JP2004031710A - Method for manufacturing wiring board - Google Patents

Method for manufacturing wiring board Download PDF

Info

Publication number
JP2004031710A
JP2004031710A JP2002187022A JP2002187022A JP2004031710A JP 2004031710 A JP2004031710 A JP 2004031710A JP 2002187022 A JP2002187022 A JP 2002187022A JP 2002187022 A JP2002187022 A JP 2002187022A JP 2004031710 A JP2004031710 A JP 2004031710A
Authority
JP
Japan
Prior art keywords
copper
copper foil
substrate
carrier
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002187022A
Other languages
Japanese (ja)
Inventor
Katsuya Fukase
深瀬 克哉
Hiroyuki Terajima
寺島 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2002187022A priority Critical patent/JP2004031710A/en
Publication of JP2004031710A publication Critical patent/JP2004031710A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing with high efficiency and accuracy a wiring board in which wiring patterns formed on both surfaces of an insulating layer are electrically connected through vias. <P>SOLUTION: This method for manufacturing the wiring board uses a double-sided copper-clad board 30 composed of a base 10 and copper foils 31, 32 with a copper carrier, each of which is formed on each surface of the base 10 and individually consists of a copper foil 31b or 32b and a copper carrier 31a or 32a which is releasably adhered to each copper foil. The mothod comprises the steps of peeling off only the copper carrier 31a from the copper foil 31 with the copper carrier, removing the copper foil 31b attached to one surface of the base 10 by processing laser onto one surface of the base 10, forming viaholes 16 so as to expose to the bottom the copper foil 32 with the copper carrier attached to the opposite surface of the base 10, and forming conductive parts in the viaholes 16 so as to electrically connect the wiring patterns formed on the both surfaces of the base via the conductive parts. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は配線基板の製造方法に関し、より詳細には電気的絶縁性を有する基材の両面に形成された導体層を層間で電気的に接続して形成する配線基板の製造方法に関する。
【0002】
【従来の技術】
半導体素子を搭載して半導体装置を構成する配線基板には、電気的絶縁性を有する絶縁層を介して導体層を積層して形成た製品が提供されている。このような多層配線基板ではスルーホールを介して層間で導体層を電気的に接続するようにしたり、ビアを介して層間の導体層を電気的に接続するといったことがなされている。
しかしながら、絶縁層の両面に形成されている導体層を層間で電気的に接続して導体層を積層する製造工程は必ずしも容易な作業とはいえず、とくに配線パターンが高密度に形成される製品や、導体層を多層に形成する製品では、加工精度等の問題もあって導体層を層間で確実に電気的に接続することが困難であるという問題がある。
【0003】
絶縁層の両面に形成されている導体層を層間で電気的に接続する構造を形成する方法として広く行われている方法に、電気的絶縁性材からなる基材の両面にあらかじめ銅箔が被着された両面銅張り基板を使用する方法がある。両面銅張り基板を使用して層間で導体層を電気的に接続する方法としては、基材の一方の面を被覆する銅箔をエッチングし、ビア穴を形成する部位の銅箔を除去してビア穴形成部分の基材を露出させ、レーザ光を照射し基材が露出している部位にビア穴を形成する方法がある。この場合、ビア穴を形成する部位の銅箔をエッチングした後の銅箔は、レーザ光に対するマスクとして作用する。
【0004】
【発明が解決しようとする課題】
上記のように両面銅張り基板を使用して配線基板を製造する際に、ビア穴を形成する部位の基材部分を露出させるように銅箔をあらかじめエッチングするといった操作によって配線基板を形成する方法は、銅箔の厚さが厚いために高密度に微細な配線パターンを形成することができず、また銅箔をエッチングするといった工程が煩雑であり、製造工程中の基板の伸縮等により高精度の加工には向かないという問題がある。そこで、微細な配線パターンであってもより簡易にかつ精度よく形成する方法として、基材の表面に銅箔を被着したままレーザ加工してビア穴を形成する方法がある。
【0005】
図6は、電気的絶縁性を有する基材10の両面に銅箔12a、12bが被着された両面銅張り基板14にレーザ加工を施してビア穴16を形成し、層間で導体層を電気的に接続する加工方法を示す。この加工方法では、図6(b)に示すように、両面銅張り基板14の一方の面側からレーザ光を照射し、ビア穴16を形成する部位の銅箔12aを除去するとともに基材10を除去してビア穴16を形成する。
【0006】
しかしながら、この加工方法の場合は、銅箔12aをレーザ加工によって除去するため、エネルギーの高いレーザ光を使用するから、レーザ加工時に、ビア穴16の底面に露出する銅箔12bがレーザ光によって損傷を受けるという問題がある。図6(b)でA部分が銅箔12bの損傷を受けた部分である。微細な配線パターンを精度よく形成するには、まず、銅箔12a、12bを化学的にエッチングして銅箔12a、12bの厚さを薄くし(図6(c))、エッチング後の銅箔12a、12bを利用して配線パターンを形成しなければならない。
ところが、銅箔12a、12bを必要な厚さにエッチングして薄くすると、ビア穴16の底面で銅箔12bの損傷を受けた部分に孔があいてしまい、次工程で配線パターンを所定の精度で形成できなくなる。図6(c)で、B部分が孔があいた部位を示す。
【0007】
図7は、両面銅張り基板14を使用して配線基板を形成する他の方法を示す。この方法は、レーザ加工で使用するレーザ光のエネルギーを抑えるため、まず、基材10の両面に被着している銅箔12a、12bをエッチングして厚さを薄くした後(図7(b))、レーザ加工によってビア穴16を形成する(図7(c))。この方法の場合は、銅箔12a、12bの厚さを薄くしたことにより、レーザ光のエネルギーを抑えることができ、ビア穴16の底面で露出する銅箔12bは損傷を受けにくくなるのであるが、逆に、銅箔12bが薄くなったためレーザ光が照射された際にビア穴の底部の銅箔12bが簡単に加熱され、これによって銅箔12が損傷を受けやすくなるという問題が生じる。ビア穴16の底面で露出する銅箔12bはレーザ光によって加熱されるが、銅箔12bがある程度厚ければ、熱拡散によって銅箔12bの過熱が抑えられるのに対し、銅箔12bの厚さが薄いと簡単に銅箔12bが加熱されてしまうからである。
【0008】
上述した問題を回避する方法としては、両面銅張り基板にレーザ加工を施す際に、レーザ光を照射する一方の面についてはあらかじめ銅箔12aをエッチングして薄くするとともに、他方の面の銅箔12bについてはそのままの厚さとすることで、レーザ光のエネルギーを抑えることができ、かつレーザ加工の際に他方の面の銅箔12bから効果的に熱拡散させて銅箔12bが損傷を受けることを防止するようにすることが可能である。しかしながら、この方法の場合は、レーザ加工を施した後、他方の面の銅箔12bのみを片面エッチングする必要があり、エッチング作業が煩雑になるとともに、製造コストが高くなる。
【0009】
そこで、本発明はこれらの課題を解決すべくなされたものであり、その目的とするところは、電気的絶縁性を有する基材の両面に形成された導体層が確実に電気的に接続され、微細な配線パターンであっても高精度に形成することができ、簡易でかつ確実な製造方法によることで、製造コストを抑えて歩留まり良く製品を製造することができる配線基板の製造方法を提供するにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するため次の構成を備える。
すなわち、電気的絶縁性を有する基材の両面に銅箔を被着した両面銅張り基板にレーザ加工を施してビア穴を形成し、ビアを介して基材の両面に形成された配線パターンを電気的に接続した配線基板の製造方法において、前記両面銅張り基板として、基材の両面に、銅箔に剥離可能に銅キャリアを接着した銅キャリア付き銅箔が被着された基板を使用し、基材の一方の面に被着する銅キャリア付き銅箔の銅キャリアのみを剥離して除去した後、基板の一方の面側からレーザ加工を施して、基材の一方の面に被着する銅箔を消失させるとともに、基材の他方の面側に被着された銅キャリア付き銅箔が底面に露出するビア穴を形成し、次に、前記ビア穴に導体部を形成して、基材の両面に形成された配線パターンが前記導体部を介して電気的に接続された配線基板を形成することを特徴とする。
【0011】
また、前記ビア穴に導体部を形成する際に、基材の他方の面側に被着する銅キャリア付き銅箔の銅キャリアを剥離し、次いで、前記ビア穴の内面を含む基板の少なくとも一方の面にめっき給電層を形成し、該めっき給電層を給電層として基板に電解めっきを施すことにより、前記ビア穴の内面および基板の両面に導体部を形成することを特徴とする。
また、前記ビア穴に導体部を形成する際に、基材の他方の面側に被着する銅キャリア付き銅箔をめっき給電層として基板に電解めっきを施して、ビア穴がめっきにより充填された導体部を形成し、次いで、前記銅キャリア付き銅箔の銅キャリアを剥離して除去することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の好適な実施の形態について添付図面にしたがって詳細に説明する。
図1、2、3は本発明に係る配線基板の製造方法の一実施形態を示す説明図である。図1は電気的絶縁性を有する基材10の両面に銅キャリア付き銅箔31、32を被着した基板30に対してレーザ加工を施す製造工程、図2はビア穴16が形成された基板の両面に配線パターンを形成する製造工程、図3は配線パターンのランドに外部接続端子を接合して外部接続端子付きの配線基板を製造する工程を示す。
【0013】
図1に示すように、本発明に係る配線基板の製造方法においては、基材10の両面に銅キャリア付き銅箔31、32を被着した両面銅張り基板30を使用する。基材10としては、ガラスエポキシ基板等の電気的絶縁性を有する樹脂材が使用される。
図4に基材10の一方の面に被着されている銅キャリア付き銅箔31の構成を拡大して示す。銅キャリア付き銅箔31は銅キャリア31aと銅箔31bとを剥離可能に接着して形成されている。34が銅キャリア31aと銅箔31bとを剥離可能に接着している剥離層である。銅キャリア31aは銅箔31bを支持するキャリアとして作用するもので、銅箔31bにくらべてはるか厚く形成されている。本実施形態の銅キャリア付き銅箔31は、銅キャリア31aの厚さが35μm、銅箔31bの厚さが3μmである。
【0014】
銅キャリア31aと銅箔31bとが剥離層34を介して接着されていることにより、銅キャリア付き銅箔31から銅キャリア31aのみを簡単に剥離して除去することが可能である。
なお、図4では基材10の一方の面に被着されている銅キャリア付き銅箔31の構成を示すが、基材10の他方の面に被着されている銅キャリア付き銅箔32についても、その構成は銅キャリア付き銅箔31とまったく同じであり、銅キャリア32aに剥離層34を介して銅箔32bを剥離可能に接着して形成されている。したがって、基材10の他方の面に被着されている銅キャリア付き銅箔32についても、銅キャリア32aのみを簡単に剥離して除去することができる。
【0015】
図4で35は銅箔31bの表面に形成されているレーザ光の吸収層である。この吸収層35は銅箔31bにレーザ光を照射した際にレーザ光を反射させずに吸収しやすくする処理を施した層である。この吸収層35を設けたことにより、銅箔31bはレーザ光を吸収しやすくなり、レーザ光を照射した部位の銅箔31bが容易に消失するようになる。なお、銅キャリア付き銅箔32の銅箔32bの表面に、必要に応じて同様にレーザ光の吸収層35を設けてもよい。
【0016】
図1(a)に示す両面銅張り基板30は、基材10の両面に、上述した3層ないし4層構造からなる銅キャリア付き銅箔31、32が、銅箔31b、32bを基材10と一体に積層して提供される。この両面銅張り基板30は配線基板等を製造する素材として従来提供されている量産品であり、低コストで使用できるという利点がある。
【0017】
図1(b)は、レーザ加工を開始する前に、基材10のレーザ光が照射される面側である一方の面に被着されている銅キャリア付き銅箔31から銅キャリア31aを剥離して取り去った状態を示す。上述したように、銅キャリア31aは剥離層34から簡単に剥離することができ、銅キャリア31aを除去した状態で基材10の一方の面には銅箔31bのみが残る。銅箔31bの表面にはレーザ光の吸収層35が露出する。本実施形態では基材10のレーザ光を照射する面に被着する銅キャリア付き銅箔31についてのみ銅キャリア31aを除去し、基材10の他方の面に被着する銅キャリア付き銅箔32についてはそのままとしてレーザ加工を施す。
【0018】
図1(c)は、基材10の一方の面側からビア穴16を形成する部位に向けてレーザ光を照射してビア穴16を形成した状態を示す。基材10の一方の面には銅箔31bのみが被着し、銅箔31bはきわめて薄い(厚さ3μm)から低エネルギーのレーザ光を使用して銅箔31bを消失させることができる。
銅キャリア付き銅箔31を使用した場合は、銅箔31bの厚さのばらつきがなく基材10の表面に均等に銅箔31bが形成されていることから、レーザ加工によって銅箔31bを消失させる処理がきわめて安定的に、ばらつきなく行うことができ、これによって高精度のビア穴16を形成することが可能になるという利点がある。
【0019】
従来のように肉厚の銅箔をまずエッチングして所要の厚さにまで薄くした後にレーザ加工によって銅箔を消失させる処理を行う方法による場合は、エッチング後の銅箔の厚さを正確に制御することが難しく、ロットごとに厚さがばらつき、また、1枚の基板内でも場所によって厚さがばらつくことが避けられない。このように、銅箔の厚さがばらついた状態でレーザ加工によってビア穴を形成する場合は、レーザ光の照射精度が高くてもビア穴を形成する場所によって銅箔の消失時間等がばらつき、精度よくビア穴16を形成することが困難になる。
これに対して、本実施形態の銅キャリア付き銅箔31を被着した両面銅張り基板30の場合は、銅箔31bの厚さが均等であることから、高精度にレーザ加工することが可能となり、ビア穴16をあらかじめ設定した寸法精度に正確に形成することができる。また、銅箔31bの表面にレーザ光の吸収層35が設けられていることから、効率的に銅箔31bを消失させることができ、ビア穴16を形成する効率を向上させることができる。
【0020】
ビア穴16は、ビア穴16を形成する部位の銅箔31bを消失させる処理に続いて絶縁層である基材10をレーザ光によって消失させて形成される。本実施形態では銅箔31bを消失させる処理が均等に行えることから、基材10に対しても均等にレーザ光が照射され、確実にかつ効率的にビア穴16を形成することができる。たとえば、基材10に過度にレーザ光が照射されると、基材10が横方向に侵食されてビア穴16の穴径が規定値よりも広がるといったことが起こり得るが、基材10にレーザ光が均等に照射されることによってビア穴16が広がったりせず、所定精度にビア穴16を形成することができる。
また、本実施形態では、レーザ加工で使用するレーザ光のエネルギーを低く抑えることができるから、レーザ光による基材10に対する侵食作用が抑えられ、ビア穴16の形成精度を高めることができる。
【0021】
また、本実施形態では、基材10の他方の面については銅キャリア付き銅箔32を被着したままとしているから、ビア穴16の底面に銅キャリア付き銅箔32が露出し、レーザ光が直接、銅キャリア付き銅箔32に照射されても、銅キャリア32aによって熱が効果的に拡散され、銅箔32bが過度に熱せられることがなく、銅キャリア付き銅箔32が損傷を受けることを防止することができるという利点がある。
【0022】
図1(d)は、ビア穴16を形成した後、基材10の他方の面に被着されている銅キャリア付き銅箔32から銅キャリア32aを剥離して除去した状態を示す。銅キャリア付き銅箔32から銅キャリア32aを剥離することにより、基材10の他方の面には銅箔32bのみが残る。ビア穴16を形成するレーザ加工によって銅キャリア付き銅箔32が損傷を受けていないから、基材10の他方の面には一様に銅箔32bが残り、ビア穴16の底面で孔があいたりせず良好な状態で銅箔32bが被着されて残る。
本実施形態では、基材10の他方の面に銅箔32bを残す操作が、銅キャリア32aを銅キャリア付き銅箔32から剥離する操作によるから、従来のように銅箔をエッチングして薄く形成する作業にくらべてきわめて簡単である。また、基材10の表面に残る銅箔32bの厚さが均一であり、従来のように銅箔の厚さにばらつきがない点でも有効である。
【0023】
図1(d)に示すように、ビア穴16を形成した状態で、基材10の両面に薄い銅箔31b、32bを残すようにするのは、これらの銅箔31b、32bを使用して基材10の両面に微細な配線パターンを高精度に形成するためである。
図2は、上記のようにして形成した基板の両面にセミアディティブ法によって配線パターンを形成する方法を示す。
図2(a)は、基材10の両面に銅箔31b、32bが被着形成された基板である。この基板に対し、まず、ビア穴16を含む全面に無電解銅めっきを施し、あるいはビア穴16の開口面側から銅のスパッタリングを施して、ビア穴16の内壁面、底面および銅箔31bの表面にめっき給電層となる導体層36を形成する(図2(b))。
【0024】
次に、導体層36の表面と銅箔32bの表面にレジストパターン38を形成する(図2(c))。レジストパターン38は導体層36および銅箔32bをめっき給電層として配線パターンの導体となる導体部を形成するためのもので、基材10の両面に感光性レジストをラミネートし、露光および現像して導体層36と銅箔32bの表面で、配線パターンを形成する部位を露出させるように形成する。本実施形態では、基材の両面にレジストパターン38を形成して、基材10の両面に一度に配線パターンを形成するようにしている。
【0025】
図2(d)は、導体層36と基材10の他方の面に被着する銅箔32bをめっき給電層として電解銅めっきを施し、導体層36と銅箔32bの露出面上に銅を盛り上げ、導体部40を形成した状態である。
図2(e)は、次に、レジストパターン38を剥離して除去した状態で、レジストパターン38によって被覆されていた部位で、導体層36と銅箔32bとが露出した状態を示す。
【0026】
図2(f)は、銅のエッチング液を使用して、外面に露出している部位の導体層36と銅箔32bとを溶解除去し、基材10の両面に配線パターン42a、42bを形成した状態を示す。導体部40が数十μm程度の厚さに形成されるのに対して、導体層36、銅箔31b、32bの厚さははるかに薄いから、銅のエッチング液を用いたエッチング操作により、導体部40によって被覆されていない部位の導体層36と銅箔31b、32bは簡単に除去されて図2(f)に示すような独立した配線パターン42a、42bを得ることができる。
ビア穴16の内壁面、底面に被着して形成された導体部40は、基材10の両面に形成された配線パターン42a、42bを電気的に接続するビア44となる。こうして、電気的絶縁性を有する基材10の両面に形成された配線パターン42a、42bがビア44を介して電気的に接続された配線基板が得られる。
【0027】
図3は、基材10の両面に配線パターン42a、42bが形成された基板(図3(a))に外部接続端子を形成する工程を示す。
図3(b)は、ビア穴16を形成した部位にはんだボール等の外部接続端子を接合して配線基板とする例で、外部接続端子を形成するビア穴16の部位を除いてソルダーレジスト等の保護膜46により基板の両面を被覆した状態を示す。
図3(c)は、ビア穴16に外部接続端子48を接合し、外部接続端子付きの配線基板を形成した状態を示す。ビア穴16の開口部の周囲にランド部分を形成しておき、はんだボールをビア穴16に位置合わせし、はんだリフローすることにより、図3(c)に示すようにビア穴16に外部接続端子48を接合することができる。
【0028】
図3(d)、(e)は、配線パターン42a、42bに外部接続用のランドを形成し、ランドに外部接続端子48を接合して配線基板とする場合の例である。図3(d)は外部接続端子を接合するランド43を除いて基板の両面をソルダーレジスト等の保護膜46によって被覆した状態を示す。
図3(e)は、次に、ランド43にはんだボール等の外部接続端子48を接合し、基板の両面に外部接続端子48を備えた配線基板を形成した状態を示す。基板の両面の外部接続端子48はそれぞれ配線パターン42a、42bに接続し、両面の配線パターン42a、42bはビア44を介して電気的に接続する。
【0029】
図3(c)に示す配線基板は、配線パターン42bを形成した基材10の一方の面側に半導体素子を搭載することによって、外部接続端子48を備えた半導体装置として提供することができる。
また、図3(e)に示す配線基板は、基材10の両面に形成された配線パターン42a、42bが外部接続端子48を介して電気的に接続されることから、配線基板を電気的に接続して積層する際に使用するインターポーザとして利用することができる。
【0030】
上述した実施形態では、基材10にビア穴16を形成した後、ビア穴16の内面に導体層を形成してビア44としたが、ビア穴16をめっきにより充填してビアとなる導体部を形成することも可能である。図5は、ビア穴16をめっきによって充填して配線基板を製造する方法を示す。
図5(a)は、基材10にレーザ光を照射してビア穴16を形成した状態である。図5(a)は図1(c)の状態と同一の状態であり、基材10にビア穴16を形成するまでの工程は、上述した図1(a)〜(c)までの工程と同一である。図5(b)は、基材10の他方の面に被着した銅キャリア付き銅箔32をめっき給電層とする電解銅めっきを施して、ビア穴16を銅50によって充填した状態を示す。なお、電解銅めっきは銅キャリア付き銅箔32の下面にも付着する。
【0031】
図5(c)は、銅キャリア付き銅箔32から銅キャリア32aを剥離して除去し、銅キャリア32aの外面(下面)に付着した銅50を銅キャリア32aとともに除去し、基材10の他方の面に銅箔32bのみを残した状態である。ビア穴16には銅50が充填されている。
図5(d)〜(h)は、基材10の両面にセミアディティブ法によって配線パターン42a、42bを形成する方法を示す。この製造工程は上述した実施形態と同様である。すなわち、基材10の両面に銅箔31b、32bが被着された基板に無電解銅めっきを施して基板の両面にめっき給電層となる導体層36を形成する(図5(d))。次に、導体層36の表面にレジストパターン38を形成する(図5(e))。レジストパターン38は配線パターンを形成する部位を露出させて形成したものである。次に、導体層36をめっき給電層として基板に電解銅めっきを施し、導体層36と銅箔32bの露出面上に銅を盛り上げ、導体部40を形成する(図5(f))。図5(g)は、レジストパターン38を剥離して除去した状態で、レジストパターン38によって被覆されていた部位の導体層36を露出させた状態である。
【0032】
図5(h)は、銅のエッチング液を使用して、基板の外面に露出している導体層36の部位を溶解除去し、基材10の両面に配線パターン42a、42bを形成した状態である。導体層36と銅箔31b、32bは導体部40にくらべてはるかに薄いからエッチング液によって簡単にエッチングされ、導体部40が形成された部位のみが基板上に残り、基板の両面に所要の配線パターン42a、42bが形成される。こうして、ビア穴16に充填された銅50がビアとなり、基材10の両面に形成された配線パターン42a、42bが電気的に接続された配線基板を得ることができる。本実施形態の製造方法によって得られた配線基板も、上述した配線基板と同様に、配線パターン42a、42bに外部接続端子を接合する等により、実装用基板あるいはインターポーザ等として利用することができる。
【0033】
【発明の効果】
本発明に係る配線基板の製造方法によれば、上述したように、銅キャリア付き銅箔を被着した両面銅張り基板を使用し、基材の一方の面側の銅キャリアを剥離して銅箔のみを残した状態でレーザ加工することによって、ビア穴部分での銅箔を損傷させることなく、きわめて精度よくビア穴を形成することができる。また、銅キャリア付き銅箔を被着した両面銅張り基板を使用することによって製造作業を簡素化することができ、製造コストの低減を図ることができる等の著効を奏する。
【図面の簡単な説明】
【図1】本発明に係る配線基板の製造方法において、ビア穴を加工する工程を示す説明図である。
【図2】本発明に係る配線基板の製造方法において、基材の両面に配線パターンを形成する工程を示す説明図である。
【図3】本発明に係る配線基板の製造方法において、基板に外部接続端子を接合する工程を示す説明図である。
【図4】銅キャリア付き銅箔の構成を示す断面図である。
【図5】配線基板の製造方法の他の実施形態を示す説明図である。
【図6】基材の両面に設けられる導体層を電気的に接続するための従来の加工方法を示す説明図である。
【図7】基材の両面に設けられる導体層を電気的に接続するための従来の他の加工方法を示す説明図である。
【符号の説明】
10 基材
12、12a、12b 銅箔
16 ビア穴
30 両面銅張り基板
31、32 銅キャリア付き銅箔
31a、32a 銅キャリア
31b、32b 銅箔
34 剥離層
35 吸収層
36 導体層
38 レジストパターン
40 導体部
42a、42b   配線パターン
43 ランド
44 ビア
46 保護膜
48 外部接続端子
50 銅
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a wiring board, and more particularly, to a method for manufacturing a wiring board in which conductive layers formed on both surfaces of an electrically insulating substrate are electrically connected between layers.
[0002]
[Prior art]
2. Description of the Related Art Products formed by laminating conductor layers via an insulating layer having electrical insulation properties are provided on a wiring board on which a semiconductor element is mounted to constitute a semiconductor device. In such a multilayer wiring board, a conductor layer is electrically connected between layers via a through hole, or a conductor layer between layers is electrically connected via a via.
However, the manufacturing process of electrically connecting the conductor layers formed on both surfaces of the insulating layer between the layers and laminating the conductor layers is not always an easy task, and in particular, a product in which wiring patterns are formed at a high density. Also, in a product in which a conductor layer is formed in multiple layers, there is a problem in that it is difficult to reliably electrically connect the conductor layer between layers due to problems such as processing accuracy.
[0003]
A widely used method for forming a structure in which conductive layers formed on both sides of an insulating layer are electrically connected between the layers is that copper foil is previously coated on both sides of a substrate made of an electrically insulating material. There is a method using a double-sided copper-clad substrate that has been attached. As a method of electrically connecting the conductive layer between the layers using a double-sided copper-clad substrate, the copper foil covering one surface of the base material is etched, and the copper foil in a portion where a via hole is formed is removed. There is a method of exposing a base material in a via hole forming portion and irradiating a laser beam to form a via hole in a portion where the base material is exposed. In this case, the copper foil after etching the copper foil at the portion where the via hole is to be formed acts as a mask for laser light.
[0004]
[Problems to be solved by the invention]
When manufacturing a wiring board using a double-sided copper-clad board as described above, a method of forming a wiring board by an operation of pre-etching a copper foil so as to expose a base material portion where a via hole is formed However, because the thickness of the copper foil is large, it is not possible to form a fine wiring pattern at high density, and the process of etching the copper foil is complicated. There is a problem that it is not suitable for processing. Therefore, as a method of forming a fine wiring pattern more simply and accurately, there is a method of forming a via hole by laser processing while a copper foil is adhered to the surface of a base material.
[0005]
FIG. 6 shows that a double-sided copper-clad substrate 14 having copper foils 12a and 12b adhered to both sides of an electrically insulating base material 10 is subjected to laser processing to form a via hole 16, and a conductive layer is formed between the layers. The following shows a processing method for making a connection. In this processing method, as shown in FIG. 6B, a laser beam is irradiated from one side of the double-sided copper-clad substrate 14 to remove the copper foil 12a at the portion where the via hole 16 is to be formed and to remove the base material 10 Is removed to form a via hole 16.
[0006]
However, in the case of this processing method, high-energy laser light is used to remove the copper foil 12a by laser processing. Therefore, the copper foil 12b exposed on the bottom surface of the via hole 16 is damaged by the laser light during laser processing. There is a problem of receiving. In FIG. 6B, a portion A is a portion where the copper foil 12b is damaged. In order to accurately form a fine wiring pattern, first, the copper foils 12a and 12b are chemically etched to reduce the thickness of the copper foils 12a and 12b (FIG. 6C), and the etched copper foil A wiring pattern must be formed by using 12a and 12b.
However, if the copper foils 12a and 12b are etched to a required thickness and thinned, a hole is formed in the damaged portion of the copper foil 12b on the bottom surface of the via hole 16, and the wiring pattern is formed to a predetermined precision in the next step. Can not be formed. In FIG. 6 (c), a portion B indicates a portion having a hole.
[0007]
FIG. 7 shows another method of forming a wiring board using the double-sided copper-clad board 14. According to this method, in order to suppress the energy of the laser beam used in the laser processing, first, the copper foils 12a and 12b adhered to both surfaces of the base material 10 are etched to reduce the thickness (FIG. 7B )), And a via hole 16 is formed by laser processing (FIG. 7C). In the case of this method, the energy of the laser beam can be suppressed by reducing the thickness of the copper foils 12a and 12b, and the copper foil 12b exposed at the bottom surface of the via hole 16 is hardly damaged. Conversely, since the copper foil 12b is thinned, the copper foil 12b at the bottom of the via hole is easily heated when the laser beam is irradiated, thereby causing a problem that the copper foil 12 is easily damaged. The copper foil 12b exposed at the bottom surface of the via hole 16 is heated by the laser beam. If the copper foil 12b is thick to some extent, overheating of the copper foil 12b can be suppressed by thermal diffusion. This is because if the thickness is thin, the copper foil 12b is easily heated.
[0008]
As a method for avoiding the above-described problem, when performing laser processing on a double-sided copper-clad substrate, the copper foil 12a is etched and thinned in advance on one surface to be irradiated with laser light, and the copper foil on the other surface is etched. By setting the thickness of the copper foil 12b as it is, the energy of the laser beam can be suppressed, and the copper foil 12b is damaged by the effective thermal diffusion from the copper foil 12b on the other surface during laser processing. Can be prevented. However, in the case of this method, after performing the laser processing, it is necessary to etch only the copper foil 12b on the other side on one side, so that the etching operation becomes complicated and the manufacturing cost increases.
[0009]
Therefore, the present invention has been made in order to solve these problems, and the purpose thereof is to ensure that the conductor layers formed on both surfaces of the electrically insulating substrate are electrically connected, Provided is a method for manufacturing a wiring board, which can be formed with high precision even with a fine wiring pattern, and can be manufactured with a high yield by suppressing a manufacturing cost by using a simple and reliable manufacturing method. It is in.
[0010]
[Means for Solving the Problems]
The present invention has the following configuration to achieve the above object.
That is, a via hole is formed by performing laser processing on a double-sided copper-clad substrate having copper foil adhered to both sides of an electrically insulating substrate, and a wiring pattern formed on both sides of the substrate via a via is formed. In the method for manufacturing an electrically connected wiring board, a board on which copper foil with a copper carrier adhered to a copper carrier so that the copper carrier can be peeled off from the copper foil is used as the double-sided copper-clad board. After peeling and removing only the copper carrier of the copper foil with the copper carrier to be adhered to one surface of the substrate, laser processing is performed from one surface side of the substrate to adhere to one surface of the substrate. While disappearing the copper foil to be formed, the copper foil with the copper carrier adhered to the other surface side of the base material to form a via hole exposed on the bottom surface, and then a conductor portion is formed in the via hole, Wiring patterns formed on both sides of the base material are electrically connected via the conductors. And forming a wiring substrate that is.
[0011]
Further, when forming the conductor portion in the via hole, the copper carrier of the copper foil with the copper carrier to be adhered to the other surface side of the substrate is peeled off, and then at least one of the substrates including the inner surface of the via hole A conductor is formed on the inner surface of the via hole and on both surfaces of the substrate by forming a plating power supply layer on the surface of the substrate and performing electrolytic plating on the substrate using the plating power supply layer as the power supply layer.
Further, when forming a conductor portion in the via hole, the substrate is subjected to electrolytic plating using a copper foil with a copper carrier attached to the other surface side of the substrate as a plating power supply layer, and the via hole is filled by plating. Forming a conductor portion, and then removing and removing the copper carrier of the copper foil with the copper carrier.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIGS. 1, 2, and 3 are explanatory views showing one embodiment of a method for manufacturing a wiring board according to the present invention. FIG. 1 shows a manufacturing process of performing laser processing on a substrate 30 in which copper foils 31 and 32 with a copper carrier are applied to both surfaces of a base material 10 having electrical insulation. FIG. 2 shows a substrate in which a via hole 16 is formed. FIG. 3 shows a process for manufacturing a wiring board with external connection terminals by bonding external connection terminals to lands of the wiring pattern.
[0013]
As shown in FIG. 1, in the method for manufacturing a wiring board according to the present invention, a double-sided copper-clad board 30 having copper foils 31 and 32 with a copper carrier adhered to both sides of a base material 10 is used. As the base material 10, a resin material having electrical insulation such as a glass epoxy substrate is used.
FIG. 4 shows an enlarged view of the configuration of the copper foil 31 with a copper carrier adhered to one surface of the substrate 10. The copper foil 31 with a copper carrier is formed by adhering a copper carrier 31a and a copper foil 31b in a releasable manner. Reference numeral 34 denotes a release layer that releasably bonds the copper carrier 31a and the copper foil 31b. The copper carrier 31a acts as a carrier for supporting the copper foil 31b, and is formed much thicker than the copper foil 31b. In the copper foil 31 with a copper carrier of the present embodiment, the thickness of the copper carrier 31a is 35 μm, and the thickness of the copper foil 31b is 3 μm.
[0014]
Since the copper carrier 31a and the copper foil 31b are bonded to each other via the release layer 34, only the copper carrier 31a can be easily separated and removed from the copper foil 31 with the copper carrier.
FIG. 4 shows the configuration of the copper foil 31 with a copper carrier attached to one surface of the substrate 10. The structure is exactly the same as that of the copper foil 31 with a copper carrier, and is formed by peelably bonding a copper foil 32b to a copper carrier 32a via a release layer 34. Therefore, also with respect to the copper foil with copper carrier 32 adhered to the other surface of the base material 10, only the copper carrier 32a can be easily peeled off and removed.
[0015]
In FIG. 4, reference numeral 35 denotes a laser light absorbing layer formed on the surface of the copper foil 31b. The absorption layer 35 is a layer that has been subjected to a process of easily absorbing the laser light without reflecting the laser light when the copper foil 31b is irradiated with the laser light. By providing the absorption layer 35, the copper foil 31b easily absorbs the laser light, and the copper foil 31b in the portion irradiated with the laser light easily disappears. In addition, the laser light absorption layer 35 may be similarly provided on the surface of the copper foil 32b of the copper foil 32 with a copper carrier, if necessary.
[0016]
In the double-sided copper-clad substrate 30 shown in FIG. 1A, the copper foils 31 and 32 with a copper carrier having the above-described three-layer or four-layer structure are formed on both surfaces of the substrate 10 by using the copper foils 31b and 32b as the substrate 10 It is provided as a single layer. The double-sided copper-clad board 30 is a mass-produced product conventionally provided as a material for manufacturing a wiring board or the like, and has an advantage that it can be used at low cost.
[0017]
FIG. 1B shows a state in which the copper carrier 31a is peeled off from the copper foil 31 with the copper carrier adhered to one surface of the base material 10 on which the laser beam is irradiated before starting the laser processing. And remove it. As described above, the copper carrier 31a can be easily peeled off from the release layer 34, and only the copper foil 31b remains on one surface of the base material 10 with the copper carrier 31a removed. The laser light absorbing layer 35 is exposed on the surface of the copper foil 31b. In the present embodiment, the copper carrier 31a is removed only from the copper foil 31 with a copper carrier that adheres to the surface of the substrate 10 to which the laser beam is irradiated, and the copper foil 32 with the copper carrier that adheres to the other surface of the substrate 10 Is subjected to laser processing as it is.
[0018]
FIG. 1C shows a state where the via hole 16 is formed by irradiating a laser beam from one surface side of the base material 10 to a portion where the via hole 16 is to be formed. Only the copper foil 31b is adhered to one surface of the base material 10, and the copper foil 31b is extremely thin (thickness: 3 μm), so that the copper foil 31b can be eliminated by using low-energy laser light.
When the copper foil 31b with a copper carrier is used, since the thickness of the copper foil 31b does not vary and the copper foil 31b is formed evenly on the surface of the substrate 10, the copper foil 31b is erased by laser processing. The processing can be performed very stably and without variation, thereby providing an advantage that a highly accurate via hole 16 can be formed.
[0019]
In the case of the conventional method of etching the thick copper foil first to reduce it to the required thickness and then performing the processing to eliminate the copper foil by laser processing, the thickness of the copper foil after etching is accurately determined It is difficult to control the thickness, and the thickness varies from lot to lot. In addition, it is inevitable that the thickness varies from place to place even within one substrate. As described above, when forming a via hole by laser processing in a state where the thickness of the copper foil varies, even when the irradiation accuracy of the laser light is high, the disappearance time of the copper foil varies depending on the place where the via hole is formed, It becomes difficult to form the via hole 16 with high accuracy.
On the other hand, in the case of the double-sided copper-clad substrate 30 on which the copper foil 31 with a copper carrier of the present embodiment is applied, since the thickness of the copper foil 31b is uniform, laser processing can be performed with high precision. Thus, the via hole 16 can be accurately formed with a predetermined dimensional accuracy. In addition, since the laser light absorbing layer 35 is provided on the surface of the copper foil 31b, the copper foil 31b can be efficiently eliminated, and the efficiency of forming the via holes 16 can be improved.
[0020]
The via hole 16 is formed by removing the copper foil 31b at the portion where the via hole 16 is to be formed, followed by removing the base material 10 as an insulating layer with a laser beam. In the present embodiment, since the processing for eliminating the copper foil 31b can be performed evenly, the laser beam is evenly applied to the base material 10, and the via holes 16 can be formed reliably and efficiently. For example, if the base material 10 is excessively irradiated with the laser beam, the base material 10 may be eroded in the lateral direction and the diameter of the via hole 16 may be larger than a specified value. By uniformly irradiating the light, the via hole 16 does not spread and the via hole 16 can be formed with a predetermined accuracy.
Further, in the present embodiment, the energy of the laser light used in the laser processing can be suppressed low, so that the erosion of the base material 10 by the laser light can be suppressed, and the formation accuracy of the via hole 16 can be improved.
[0021]
Further, in this embodiment, since the copper foil 32 with the copper carrier is left attached to the other surface of the base material 10, the copper foil 32 with the copper carrier is exposed on the bottom surface of the via hole 16, and the laser light is emitted. Even when the copper foil with copper carrier 32 is directly irradiated, the heat is effectively diffused by the copper carrier 32a, and the copper foil 32b is not excessively heated. There is an advantage that it can be prevented.
[0022]
FIG. 1D shows a state where the copper carrier 32a is peeled off and removed from the copper foil with copper carrier 32 adhered to the other surface of the base material 10 after the via hole 16 is formed. By peeling the copper carrier 32a from the copper foil 32 with the copper carrier, only the copper foil 32b remains on the other surface of the substrate 10. Since the copper foil 32 with the copper carrier is not damaged by the laser processing for forming the via hole 16, the copper foil 32 b remains uniformly on the other surface of the substrate 10, and a hole is formed at the bottom surface of the via hole 16. The copper foil 32b is adhered and remains in a good state without any slack.
In the present embodiment, since the operation of leaving the copper foil 32b on the other surface of the base material 10 is an operation of peeling the copper carrier 32a from the copper foil 32 with the copper carrier, the copper foil is etched and formed thin as in the related art. It is much easier than doing the work. Further, it is also effective in that the thickness of the copper foil 32b remaining on the surface of the base material 10 is uniform, and there is no variation in the thickness of the copper foil as in the related art.
[0023]
As shown in FIG. 1D, the reason why thin copper foils 31b and 32b are left on both surfaces of the base material 10 in a state where the via holes 16 are formed is to use these copper foils 31b and 32b. This is because a fine wiring pattern is formed on both surfaces of the base material 10 with high precision.
FIG. 2 shows a method of forming a wiring pattern on both surfaces of the substrate formed as described above by a semi-additive method.
FIG. 2A shows a substrate in which copper foils 31 b and 32 b are formed on both surfaces of a base material 10. First, electroless copper plating is applied to the entire surface of the substrate including the via hole 16 or copper is sputtered from the opening side of the via hole 16 so that the inner wall surface, the bottom surface, and the copper foil 31b of the via hole 16 are removed. A conductor layer 36 serving as a plating power supply layer is formed on the surface (FIG. 2B).
[0024]
Next, a resist pattern 38 is formed on the surface of the conductor layer 36 and the surface of the copper foil 32b (FIG. 2C). The resist pattern 38 is for forming a conductor portion serving as a conductor of the wiring pattern using the conductor layer 36 and the copper foil 32b as a plating power supply layer, and laminating a photosensitive resist on both surfaces of the base material 10, exposing and developing. On the surfaces of the conductor layer 36 and the copper foil 32b, a portion where a wiring pattern is to be formed is formed so as to be exposed. In the present embodiment, a resist pattern 38 is formed on both surfaces of the base material, and a wiring pattern is formed on both surfaces of the base material 10 at one time.
[0025]
2D, electrolytic copper plating is performed using the copper foil 32b adhered to the conductor layer 36 and the other surface of the substrate 10 as a plating power supply layer, and copper is exposed on the exposed surfaces of the conductor layer 36 and the copper foil 32b. This is a state in which the conductor portions 40 are formed.
FIG. 2E shows a state in which the conductor layer 36 and the copper foil 32b are exposed at a portion covered by the resist pattern 38 in a state where the resist pattern 38 is peeled off and removed.
[0026]
FIG. 2F dissolves and removes the conductor layer 36 and the copper foil 32b at the portions exposed on the outer surface by using a copper etchant, and forms wiring patterns 42a and 42b on both surfaces of the base material 10. It shows the state where it was done. The conductor portion 40 is formed to have a thickness of about several tens of μm, whereas the conductor layer 36 and the copper foils 31b and 32b are much thinner. The conductor layer 36 and the copper foils 31b and 32b at the portions not covered by the portion 40 are easily removed, so that independent wiring patterns 42a and 42b as shown in FIG. 2F can be obtained.
The conductor portion 40 formed on the inner wall surface and bottom surface of the via hole 16 becomes a via 44 for electrically connecting the wiring patterns 42a and 42b formed on both surfaces of the base material 10. In this way, a wiring board is obtained in which the wiring patterns 42a and 42b formed on both surfaces of the electrically insulating substrate 10 are electrically connected via the vias 44.
[0027]
FIG. 3 shows a process of forming external connection terminals on a substrate (FIG. 3A) in which wiring patterns 42a and 42b are formed on both surfaces of the base material 10.
FIG. 3B shows an example in which an external connection terminal such as a solder ball is joined to a portion where the via hole 16 is formed to form a wiring board. Except for the portion of the via hole 16 where the external connection terminal is formed, a solder resist or the like is used. Shows a state where both surfaces of the substrate are covered with the protective film 46 of FIG.
FIG. 3C shows a state in which the external connection terminals 48 are joined to the via holes 16 to form a wiring board with the external connection terminals. A land portion is formed around the opening of the via hole 16, the solder ball is aligned with the via hole 16, and the solder is reflowed so that an external connection terminal is formed in the via hole 16 as shown in FIG. 48 can be joined.
[0028]
FIGS. 3D and 3E show an example in which lands for external connection are formed on the wiring patterns 42a and 42b, and the external connection terminals 48 are joined to the lands to form a wiring board. FIG. 3D shows a state where both surfaces of the substrate are covered with a protective film 46 such as a solder resist, except for the lands 43 joining the external connection terminals.
FIG. 3E shows a state in which an external connection terminal 48 such as a solder ball is bonded to the land 43, and a wiring board having the external connection terminal 48 is formed on both surfaces of the substrate. The external connection terminals 48 on both surfaces of the substrate are connected to wiring patterns 42a and 42b, respectively, and the wiring patterns 42a and 42b on both surfaces are electrically connected via vias 44.
[0029]
The wiring board shown in FIG. 3C can be provided as a semiconductor device having external connection terminals 48 by mounting a semiconductor element on one surface side of the base material 10 on which the wiring pattern 42b is formed.
In the wiring board shown in FIG. 3E, the wiring patterns 42a and 42b formed on both surfaces of the base material 10 are electrically connected via the external connection terminals 48. It can be used as an interposer used when connecting and stacking.
[0030]
In the above-described embodiment, after the via hole 16 is formed in the base material 10, a conductive layer is formed on the inner surface of the via hole 16 to form the via 44. It is also possible to form FIG. 5 shows a method of manufacturing a wiring board by filling via holes 16 by plating.
FIG. 5A shows a state in which a via hole 16 is formed by irradiating the base material 10 with laser light. FIG. 5A shows the same state as the state shown in FIG. 1C. The steps up to forming the via hole 16 in the base material 10 are the same as the steps shown in FIGS. 1A to 1C described above. Identical. FIG. 5B shows a state in which the copper foil 32 with a copper carrier adhered to the other surface of the base material 10 is subjected to electrolytic copper plating using a plating power supply layer, and the via holes 16 are filled with copper 50. Note that the electrolytic copper plating also adheres to the lower surface of the copper foil 32 with a copper carrier.
[0031]
5C, the copper carrier 32a is peeled off and removed from the copper foil 32 with the copper carrier, and the copper 50 attached to the outer surface (lower surface) of the copper carrier 32a is removed together with the copper carrier 32a. Is a state in which only the copper foil 32b is left on the surface of. The via hole 16 is filled with copper 50.
FIGS. 5D to 5H show a method of forming the wiring patterns 42a and 42b on both surfaces of the base material 10 by a semi-additive method. This manufacturing process is the same as in the above-described embodiment. That is, electroless copper plating is performed on the substrate on which the copper foils 31b and 32b are adhered on both surfaces of the base material 10 to form a conductor layer 36 serving as a plating power supply layer on both surfaces of the substrate (FIG. 5D). Next, a resist pattern 38 is formed on the surface of the conductor layer 36 (FIG. 5E). The resist pattern 38 is formed by exposing a portion where a wiring pattern is to be formed. Next, electrolytic copper plating is performed on the substrate using the conductor layer 36 as a plating power supply layer, and copper is raised on the exposed surfaces of the conductor layer 36 and the copper foil 32b to form the conductor portion 40 (FIG. 5 (f)). FIG. 5G shows a state where the resist pattern 38 is peeled off and the conductor layer 36 at a portion covered by the resist pattern 38 is exposed.
[0032]
FIG. 5H shows a state in which the portions of the conductor layer 36 exposed on the outer surface of the substrate are dissolved and removed using a copper etchant, and the wiring patterns 42 a and 42 b are formed on both surfaces of the base material 10. is there. Since the conductor layer 36 and the copper foils 31b and 32b are much thinner than the conductor portion 40, they are easily etched by an etchant, and only the portion where the conductor portion 40 is formed remains on the substrate, and necessary wirings are formed on both sides of the substrate. Patterns 42a and 42b are formed. Thus, the wiring board in which the copper 50 filled in the via hole 16 becomes a via and the wiring patterns 42a and 42b formed on both surfaces of the base material 10 are electrically connected can be obtained. The wiring board obtained by the manufacturing method of the present embodiment can also be used as a mounting board or an interposer by bonding external connection terminals to the wiring patterns 42a and 42b, similarly to the above-described wiring board.
[0033]
【The invention's effect】
According to the method for manufacturing a wiring board according to the present invention, as described above, using a double-sided copper-clad substrate coated with a copper foil with a copper carrier, peeling the copper carrier on one side of the base material to remove the copper By performing laser processing while leaving only the foil, the via hole can be formed with extremely high precision without damaging the copper foil at the via hole portion. In addition, the use of a double-sided copper-clad substrate coated with a copper foil with a copper carrier simplifies the manufacturing operation, and has significant effects such as a reduction in manufacturing cost.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a step of processing a via hole in a method of manufacturing a wiring board according to the present invention.
FIG. 2 is an explanatory view showing a step of forming a wiring pattern on both surfaces of a base material in the method of manufacturing a wiring board according to the present invention.
FIG. 3 is an explanatory view showing a step of bonding external connection terminals to the substrate in the method of manufacturing a wiring substrate according to the present invention.
FIG. 4 is a cross-sectional view illustrating a configuration of a copper foil with a copper carrier.
FIG. 5 is an explanatory view showing another embodiment of the method for manufacturing a wiring board.
FIG. 6 is an explanatory view showing a conventional processing method for electrically connecting conductor layers provided on both surfaces of a base material.
FIG. 7 is an explanatory view showing another conventional processing method for electrically connecting conductor layers provided on both surfaces of a base material.
[Explanation of symbols]
Reference Signs List 10 base material 12, 12a, 12b copper foil 16 via hole 30 double-sided copper-clad board 31, 32 copper foil with copper carrier 31a, 32a copper carrier 31b, 32b copper foil 34 release layer 35 absorption layer 36 conductor layer 38 resist pattern 40 conductor Parts 42a, 42b Wiring pattern 43 Land 44 Via 46 Protective film 48 External connection terminal 50 Copper

Claims (3)

電気的絶縁性を有する基材の両面に銅箔を被着した両面銅張り基板にレーザ加工を施してビア穴を形成し、ビアを介して基材の両面に形成された配線パターンを電気的に接続した配線基板の製造方法において、
前記両面銅張り基板として、基材の両面に、銅箔に剥離可能に銅キャリアを接着した銅キャリア付き銅箔が被着された基板を使用し、
基材の一方の面に被着する銅キャリア付き銅箔の銅キャリアのみを剥離して除去した後、
基板の一方の面側からレーザ加工を施して、基材の一方の面に被着する銅箔を消失させるとともに、基材の他方の面側に被着された銅キャリア付き銅箔が底面に露出するビア穴を形成し、
次に、前記ビア穴に導体部を形成して、基材の両面に形成された配線パターンが前記導体部を介して電気的に接続された配線基板を形成することを特徴とする配線基板の製造方法。
A via hole is formed by performing laser processing on a double-sided copper-clad board having copper foil adhered to both sides of an electrically insulating base material, and a wiring pattern formed on both sides of the base material via the via is electrically connected. In the method for manufacturing a wiring board connected to
As the double-sided copper-clad substrate, on both surfaces of the substrate, using a copper carrier-coated copper foil adhered copper carrier releasably to the copper foil,
After peeling and removing only the copper carrier of the copper foil with the copper carrier to be adhered to one surface of the base material,
Laser processing is performed from one side of the substrate to eliminate the copper foil adhered to one side of the substrate, and the copper foil with copper carrier adhered to the other side of the substrate is Forming exposed via holes,
Next, a conductor portion is formed in the via hole, and a wiring pattern formed on both surfaces of the base material forms a wiring board electrically connected through the conductor portion. Production method.
前記ビア穴に導体部を形成する際に、基材の他方の面側に被着する銅キャリア付き銅箔の銅キャリアを剥離し、
次いで、前記ビア穴の内面を含む基板の少なくとも一方の面にめっき給電層を形成し、該めっき給電層を給電層として基板に電解めっきを施すことにより、前記ビア穴の内面および基板の両面に導体部を形成することを特徴とする請求項1記載の配線基板の製造方法。
When forming the conductor portion in the via hole, peeling off the copper carrier of the copper foil with a copper carrier to be adhered to the other surface side of the base material,
Next, a plating power supply layer is formed on at least one surface of the substrate including the inner surface of the via hole, and the substrate is subjected to electrolytic plating using the plating power supply layer as a power supply layer, so that the inner surface of the via hole and both surfaces of the substrate are formed. 2. The method according to claim 1, wherein the conductor is formed.
前記ビア穴に導体部を形成する際に、基材の他方の面側に被着する銅キャリア付き銅箔をめっき給電層として基板に電解めっきを施して、ビア穴がめっきにより充填された導体部を形成し、
次いで、前記銅キャリア付き銅箔の銅キャリアを剥離して除去することを特徴とする請求項1記載の配線基板の製造方法。
When forming a conductor portion in the via hole, the substrate is subjected to electrolytic plating using a copper foil with a copper carrier adhered to the other surface side of the substrate as a plating power supply layer, and the via hole is filled with plating. Form a part,
2. The method according to claim 1, wherein the copper carrier of the copper foil with the copper carrier is peeled off and removed.
JP2002187022A 2002-06-27 2002-06-27 Method for manufacturing wiring board Pending JP2004031710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187022A JP2004031710A (en) 2002-06-27 2002-06-27 Method for manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187022A JP2004031710A (en) 2002-06-27 2002-06-27 Method for manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2004031710A true JP2004031710A (en) 2004-01-29

Family

ID=31182179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187022A Pending JP2004031710A (en) 2002-06-27 2002-06-27 Method for manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2004031710A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134364A (en) * 2005-11-08 2007-05-31 Hitachi Cable Ltd Method for manufacturing multilayer wiring board, multilayer wiring board, and electronic device using it
KR100778990B1 (en) 2005-03-29 2007-11-22 히다치 덴센 가부시끼가이샤 Double-sided wiring board fabrication method, double-sided wiring board, and base material therefor
JP2008078487A (en) * 2006-09-22 2008-04-03 Samsung Electro Mech Co Ltd Method of manufacturing copper clad laminate for vop
JP2010199530A (en) * 2008-11-14 2010-09-09 Samsung Electro-Mechanics Co Ltd Printed circuit board, and manufacturing method thereof
US7807215B2 (en) 2006-09-21 2010-10-05 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing copper-clad laminate for VOP application
JP2010287851A (en) * 2009-06-15 2010-12-24 Shinko Electric Ind Co Ltd Method for manufacturing multilayer wiring board
US7939379B2 (en) * 2008-02-05 2011-05-10 Advanced Semiconductor Engineering, Inc. Hybrid carrier and a method for making the same
JP2011228737A (en) * 2005-05-31 2011-11-10 Shinko Electric Ind Co Ltd Wiring board and semiconductor device
WO2018101503A1 (en) * 2016-11-30 2018-06-07 강성원 Method for manufacturing printed circuit board and printed circuit board manufactured thereby
KR20200024923A (en) * 2017-07-10 2020-03-09 씨에라 써킷스 인코포레이티드 Semi-Additional Process for Printed Circuit Boards

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778990B1 (en) 2005-03-29 2007-11-22 히다치 덴센 가부시끼가이샤 Double-sided wiring board fabrication method, double-sided wiring board, and base material therefor
JP2011228737A (en) * 2005-05-31 2011-11-10 Shinko Electric Ind Co Ltd Wiring board and semiconductor device
JP2007134364A (en) * 2005-11-08 2007-05-31 Hitachi Cable Ltd Method for manufacturing multilayer wiring board, multilayer wiring board, and electronic device using it
US7807215B2 (en) 2006-09-21 2010-10-05 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing copper-clad laminate for VOP application
JP2008078487A (en) * 2006-09-22 2008-04-03 Samsung Electro Mech Co Ltd Method of manufacturing copper clad laminate for vop
US7939379B2 (en) * 2008-02-05 2011-05-10 Advanced Semiconductor Engineering, Inc. Hybrid carrier and a method for making the same
JP2010199530A (en) * 2008-11-14 2010-09-09 Samsung Electro-Mechanics Co Ltd Printed circuit board, and manufacturing method thereof
JP2010287851A (en) * 2009-06-15 2010-12-24 Shinko Electric Ind Co Ltd Method for manufacturing multilayer wiring board
WO2018101503A1 (en) * 2016-11-30 2018-06-07 강성원 Method for manufacturing printed circuit board and printed circuit board manufactured thereby
KR20200024923A (en) * 2017-07-10 2020-03-09 씨에라 써킷스 인코포레이티드 Semi-Additional Process for Printed Circuit Boards
JP2020528214A (en) * 2017-07-10 2020-09-17 カトラム・エルエルシー Semi-additive method for printed circuit boards
KR102553641B1 (en) * 2017-07-10 2023-07-10 캐틀램, 엘엘씨 Semi-Additional Processes for Printed Circuit Boards

Similar Documents

Publication Publication Date Title
US7297562B1 (en) Circuit-on-foil process for manufacturing a laminated semiconductor package substrate having embedded conductive patterns
TWI271136B (en) Flexible multi-layered wiring substrate and its manufacturing method
JP2004111520A (en) Method for manufacturing wiring board
JP2005064498A (en) Semiconductor package board structure having metal protective layer for electrical connection pad, and manufacturing method for semiconductor packaging board structure
TWI481329B (en) Through hole forming method and printed circuit board manufacturing method
JP2004193549A (en) Package substrate plated without plated lead-in wire and its manufacturing method
JP6189592B2 (en) Component-embedded printed circuit board and manufacturing method thereof
JP2004031710A (en) Method for manufacturing wiring board
JP2007173727A (en) Method of manufacturing wiring board
KR20110025250A (en) Method of fabricating a fine pitch copper bump
KR100393271B1 (en) Method for manufacturing a multilayer electronic component mounting substrate
CN116169029A (en) Packaging substrate and preparation method thereof
US9837342B2 (en) Multilayer wiring board and method for manufacturing same
JP4456834B2 (en) Laser processing method and metal foil with carrier used therefor
JP4491159B2 (en) Manufacturing method of multilayer wiring board
JPH118471A (en) Manufacture of multilevel interconnection board and mounting method of electronic component by using the multilevel interconnection board
JP2001110928A (en) Manufacturing method of semiconductor package
JP2015204379A (en) Printed wiring board
JP2000114412A (en) Manufacture of circuit board
JP2000200975A (en) Manufacture of multilayer wiring substrate
JP2005057077A (en) Manufacturing method of wiring board
KR101436827B1 (en) Printed circuit board and manufacturing method thereof
JP2003273510A (en) Manufacturing method for printed substrate
JP2000307217A (en) Forming method of wiring pattern and semiconductor device
JPH09260840A (en) Multilayered printed wiring board manufacturing method