JP2004031876A - Transparent electromagnetic wave shield member and manufacturing method thereof - Google Patents

Transparent electromagnetic wave shield member and manufacturing method thereof Download PDF

Info

Publication number
JP2004031876A
JP2004031876A JP2002189977A JP2002189977A JP2004031876A JP 2004031876 A JP2004031876 A JP 2004031876A JP 2002189977 A JP2002189977 A JP 2002189977A JP 2002189977 A JP2002189977 A JP 2002189977A JP 2004031876 A JP2004031876 A JP 2004031876A
Authority
JP
Japan
Prior art keywords
pattern
electromagnetic wave
conductive
mesh
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002189977A
Other languages
Japanese (ja)
Inventor
Yasushi Masahiro
政広 泰
Toshihiko Egawa
江川 敏彦
Satoshi Odajima
小田嶋 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2002189977A priority Critical patent/JP2004031876A/en
Publication of JP2004031876A publication Critical patent/JP2004031876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent electromagnetic wave shield member with the compatibility between an excellent electromagnetic wave shield effect and transparency and to provide a manufacturing method thereof. <P>SOLUTION: The manufacturing method includes the steps of providing a photosensitive resist layer to one side of a transparent substrate; removing a photosensitive resist layer of a part on which a conductive pattern is to be formed through exposure / development by using a mesh mask with the photolithograph method to form a pattern with a concaved cross section; coating conductive ink to the entire pattern to fill the concaved cross section with the conductive ink; removing a remaining projection photosensitive resist layer to obtain the mesh conductive pattern; and baking the conductive pattern. The transparent electromagnetic wave shield member employs the mesh conductive pattern with dimensions within a range of 5 to 30μm in the line width, 0.5 to 5.0μm in the average film thickness, and 72 to 95% in the aperture rate, and has an electromagnetic wave shield effect of 40 dB or over against electromagnetic waves with 10 to 200MHz or over. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は特にプラズマディスプレイパネル(以下PDPと称す)の前面に設置し、表示画面から照射される電磁波を効果的に遮蔽することができ、しかも上記表示画面における表示の透視性に優れた透光性電磁波シールド部材及びその製造方法に関する。
【0002】
【従来の技術】
放電現像を利用したPDPは、液晶ディスプレイ(LCI)やブラウン管(CRT)に比べて、▲1▼放電光利用であり自発光である、▲2▼0.1〜0.3mmの放電ギャップであるのでパネル型にできる、▲3▼螢光体を利用してカラー発光化できる、▲4▼大画面パネルが作り易い、など様々な利点を有することから、近年、テレビやパソコン、ワープロ等のOA機器、交通機器、看板、その他の表示板等の表示パネルとして研究開発及び実用化が進められている。
【0003】
PDPの基本的な表示機構は、2枚のガラス板間に隔成した多数の放電セル内の螢光体を選択的に放電発光させることで文字や図形を表示するものである。
PDPの前面からは、不要電磁波輻射量が大きく、電圧印加、放電、発光により、周波数:数kHz〜数GHz程度の電磁波が発生するため、これを遮蔽する必要がある。また、表示コントラスト向上のためには、前面における外部光の反射を防止する必要がある。
【0004】
このため、従来においては、PDPからの電磁波等を遮蔽するために、電磁波シールド層付透明板をPDPの前面に設置したものが知られていた。例えば(1)導電性の高い金属フィラメントを混入した繊維からなるメッシュ、(2)ステンレス、タングステン等の導電性材料の繊維を内部に埋め込んだ透明基板(特開平3−35284号公報、特開平5−269912号公報、特開平5−327274号公報)、(3)表面に金属または金属酸化物の蒸着膜を形成した透明基板(特開平1−278800号公報、特開平5−323101号公報)などが挙げられる。
【0005】
しかし、上記のうち(1)のメッシュを用いると表示画面が暗くなって、コントラストや解像度が低下するという問題がある。また(2)の透明部材は内部に繊維が埋め込まれていることから、製造方法が複雑になってコストが高くつく上、やはり表示画面が暗くなって、コントラストや解像度が低下するという問題がある。さらに(3)の場合には、充分な透光性を維持し得る程度にまで蒸着膜を薄くすると、当該膜の表面抵抗が低下して電磁波の減衰特性が低下することから、透光性とシールド効果とを両立できないという問題がある。
【0006】
CRT等の表示画面を覆って電磁波をシールドする部材としては、上記例示の他にも例えば、透明基板の表面に、導電性の高い金属粉末を混合したインキを、スクリーン印刷法によって格子状または縞状のパターンに印刷形成したもの(特開昭62−57297号公報、特開平9−283977号公報)や、導電性インキからなる網目状のパターンを、スクリーン印刷法によって印刷形成したのち真空中で焼き付けたもの(特開平2−52499号公報)、あるいは紫外線硬化型エポキシアクリレート樹脂に金属粉末を混合したインキを、印刷法は不明であるが透明基板の表面に格子状に印刷形成したのち紫外線を照射して硬化したもの(特公平2−48159号公報)などが知られているが、これらの部材を用いても、充分な電磁波のシールド効果と透光性とを両立することはできない。
【0007】
すなわち、優れた電磁波のシールド効果と透光性とを両立するには、パターンの線幅とパターンの間隙(ピッチ)とを最適化し、さらにパターンの電気抵抗を小さくする必要があるが、このような観点に対する考慮は、上記各公報のいずれに記載の技術においてもなされておらず、またパターンの作成方法に対する考慮も不充分であると考えられる。例えば充分な透光性を得るには、パターンの線幅を極めて細くし、かつその間隔を大きくするのが好ましいが、この場合には電磁波シールド効果が不充分になる。なお、電磁波シールド効果は、入射した電磁波に対するシールド材を透過したエネルギーの比の対数である減衰のデシベル(dB)で表され、減衰が大きいほどシールド効果は良いとされている。
【0008】
また、スクリーン印刷法の場合には細い線幅のパターンを形成するのは困難でパターンの線幅にばらつきが生じたり、パターンが途切れる箇所が多数発生したりするといった問題が生じ易い。特に数10μm以下といった極めて細い線幅のパターンを形成するのは困難である。上記した特公平2−48159号公報に記載のものについても、その実施例ではパターンの線幅が100μmとなっていることから、やはりスクリーン印刷法等の従来法にて印刷を行っているものと推測され、数10μm以下といった極めて細い線幅のパターンを形成するのは困難であって、上記のようにパターンの線幅にばらつきが生じたり、パターンが途切れる箇所が多数発生したりするといった問題がある。
【0009】
特開平3−35284号公報には、透明プラスチック基板の表面に、金属薄膜を蒸着等によって形成した後、ケミカルエッチングプロセスによってパターニングする旨の記載があり、また特開平10−41682号公報には、金属薄膜からなる幾何学模様を、これもケミカルエッチングプロセスによって透明基板の表面に設ける旨の記載がある。また同様に特開平10−163673号公報には、透明基板の表面にメッキ触媒を含む透明樹脂塗膜を形成し、その上に無電解めっきによって銅などの金属薄膜を形成したのち、やはりケミカルエッチングプロセスによってパターニングする旨の記載がある。
【0010】
【発明が解決すべき課題】
これらの方法によれば、非常に微細なパターンを高い精度でもって形成することができる上、特にPDP用途で要求される厳しい電磁波シ−ルド性能を達成することもできる。しかしながらこれらケミカルエッチングプロセスにおいては、微細なパターンを形成するためにフォトリソグラフ法を用いる必要もあり、工程のプロセス面で歩留まりや製造コストが極めて高くつくため、コスト面で不利である。かかる現状から本発明の課題は、製造コストを極力抑えて、優れた電磁波シールド効果と透光性とを両立させた透光性電磁波シールド部材及びその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために種々検討を重ねた結果、フォトリソグラフ法を利用して導電性パターンの細線形成を達成する本発明を完成させた。
すなわち、本発明の請求項1に記載の透光性電磁波シールド部材の製造方法は、シート状または板状の透明基材の片面に感光性レジスト層を設ける工程と、フォトリソグラフ法により網目状のマスクを用いて露光・現像し導電性パターンを形成すべき部分の感光性レジスト層を除去して断面凹状のパターンを形成する工程と、該パターン全面に導電性インクを塗工することにより断面凹状のパターンに導電性インクを充填する工程と、残存する凸状感光性レジスト層をその上面に塗工された導電性インクとともに除去して網目状の導電性パターンを得る工程及び導電性パターンの焼成工程とからなることを特徴としている。
【0012】
本発明の請求項2に記載の透光性電磁波シールド部材の製造方法は、前記断面凹状のパターンに導電性インクを充填する工程の後に、100〜130℃の温度で熱処理することを特徴としている。
【0013】
本発明の請求項3に記載の透光性電磁波シールド部材の製造方法は、請求項1または2に記載の製造方法で得られた導電性パターンを構成する導電性材料として銀を含むものであることを特徴としている。
【0014】
本発明の請求項4に記載の発明の透光性電磁波シールド部材は、導電性パターンが、線幅5〜30μm、平均膜厚0.5〜5.0μm、開口率72〜95%の範囲内にあり、10〜200MHzの電磁波に対して40dB以上の電磁波シールド効果を有するものであることを特徴としている。
【0015】
本発明の作用としては、特に網目状のマスクを使用するフォトリソグラフ法による断面凹状パターンの形成と断面凹状パターンへの導電性インクの塗布充填、更に充填インクの熱処理による収縮硬化等によって、始めに用意した網目状のマスクの線幅よりも小さい線幅でしかも金属粒子が高密度に充填された膜厚の導電性パターンが容易に形成される。従って導電性パターンにばらつきが生じたり、パターンが途切れる等の問題が解決されることから、優れた電磁波シールド効果と透光性とを両立させた透光性電磁波シールド部材が得られる。
【0016】
【発明の実施の形態】
以下、図面を参照し、本発明の実施の形態を説明する。
図1は透明基材の片面に正方形の網目状に導電性パターンが形成された本発明の透光性電磁波シールド部材の部分平面図である。図2(a)〜(e)は透明基材の片面上に導電性パターンを形成させる本発明の製造工程を模式的に示す断面図である。ここで本発明で利用するフォトリソグラフ法は、基材面に塗布したレジスト(感光性高分子材料の皮膜)にマスクを用いて露光・現像することでフォトレジスト画像を形成させる写真の画像形成技術である。
【0017】
先ず図2(a)は、シート状または板状の透明基材1の片面に所定の厚みで感光性レジスト層2を設けた後で、網目状のマスクを密着させてフォトリソグラフ法で露光し現像(液処理)により、導電性パターンを形成すべき部分の感光性レジスト層が除去された断面凹状のパターン3が形成された状態を示す。
【0018】
ここで板状の透明基材1としては、可視光線に対する充分な透光性を有するソーダライムガラス、ノンアルカリガラス、石英ガラス、低アルカリガラス、低膨張ガラスなどのガラス製の基材が挙げられる。電磁波シールド部材の透光性を維持するという観点からすると薄いほど好ましく、通常は、使用時の形態や必要とされる機械的強度に応じて0.05〜5mmの範囲で適宜、設定される。
また透明基材の片面に設けられる感光性レジスト層2は、公知のネガ型又はポジ型のウェットレジスト、ドライレジスト、またリフトオフ用フォトレジスト等の中から選択して使用できる。
【0019】
ここで露光による光照射によって現像液に溶け難くなるのはネガ型、逆に溶け易くなるのはポジ型であり、その特性を利用し用途に応じて選択使用することができる。図2(a)でネガ型レジストを使用し網目を開口させたマスクを使用した場合、露光により光照射された網目のレジスト層部分は現像液に溶け難いため現像で凸状として残留するが、光照射されなかった網目枠部分のレジスト層は現像液で除去されて断面凹状溝3のパターンが形成される。なお感光性レジスト層2の膜厚は、後工程での断面凹状溝3のパターンへの導電性インク4が熱処理による溶剤蒸発によって収縮し導電性パターンの厚みが減少することを考えて、10〜30μm、特に15〜25μmであるのが好ましい。
【0020】
かかるフォトリソグラフ法により、感光性レジスト層2に断面凹状溝3のパターンを形成するマスクは、網目状であれば特に制限がなく任意である。断面凹状溝3のパターンで囲まれた残りの凸状レジスト層部分は網の目であり、透明基材1を通じて反対側を透視することができ、この部分で透明性が確保される。そして、網目状のパターンの形状は、円形模様、菱形模様、正六角形模様、あるいは網目が長方形で煉瓦積み配列などの幾何学模様が挙げられる。また、正方形の格子状及び網目状パターンにおいて表示画面のドットピッチとの関係で、画像にモアレ縞(干渉縞)が生じないようにするため、バイアスが15度のものなどが好適に採用される。
【0021】
図2(b)は、上記したフォトリソグラフ法により形成された断面凹状溝3のパターン及び凸状レジスト層部分2’を含めた全面に導電性インク4を塗工することにより、特に断面凹状溝3のパターンに導電性インク4を充填した状態を示している。ここで導電性インク4の塗工方法は、スキージによる接触塗工法、スクリーン、ロールコーター、バーコーターまたは、スピンコーター等を利用する印刷塗工法が好適に使用できる。インクの使用量、インクの充填を考慮するとスキージによる接触塗工法がより好ましい。
【0022】
導電性インク4の組成分としては、溶剤、分散安定剤(バインダー)及び導電性の大きい金属粒子からなる。導電性の大きい金属粒子としては、銀、金、銅やアルミニウム等が利用できる。特に本発明では導電性とコストを考慮すると平均粒子径5〜20nmの銀が好適に使用できる。電磁波シールドの導電性は金属自身の体積固有抵抗のみによって決まるものではなく、導電性金属パターンの内部に金属粒子が高密度に充填されている状態が、焼成後の電磁波シールド効果をより一層良好にするという観点から、その濃度が高いほど好ましい。
【0023】
図2(c)は、断面凹状溝3のパターンに導電性インク4を充填した後に、加熱処理して導電性インクの溶剤の蒸発によりインク厚みが減少している状態を示す。ここでは、断面凹状溝3のパターンに充填した導電性インク4は、100〜130℃で10〜30分間の熱処理により硬化させることにより、導電性インクの溶媒成分が蒸発して導電性インク厚みが減少し、金属粒子が高密度に充填されると共に、断面凹状溝3のパターンの側面に位置する凸状レジスト層2’が剥き出しになり、剥離液が浸透できるようにする。
【0024】
なお100〜130℃の熱処理のとき、導電性インク4の発泡による導電性金属パターンの断線を防ぐために、60℃から5〜15分かけて徐々に温度を上昇させることが好ましい。断面凹状溝3のパターンに充填された導電性インク4は、金属粒子の高密度化及びバインダーによる透明基材への定着により導電性パターンの機械的強度が上がり、剥離液の吹きかけによるパターンの剥離から生じる断線は抑えられる。
【0025】
図2(d)は、残存する凸状感光性レジスト層2’をその上面に塗工された導電性インク4とともに剥離液により除去して、金属粒子の高密度化された網目状の導電性パターン4’を得る状態を示す。ここでは、前記図2(c)で残存する凸状レジスト層2’は側面が剥き出しになっていることから、剥離液が浸透してその上面に塗工された導電性インク4とともに容易に除去されることによって、透明基材1が剥き出しにされこの部分での透明性が確保される。剥離液としてはアセトン、ケトン類、アルコール類などが好適に利用できる。
【0026】
凸状レジスト層2’を除去した後は、透明基材面に設けられた導電性パターン4’に導電性を持たせるために焼成処理する。この焼成処理は150〜270℃、好ましくは180〜250℃の温度範囲で10〜30分間焼成することによって、線幅10〜30μm、膜厚0.5〜5.0μm、開口率が80%以上の透光性電磁波シールド部材が得られる。このようにして得られる透光性電磁波シールド部材は、電磁波シールド性アドバンテスト法により、透光性電磁波シールド材を100×100mm角に切り出して、アルミ板によって作成したセルにアースが取れるように設置し、周波数10〜1000MHzの範囲の電磁波の減衰率(dB)を測定することで確認できる。
【0027】
図2(e)は、得られた透光性電磁波シールド部材の導電性金属パターン4’が形成されていない面に近赤外線遮断部材を塗工した粘着剤つき反射防止フイルム5をロールにより貼り合わせ、もう一方の導電性金属パターンが形成されている面には、粘着剤つき反射防止フイルム6をロールにより貼り合わせることによりPDP用前面パネルを得る状態を示す。このようにして得られるPDP用前面パネルは、特に10〜200MHzの電磁波に対して40dB以上の遮蔽効果が得られる。
【0028】
【実施例】
以下、本発明の実施例を説明する。
【0029】
実施例1
透明基材として、表面洗浄を行った42インチ(980mm×580mm×2.5mm)サイズのソーダライムガラスに、ニチゴーモートンのレジスト(NIT215)をメーカー推奨条件にて、ドライフイルムラミネーターを用いてラミネートさせ、バイアス15度かかった線幅18〜20μm、ピッチ200μmの正方形の格子パターン網目を有するマスクを真空密着させて、フレネルレンズ型高圧水銀灯露光装置にて露光し、現像して格子状レジストパターンを形成した。その上に導電性インク(平均粒子径5〜20nmの水系銀ナノ分散液、固形分量34wt%)をスキージにより接触塗工し,正方格子パターンの溝に導電性インクを充填し、120℃×30分間加熱処理した。続いてアセトン中で、残存するレジスト及びレジスト上に塗工された導電性インクを除去した。
【0030】
次に200℃×30分間で焼成処理し、線幅15〜19μm、平均膜厚0.6μm、開口率およそ85%の導電性金属パターンを有する透光性電磁波シールド部材を得た。該透光性電磁波シールド部材の導電性金属パターンが形成されていない面に、近赤外線遮断部材を塗工した粘着剤つき反射防止フイルム5をロールにより貼り合わせ、もう一方の導電性金属パターンが形成されている面には、粘着剤つき反射防止フイルム4をロールにより貼り合わせることによりPDP用前面パネルを得た。このPDP用前面パネルは、周波放10〜200MHzの電磁波に対して50dB以上の電磁波シールド効果を有するとともに、波長400〜700nmの、可視光線の全波長純囲で平均透過率が70%以上であり、波長850〜1000nmにおける透過率が10%以下であった。
【0031】
実施例2
透明基材として、表面洗浄を行った42インチ(980mm×580mm×2.5mm)サイズのソーダライムガラスに、東京応化のウェットレジストをメーカー推奨条件にて、スピンコーターを用いてレジストの膜厚15μmになるように塗工し、バイアス15度かかった線幅18〜20μm、ピッチ200μmの正方形の格子パターンを有するマスクを真空密着させて、フレネルレンズ型高圧水銀灯露光装置にて露光し、現像して格子状レジストパターンを形成した。その上に導電性インク(平均粒子径5〜20nmの水系銀ナノ分散液、固形分量34wt%)をスキージにより接触塗工し、正方格子パターンの溝に導電性インクを充填し、120℃×30分間加熱処理した。続いてアセトン中で、残存するレジスト及びレジスト上に塗工された導電性インクを除去した。次に200℃×30分で焼成処理し、線幅15〜19μm、平均膜厚0.6μm、開口率およそ85%の導電性金属パターンを得た。実施例1と同様にして形成したPDP用前面パネルは、周波放10〜200MHzの電磁波に対して50dB以上の電磁波シールド効果を有するとともに、波長400〜700nmの、可視光線の全波長純囲で平均透過率が70%以上であり、波長850〜1000nmにおける透過率が10%以下であった。
【0032】
比較例1
実施例2と同じ透明基材で、表面洗浄を行った42インチ(980mm×580mm×2.5mm)サイズのソーダライムガラスに、東京応化のウェットレジストをメーカー推奨条件にて、スピンコーターを用いてレジストの膜厚5μmになるように塗工し、バイアス15度かかった線幅18〜20μm、ピッチ200μmの正方格子パターンを有するマスクを真空密着させて、フレネルレンズ型高圧水銀灯露光装置にて露光し、現像して格子状レジストパターンを形成した。その上に導電性インク(平均粒子径5〜20nmの水系銀ナノ分散液、固形分量34wt%)をスキージにより接触塗工し、正方格子パターンの溝に導電性インクを充填し、120℃×30分間加熱処理した。続いてアセトン中で、残存するレジスト及びレジスト上に塗工された導電性インクを除去した。次に200℃×30分間で焼成処理し、線幅15〜19μm、平均膜厚0.15μm以下、開口率およそ85%の導電性金属パターンを得た。実施例1と同様にして形成したPDP用前面パネルは、周波数10〜200MHzの電磁波に対し約20dBと、電磁波シールド効果が不十分であることがわかった。
【0033】
【発明の効果】
本発明の透光性電磁波シールド部材の製造方法によれば、ケミカルエッチングプロセスよりも工程数を簡略化でき、金属メッキした網を熱プレス融着で基材に貼る時のような網の歪みやクラックを生じない。
特にフォトリソグラフ法による断面凹状パターンの形成、断面凹状パターンへの導電性インクの塗布充填、更に充填インクの熱処理による収縮硬化等によって、始めに用意した網目状のマスクの線幅より細い線幅でしかも充分な高濃度膜厚の導電性パターンが容易に形成される。従って導電性パターンにばらつきが生じたり、パターンが途切れる等の問題が解決されることから、優れた電磁波シールド効果と透光性とを両立させた透光性電磁波シールド部材が得られる。
更に導電性インクに平均粒子径5〜20nmの銀を用いることで焼成範囲を250℃以下に抑え、金属メッキした網より、充分な電磁波シールド効果をもちかつ、数10μm以下といった極めて細い線幅のパターンを形成することができることから高い可視光透過率を得られる。
【図面の簡単な説明】
【図1】本発明の透光性電磁波シールド部材を示す部分平面図である。
【図2】本発明の電磁波シールド部材の製造工程を模式的に示す断面図である。
(a) フォトリソグラフ法で導電性パターンを形成すべき部分の感光性レジスト層が除去され断面凹状溝のパターンが形成された状態を示す。
(b) 断面凹状溝のパターンを含めた全面に導電性インクを塗工した状態を示す。
(c) 加熱処理して導電性インクの溶剤の蒸発によりインク厚みを減少させた状態を示す。
(d) 凸状感光性レジスト層を除去して、金属粒子の高密度化された網目状の導電性パターンが得られる状態を示す。
(e) 透光性電磁波シールド部材を使用したPDP用前面パネルを得る状態を示す。
【符号の説明】
1 透明基材
2 感光性レジスト層
2’凸状感光性レジスト層
3 断面凹状溝のパターン
4 導電性インキ
4’網目状の導電性パターン
5 近赤外線遮断部材を塗工した粘着剤つき反射防止(AR)フイルム
6 粘着剤(NIR)つき反射防止フイルム
[0001]
TECHNICAL FIELD OF THE INVENTION
In particular, the present invention is installed on the front of a plasma display panel (hereinafter referred to as a PDP) to effectively shield electromagnetic waves emitted from a display screen, and to transmit light with excellent display transparency on the display screen. TECHNICAL FIELD The present invention relates to a conductive electromagnetic wave shielding member and a method for manufacturing the same.
[0002]
[Prior art]
A PDP using discharge development has a discharge gap of 0.1 to 0.3 mm, which is (1) self-luminous, using discharge light, compared to a liquid crystal display (LCI) or a cathode ray tube (CRT). In recent years, OA such as TV, PC, word processor, etc. has various advantages such as (3) color emission using phosphors, (4) easy to make large screen panel. Research and development and commercialization of display panels for equipment, transportation equipment, signboards, and other display boards have been promoted.
[0003]
The basic display mechanism of a PDP is to display characters and graphics by selectively discharging and emitting phosphors in a large number of discharge cells separated between two glass plates.
Unnecessary electromagnetic wave radiation is large from the front surface of the PDP, and an electromagnetic wave having a frequency of about several kHz to several GHz is generated by voltage application, discharge, and light emission. In order to improve display contrast, it is necessary to prevent reflection of external light on the front surface.
[0004]
For this reason, conventionally, in order to shield electromagnetic waves and the like from the PDP, a type in which a transparent plate with an electromagnetic wave shielding layer is provided on the front surface of the PDP has been known. For example, (1) a mesh made of fibers mixed with a highly conductive metal filament, and (2) a transparent substrate in which fibers of a conductive material such as stainless steel or tungsten are embedded (Japanese Patent Application Laid-Open Nos. Hei 3-35284 and Hei 5-35). (JP-A-269912, JP-A-5-327274), (3) a transparent substrate having a metal or metal oxide deposited film formed on the surface thereof (JP-A-1-278800, JP-A-5-323101), etc. Is mentioned.
[0005]
However, when the mesh (1) is used, there is a problem that the display screen becomes dark and the contrast and the resolution are reduced. Further, since the transparent member of (2) has fibers embedded therein, the manufacturing method is complicated and the cost is high. In addition, the display screen is dark and the contrast and resolution are reduced. . Further, in the case of (3), if the deposited film is made thin enough to maintain a sufficient translucency, the surface resistance of the film is reduced and the attenuation characteristics of electromagnetic waves are reduced. There is a problem that it cannot be compatible with the shielding effect.
[0006]
As a member that covers a display screen of a CRT or the like and shields electromagnetic waves, in addition to the above examples, for example, an ink obtained by mixing highly conductive metal powder on the surface of a transparent substrate is grid-like or striped by screen printing. Printed and formed in the shape of a pattern (Japanese Patent Application Laid-Open Nos. 62-57297 and 9-283977) and a network-like pattern made of conductive ink by screen printing and then vacuum forming A baked product (Japanese Unexamined Patent Publication No. 2-52499) or an ink obtained by mixing a metal powder with an ultraviolet-curable epoxy acrylate resin is used. A material cured by irradiation (Japanese Patent Publication No. 2-48159) is known, but even if these members are used, a sufficient electromagnetic wave It is impossible to achieve both de effect and translucent.
[0007]
In other words, in order to achieve both excellent electromagnetic wave shielding effect and translucency, it is necessary to optimize the line width of the pattern and the gap (pitch) of the pattern and further reduce the electrical resistance of the pattern. It is considered that no consideration is given to any of the techniques described in each of the above publications, and that the consideration for the pattern creation method is also insufficient. For example, in order to obtain sufficient translucency, it is preferable to make the line width of the pattern extremely thin and to increase the interval between them, but in this case, the electromagnetic wave shielding effect becomes insufficient. The electromagnetic wave shielding effect is represented by the decibel (dB) of the attenuation, which is the logarithm of the ratio of the energy transmitted through the shielding material to the incident electromagnetic wave. It is said that the greater the attenuation, the better the shielding effect.
[0008]
Further, in the case of the screen printing method, it is difficult to form a pattern having a small line width, and problems such as variations in the line width of the pattern and occurrence of a large number of portions where the pattern is interrupted are likely to occur. In particular, it is difficult to form a pattern with an extremely thin line width of several tens μm or less. Also in the above-mentioned Japanese Patent Publication No. 2-48159, since the line width of the pattern is 100 μm in the embodiment, it is also assumed that printing is performed by a conventional method such as a screen printing method. It is presumed that it is difficult to form a pattern with an extremely thin line width of several tens of μm or less. As described above, there are problems that the line width of the pattern varies and that a large number of portions where the pattern is interrupted occur. is there.
[0009]
JP-A-3-35284 describes that a metal thin film is formed on a surface of a transparent plastic substrate by vapor deposition and the like and then patterned by a chemical etching process. JP-A-10-41682 discloses that There is a description that a geometric pattern made of a metal thin film is also provided on the surface of a transparent substrate by a chemical etching process. Similarly, Japanese Patent Application Laid-Open No. 10-163673 discloses that a transparent resin film containing a plating catalyst is formed on the surface of a transparent substrate, and a metal thin film such as copper is formed thereon by electroless plating. There is a statement that patterning is performed by a process.
[0010]
[Problems to be solved by the invention]
According to these methods, a very fine pattern can be formed with high accuracy, and the strict electromagnetic wave shielding performance particularly required for PDP applications can be achieved. However, in these chemical etching processes, it is necessary to use a photolithographic method in order to form a fine pattern, and the yield and manufacturing cost are extremely high in the process of the process, which is disadvantageous in cost. Under such circumstances, it is an object of the present invention to provide a light-transmitting electromagnetic wave shielding member that achieves both an excellent electromagnetic wave shielding effect and a light-transmitting property while minimizing manufacturing costs and a method of manufacturing the same.
[0011]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, have completed the present invention in which a fine line of a conductive pattern is formed using a photolithographic method.
That is, the method for producing a light-transmitting electromagnetic wave shielding member according to claim 1 of the present invention includes a step of providing a photosensitive resist layer on one surface of a sheet-shaped or plate-shaped transparent base material, and a mesh-like pattern formed by photolithography. Exposing and developing using a mask to remove a portion of the photosensitive resist layer where a conductive pattern is to be formed, thereby forming a concave cross-sectional pattern; and applying a conductive ink over the entire pattern to form a concave cross-sectional pattern. Filling the pattern with conductive ink, removing the remaining convex photosensitive resist layer together with the conductive ink applied on the upper surface thereof to obtain a mesh-shaped conductive pattern, and baking the conductive pattern. And a process.
[0012]
The method for manufacturing a light-transmitting electromagnetic wave shielding member according to claim 2 of the present invention is characterized in that a heat treatment is performed at a temperature of 100 to 130 ° C. after the step of filling the conductive ink into the concave pattern in cross section. .
[0013]
According to a third aspect of the present invention, there is provided a method for manufacturing a light-transmitting electromagnetic wave shielding member, comprising silver as a conductive material constituting a conductive pattern obtained by the manufacturing method according to the first or second aspect. Features.
[0014]
In the light-transmitting electromagnetic wave shielding member according to the fourth aspect of the present invention, the conductive pattern has a line width of 5 to 30 μm, an average film thickness of 0.5 to 5.0 μm, and an aperture ratio of 72 to 95%. And has an electromagnetic wave shielding effect of 40 dB or more with respect to an electromagnetic wave of 10 to 200 MHz.
[0015]
As an effect of the present invention, the formation of a concave cross-sectional pattern by a photolithographic method using a mesh-like mask and the application and filling of the conductive ink into the cross-sectional concave pattern, and the shrinkage hardening by heat treatment of the filled ink, etc. A conductive pattern having a line width smaller than that of the prepared mesh-shaped mask and having a thickness filled with metal particles at a high density can be easily formed. Therefore, problems such as variations in the conductive pattern and breakage of the pattern are solved, and a translucent electromagnetic wave shielding member having both excellent electromagnetic wave shielding effect and light transmissivity can be obtained.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partial plan view of a transparent electromagnetic wave shielding member of the present invention in which a conductive pattern is formed in a square mesh on one surface of a transparent substrate. 2A to 2E are cross-sectional views schematically showing a manufacturing process of the present invention for forming a conductive pattern on one surface of a transparent substrate. Here, the photolithographic method used in the present invention is a photographic image forming technology in which a resist (film of a photosensitive polymer material) applied to a substrate surface is exposed and developed using a mask to form a photoresist image. It is.
[0017]
First, FIG. 2A shows that after a photosensitive resist layer 2 having a predetermined thickness is provided on one surface of a sheet-shaped or plate-shaped transparent substrate 1, a mesh-shaped mask is brought into close contact with the photosensitive resist layer 2 and exposed by a photolithographic method. This shows a state in which a pattern 3 having a concave cross section in which a photosensitive resist layer is removed from a portion where a conductive pattern is to be formed by development (liquid treatment).
[0018]
Here, examples of the plate-shaped transparent base material 1 include glass base materials such as soda lime glass, non-alkali glass, quartz glass, low alkali glass, and low expansion glass having sufficient translucency to visible light. . From the viewpoint of maintaining the translucency of the electromagnetic wave shielding member, the thinner the better, the better. Usually, the thickness is appropriately set in the range of 0.05 to 5 mm depending on the form at the time of use and the required mechanical strength.
The photosensitive resist layer 2 provided on one surface of the transparent substrate can be selected from known negative or positive wet resists, dry resists, and lift-off photoresists.
[0019]
Here, the negative type hardly dissolves in the developing solution due to the light irradiation by exposure, and the positive type easily conversely dissolves in the developer, and can be selectively used depending on the application by utilizing its characteristics. In the case of using a mask in which a mesh is opened by using a negative resist in FIG. 2A, the resist layer portion of the mesh irradiated with light by exposure is hardly dissolved in a developing solution and remains as a convex shape by development. The resist layer in the portion of the mesh frame that has not been irradiated with light is removed with a developing solution to form a pattern of grooves 3 having a concave cross section. Note that the thickness of the photosensitive resist layer 2 is set to 10 to 10 in consideration of the fact that the conductive ink 4 to the pattern of the concave groove 3 in a later step contracts due to solvent evaporation due to heat treatment and the thickness of the conductive pattern decreases. It is preferably 30 μm, particularly preferably 15 to 25 μm.
[0020]
The mask for forming the pattern of the concave groove 3 in the photosensitive resist layer 2 by the photolithographic method is not particularly limited as long as it is a mesh shape, and is arbitrary. The remaining convex resist layer portion surrounded by the pattern of the cross-sectional concave grooves 3 is a mesh, and the opposite side can be seen through the transparent base material 1 to ensure transparency in this portion. Examples of the shape of the mesh pattern include a circular pattern, a rhombic pattern, a regular hexagonal pattern, and a geometric pattern such as a brick-like arrangement with a rectangular mesh. Further, in order to prevent moire fringes (interference fringes) from being generated in the image in relation to the dot pitch of the display screen in a square lattice pattern and a mesh pattern, a pattern having a bias of 15 degrees is preferably employed. .
[0021]
FIG. 2B shows that the conductive ink 4 is applied to the entire surface including the pattern of the concave groove 3 and the convex resist layer portion 2 ′ formed by the photolithographic method, and particularly the concave groove 3 is formed. 3 shows a state where the conductive ink 4 is filled in the pattern 3. Here, as the method for applying the conductive ink 4, a contact coating method using a squeegee, a printing coating method using a screen, a roll coater, a bar coater, a spin coater, or the like can be suitably used. Considering the amount of ink used and the filling of the ink, the contact coating method using a squeegee is more preferable.
[0022]
The composition of the conductive ink 4 includes a solvent, a dispersion stabilizer (binder), and metal particles having high conductivity. Silver, gold, copper, aluminum, or the like can be used as the metal particles having high conductivity. Particularly, in the present invention, silver having an average particle diameter of 5 to 20 nm can be suitably used in consideration of conductivity and cost. The conductivity of the electromagnetic wave shield is not determined only by the volume specific resistance of the metal itself, but the state in which the metal particles are densely filled inside the conductive metal pattern makes the electromagnetic wave shielding effect after firing even better. From the viewpoint that the concentration is higher, the higher the concentration, the better.
[0023]
FIG. 2C shows a state in which after the conductive ink 4 is filled in the pattern of the concave grooves 3 in a cross section, the heat treatment is performed to reduce the thickness of the ink due to the evaporation of the solvent of the conductive ink. Here, the conductive ink 4 filled in the pattern of the concave grooves 3 is cured by heat treatment at 100 to 130 ° C. for 10 to 30 minutes, so that the solvent component of the conductive ink evaporates and the thickness of the conductive ink decreases. As a result, the metal particles are filled at a high density, and the convex resist layer 2 ′ located on the side surface of the pattern of the concave groove 3 is exposed, so that the peeling liquid can penetrate.
[0024]
During the heat treatment at 100 to 130 ° C., it is preferable to gradually increase the temperature from 60 ° C. over 5 to 15 minutes in order to prevent disconnection of the conductive metal pattern due to foaming of the conductive ink 4. The conductive ink 4 filled in the pattern of the concave grooves 3 increases the mechanical strength of the conductive pattern due to the densification of the metal particles and the fixation to the transparent base material by the binder, and the peeling of the pattern by spraying the peeling liquid. The disconnection resulting from is suppressed.
[0025]
FIG. 2 (d) shows that the remaining convex photosensitive resist layer 2 ′ is removed by a stripping solution together with the conductive ink 4 applied on the upper surface thereof, thereby forming a network-like conductive material having a high density of metal particles. This shows a state where a pattern 4 'is obtained. Here, the convex resist layer 2 'remaining in FIG. 2 (c) is exposed on the side surface, so that the peeling liquid permeates and is easily removed together with the conductive ink 4 applied on the upper surface thereof. As a result, the transparent substrate 1 is exposed, and the transparency at this portion is ensured. Acetone, ketones, alcohols and the like can be suitably used as the stripping solution.
[0026]
After removing the convex resist layer 2 ', a baking treatment is performed to impart conductivity to the conductive pattern 4' provided on the transparent substrate surface. This baking treatment is performed at a temperature of 150 to 270 ° C., preferably 180 to 250 ° C. for 10 to 30 minutes, so that the line width is 10 to 30 μm, the film thickness is 0.5 to 5.0 μm, and the aperture ratio is 80% or more. The transparent electromagnetic wave shielding member of (1) is obtained. The translucent electromagnetic wave shielding member obtained in this manner is cut out into a 100 × 100 mm square by the electromagnetic wave shielding advantest method, and is installed so that the cell made of the aluminum plate can be grounded. Can be confirmed by measuring the attenuation rate (dB) of electromagnetic waves in the frequency range of 10 to 1000 MHz.
[0027]
FIG. 2 (e) shows that the anti-reflection film 5 with an adhesive coated with a near-infrared ray blocking member on the surface of the obtained translucent electromagnetic wave shielding member on which the conductive metal pattern 4 'is not formed is adhered by a roll. A state in which a front panel for PDP is obtained by attaching an anti-reflection film 6 with an adhesive to a surface on which the other conductive metal pattern is formed by a roll. The PDP front panel thus obtained has a shielding effect of at least 40 dB with respect to electromagnetic waves of 10 to 200 MHz.
[0028]
【Example】
Hereinafter, examples of the present invention will be described.
[0029]
Example 1
As a transparent base material, Nichigo Morton resist (NIT215) is laminated on a surface-cleaned 42-inch (980 mm x 580 mm x 2.5 mm) soda lime glass using a dry rifle laminator under the manufacturer's recommended conditions. A mask having a square grid pattern network having a line width of 18 to 20 μm and a pitch of 200 μm with a bias applied by 15 degrees is brought into close contact with a vacuum, exposed by a Fresnel lens type high pressure mercury lamp exposure apparatus, and developed to form a grid resist pattern. did. A conductive ink (aqueous silver nano-dispersion having an average particle diameter of 5 to 20 nm, solid content of 34 wt%) was applied thereon by contact coating with a squeegee, and the conductive ink was filled in the grooves of the square lattice pattern. Heated for minutes. Subsequently, the remaining resist and the conductive ink applied on the resist were removed in acetone.
[0030]
Next, a baking treatment was performed at 200 ° C. for 30 minutes to obtain a translucent electromagnetic wave shielding member having a conductive metal pattern having a line width of 15 to 19 μm, an average film thickness of 0.6 μm, and an aperture ratio of about 85%. An anti-reflection film 5 with an adhesive coated with a near-infrared blocking member is adhered by a roll to the surface of the translucent electromagnetic wave shield member on which the conductive metal pattern is not formed, and another conductive metal pattern is formed. A front panel for PDP was obtained by bonding an anti-reflection film 4 with an adhesive on a roll by a roll. This PDP front panel has an electromagnetic wave shielding effect of 50 dB or more with respect to an electromagnetic wave having a frequency emission of 10 to 200 MHz, and has an average transmittance of 70% or more in a pure range of visible light having a wavelength of 400 to 700 nm over the entire wavelength range. And the transmittance at a wavelength of 850 to 1000 nm was 10% or less.
[0031]
Example 2
As a transparent substrate, wet-resist of Tokyo Ohka Co., Ltd. was applied to a 42-inch (980 mm x 580 mm x 2.5 mm) soda lime glass whose surface was cleaned using a spin coater under the manufacturer's recommended conditions, and the film thickness of the resist was 15 µm. A mask having a square grid pattern with a line width of 18 to 20 μm and a pitch of 200 μm with a bias applied by 15 degrees is brought into close contact with a vacuum, exposed by a Fresnel lens type high-pressure mercury lamp exposure apparatus, and developed. A lattice resist pattern was formed. A conductive ink (aqueous silver nano-dispersion liquid having an average particle diameter of 5 to 20 nm, solid content of 34 wt%) is applied thereon by contact coating with a squeegee, and the grooves of the square lattice pattern are filled with the conductive ink. Heated for minutes. Subsequently, the remaining resist and the conductive ink applied on the resist were removed in acetone. Next, firing was performed at 200 ° C. for 30 minutes to obtain a conductive metal pattern having a line width of 15 to 19 μm, an average film thickness of 0.6 μm, and an aperture ratio of about 85%. The front panel for PDP formed in the same manner as in Example 1 has an electromagnetic wave shielding effect of 50 dB or more against electromagnetic waves with a frequency emission of 10 to 200 MHz, and has an average wavelength over a pure wavelength range of 400 to 700 nm over the entire visible light wavelength range. The transmittance was 70% or more, and the transmittance at a wavelength of 850 to 1000 nm was 10% or less.
[0032]
Comparative Example 1
Using the same transparent base material as in Example 2, a surface-washed 42-inch (980 mm x 580 mm x 2.5 mm) soda-lime glass was coated with a wet resist from Tokyo Ohka Co., Ltd. using a spin coater under the manufacturer's recommended conditions. The resist is coated so as to have a film thickness of 5 μm, and a mask having a square lattice pattern with a line width of 18 to 20 μm and a pitch of 200 μm with a bias of 15 degrees is brought into close contact with a vacuum, and exposed with a Fresnel lens type high pressure mercury lamp exposure apparatus. The pattern was developed to form a lattice resist pattern. A conductive ink (aqueous silver nano-dispersion liquid having an average particle diameter of 5 to 20 nm, solid content of 34 wt%) is applied thereon by contact coating with a squeegee, and the grooves of the square lattice pattern are filled with the conductive ink. Heated for minutes. Subsequently, the remaining resist and the conductive ink applied on the resist were removed in acetone. Next, a baking treatment was performed at 200 ° C. for 30 minutes to obtain a conductive metal pattern having a line width of 15 to 19 μm, an average film thickness of 0.15 μm or less, and an aperture ratio of about 85%. It was found that the PDP front panel formed in the same manner as in Example 1 had an electromagnetic wave shielding effect of about 20 dB against electromagnetic waves having a frequency of 10 to 200 MHz, which was insufficient.
[0033]
【The invention's effect】
According to the method for manufacturing a light-transmitting electromagnetic wave shielding member of the present invention, the number of steps can be simplified as compared with the chemical etching process, and distortion of the mesh such as when a metal-plated mesh is attached to a substrate by hot press fusion is reduced. Does not crack.
In particular, by forming a concave cross-sectional pattern by photolithographic method, applying and filling conductive ink to the cross-sectional concave pattern, and further contracting and curing by heat treatment of the filled ink, with a line width smaller than the line width of the mesh mask prepared first. In addition, a conductive pattern having a sufficiently high concentration film thickness can be easily formed. Therefore, problems such as variations in the conductive pattern and breakage of the pattern are solved, and a translucent electromagnetic wave shielding member having both excellent electromagnetic wave shielding effect and light transmissivity can be obtained.
Further, by using silver having an average particle diameter of 5 to 20 nm for the conductive ink, the firing range is suppressed to 250 ° C. or less, and a metal plating net has a sufficient electromagnetic wave shielding effect and has a very narrow line width of several tens μm or less. Since a pattern can be formed, a high visible light transmittance can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial plan view showing a translucent electromagnetic wave shielding member of the present invention.
FIG. 2 is a cross-sectional view schematically showing a manufacturing process of the electromagnetic wave shielding member of the present invention.
(A) A state in which the photosensitive resist layer in the portion where the conductive pattern is to be formed by photolithography has been removed to form a pattern of concave grooves in cross section.
(B) A state in which the conductive ink is applied to the entire surface including the pattern of the concave grooves in cross section.
(C) A state in which the thickness of the ink is reduced by heat treatment and the solvent of the conductive ink is evaporated.
(D) A state in which the convex photosensitive resist layer is removed to obtain a mesh-shaped conductive pattern in which metal particles are densified.
(E) A state in which a front panel for PDP using a translucent electromagnetic wave shielding member is obtained.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 transparent substrate 2 photosensitive resist layer 2 ′ convex photosensitive resist layer 3 concave groove pattern 4 conductive ink 4 ′ mesh conductive pattern 5 anti-reflection with adhesive coated with near infrared blocking member ( AR) Film 6 Anti-reflection film with adhesive (NIR)

Claims (4)

シート状または板状の透明基材の片面に感光性レジスト層を設ける工程と、フォトリソグラフ法により網目状のマスクを用いて露光・現像し導電性パターンを形成すべき部分の感光性レジスト層を除去して断面凹状のパターンを形成する工程と、該パターン全面に導電性インクを塗工することにより断面凹状のパターンに導電性インクを充填する工程と、残存する凸状感光性レジスト層をその上面に塗工された導電性インクとともに除去して網目状の導電性パターンを得る工程及び導電性パターンの焼成工程とからなることを特徴とする透光性電磁波シールド部材の製造方法。A step of providing a photosensitive resist layer on one surface of a sheet-shaped or plate-shaped transparent substrate, and exposing and developing a photosensitive resist layer by photolithography using a mesh-shaped mask to form a portion of the photosensitive resist layer where a conductive pattern is to be formed. A step of forming a pattern having a concave cross section by removing, and a step of filling the conductive ink into a pattern having a concave cross section by applying a conductive ink on the entire surface of the pattern; A method for producing a light-transmitting electromagnetic wave shielding member, comprising: a step of obtaining a mesh-like conductive pattern by removing the conductive pattern together with the conductive ink applied on the upper surface; and a step of firing the conductive pattern. 断面凹状のパターンに導電性インクを充填する工程の後に、100〜130℃の温度で熱処理することを特徴とする請求項l記載の透光性電磁波シールド部材の製造方法。2. The method according to claim 1, wherein a heat treatment is performed at a temperature of 100 to 130 [deg.] C. after the step of filling the conductive ink into the pattern having a concave cross section. 網目状の導電性パターンを構成する導電性材料が銀を含むものであることを特徴とする請求項lまたは2に記載の透光性電磁波シールド部材の製造方法。The method according to claim 1 or 2, wherein the conductive material forming the mesh-shaped conductive pattern contains silver. 網目状の導電性パターンが、線幅5〜30μm、平均膜厚0.5〜5.0μm、開口率72〜95%の範囲内にあり、10〜200MHzの電磁波に対して40dB以上の電磁波シールド効果を有するものであることを特徴とする請求項1〜3のいずれか1項で得られた透光性電磁波シールド部材。The mesh-shaped conductive pattern has a line width of 5 to 30 μm, an average film thickness of 0.5 to 5.0 μm, an aperture ratio of 72 to 95%, and an electromagnetic wave shield of 40 dB or more with respect to an electromagnetic wave of 10 to 200 MHz. The translucent electromagnetic wave shielding member obtained in any one of claims 1 to 3, which has an effect.
JP2002189977A 2002-06-28 2002-06-28 Transparent electromagnetic wave shield member and manufacturing method thereof Pending JP2004031876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189977A JP2004031876A (en) 2002-06-28 2002-06-28 Transparent electromagnetic wave shield member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189977A JP2004031876A (en) 2002-06-28 2002-06-28 Transparent electromagnetic wave shield member and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004031876A true JP2004031876A (en) 2004-01-29

Family

ID=31184229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189977A Pending JP2004031876A (en) 2002-06-28 2002-06-28 Transparent electromagnetic wave shield member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004031876A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115070A1 (en) * 2004-05-24 2005-12-01 Gunze Limited Electromagnetic wave shielding material and process for producing the same
JP2006302998A (en) * 2005-04-18 2006-11-02 Seiren Co Ltd Transparent conductive film and manufacturing method thereof
JP2008053424A (en) * 2006-08-24 2008-03-06 Toppan Printing Co Ltd Electromagnetic wave shielding member, manufacturing method thereof and image display device
CN103872257A (en) * 2012-12-14 2014-06-18 三星显示有限公司 Flexible substrate for roll-to-roll processing and method of manufacturing the same
JP2015507317A (en) * 2012-11-09 2015-03-05 シェンジェン オー−フィルム テック カンパニー リミテッド Transparent conductor and manufacturing method thereof
TWI509632B (en) * 2014-12-05 2015-11-21 Nat Univ Tsing Hua Transparent conducting electrode using a metamaterial high pass filter
KR101878882B1 (en) * 2011-10-21 2018-07-17 엘지디스플레이 주식회사 Nano mesh type transparent conductive electrode and method for manufacturing the same, touch screen and display apparatus having the nano mesh type transparent conductive electrode
US11382245B2 (en) * 2019-03-01 2022-07-05 The Regents Of The University Of Michigan Ultra-thin conductor based semi-transparent electromagnetic interference shielding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115070A1 (en) * 2004-05-24 2005-12-01 Gunze Limited Electromagnetic wave shielding material and process for producing the same
JPWO2005115070A1 (en) * 2004-05-24 2008-03-27 グンゼ株式会社 Electromagnetic wave shielding material and manufacturing method thereof
KR100868294B1 (en) 2004-05-24 2008-11-11 군제 가부시키가이샤 Electromagnetic wave shielding material and process for producing the same
JP4538690B2 (en) * 2004-05-24 2010-09-08 グンゼ株式会社 Electromagnetic wave shielding material and manufacturing method thereof
US8168252B2 (en) 2004-05-24 2012-05-01 Gunze Limited Electromagnetic wave shielding material and process for producing the same
JP2006302998A (en) * 2005-04-18 2006-11-02 Seiren Co Ltd Transparent conductive film and manufacturing method thereof
JP2008053424A (en) * 2006-08-24 2008-03-06 Toppan Printing Co Ltd Electromagnetic wave shielding member, manufacturing method thereof and image display device
KR101878882B1 (en) * 2011-10-21 2018-07-17 엘지디스플레이 주식회사 Nano mesh type transparent conductive electrode and method for manufacturing the same, touch screen and display apparatus having the nano mesh type transparent conductive electrode
JP2015507317A (en) * 2012-11-09 2015-03-05 シェンジェン オー−フィルム テック カンパニー リミテッド Transparent conductor and manufacturing method thereof
CN103872257A (en) * 2012-12-14 2014-06-18 三星显示有限公司 Flexible substrate for roll-to-roll processing and method of manufacturing the same
TWI509632B (en) * 2014-12-05 2015-11-21 Nat Univ Tsing Hua Transparent conducting electrode using a metamaterial high pass filter
US11382245B2 (en) * 2019-03-01 2022-07-05 The Regents Of The University Of Michigan Ultra-thin conductor based semi-transparent electromagnetic interference shielding

Similar Documents

Publication Publication Date Title
US8418359B2 (en) Method for manufacturing circuit pattern-provided substrate
JP2002117756A (en) Method for manufacturing original die for barrier rib transfer and barrier rib forming method
JPH11174174A (en) Production method for electromagnetic wave shielding plate
JP3782250B2 (en) Method for manufacturing electromagnetic shielding base material
JP2004031876A (en) Transparent electromagnetic wave shield member and manufacturing method thereof
JPWO2019044339A1 (en) Electrode film and manufacturing method thereof
CN109887960B (en) Array substrate and preparation method thereof
JP2003298284A (en) Shielding material and manufacturing method therefor
JP2004040033A (en) Translucent electromagnetic shielding material and method for manufacturing the same
JP4685270B2 (en) Shielding material manufacturing method and shielding material
JPH10161553A (en) Electromagnetic wave shielding optical filter and its production
JPH0945249A (en) Plasma display panel and manufacture of it
KR100630415B1 (en) Plasma display panel producing method
JP4539112B2 (en) Method for manufacturing plasma display panel
JP2004342348A (en) Manufacturing method of plasma display panel
JP2006179946A (en) Electromagnetic wave shielding substrate, method for manufacturing the same and plasma display
JP2011095773A (en) Shield material
JP2720683B2 (en) Manufacturing method of substrate with spacer
JP2009049299A (en) Apparatus for producing electromagnetic wave shielding layer, filter for display device including electromagnetic wave shielding layer, and display device with filter
KR100486916B1 (en) Method of Fabricating the Barrier Rib on Plasma Display Panel
JP2001143616A (en) Method for manufacturing black stripes for plasma display panel
JP2005064280A (en) Electromagnetic shielding body and its manufacturing method
JP2003280175A (en) Photomask
KR20050046971A (en) Manufacturing method of plasma display panel
JP3890987B2 (en) Sheet-like dielectric material and method for manufacturing plasma display panel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070419

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821