JP2004031678A - Semiconductor device, and holder for mounting semiconductor element - Google Patents

Semiconductor device, and holder for mounting semiconductor element Download PDF

Info

Publication number
JP2004031678A
JP2004031678A JP2002186631A JP2002186631A JP2004031678A JP 2004031678 A JP2004031678 A JP 2004031678A JP 2002186631 A JP2002186631 A JP 2002186631A JP 2002186631 A JP2002186631 A JP 2002186631A JP 2004031678 A JP2004031678 A JP 2004031678A
Authority
JP
Japan
Prior art keywords
semiconductor element
holder
electrode
semiconductor
resin adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002186631A
Other languages
Japanese (ja)
Other versions
JP2004031678A5 (en
Inventor
Kenji Toshida
利田 賢二
Tsuneo Hamaguchi
濱口 恒夫
Hitoshi Arai
新井 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002186631A priority Critical patent/JP2004031678A/en
Publication of JP2004031678A publication Critical patent/JP2004031678A/en
Publication of JP2004031678A5 publication Critical patent/JP2004031678A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device with its thickness reducible without degrading mechanical strength in semiconductor element, and to provide a holder for mounting semiconductor elements in manufacturing of the semiconductor device. <P>SOLUTION: Board-side electrodes 2a on the surface of a wiring board 2 and element-side electrodes 3a on the surface of a semiconductor element 3 face each other. A hardened ACF (anisotropic conductive film) 7 filling up the gap between the wiring board 2 and the semiconductor element 3 covers the sides 3d of the semiconductor element 3, with its top surface 7a is so adjusted as to be flush with the rear surface 3c of the semiconductor element 3. A holder 4, which holds the semiconductor element 3 in the process of mounting the semiconductor element 3 on the wiring board 2, is so designed that it is wider than the semiconductor element 3 and that its surface to abut at the semiconductor element 3 is coated with a releasing agent 4c for preventing the adhesion of resin adhesive. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、薄い半導体素子および配線基板のそれぞれに設けられた電極同士を対向させた形で電気的接続がなされた薄型の半導体装置、およびその作製に用いる半導体素子搭載用保持具に関するものである。
【0002】
【従来の技術】
半導体素子を配線基板に接続した半導体装置において、その接続形態には目的により様々なものがあるが、なかでもフリップチップ接続は、最も小さく実装することが可能な実装形態として知られている。フリップチップ接続を低コストで実現できる方法の一つとして、予め樹脂接着剤を配置した配線基板に半導体素子を押し付け、樹脂接着剤を硬化させる方法が知られている。
【0003】
図8および図9は、上記の方法によるフリップチップ接続をACF(Anisotropic Conductive Film ;異方性導電接着フィルム)を用いて行った従来の半導体装置の説明図であり、図8(a)〜(c)は一般的な厚さ(0.4mm以上)の半導体素子を配線基板に接続する工程を段階的に示す断面図、特に図8(c)は完成した半導体装置の断面図である。図9は0.3mm厚以下の薄い半導体素子を用いて同様な工程で作製され、完成した半導体装置の概略的な断面図である。いずれも電極を含む部分における断面図であり、断面を示すハッチングは一部省略する。
【0004】
図において、41は半導体装置である。42は配線基板であり、42aは基板側の電極である。43は半導体素子であり、43aは突起状の素子側の電極である。半導体素子43の、素子側の電極43aが設けられている側の面を表面とし、これとは反対側の面を裏面とする。44は半導体素子43を配線基板42に実装する際に半導体素子43を固定する保持具である。保持具44の大きさは、通常半導体素子43と同じ大きさか、もしくは少し小さめである。これは、後述するACF45を予め配置した配線基板42上に、半導体素子43を搭載する際に、半導体素子43の周囲にはみ出してくるACFが、保持具44に付着するのを防ぐためである。44aは保持具44の中心部分に貫通して設けられた吸引穴であり、上述の固定は、この吸引穴44aから図示しない装置または器具を用いて吸引して、半導体素子43を保持具44側に押し付けることにより行う。
【0005】
45はACFである。ACF45は、後述する導電性粒子45aをエポキシ系の樹脂接着剤中に混入させたフィルム状の接着剤である。45aは直径5μm程度の大きさを有するACF中の導電性粒子であり、たとえばAuめっきしたプラスチックボール、または金属ボール等が用いられる。46は半導体素子43の押し付け、および加熱により流動して半導体素子43の周囲に広がり、その後硬化した硬化ACFである。51は薄い半導体素子を用いて作製された半導体装置である。53は0.3mm厚以下の薄い半導体素子である。53aは突起状の素子側の電極であり、56は半導体装置41の硬化ACF46と同様の、硬化ACFである。硬化ACF56は、半導体素子53が薄いため、半導体素子53の周囲に広がった部分が、この半導体素子53の裏面よりも高く盛り上がった形状となっている。
【0006】
次に半導体装置41の作製方法について説明する。
まず、配線基板42上にACF45を配置する(図8(a))。このACF45の厚さは、配線基板42と半導体素子43との間に十分に充填することができるように、基板側の電極42aおよび素子側の電極43aの厚さの和よりも20μm以上厚く設定されている。
次に、半導体素子43を、素子側の電極43aを下側に向けた状態で、保持具44の吸引穴44aを通して図示しない装置または器具により吸引し、保持具44に密着して固定する(図8(b))。
【0007】
次に、保持具44を通して、たとえばセラミックヒーター等で加熱した半導体素子43を配線基板42に押し付けて、上述の吸引を止め、保持具44を離す。このとき、半導体素子43の押し付けと半導体素子43からの熱とにより、ACF45は流動して、半導体素子43の周囲にはみ出して広がり、半導体素子43の端面を這い上がり、その後硬化して硬化ACF46となる。このとき、基板側の電極42aと素子側の電極43aとの間隙に存在していた導電性粒子45aが上述の押し付けにより潰され、これにより配線基板42と半導体素子43との電気的接続が達成される(図8(c))。
【0008】
硬化ACF46は、たとえば半導体素子43の幅が縦横10mmで厚さが0.5mmの場合、半導体素子43の端面の0.3mm程度の高さまで這い上がって形成される。また、半導体装置51のように薄い半導体素子53を用いた場合には、硬化ACF56の半導体素子53の周囲に広がった部分は、半導体素子53の裏面よりも高く盛り上がった形状に形成されている。この硬化ACF46および56は、半導体素子43および53の周辺を固定し、機械的強度を高めることができるという特徴がある。
【0009】
【発明が解決しようとする課題】
従来の半導体装置41および51は以上のように構成されているので、以下に示すような課題があった。
半導体素子を、ウエハからダイシングによって切り出したとき、その端面(側面)の角部にできたダイシング刃のダイヤモンド砥粒による傷は、半導体素子をへき開し、割れる原因となるおそれがあることが知られている。電子機器を薄く小型にするために薄い半導体装置が求められてきているため、半導体素子も薄くする必要があるが、薄い半導体素子ほど容易にへき開される。特に、半導体素子を、これよりもたとえば熱膨張率が数倍高い樹脂からなる配線基板に接続した場合、半導体素子は大きく反り、上述の端面からへき開し、割れやすくなってしまう。
半導体装置41および51では、硬化ACF46および56により、半導体素子43および53の周囲が保護されているが、薄い半導体素子53を用いた半導体装置51の場合、硬化ACF56は高く盛り上がって形成されてしまうため、半導体装置を薄くしようとしても限界があるという課題があった。
【0010】
この発明は上記のような課題を解決するためになされたもので、半導体素子の機械的強度を保ちながらも、薄型化を実現することが可能な半導体装置を得ることを目的とする。また、そのような半導体装置を作製するときに用いる、半導体素子搭載用保持具を得ることを目的とする。
【0011】
【課題を解決するための手段】
この発明に係る半導体装置は、第一の電極を表面に備えた配線基板と第二の電極を表面に備えた半導体素子との電極同士が対向し、配線基板と半導体素子との間隙に充填されている硬化した樹脂接着剤が半導体素子の側面を覆い、かつその上面が半導体素子の裏面と同じ高さに揃っているものである。
【0012】
この発明に係る半導体素子搭載用保持具は、半導体素子よりも広い幅を有する本体部と、この本体部の中心部分に貫通して設けられた吸引用の穴と、本体部の半導体素子に当接する側の面を覆う樹脂接着剤が付着しない材料からなる離型材層とを備えたものである。
【0013】
この発明に係る半導体素子搭載用保持具は、半導体素子よりも広い幅を有し、かつ半導体素子に当接する側の面の、半導体素子の裏面の縁部分に対向する部分から外側の範囲に凹部を有する本体部と、この本体部の中心部分に貫通して設けられた吸引用の穴と、凹部に埋設された樹脂接着剤が付着しない材料からなる離型材部とを備えたものである。
【0014】
この発明に係る半導体素子搭載用保持具は、本体部がセラミック系の材料からなり、離型材部はフッ素系樹脂またはポリイミド系樹脂からなるものである。
【0015】
この発明に係る半導体素子搭載用保持具は、本体部がセラミック系材料からなり、離型材部はフッ素系樹脂を含浸させたセラミック系材料からなるものである。
【0016】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による半導体装置1の構成を示す概略的な断面図、図2(a)〜(d)は半導体装置1の作製工程を段階的に示す断面図であり、電極を含む部分の断面図で示す。図2(b)〜(c)はこの発明の実施の形態1による半導体素子搭載用保持具4の構成を示す断面図である。いずれも断面を示すハッチングは一部省略する。
【0017】
図において、1は半導体装置である。2は配線基板であり、2aは配線基板2の表面に設けられた基板側の電極(第一の電極)である。3は半導体素子であり、3aは半導体素子3の表面に設けられた突起状の素子側の電極(第二の電極)である。3bは半導体素子の表面(表面)であり、素子側の電極3aが設けられている側の面である。3cは半導体素子の裏面であり、半導体素子の表面3bとは反対側の面である。3dは半導体素子の側面である。
【0018】
4は半導体素子3を配線基板2に実装する際に半導体素子3を固定する保持具(半導体素子搭載用保持具)である。4aは保持具4の本体部である。本体部4aの縦横の幅は、半導体素子3の縦横の幅よりも広いものとする。この広さは具体的には、半導体素子3を、後述するACF5を介して配線基板2に搭載する際に、半導体素子3の外側にはみ出したACFが保持具4の下側の面に当接し、硬化したACFの上面が、半導体素子の裏面3cと同じ高さに揃えられることが達成できる程度の広さとする。本体部4aは、一般的に熱伝導性の良い材料として知られる、たとえば黄銅、アルミニウム等の金属、あるいは窒化アルミニウム、窒化ボロン、窒化珪素等のセラミック材料を用いて形成されている。半導体素子3の加熱は、保持具4を通して行うので、上述の熱伝導性の良い材料は、熱による変形のおそれが少ない材料が好適である。
【0019】
4bは本体部4aの中心部分に貫通して設けられた吸引穴(吸引用の穴)であり、上述の固定は、この吸引穴4bから図示しない装置または器具を用いて吸引して、半導体素子3を保持具4側に押し付けることにより行う。4cは保持具4の本体部4aの、半導体素子3を吸い付ける側の表面を覆うように設けられた離型材層である。離型材層4cは、後述するACFが付着しない材料、たとえばフッ素系樹脂、シリコン系樹脂、またはポリイミド系樹脂からなる。
【0020】
保持具4は、例えば以下のようにして作製される。
まず、窒化アルミニウム等の熱伝導性の良いセラミック系材料を、本体部4aの形状に加工する。次に、溶剤に溶かしたフッ素系樹脂等を好適な方法により保持具4の表面に塗布し、離型材層4cを形成する。次に、全体を380℃前後の温度で焼き付け、余分に付着した材料を研削して除去し、正確な所望の寸法の保持具4に仕上げる。
【0021】
5はACF(樹脂接着剤)である。ACF5は、後述する導電性粒子5aをエポキシ系の樹脂接着剤中に混入させたフィルム状の接着剤である。5aは直径5μm程度の大きさを有するACF5中の導電性粒子であり、たとえばAuめっきしたプラスチックボール、または金属ボール等が用いられる。6は半導体素子3の押し付け、および加熱により流動して半導体素子3の周囲に広がり、半導体素子3の端面を這い上がったACFであり、7はその後硬化した硬化ACF(硬化した樹脂接着剤)である。7aは硬化ACF7の上面(上面)である。
【0022】
次に半導体装置1の作製方法について説明する。
まず、配線基板2上にACF5を配置する(図2(a))。このACF5の厚さは、配線基板2と半導体素子3との間に十分に充填することができるように、基板側の電極2aおよび素子側の電極3aの厚さの和よりも20μm以上厚く設定されている。
次に、半導体素子3を、素子側の電極3aを下側に向けた状態で、保持具4の吸引穴4bを通して図示しない装置または器具により吸引し、保持具4に密着して固定する(図2(b)の上側の図)。
【0023】
次に、保持具4を通して、たとえばセラミックヒーター等で加熱した半導体素子3を配線基板2に押し付ける(図2(b)→図2(c))。このとき、半導体素子3の押し付けと半導体素子3からの熱とにより、ACF5は流動して、半導体素子3の周囲にはみ出して広がり、半導体素子3の端面を這い上がったACF6となる。そして、基板側の電極2aと素子側の電極3aとの間隙に存在していた導電性粒子5aが上述の押し付けにより潰され、これにより配線基板2と半導体素子3との電気的接続が達成される(図2(c))。
【0024】
その後、吸引を止め、保持具4を離す。離型材層4cにより、ACFは保持具4に付着することがない。このとき、半導体素子3の端面を這い上がったACF6は硬化が完了しており、硬化ACF7が形成される。硬化ACF7は、半導体素子3の側面3dを覆い、かつ硬化ACF7の上面7aは半導体素子3の裏面3cと同じ高さに揃って形成されている(図2(d)。この硬化ACF7は、半導体素子3の周辺を固定し、機械的強度を高めることができる。
【0025】
以上のように、この発明の実施の形態1の半導体装置1によれば、硬化したACF7の上面7aが、半導体素子3の周辺に、この半導体素子3の裏面3cと同じ高さに揃って形成されているので、半導体素子3の機械的強度を保ちながらも、半導体装置の薄型化を実現できるという効果が得られる。
また、実施の形態1の保持具4によれば、その本体部4aが半導体素子3よりも広い幅を有し、かつ保持具4の半導体素子3に当接する側の面は、ACFが付着しない材料からなる離型材層4cにより覆われているので、ACFの形状を、半導体素子3の側面3dを覆い、かつその上面は半導体素子3の裏面3cと同じ高さに揃う形状にすることができるという効果が得られる。
【0026】
次に、実施の形態1の変形例三例につき説明する。
図3は実施の形態1の第一の変形例による半導体装置11の構成を示す概略的な断面図であり、図1と同様の部分の断面で示してある。断面を示すハッチングは一部省略している。図において、11は半導体装置である。17は硬化した樹脂接着剤である。樹脂接着剤17としては、たとえばエポキシ系、アクリル系またはフェノール系のものを用いる。17aは硬化した樹脂接着剤の上面である。半導体装置11は、ACFの代わりに導電性粒子の存在しない樹脂接着剤を用いて半導体装置を構成した例であり、基板側の電極2aと素子側の電極3aとを直接接触させることにより配線基板2と半導体素子3との電気的接続を行っている。その他の部分においては、半導体装置1と同様であるため、詳細な説明を省略する。
【0027】
図4は実施の形態1の第二の変形例による半導体装置21の構成を示す概略的な断面図であり、図1と同様の部分の断面で示してある。断面を示すハッチングは一部省略している。図において、13は半導体素子である。13aは半導体素子13側の、はんだによる突起状電極である。13bは半導体素子の表面、13cは半導体素子の裏面、13dは半導体素子の側面である。21は半導体装置である。半導体装置21は、半導体装置11と同様に、ACFの代わりに導電性粒子の存在しない樹脂接着剤を用いて半導体装置を構成した例であり、基板側の電極2aとはんだによる突起状電極13aとを直接接触させた後、半導体素子13を加熱してはんだを溶融させることにより、配線基板2と半導体素子13との電気的接続を行っている。その他の部分においては、半導体装置1および11と同様であるため、詳細な説明を省略する。
【0028】
図5は実施の形態1の第三の変形例による半導体装置31の構成を示す概略的な断面図であり、電極を含む部分の断面で示してある。断面を示すハッチングは一部を除き省略する。半導体装置31は、二つの半導体素子を搭載して半導体装置を構成した例である。
【0029】
図において、2bは、配線基板2上に設けられ、後述する第二の半導体素子8と電気的に接続される基板側の第二の電極である。8は、後述する接着層9を介して半導体素子3上に接着して配置された第二の半導体素子である。第二の半導体素子8は、半導体素子3よりも幅が広いが、半導体素子3の周囲にはみ出した部分における、硬化したACF7が、半導体素子3の裏面と同じ高さに揃っているため、半導体素子3上に安定した状態で設置されている。8aは第二の半導体素子8上に設けられた第二の素子側の電極である。8bは、基板側の第二の電極2bと、第二の素子側の電極8aとに接続され、配線基板2と第二の半導体素子8との電気的接続を行うワイヤである。
9は半導体素子3と第二の半導体素子8とを接着する接着層である。10は、ワイヤ8bが破損しないように、配線基板2上に搭載されている構成要素の周囲を覆うように設けられたモールド樹脂である。既出の構成要素については詳細な説明を省略する。
【0030】
実施の形態2.
図6はこの発明の実施の形態2による保持具14の構成を示す概略的な説明図であり、図6(a)は本体部14aの凹部14bおよびこれに埋設された離型材部14dが設けられている側の面の平面図であり、図6(b)は吸引穴14cを通る部分に沿って切った断面図、図6(c)は半導体素子3を吸引して保持具14に固定したときの様子を示す断面図である。断面を示すハッチングは一部を除き省略する。
【0031】
図において、3eは半導体素子3の裏面の縁部分である。14は樹脂接着剤を予め配置した配線基板上に半導体素子3を搭載する際に、この半導体素子3を固定するのに用いられる保持具(半導体素子搭載用保持具)である。14aは保持具4の本体部である。本体部14aの縦横の幅は、半導体素子3の縦横の幅よりも広いものとする。この広さは具体的には、半導体素子3を、ACF等の樹脂接着剤を介して配線基板に搭載する際に、半導体素子3の外側にはみ出した樹脂接着剤が保持具14の下側の面に当接し、このはみ出した部分の樹脂接着剤の上面が、半導体素子3の裏面3cと同じ高さに揃えられることが達成できる程度の広さとする。本体部14aは、一般的に熱伝導性の良い材料として知られる、たとえば黄銅、アルミニウム等の金属、あるいは窒化アルミニウム、窒化ボロン、窒化珪素等のセラミック材料を用いて形成されている。半導体素子3の加熱は、保持具14を通して行うので、上述の熱伝導性の良い材料は、熱による変形のおそれが少ない材料が好適である。
【0032】
14bは半導体素子3の裏面3cの縁部分3eに対向する部分から外側の範囲に設けられた凹部である。14cは本体部14aの中心部分に貫通して設けられた吸引穴(吸引用の穴)である。14dは凹部14bに埋設された離型材部である。離型材部14dは半導体素子3の裏面の縁部分3eに当接するため、半導体素子3を配線基板側に押し付けるときに半導体素子3の周囲にはみ出してくるACF等の樹脂接着剤に付着しない材料を用いる。たとえばフッ素系樹脂やポリイミド樹脂等は好適である。
【0033】
保持具14は、例えば以下のようにして作製される。
まず、窒化アルミニウム等の熱伝導性の良いセラミック材料を、本体部14aの形状に加工する。次に、溶剤に溶かしたフッ素系樹脂等を、例えば吹き付け等の好適な方法により凹部14bに塗布し、離型材層14dを形成する。次に、全体を380℃前後の温度で焼き付け、余分に付着した材料を研削して除去し、正確な所望の寸法の保持具14に仕上げる。
【0034】
以上のように、この実施の形態2の保持具14によれば、固定する対象の半導体素子3よりも広い幅を有し、かつ半導体素子3の裏面の縁部分3eが当接する部分は離型材部14dにより構成されているので、実施の形態1の保持具4と同様の効果が得られる。
【0035】
実施の形態3.
図7はこの発明の実施の形態3による保持具24の構成を示す概略的な断面図であり、半導体素子3を吸引して保持具24に固定したときの様子を示す断面図を、図6と同様の部分の断面で示してある。断面を示すハッチングは一部省略している。
【0036】
図において、24は樹脂接着剤を予め配置した配線基板上に半導体素子3を搭載する際に、この半導体素子3を固定するのに用いられる保持具(半導体素子搭載用保持具)である。24aは保持具24の本体部である。本体部24aの縦横の幅は、半導体素子3の縦横の幅よりも広いものとする。この広さは具体的には、半導体素子3を、ACF等の樹脂接着剤を介して配線基板に搭載する際に、半導体素子3の外側にはみ出した樹脂接着剤が保持具24の下側の面に当接し、このはみ出した部分の樹脂接着剤の上面が、半導体素子3の裏面3cと同じ高さに揃えられることが達成できる程度の広さとする。本体部24aは、一般的に熱伝導性の良い材料として知られる、たとえば黄銅、アルミニウム等の金属、あるいは窒化アルミニウム、窒化ボロン、窒化珪素等のセラミック材料を用いて形成されている。半導体素子3の加熱は、保持具24を通して行うので、上述の熱伝導性の良い材料は、熱による変形のおそれが少ない材料が好適である。
【0037】
24bは半導体素子3の裏面の縁部分3eに対向する部分から外側の範囲に設けられた凹部である。24cは本体部14aの中心部分に貫通して設けられた吸引穴(吸引用の穴)である。24dは凹部24bに埋設された離型材部であり、後述するフッ素系樹脂24eを含浸している。離型材部24dは半導体素子3の裏面の縁部分3eに当接するため、半導体素子3を配線基板側に押し付けるときに半導体素子3の周囲にはみ出してくるACF等の樹脂接着剤に付着しない材料を用いる。
【0038】
24eは、離型材部24d中に含まれるフッ素系樹脂を模式的に示したものである。フッ素系樹脂24eを含浸した離型材部24dは、フッ素系樹脂のみで構成した場合と比較して、フッ素系樹脂の磨耗がなくなり、硬度も高くなるので、半導体素子3を配線基板2に搭載する際に、強く押し付けることができるという効果が得られる。
【0039】
保持具24は、例えば以下のようにして作製される。
まず、窒化アルミニウム等の熱伝導性の良いセラミック材料を、本体部24aの形状に加工する。次に、溶剤に溶かした材料、例えばフッ素系樹脂に窒化アルミニウムの粉末を混入した材料を、例えば吹き付け等の好適な方法により凹部24bに塗布し、離型材層24dを形成する。次に、全体を380℃前後の温度で焼き付け、余分に付着した材料を研削して除去し、正確な所望の寸法の保持具24に仕上げる。
【0040】
以上のように、この実施の形態3の保持具24によれば、固定する対象の半導体素子3よりも広い幅を有し、かつ半導体素子3の裏面の縁部分3eが当接する部分は離型材部24dにより構成されているので、実施の形態1の保持具4と同様の効果が得られる。
【0041】
【発明の効果】
以上のように、この発明によれば、硬化した樹脂接着剤が、半導体素子の側面を覆い、かつその上面は半導体素子の裏面と同じ高さに揃うように半導体装置を構成したので、半導体素子の機械的強度を保ちながらも、薄型化を実現することが可能な半導体装置が得られる効果がある。
【0042】
この発明によれば、半導体素子よりも広い幅を有する本体部と、この本体部の中心部分に貫通して設けられた吸引用の穴と、本体部の半導体素子に当接する側の面を覆う樹脂接着剤が付着しない材料からなる離型材層とを備えるように半導体素子搭載用保持具を構成したので、樹脂接着剤の形状を、半導体素子の側面を覆い、かつその上面は半導体素子の裏面と同じ高さに揃う形状にすることが可能な半導体素子搭載用保持具が得られる効果がある。
【0043】
この発明によれば、半導体素子よりも広い幅を有し、かつ半導体素子に搭載する側の面の、半導体素子の裏面の縁部分に対向する部分から外側の範囲に凹部を有する本体部と、この本体部の中心部分に貫通して設けられた吸引用の穴と、凹部に埋設された、樹脂接着剤が付着しない材料からなる離型材部とを備えるように半導体素子搭載用保持具を構成したので、樹脂接着剤の形状を、半導体素子の側面を覆い、かつその上面は半導体素子の裏面と同じ高さに揃う形状にすることが可能な半導体素子搭載用保持具が得られる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による半導体装置の構成を示す概略的な断面図である。
【図2】この発明の実施の形態1による半導体装置の作製工程を段階的に示す断面図である。
【図3】この発明の実施の形態1の第一の変形例による半導体装置の構成を示す概略的な断面図である。
【図4】この発明の実施の形態1の第二の変形例による半導体装置の構成を示す概略的な断面図である。
【図5】この発明の実施の形態1の第三の変形例による半導体装置の構成を示す概略的な断面図である。
【図6】この発明の実施の形態2による保持具の構成を示す概略的な断面図である。
【図7】この発明の実施の形態3による保持具の構成を示す概略的な断面図である。
【図8】従来の半導体装置の作製工程を段階的に示す断面図である。
【図9】従来の半導体装置の構成を示す概略的な断面図である。
【符号の説明】
1,11,21,31 半導体装置、2 配線基板、2a 基板側の電極(第一の電極)、2b 基板側の第二の電極、3,13 半導体素子、3a 素子側の電極(第二の電極)、3b,13b 半導体素子の表面(表面)、3c,13c 半導体素子の裏面、3d,13d 半導体素子の側面、3e 裏面の縁部分(半導体素子の裏面の縁部分)、4,14,24 保持具(半導体素子搭載用保持具)、4a,14a,24a 本体部、4b 吸引穴(吸引用の穴)、4c 離型材層、5 ACF(樹脂接着剤)、5a 導電性粒子、6 這い上がったACF、7 硬化ACF(硬化した樹脂接着剤)、7a 硬化ACFの上面(上面)、8 第二の半導体素子、8a 第二の素子側の電極、8b ワイヤ、9 樹脂接着層、10 モールド樹脂、13a はんだによる突起状電極、14b,24b 凹部、14c,24c 吸引穴(吸引用の穴)、14d,24d 離型材部、17 硬化した樹脂接着剤、17a 硬化した樹脂接着剤の上面、24e フッ素系樹脂。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin semiconductor device in which electrodes provided on a thin semiconductor element and an electrode provided on a wiring substrate are opposed to each other and electrically connected to each other, and a semiconductor element mounting holder used for manufacturing the semiconductor device. .
[0002]
[Prior art]
In a semiconductor device in which a semiconductor element is connected to a wiring board, there are various connection forms depending on the purpose. Among them, flip-chip connection is known as a mounting form that can be mounted in the smallest size. As one of the methods that can realize flip-chip connection at low cost, there is known a method in which a semiconductor element is pressed against a wiring board on which a resin adhesive is arranged in advance, and the resin adhesive is cured.
[0003]
FIGS. 8 and 9 are explanatory views of a conventional semiconductor device in which flip-chip connection according to the above method is performed using an ACF (Anisotropic Conductive Film; anisotropic conductive adhesive film). FIG. 8C is a cross-sectional view showing a step-by-step process of connecting a semiconductor element having a general thickness (0.4 mm or more) to a wiring board. FIG. 8C is a cross-sectional view of a completed semiconductor device. FIG. 9 is a schematic cross-sectional view of a completed semiconductor device manufactured by a similar process using a thin semiconductor element having a thickness of 0.3 mm or less. Each is a cross-sectional view of a portion including an electrode, and hatching indicating a cross section is partially omitted.
[0004]
In the figure, reference numeral 41 denotes a semiconductor device. 42 is a wiring board, and 42a is an electrode on the board side. Reference numeral 43 denotes a semiconductor element, and 43a denotes a protruding element-side electrode. The surface of the semiconductor element 43 on which the element-side electrode 43a is provided is defined as the front surface, and the surface on the opposite side is defined as the back surface. Reference numeral 44 denotes a holder for fixing the semiconductor element 43 when mounting the semiconductor element 43 on the wiring board 42. The size of the holder 44 is usually the same size as the semiconductor element 43 or slightly smaller. This is to prevent the ACF protruding around the semiconductor element 43 from adhering to the holder 44 when the semiconductor element 43 is mounted on the wiring board 42 on which the ACF 45 described later is arranged in advance. Reference numeral 44a denotes a suction hole provided through the center of the holder 44, and the above-described fixing is performed by suctioning the semiconductor element 43 from the suction hole 44a using a device or an instrument (not shown) so that the semiconductor element 43 is held on the holder 44 side. This is done by pressing against
[0005]
45 is an ACF. The ACF 45 is a film-like adhesive in which conductive particles 45a described later are mixed into an epoxy-based resin adhesive. Reference numeral 45a denotes conductive particles in the ACF having a diameter of about 5 μm, for example, Au-plated plastic balls or metal balls. Reference numeral 46 denotes a hardened ACF which flows by being pressed by the semiconductor element 43 and heated and spreads around the semiconductor element 43, and thereafter hardened. Reference numeral 51 denotes a semiconductor device manufactured using a thin semiconductor element. Reference numeral 53 denotes a thin semiconductor element having a thickness of 0.3 mm or less. 53a is a protruding element-side electrode, and 56 is a cured ACF similar to the cured ACF 46 of the semiconductor device 41. Since the semiconductor element 53 is thin, the cured ACF 56 has a shape in which a portion spread around the semiconductor element 53 rises higher than the back surface of the semiconductor element 53.
[0006]
Next, a method for manufacturing the semiconductor device 41 will be described.
First, the ACF 45 is arranged on the wiring board 42 (FIG. 8A). The thickness of the ACF 45 is set to be 20 μm or more larger than the sum of the thicknesses of the substrate-side electrode 42a and the element-side electrode 43a so that the space between the wiring substrate 42 and the semiconductor element 43 can be sufficiently filled. Have been.
Next, the semiconductor element 43 is sucked by a device or an instrument (not shown) through the suction hole 44a of the holder 44 with the element-side electrode 43a facing downward, and is fixed to the holder 44 in close contact (FIG. 8 (b)).
[0007]
Next, the semiconductor element 43 heated by, for example, a ceramic heater or the like is pressed against the wiring board 42 through the holder 44 to stop the above-mentioned suction, and the holder 44 is released. At this time, due to the pressing of the semiconductor element 43 and the heat from the semiconductor element 43, the ACF 45 flows, protrudes to the periphery of the semiconductor element 43 and spreads, crawls up the end face of the semiconductor element 43, and then hardens to form a hardened ACF 46. Become. At this time, the conductive particles 45a existing in the gap between the electrode 42a on the substrate side and the electrode 43a on the element side are crushed by the above-described pressing, thereby achieving the electrical connection between the wiring substrate 42 and the semiconductor element 43. (FIG. 8C).
[0008]
For example, when the width of the semiconductor element 43 is 10 mm in length and width and 0.5 mm in thickness, the hardened ACF 46 is formed to crawl up to a height of about 0.3 mm on the end face of the semiconductor element 43. When a thin semiconductor element 53 is used as in the case of the semiconductor device 51, the portion of the cured ACF 56 extending around the semiconductor element 53 is formed in a shape higher than the back surface of the semiconductor element 53. The cured ACFs 46 and 56 are characterized in that the periphery of the semiconductor elements 43 and 53 can be fixed and mechanical strength can be increased.
[0009]
[Problems to be solved by the invention]
Since the conventional semiconductor devices 41 and 51 are configured as described above, there are the following problems.
When a semiconductor element is cut out from a wafer by dicing, it is known that scratches due to diamond abrasive grains of a dicing blade formed at a corner of an end face (side face) of the semiconductor element may cause the semiconductor element to be cleaved and cracked. ing. Since a thin semiconductor device has been demanded in order to make electronic equipment thinner and smaller, the semiconductor element also needs to be thinner. However, a thinner semiconductor element is easily cleaved. In particular, when the semiconductor element is connected to a wiring board made of a resin having, for example, a coefficient of thermal expansion several times higher than this, the semiconductor element is largely warped, cleaved from the above-described end face, and easily broken.
In the semiconductor devices 41 and 51, the surroundings of the semiconductor elements 43 and 53 are protected by the cured ACFs 46 and 56. However, in the case of the semiconductor device 51 using the thin semiconductor element 53, the cured ACF 56 is formed to be high. Therefore, there is a problem that there is a limit even if the semiconductor device is made thinner.
[0010]
The present invention has been made to solve the above-described problems, and has as its object to obtain a semiconductor device capable of achieving a reduction in thickness while maintaining the mechanical strength of a semiconductor element. It is another object of the present invention to obtain a semiconductor element mounting holder used when manufacturing such a semiconductor device.
[0011]
[Means for Solving the Problems]
In the semiconductor device according to the present invention, the electrodes of the wiring board having the first electrode on the surface and the semiconductor element having the second electrode on the surface face each other, and are filled in the gap between the wiring board and the semiconductor element. The cured resin adhesive covers the side surface of the semiconductor element, and its upper surface is flush with the rear surface of the semiconductor element.
[0012]
A holder for mounting a semiconductor element according to the present invention has a main body having a wider width than a semiconductor element, a suction hole provided through a central portion of the main body, and a semiconductor element of the main body. And a release material layer made of a material to which the resin adhesive covering the contacting side does not adhere.
[0013]
The holder for mounting a semiconductor element according to the present invention has a width wider than that of the semiconductor element, and a concave portion is formed in a range outside a portion of the surface in contact with the semiconductor element opposite to an edge portion of the back surface of the semiconductor element. , A suction hole provided penetrating through the center of the main body, and a release material portion made of a material embedded in the concave portion and to which the resin adhesive does not adhere.
[0014]
In the holder for mounting a semiconductor element according to the present invention, the main body portion is made of a ceramic material, and the release material portion is made of a fluorine-based resin or a polyimide-based resin.
[0015]
In the holder for mounting a semiconductor element according to the present invention, the main body portion is made of a ceramic material, and the release material portion is made of a ceramic material impregnated with a fluorine-based resin.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a schematic sectional view showing a configuration of a semiconductor device 1 according to a first embodiment of the present invention, and FIGS. 2A to 2D are sectional views showing steps of manufacturing the semiconductor device 1 step by step. It is shown in a sectional view of a portion including an electrode. FIGS. 2B to 2C are cross-sectional views showing the configuration of the semiconductor element mounting holder 4 according to the first embodiment of the present invention. In each case, hatching indicating a cross section is partially omitted.
[0017]
In the figure, reference numeral 1 denotes a semiconductor device. Reference numeral 2 denotes a wiring board, and reference numeral 2a denotes a substrate-side electrode (first electrode) provided on the surface of the wiring board 2. Reference numeral 3 denotes a semiconductor element, and reference numeral 3a denotes a protruding element-side electrode (second electrode) provided on the surface of the semiconductor element 3. Reference numeral 3b denotes a surface (front surface) of the semiconductor element, which is a surface on which the element-side electrode 3a is provided. Reference numeral 3c denotes a back surface of the semiconductor element, which is a surface opposite to the front surface 3b of the semiconductor element. 3d is a side surface of the semiconductor element.
[0018]
Reference numeral 4 denotes a holder (semiconductor element mounting holder) for fixing the semiconductor element 3 when mounting the semiconductor element 3 on the wiring board 2. 4a is a main body of the holder 4. The vertical and horizontal widths of the main body 4a are wider than the vertical and horizontal widths of the semiconductor element 3. Specifically, when the semiconductor element 3 is mounted on the wiring board 2 via an ACF 5 described later, the ACF protruding outside the semiconductor element 3 contacts the lower surface of the holder 4. The width is such that the upper surface of the cured ACF can be at the same height as the rear surface 3c of the semiconductor element. The main body 4a is formed using a metal such as brass or aluminum, which is generally known as a material having good thermal conductivity, or a ceramic material such as aluminum nitride, boron nitride or silicon nitride. Since the heating of the semiconductor element 3 is performed through the holder 4, the above-mentioned material having good thermal conductivity is preferably a material which is less likely to be deformed by heat.
[0019]
Reference numeral 4b denotes a suction hole (suction hole) provided through the center portion of the main body portion 4a, and the above-mentioned fixing is performed by suctioning from the suction hole 4b using a device or an instrument (not shown), and 3 is pressed against the holder 4 side. Reference numeral 4c denotes a release material layer provided so as to cover the surface of the body 4a of the holder 4 on the side where the semiconductor element 3 is sucked. The release material layer 4c is made of a material to which ACF described below does not adhere, for example, a fluorine-based resin, a silicon-based resin, or a polyimide-based resin.
[0020]
The holder 4 is manufactured, for example, as follows.
First, a ceramic material having good thermal conductivity such as aluminum nitride is processed into the shape of the main body 4a. Next, a fluorine-based resin or the like dissolved in a solvent is applied to the surface of the holder 4 by a suitable method to form a release material layer 4c. Next, the whole is baked at a temperature of about 380 ° C., and the extra-adhered material is removed by grinding, thereby finishing the holder 4 having an accurate desired size.
[0021]
Reference numeral 5 denotes an ACF (resin adhesive). The ACF 5 is a film-like adhesive in which conductive particles 5a described later are mixed into an epoxy-based resin adhesive. Reference numeral 5a denotes conductive particles in the ACF 5 having a diameter of about 5 μm, for example, Au-plated plastic balls or metal balls. Reference numeral 6 denotes an ACF which flows by the pressing and heating of the semiconductor element 3 and spreads around the semiconductor element 3 and crawls up the end face of the semiconductor element 3. Reference numeral 7 denotes a cured ACF (cured resin adhesive) which has been cured thereafter. is there. 7a is an upper surface (upper surface) of the cured ACF 7.
[0022]
Next, a method for manufacturing the semiconductor device 1 will be described.
First, the ACF 5 is arranged on the wiring board 2 (FIG. 2A). The thickness of the ACF 5 is set to be at least 20 μm thicker than the sum of the thicknesses of the electrode 2a on the substrate side and the electrode 3a on the element side so that the space between the wiring substrate 2 and the semiconductor element 3 can be sufficiently filled. Have been.
Next, the semiconductor element 3 is sucked by a device or an instrument (not shown) through the suction hole 4b of the holder 4 with the element-side electrode 3a facing downward, and is fixed to the holder 4 in close contact (FIG. 2 (b) upper view).
[0023]
Next, the semiconductor element 3 heated by, for example, a ceramic heater or the like is pressed against the wiring board 2 through the holder 4 (FIG. 2B → FIG. 2C). At this time, due to the pressing of the semiconductor element 3 and the heat from the semiconductor element 3, the ACF 5 flows, protrudes and spreads around the semiconductor element 3, and becomes the ACF 6 crawling up the end face of the semiconductor element 3. Then, the conductive particles 5a existing in the gap between the electrode 2a on the substrate side and the electrode 3a on the element side are crushed by the above-mentioned pressing, whereby the electrical connection between the wiring substrate 2 and the semiconductor element 3 is achieved. (FIG. 2C).
[0024]
Thereafter, the suction is stopped, and the holder 4 is released. The ACF does not adhere to the holder 4 due to the release material layer 4c. At this time, the ACF 6 crawling up the end face of the semiconductor element 3 has been completely cured, and a cured ACF 7 is formed. The cured ACF 7 covers the side surface 3d of the semiconductor element 3, and the upper surface 7a of the cured ACF 7 is formed at the same height as the rear surface 3c of the semiconductor element 3 (FIG. 2D). The periphery of the element 3 can be fixed, and the mechanical strength can be increased.
[0025]
As described above, according to the semiconductor device 1 of the first embodiment of the present invention, the cured upper surface 7a of the ACF 7 is formed around the semiconductor element 3 at the same height as the rear surface 3c of the semiconductor element 3. Therefore, an effect is obtained that the thickness of the semiconductor device can be reduced while maintaining the mechanical strength of the semiconductor element 3.
According to the holder 4 of the first embodiment, the main body 4a has a wider width than the semiconductor element 3, and the ACF does not adhere to the surface of the holder 4 that is in contact with the semiconductor element 3. Since the ACF is covered with the release material layer 4c made of a material, the ACF can be shaped so as to cover the side surface 3d of the semiconductor element 3 and have the upper surface thereof at the same height as the rear surface 3c of the semiconductor element 3. The effect is obtained.
[0026]
Next, three modified examples of the first embodiment will be described.
FIG. 3 is a schematic cross-sectional view showing a configuration of a semiconductor device 11 according to a first modification of the first embodiment, and shows a cross section of a portion similar to FIG. The hatching indicating the cross section is partially omitted. In the figure, reference numeral 11 denotes a semiconductor device. 17 is a cured resin adhesive. As the resin adhesive 17, for example, an epoxy-based, acrylic-based, or phenol-based resin is used. 17a is the upper surface of the cured resin adhesive. The semiconductor device 11 is an example in which a semiconductor device is configured using a resin adhesive having no conductive particles instead of the ACF, and the wiring board is formed by directly contacting the substrate-side electrode 2a and the element-side electrode 3a. 2 and the semiconductor element 3 are electrically connected. The other parts are the same as those of the semiconductor device 1, and thus the detailed description is omitted.
[0027]
FIG. 4 is a schematic cross-sectional view showing a configuration of a semiconductor device 21 according to a second modification of the first embodiment, and shows a cross section of a portion similar to FIG. The hatching indicating the cross section is partially omitted. In the figure, reference numeral 13 denotes a semiconductor element. Reference numeral 13a denotes a protruding electrode made of solder on the semiconductor element 13 side. 13b is the front surface of the semiconductor device, 13c is the back surface of the semiconductor device, and 13d is the side surface of the semiconductor device. 21 is a semiconductor device. The semiconductor device 21 is an example in which, similar to the semiconductor device 11, a semiconductor device is configured using a resin adhesive having no conductive particles in place of the ACF. The semiconductor device 21 includes a substrate-side electrode 2a and a protruding electrode 13a made of solder. Then, the semiconductor element 13 is heated to melt the solder, so that the wiring board 2 and the semiconductor element 13 are electrically connected. The other parts are the same as those of the semiconductor devices 1 and 11, and thus the detailed description is omitted.
[0028]
FIG. 5 is a schematic cross-sectional view showing a configuration of a semiconductor device 31 according to a third modification of the first embodiment, showing a cross section of a portion including electrodes. The hatching indicating the cross section is omitted except for a part. The semiconductor device 31 is an example in which two semiconductor elements are mounted to form a semiconductor device.
[0029]
In the figure, reference numeral 2b denotes a substrate-side second electrode provided on the wiring substrate 2 and electrically connected to a second semiconductor element 8 described later. Reference numeral 8 denotes a second semiconductor element which is adhered on the semiconductor element 3 via an adhesive layer 9 described later. Although the second semiconductor element 8 is wider than the semiconductor element 3, the hardened ACF 7 in the portion protruding around the semiconductor element 3 is aligned at the same height as the back surface of the semiconductor element 3, It is installed on element 3 in a stable state. Reference numeral 8a denotes a second element-side electrode provided on the second semiconductor element 8. Reference numeral 8b is a wire that is connected to the second electrode 2b on the substrate side and the electrode 8a on the second element side, and performs electrical connection between the wiring substrate 2 and the second semiconductor element 8.
Reference numeral 9 denotes an adhesive layer for adhering the semiconductor element 3 and the second semiconductor element 8. Reference numeral 10 denotes a mold resin provided so as to cover the periphery of the components mounted on the wiring board 2 so as not to damage the wires 8b. Detailed description of the components already described is omitted.
[0030]
Embodiment 2 FIG.
FIG. 6 is a schematic explanatory view showing a configuration of a holder 14 according to Embodiment 2 of the present invention. FIG. 6A shows a concave portion 14b of a main body portion 14a and a release material portion 14d embedded therein. FIG. 6B is a cross-sectional view taken along a portion passing through a suction hole 14 c, and FIG. 6C is a diagram illustrating a state where the semiconductor element 3 is suctioned and fixed to the holder 14. It is sectional drawing which shows the state at the time of doing. The hatching indicating the cross section is omitted except for a part.
[0031]
In the figure, reference numeral 3e denotes an edge portion on the back surface of the semiconductor element 3. Reference numeral 14 denotes a holder (semiconductor element mounting holder) used to fix the semiconductor element 3 when mounting the semiconductor element 3 on a wiring board on which a resin adhesive is previously arranged. 14a is a main body of the holder 4. The vertical and horizontal width of the main body portion 14a is wider than the vertical and horizontal width of the semiconductor element 3. Specifically, when the semiconductor element 3 is mounted on a wiring board via a resin adhesive such as an ACF, the resin adhesive protruding from the outside of the semiconductor element 3 is formed on the lower side of the holder 14. The upper surface of the resin adhesive which is in contact with the surface and protrudes from the surface is made wide enough to achieve the same height as the rear surface 3 c of the semiconductor element 3. The main body 14a is formed using a metal such as brass or aluminum, which is generally known as a material having good thermal conductivity, or a ceramic material such as aluminum nitride, boron nitride, or silicon nitride. Since the heating of the semiconductor element 3 is performed through the holder 14, the above-mentioned material having good thermal conductivity is preferably a material which is less likely to be deformed by heat.
[0032]
Reference numeral 14b denotes a concave portion provided in a range outside a portion facing the edge portion 3e of the back surface 3c of the semiconductor element 3. Reference numeral 14c denotes a suction hole (a suction hole) provided through the center of the main body 14a. 14d is a mold release member buried in the recess 14b. Since the release part 14d is in contact with the edge 3e on the back surface of the semiconductor element 3, a material that does not adhere to the resin adhesive such as ACF that protrudes around the semiconductor element 3 when the semiconductor element 3 is pressed against the wiring board. Used. For example, a fluororesin or a polyimide resin is suitable.
[0033]
The holder 14 is manufactured, for example, as follows.
First, a ceramic material having good thermal conductivity such as aluminum nitride is processed into a shape of the main body 14a. Next, a fluorine-based resin or the like dissolved in a solvent is applied to the recess 14b by a suitable method such as spraying to form a release material layer 14d. Next, the whole is baked at a temperature of about 380 ° C., and the extra-adhered material is removed by grinding, thereby finishing the holder 14 having an accurate desired size.
[0034]
As described above, according to the holder 14 of the second embodiment, the portion having a wider width than the semiconductor element 3 to be fixed, and the edge portion 3e of the back surface of the semiconductor element 3 contacting the release member Since it is constituted by the portion 14d, the same effect as the holder 4 of the first embodiment can be obtained.
[0035]
Embodiment 3 FIG.
FIG. 7 is a schematic sectional view showing the structure of the holder 24 according to the third embodiment of the present invention. FIG. 6 is a sectional view showing a state where the semiconductor element 3 is sucked and fixed to the holder 24. It is shown in a cross section of the same part as. The hatching indicating the cross section is partially omitted.
[0036]
In the figure, reference numeral 24 denotes a holder (semiconductor element mounting holder) used to fix the semiconductor element 3 when the semiconductor element 3 is mounted on a wiring board on which a resin adhesive is previously arranged. Reference numeral 24a denotes a main body of the holder 24. The vertical and horizontal widths of the main body 24a are wider than the vertical and horizontal widths of the semiconductor element 3. Specifically, when the semiconductor element 3 is mounted on a wiring board via a resin adhesive such as an ACF, the resin adhesive protruding outside the semiconductor element 3 is formed on the lower side of the holder 24. The upper surface of the resin adhesive which is in contact with the surface and protrudes from the surface is made wide enough to achieve the same height as the rear surface 3 c of the semiconductor element 3. The main body 24a is formed using a metal such as brass or aluminum, which is generally known as a material having good thermal conductivity, or a ceramic material such as aluminum nitride, boron nitride, or silicon nitride. Since the semiconductor element 3 is heated through the holder 24, the above-mentioned material having good thermal conductivity is preferably a material which is less likely to be deformed by heat.
[0037]
Reference numeral 24b denotes a concave portion provided in a range outside a portion facing the edge portion 3e on the back surface of the semiconductor element 3. Reference numeral 24c denotes a suction hole (a suction hole) provided through the center of the main body 14a. Reference numeral 24d denotes a release material portion embedded in the concave portion 24b, and is impregnated with a fluorine-based resin 24e described later. Since the release material portion 24d is in contact with the edge portion 3e on the back surface of the semiconductor element 3, a material that does not adhere to the resin adhesive such as ACF that protrudes around the semiconductor element 3 when the semiconductor element 3 is pressed against the wiring board. Used.
[0038]
Reference numeral 24e schematically shows the fluorine-based resin contained in the release material portion 24d. Since the release material portion 24d impregnated with the fluorine-based resin 24e eliminates the wear of the fluorine-based resin and increases in hardness as compared with the case where only the fluorine-based resin is used, the semiconductor element 3 is mounted on the wiring board 2. At this time, an effect of being able to strongly press is obtained.
[0039]
The holder 24 is manufactured, for example, as follows.
First, a ceramic material having good thermal conductivity such as aluminum nitride is processed into the shape of the main body 24a. Next, a material dissolved in a solvent, for example, a material obtained by mixing aluminum nitride powder in a fluorine-based resin is applied to the concave portion 24b by a suitable method such as spraying to form a release material layer 24d. Next, the whole is baked at a temperature of about 380 ° C., and the extra-adhered material is removed by grinding, thereby finishing the holder 24 having an accurate desired size.
[0040]
As described above, according to the holder 24 of the third embodiment, the portion having a wider width than the semiconductor element 3 to be fixed, and the edge portion 3e of the back surface of the semiconductor element 3 contacting the release member Since it is constituted by the portion 24d, the same effects as those of the holder 4 of the first embodiment can be obtained.
[0041]
【The invention's effect】
As described above, according to the present invention, the semiconductor device is configured such that the cured resin adhesive covers the side surface of the semiconductor element and the upper surface thereof is flush with the back surface of the semiconductor element. Thus, there is an effect that a semiconductor device capable of realizing a reduction in thickness can be obtained while maintaining the mechanical strength of the semiconductor device.
[0042]
According to the present invention, the main body having a width wider than the semiconductor element, the suction hole penetrating through the center of the main body, and the surface of the main body on the side in contact with the semiconductor element are covered. Since the semiconductor element mounting holder is configured to have a release material layer made of a material to which the resin adhesive does not adhere, the shape of the resin adhesive covers the side surface of the semiconductor element, and the upper surface thereof is the back surface of the semiconductor element. There is an effect that a holder for mounting a semiconductor element can be obtained which can be formed in the same shape as the height.
[0043]
According to the present invention, a main body having a width wider than the semiconductor element, and having a concave portion in a range outside a portion of the surface on the side mounted on the semiconductor element facing the edge portion of the back surface of the semiconductor element, A semiconductor element mounting holder is configured to include a suction hole penetrating through a central portion of the main body and a release material portion embedded in the concave portion and made of a material to which a resin adhesive does not adhere. Therefore, there is an effect that a holder for mounting a semiconductor element can be obtained in which the shape of the resin adhesive covers the side surface of the semiconductor element, and the upper surface thereof can be formed to have the same height as the rear surface of the semiconductor element. .
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a configuration of a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing step by step the manufacturing process of the semiconductor device according to the first embodiment of the present invention;
FIG. 3 is a schematic sectional view showing a configuration of a semiconductor device according to a first modification of the first embodiment of the present invention;
FIG. 4 is a schematic sectional view showing a configuration of a semiconductor device according to a second modification of the first embodiment of the present invention;
FIG. 5 is a schematic sectional view showing a configuration of a semiconductor device according to a third modification of the first embodiment of the present invention;
FIG. 6 is a schematic sectional view showing a configuration of a holder according to a second embodiment of the present invention.
FIG. 7 is a schematic sectional view showing a configuration of a holder according to a third embodiment of the present invention.
FIG. 8 is a cross-sectional view showing stepwise steps of manufacturing a conventional semiconductor device.
FIG. 9 is a schematic sectional view showing a configuration of a conventional semiconductor device.
[Explanation of symbols]
1, 11, 21, 31 Semiconductor device, 2 Wiring board, 2a Substrate side electrode (first electrode), 2b Substrate side second electrode, 3, 13 Semiconductor element, 3a Element side electrode (second electrode) Electrodes), 3b, 13b Front surface (front surface) of semiconductor element, 3c, 13c Back surface of semiconductor element, 3d, 13d Side surface of semiconductor element, 3e Edge portion of back surface (edge portion of back surface of semiconductor element), 4, 14, 24 Holder (semiconductor element mounting holder), 4a, 14a, 24a Main body, 4b Suction hole (suction hole), 4c Release layer, 5 ACF (resin adhesive), 5a Conductive particles, 6 ACF, 7 cured ACF (cured resin adhesive), 7a upper surface of cured ACF (upper surface), 8 second semiconductor element, 8a second element side electrode, 8b wire, 9 resin adhesive layer, 10 molding resin , 13a Protrusion by solder Shaped electrodes, 14b, 24b recessed portions, 14c, 24c suction holes (holes for suction), 14d, 24d release material portion, 17 cured resin adhesive, 17a upper surface of cured resin adhesive, 24e fluororesin.

Claims (5)

第一の電極を表面に備えた配線基板と、第二の電極を表面に備えた半導体素子とを有し、上記第一の電極と上記第二の電極とが対向した状態で上記配線基板と上記半導体素子との電気的接続がなされ、かつ上記配線基板と上記半導体素子との間隙に硬化した樹脂接着剤が充填されている半導体装置において、
上記硬化した樹脂接着剤は、上記半導体素子の側面を覆い、かつその上面は上記半導体素子の裏面と同じ高さに揃っていることを特徴とする半導体装置。
A wiring substrate having a first electrode on the surface, and a semiconductor element having a second electrode on the surface, the wiring substrate in a state where the first electrode and the second electrode face each other In a semiconductor device which is electrically connected to the semiconductor element and in which a cured resin adhesive is filled in a gap between the wiring substrate and the semiconductor element,
A semiconductor device, wherein the cured resin adhesive covers a side surface of the semiconductor element, and an upper surface thereof is flush with a rear surface of the semiconductor element.
第一の電極を表面に備えた配線基板に、第二の電極を表面に備えた半導体素子を、上記第一の電極と上記第二の電極とが対向するように、樹脂接着剤を介して搭載する際に用いられる、上記半導体素子を吸引して固定する半導体素子搭載用保持具において、
上記半導体素子よりも広い幅を有する本体部と、該本体部の中心部分に貫通して設けられた吸引用の穴と、上記本体部の上記半導体素子に当接する側の面を覆う上記樹脂接着剤が付着しない材料からなる離型材層とを備えたことを特徴とする半導体素子搭載用保持具。
On a wiring board provided with a first electrode on the surface, a semiconductor element provided with a second electrode on the surface, such that the first electrode and the second electrode face each other, via a resin adhesive. Used in mounting, in the semiconductor element mounting holder for sucking and fixing the semiconductor element,
A main body having a width wider than that of the semiconductor element, a suction hole penetrating through the center of the main body, and the resin adhesive covering a surface of the main body on a side in contact with the semiconductor element; And a release material layer made of a material to which the agent does not adhere.
第一の電極を表面に備えた配線基板に、第二の電極を表面に備えた半導体素子を、上記第一の電極と上記第二の電極とが対向するように、樹脂接着剤を介して搭載する際に用いられる、上記半導体素子を吸引して固定する半導体素子搭載用保持具において、
上記半導体素子よりも広い幅を有し、かつ上記半導体素子に当接する側の面の、上記半導体素子の裏面の縁部分に対向する部分から外側の範囲に凹部を有する本体部と、該本体部の中心部分に貫通して設けられた吸引用の穴と、上記凹部に埋設された上記樹脂接着剤が付着しない材料からなる離型材部とを備えたことを特徴とする半導体素子搭載用保持具。
On a wiring board provided with a first electrode on the surface, a semiconductor element provided with a second electrode on the surface, such that the first electrode and the second electrode face each other, via a resin adhesive. Used in mounting, in the semiconductor element mounting holder for sucking and fixing the semiconductor element,
A body having a width wider than that of the semiconductor element and having a recess in a range outside a portion of the surface on the side in contact with the semiconductor element facing an edge portion of the back surface of the semiconductor element; Characterized by comprising a suction hole penetrating through a central portion of the substrate, and a release material portion made of a material which does not adhere to the resin adhesive embedded in the concave portion. .
本体部はセラミック材料からなり、離型材部はフッ素系樹脂またはポリイミド系樹脂からなることを特徴とする請求項3記載の半導体素子搭載用保持具。4. The holder for mounting a semiconductor element according to claim 3, wherein the main body is made of a ceramic material, and the release material is made of a fluorine-based resin or a polyimide-based resin. 本体部はセラミック材料からなり、離型材部はフッ素系樹脂を含浸させたセラミック材料からなることを特徴とする請求項3記載の半導体素子搭載用保持具。4. The holder for mounting a semiconductor element according to claim 3, wherein the main body is made of a ceramic material, and the release material is made of a ceramic material impregnated with a fluorine-based resin.
JP2002186631A 2002-06-26 2002-06-26 Semiconductor device, and holder for mounting semiconductor element Pending JP2004031678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186631A JP2004031678A (en) 2002-06-26 2002-06-26 Semiconductor device, and holder for mounting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186631A JP2004031678A (en) 2002-06-26 2002-06-26 Semiconductor device, and holder for mounting semiconductor element

Publications (2)

Publication Number Publication Date
JP2004031678A true JP2004031678A (en) 2004-01-29
JP2004031678A5 JP2004031678A5 (en) 2005-08-11

Family

ID=31181928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186631A Pending JP2004031678A (en) 2002-06-26 2002-06-26 Semiconductor device, and holder for mounting semiconductor element

Country Status (1)

Country Link
JP (1) JP2004031678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054867A (en) * 2009-09-04 2011-03-17 Lintec Corp Structure for connecting ic chip, and ic inlet and ic tag
US7936233B2 (en) 2005-07-18 2011-05-03 Centre National de la Recherche Scientifique - CRNS Coaxial automatic impedance adaptor
JP2012168708A (en) * 2011-02-14 2012-09-06 Lintec Corp Ic tag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936233B2 (en) 2005-07-18 2011-05-03 Centre National de la Recherche Scientifique - CRNS Coaxial automatic impedance adaptor
JP2011054867A (en) * 2009-09-04 2011-03-17 Lintec Corp Structure for connecting ic chip, and ic inlet and ic tag
JP2012168708A (en) * 2011-02-14 2012-09-06 Lintec Corp Ic tag

Similar Documents

Publication Publication Date Title
US20070284704A1 (en) Methods and apparatus for a semiconductor device package with improved thermal performance
US7820487B2 (en) Manufacturing method of semiconductor device
KR20190132330A (en) Die attach methods and semiconductor devices manufactured based on such methods
JP2005203633A (en) Semiconductor device, semiconductor device mount and method for manufacturing the semiconductor device
TWI478296B (en) Semiconductor device
US20060209514A1 (en) Semiconductor device and manufacturing method therefor
KR20010083235A (en) Mounting method and apparatus of bare chips
JP2005101125A (en) Semiconductor device, method of manufacturing same, circuit board, and electronic equipment
JP2010199494A (en) Semiconductor device and manufacturing method of the same
JP3333300B2 (en) Method for forming bumps having uneven surface, method for mounting semiconductor device having bumps, and semiconductor unit
JP2958692B2 (en) Ball grid array semiconductor package member, method of manufacturing the same, and method of manufacturing ball grid array semiconductor package
JP2001308146A (en) Apparatus for installing semiconductor chip on chip carrier
TW200529339A (en) Semiconductor device, semiconductor chip, method for manufacturing semiconductor device, and electronic apparatus
JP2004031678A (en) Semiconductor device, and holder for mounting semiconductor element
TW200541419A (en) Electronic assembly, and apparatus and method for the assembly thereof
TWI246175B (en) Bonding structure of device packaging
JP2007281116A (en) Method of manufacturing semiconductor device
JP2004014629A (en) Semiconductor device and its manufacturing method
TWI492344B (en) Semiconductor package and method of manufacture
JP3018789B2 (en) Semiconductor device
JP4421118B2 (en) Semiconductor device manufacturing method
JP2008283138A (en) Semiconductor device and manufacturing method therefor
JPH05121603A (en) Hybrid integrated circuit device
JP5414336B2 (en) Electronic components
JP2004039886A (en) Semiconductor device and its fabricating method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530