | Method and system for estimating and compensating non-linear distortion in a transmitter using data signal feedback | |
US8983408B2 (en) | Method and system for estimating and compensating non-linear distortion in a transmitter using calibration | |
JP4087180B2 (ja) | 入力信号に予め歪みを加える方法および予歪みシステム | |
JP2002232325A (ja) | プリディストーション歪み補償装置 | |
JPWO2006087864A1 (ja) | プリディストータ | |
US6307435B1 (en) | High power amplifier linearization method using modified linear-log model predistortion | |
US20040105510A1 (en) | Digital predistortion system for linearizing a power amplifier | |
US6429740B1 (en) | High power amplifier linearization method using extended saleh model predistortion | |
JP2004064733A (ja) | 歪補償装置 | |
JP2004032584A (ja) | 歪補償回路 | |
JP2006352635A (ja) | プリディストーション方式歪補償増幅装置 | |
JP2003032051A (ja) | 歪補償装置 |