JP2004029101A - Compound eye optical system - Google Patents

Compound eye optical system Download PDF

Info

Publication number
JP2004029101A
JP2004029101A JP2002181306A JP2002181306A JP2004029101A JP 2004029101 A JP2004029101 A JP 2004029101A JP 2002181306 A JP2002181306 A JP 2002181306A JP 2002181306 A JP2002181306 A JP 2002181306A JP 2004029101 A JP2004029101 A JP 2004029101A
Authority
JP
Japan
Prior art keywords
optical
optical system
optical element
compound eye
optical elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181306A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
山本 亮
Michiharu Araya
荒谷 道晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002181306A priority Critical patent/JP2004029101A/en
Publication of JP2004029101A publication Critical patent/JP2004029101A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound eye optical system constituted by assembling lenses individually molded and a lens holding member and to provide a technique for constituting the compound eye optical system by which the alignment of the lenses is facilitated and errors in the attachment of the lenses are prevented. <P>SOLUTION: In the compound eye optical system constituted of a plurality of optical devices having image forming action, a holding member and at least one imaging device, the optical device is held by the holding member and also provided with a reference for alignment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は複数のレンズからなる光学素子と撮像素子からなる複眼光学系に関し、それぞれ個別に整形された形状の異なるレンズを保持部材に取り付け、かつ光学素子及び保持部材に位置合わせ基準を設けることで、光学系のアライメントを容易にし光学素子の取り付けミスを防止する、複眼光学系の構成手法に関する。
【0002】
【従来の技術】
最近の撮像系には、一般的なカメラのほかに、ノートパソコンその他の情報携帯端末に実装するため、より小型化が望まれている。このような要望に対し、撮影光学系として複数のレンズを並列に配置した光学素子を用いることにより、薄型および小型化を実現した複眼光学系が提案されている。複数のレンズを並列に配置したレンズアレイと撮像素子からなる撮像系としては、特開平10−145806号公報で開示されている小型デジタルカメラがある。
【0003】
【発明が解決しようとする課題】
このようなレンズアレイにおいて、個々のレンズが異なる視野を撮像する構成とした場合、レンズの法線方向あるいはレンズ形状がそれぞれ異なる複雑なレンズ形状が要求されるため、レンズアレイを一体成型することは困難となる。また、成形そのものが可能でも、アレイ内全てのレンズで一定の光学性能を満たす必要があり、歩留まりは悪くなる。
【0004】
さらに、レンズを個別に成型し、それらを組み立てることにより複眼光学系を形成する場合、個々のレンズの光軸調整を行う必要があるため、組み立て工程が非常に煩雑になる。さらに、多数のレンズから構成される複眼光学系においてはレンズの組み立て工程においてレンズの取り付け位置を取り違える可能性もあった。
【0005】
そこで、本発明では、個々に成型したレンズと、レンズ保持部材とを組み立てて構成する複眼光学系において、レンズのアライメントを容易にし、かつレンズの取り付けミスを防止できる複眼光学系の構成手法を提示することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明では、結像作用を有する複数の光学素子と、該複数の光学素子を保持する保持部材と、該光学素子にて結像される被写体象を撮像する少なくとも1つの撮像素子からなる複眼光学系において、前記光学素子は、前記保持部材に勘合あるいは接着保持されると共に、前記光学素子に位置合わせ用の基準が設けられていることを特徴とする。
【0007】
また前記複数の光学素子は、互いに異なる視野領域を撮像し、さらに前記複数の光学素子は互いに異なる基準を設けてあることを特徴とする。
【0008】
【発明の実施の形態】
図13は本発明の第1の実施例の複眼光学系を物体側より見た構成図である。なお、図13においては説明のため構成部品の一部を切除して記載してある。また、第一の実施例における複眼光学系の模式図を図1に示す。また図12に第一の実施例における光学系の構成図を示す。なお、図1及び図12は本発明の複眼光学系の光軸を含む平面による断面図である。
【0009】
まず図12を用い本光学系の結像作用について説明する。
【0010】
図12において、光学系は結像作用を持つ光学素子112a〜112e及び撮像素子121により構成される。光学素子112a〜112eはガラスやプラスチックなどの透明材料で形成される。撮像素子121は図12のように光学素子の数に合わせ123a〜123eの撮像素子領域に分けられる。各撮像素子領域はそれぞれ複数の画像検出素子により構成される。
【0011】
また、図12において、一点鎖線は各光学素子の光軸を示している。光軸は各光学素子と、対応する撮像素子領域の中心を結んだ線で定義する。各光学素子の光軸は他の光学素子の光軸と互いに傾いて配置されるため、各光学素子の撮像する被写体領域は互いに異なる。光学素子112aは撮像素子領域123a上に像を結び、撮像素子領域123aにより撮像される。同様に、各光学素子による像は、対応する撮像素子領域により撮像される。このように複数の光学素子によってそれぞれ異なる被写体領域を撮像することにより、複眼光学系全体として広い被写体領域の撮影を可能としている。このような複眼光学系においては、各光学素子の光軸が傾いているため、各光学素子はその光軸の傾きにおいて収差が最小となるようレンズ形状を設定することが望ましく、したがって本実施例においては各光学素子のレンズ形状はそれぞれ異なって構成されている。
【0012】
本実施例において光学素子123a〜123eは、別々に成形される。成形においては、モールドやプレス、射出成型と言った手法により成型される。一般的にこれらの成型手法においては、所望の光学面形状を得るために成型時の金型の形状や、圧力等を適切に設定する必要があるが、複雑な光学面ほどこれらの条件を適切に設定することは困難である。
【0013】
本実施例においては前述のように各光学素子を別々に成型するため、それぞれの光学素子を最適な条件下で成型することが可能となり成型工程が簡略化できると共に、最適な条件下で成型を行う事により光学素子の歩留まりも向上することが可能となる。
【0014】
次に本実施例における光学素子の組み立て調整について説明する。
【0015】
この撮影範囲を分割して撮影を行う複眼光学系において、複眼となる複数の光学素子のアライメントを行う構成を示した図が図1となる。
【0016】
図1は複眼光学系を構成する複数の光学素子11a〜11eと、該光学素子を保持する保持部材12からなる複眼光学系14の断面図を示している。前記複数の光学素子11a〜11eのそれぞれは、図1のように保持部材12に構成された、それぞれ対応する保持開口13a〜13eに勘合保持された後、接着保持されることにより、複数の光学素子11a〜11eが並列に配列された複眼光学系14を形成する。
【0017】
図2は光学素子11aおよび保持開口13aを拡大した図である。以下の全ての図で、図中の符号が同じ物は、同じ機能を持つものであり、説明は省く。光学素子11aは光線有効領域21と外周22に分けられ、外周22に位置合わせ用基準23aが設けてある。この位置合わせ基準23aを、保持部材12上の保持開口13a周囲に設けてある位置合わせ基準24aと合わせ、勘合の後接着することにより、光学素子11aのアライメントが容易に行われる。同様に、光学素子11b〜11eにおいても、光学素子の外周に位置合わせ基準を形成する。この位置合わせ基準の形状は前記位置合わせ基準23aとそれぞれ異なる形状、例えば三角形や四角形などとする。
【0018】
さらに保持部材12上に形成された保持開口13b〜13eにも、光学素子11b〜11eに形成された位置合わせ基準と同じ形状をした位置合わせ基準を形成する。この位置合わせ基準を互いに揃えることで、光学素子11b〜11eはアライメントされ、保持開口13b〜13eに勘合の後、接着保持される。また、位置合わせ基準の形状が異なるため、各光学素子の取り付け位置を取り違えることがない。
【0019】
第二の実施例を図3を用いて説明する。図3は、9個の光学素子31a〜31iからなる複眼光学系を示している。2次元的に配列される複眼光学系に関し、個々の光学素子31a〜31iはそれぞれ異なる視野を持ち、その形状はそれぞれ異なる。光学素子31a〜31iはそれぞれ保持部材12上の保持開口32a〜32iに勘合される。
【0020】
図4は図3における1つの光学素子31aの拡大図である。図4に示すように、少なくとも1つの位置合わせ基準23aが光学素子外周22に設けられる。位置合わせ基準23aの形状・位置は光学素子ごとに異なる。例えば、図3において光学素子31aでは、位置合わせ基準として、2つの円形のマークが円周方向に135度回転した位置に形成されているが、光学素子31cの位置合わせ基準は、2つの円形のマークが円周方向に180度回転した位置に形成されている。
【0021】
また、光学素子31aは、位置合わせ基準23aと同様に、2つの円形のマークが円周方向に135度回転した位置に形成されている位置合わせ基準24aを持つ保持開口32aに、位置合わせ基準23aが位置合わせ基準24aに一致するように、勘合保持される。同様に複数の光学素子32b〜32iを、それぞれ位置合わせ基準の形状、位置が一致する位置合わせ基準が形成された保持開口32b〜32iに勘合することにより、光学素子32a〜32iはアライメントされた状態で保持され、複眼光学系14を構成する。また、位置合わせの基準となるマークの形状、位置を光学素子及び保持開口ごとに異なるものにすることで、組み立て時に光学素子の配列を取り違えることを防ぐ。
【0022】
第三の実施例を図5を用いて説明する。第三の実施例では、光学素子51a〜51iの外縁に突起52を設け、位置合わせの基準とする。突起52は光学素子51a〜51iの外縁に少なくとも1つ設けられ、その形状、大きさは光学素子ごとに異なる。また、保持部材12上にあけられた保持開口32a〜32iには、突起52に対応した形状、大きさの凹部53が設けられており、突起52を凹部53に合わせ光学素子を保持開口に勘合後、接着することにより、光学素子51a〜51iはそれぞれアライメントされた状態で保持される。
【0023】
図6のように、突起52の形状は三角形、楕円状、長方形等、様様な形状が考えられる。また凹部53の形状、大きさは、凹部53が形成されている保持開口13に接着される光学素子に形成されている突起52の形状、大きさと等しくなる。突起52の形状、大きさ及び対応する凹部の形状、大きさをそれぞれの光学素子及び保持部材上の保持開口ごとに変更することにより、保持部材12上において光学素子と、光学素子を接着する保持開口の組み合わせは一意に決定されるため、個々の光学素子51a〜51iの配列位置を取り違える事がない。
【0024】
第四の実施例を図7を用いて説明する。図7は第四の実施例の模式図である。また、図7において、複眼光学系14の対角線73および直線74における断面図をそれぞれ図14(a)及び(b)に示す。
【0025】
図14(a)は対角線73における断面図、図14(b)は直線74における断面図を示している。対角線73における断面は、光学素子71a、71c、71dの光軸を含む面となる。同様に直線75における断面は光学素子71a、71g、71hの光軸を含む。
【0026】
図14(a)において光学素子71c、71dの光軸の傾き角141、142の大きさは等しく,光軸の向きのみ異なる。従って、光学素子71cと71dの光学特性は等しい。
【0027】
また、図14(b)において、光学素子71g、71hの光軸は、光軸の向きは異なり、傾き角143、144の大きさは等しい。即ち、光学素子71gと71hの光学特性は各々等しい。また傾き141、142の大きさと傾き143、144の大きさは異なる。どちらの断面においても、中心の光学素子71aの光軸の向きは、撮像素子121に対し垂直な方向とする。
【0028】
また図7において、対角線73及び75における複眼光学系14の断面形状は等しく、さらに直線74及び76における断面形状も等しい。従って、71b〜71e、71f〜71iはそれぞれ同じ形状の光学素子が、光学素子71aを中心として90度ずつ回転して保持部材上12で光学素子71aの周辺に勘合される配置となる。光学素子71aは回転対称の光学素子となるため、位置合わせ基準は不要となる。光学素子71b〜71eは同じ卵型をした形状、71f〜71iは71b〜71eとは異なる卵型形状とする。
【0029】
図8は光学素子71cおよび保持開口72cの拡大図である。保持部材12にあけられる保持開口72cは、勘合される光学素子71cに合わせた卵型形状とする。光学素子が卵型形状をしているため、光学素子の取り付け位置を回転方向に間違えることなく、光学素子71cは保持開口72cに正しく勘合され、アライメントが行われる。
【0030】
同様に、図7に示すように光学素子71c〜71i及び保持開口72c〜72iの外周形状を卵型の非点対称形状とすることで、光学素子を保持開口に正しい向きに勘合するだけで光学素子のアライメントが行われる。また、2種類の卵型形状をした光学素子に関して、それぞれ勘合保持する保持開口の形状も2種類の卵型形状となり、またその同じ卵型形状をした光学素子同士は同等の光学性能を持つ光学素子であるため、光学素子の配列を取り違えることがない。光学素子71aは回転対称の光学素子であるため、位置合わせ基準を用いず保持開口72aに勘合することで光学素子71aのアライメントが行われる。
【0031】
第五の実施例を図9を用いて説明する。第五の実施例では、複眼光学系14を構成する9個の光学素子を、短冊状の光学素子部材91a〜91cに分割して作製する。光学素子部材91a〜91cはそれぞれ3つの光学素子を含む。
【0032】
光学素子部材91a〜91cには、位置合わせ基準として、それぞれ少なくとも1つの突起92もしくは凹部93を形成する。突起92及び凹部93は光学素子部材91a〜91cそれぞれで位置及び形状が異なる。突起92と凹部93を合わせることにより、光学素子部材91aと91bのアライメントが行われる。同様に光学素子部材91bの突起と光学素子部材91cの凹部を組み合わせることで、複眼光学系14を形成する。また、光学部材91aと91cにおいては、突起および凹部の位置が一致しないため、光学部材91a〜91cの配列を取り違えることはない。
【0033】
第五の実施例では、光学素子部材の形状を、3つの光学素子を含む短冊状に規定したが、少なくとも2つの光学素子を含み、かつ少なくとも1つの位置合わせ基準を持つ部材であれば、特にこの形状及び含まれる光学素子の個数を限定しない。
【0034】
第六の実施例を図10を用いて説明する。第六の実施例では、複眼を構成する光学素子101aと101bを非点対称形状をしている一つの光学素子部材102上に作製する。
【0035】
この光学素子部材102は、図11のように光学素子111を中心として、保持部材12上に回転方向に90度ずつ回転させた位置に4つ作成された保持開口112に勘合保持される。保持開口112の形状は光学素子部材102と同じ非点対称形状とする。光学素子101a、101bはそれぞれ互いに光軸の向き及び傾き量が異なる。また、光学素子111は回転対称の光学系であり、紙面に対し垂直な光軸を持つ。これら各光学素子の光軸を平面に射影した直線が図11における二点差線となる。
【0036】
また、光学素子部材102に含まれる光学素子101a、101bの撮像する視野範囲は、光学素子111の撮像する視野範囲と連続になる。この光学素子部材102及び光学素子111を図11のように配置することで、光学素子111の視野を中心とした広い範囲の視野を撮像する複眼光学系を形成する。このとき、光学素子部材102は非点対称形状をしているため、勘合する向きを取り違えることなく、保持開口112に勘合保持するだけでアライメントが行われる。また、勘合される光学素子部材は1種類であるため、配列を取り違えることもない。光学素子111は回転対称の光学系であるため、保持開口113に勘合保持するだけでアライメントが行われる。
【0037】
実施例6において、光学素子部材102に含まれる光学素子の数を2個に限定したが、光学素子部材102に含まれる光学素子が複眼光学系において、より内側の光学素子に対し連続な視野範囲を持つ光学素子が少なくとも2つ含まれていれば、その個数は限定しない。
【0038】
また、実施例1においては複眼光学系の光学素子の個数及び配列を25個の格子状、実施例2〜6では9個の格子状としたが、複眼光学系として所望の光学性能を満たしていれば、光学素子の個数及び配列構造は特にこれを制限しない。
【0039】
【発明の効果】
以上のように、複数の光学素子と、それを保持する保持部材により、複雑な形状を持つ複眼光学系を、成形の困難な一体成形ではなく、異なる形状を持った別々の光学素子として成形し、それらを組み立てることで複眼光学系を容易に作製することができる。
【0040】
また、光学素子にそれぞれ異なる形状、大きさを持った位置合わせ基準を設け、同様に保持部材にも光学素子と同じ形状、大きさを持った位置合わせ基準を形成、その両者をそろえることにより、偏心や非球面など複雑な形状を持つ光学素子のアライメントを容易に行い、かつその光学素子の配列を取り違うことなく組み立てを行うことが可能となる。
【図面の簡単な説明】
【図1】本発明における実施例1の模式図である
【図2】実施例1における光学素子及び保持開口の拡大図である
【図3】本発明における実施例2の模式図である
【図4】実施例2における光学素子及び保持開口の拡大図である
【図5】本発明における実施例3の模式図である
【図6】実施例3における光学素子及び保持開口の例である
【図7】本発明における実施例4の模式図である
【図8】実施例4における光学素子及び保持開口の拡大図である
【図9】本発明における実施例5の模式図である
【図10】本発明における実施例6の光学素子の構成である
【図11】本発明における実施例6の模式図である
【図12】本発明における複眼光学系の結像作用を説明する図である
【図13】本発明における複眼光学系の構成の模式図である
【図14】実施例4における複眼光学系の断面図である
【符号の説明】
11a〜11e 光学素子
12  保持部材
13a〜13e 保持開口
14  複眼光学系
21  光線有効領域
22  外周
23a 位置合わせ基準
24a 位置合わせ基準
31a〜31i 光学素子
32a〜32i 保持開口
51a〜51i 光学素子
52  突起
53  凹部
71a〜71i 光学素子
72a〜72i 保持開口
73,75 対角線
74,76 直線
91a〜91c 光学素子部材
92  突起
93  凹部
101a〜101b 光学素子
102 光学素子部材
111 光学素子
112 保持開口
121 撮像素子
122a〜122e 光学素子
123a〜123e 撮像素子領域
131 光学素子
141〜144 傾き角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound-eye optical system including an optical element including a plurality of lenses and an image pickup element, and attaching differently shaped lenses, each of which is individually shaped, to a holding member, and providing an alignment reference to the optical element and the holding member. The present invention relates to a method for configuring a compound-eye optical system that facilitates alignment of an optical system and prevents mounting errors of an optical element.
[0002]
[Prior art]
In recent imaging systems, in addition to general cameras, miniaturization is desired in order to mount them on notebook personal computers and other information portable terminals. In response to such a demand, a compound eye optical system has been proposed which realizes a thinner and smaller size by using an optical element in which a plurality of lenses are arranged in parallel as a photographing optical system. As an image pickup system including a lens array in which a plurality of lenses are arranged in parallel and an image pickup device, there is a small digital camera disclosed in Japanese Patent Application Laid-Open No. 10-145806.
[0003]
[Problems to be solved by the invention]
In such a lens array, when each lens is configured to capture a different field of view, a complex lens shape is required in which the normal direction of the lens or the lens shape is different from each other. It will be difficult. Further, even if the molding itself is possible, it is necessary to satisfy a certain optical performance with all the lenses in the array, and the yield is reduced.
[0004]
Further, in the case of forming a compound eye optical system by molding lenses individually and assembling them, it is necessary to adjust the optical axis of each lens, so that the assembling process becomes very complicated. Further, in a compound-eye optical system composed of a large number of lenses, there is a possibility that the mounting positions of the lenses may be mistaken in the lens assembling process.
[0005]
Therefore, in the present invention, in a compound-eye optical system configured by assembling an individually molded lens and a lens holding member, a method of configuring a compound-eye optical system that can facilitate lens alignment and prevent lens mounting errors is presented. Is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a plurality of optical elements having an imaging action, a holding member for holding the plurality of optical elements, and at least an image of a subject image formed by the optical elements In a compound-eye optical system including one image sensor, the optical element is fitted or adhered to the holding member, and a reference for positioning is provided in the optical element.
[0007]
Further, the plurality of optical elements image different visual field regions, and the plurality of optical elements are provided with different references.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 13 is a configuration diagram of the compound eye optical system according to the first embodiment of the present invention as viewed from the object side. In FIG. 13, some of the components are cut away for the sake of explanation. FIG. 1 is a schematic diagram of a compound-eye optical system according to the first embodiment. FIG. 12 shows a configuration diagram of an optical system according to the first embodiment. 1 and 12 are cross-sectional views taken along a plane including the optical axis of the compound eye optical system of the present invention.
[0009]
First, the image forming operation of the present optical system will be described with reference to FIG.
[0010]
In FIG. 12, the optical system includes optical elements 112 a to 112 e having an image forming function and an image sensor 121. The optical elements 112a to 112e are formed of a transparent material such as glass or plastic. The image sensor 121 is divided into image sensor regions 123a to 123e according to the number of optical elements as shown in FIG. Each imaging element region is constituted by a plurality of image detection elements.
[0011]
In FIG. 12, a chain line indicates an optical axis of each optical element. The optical axis is defined by a line connecting each optical element and the center of the corresponding imaging element region. Since the optical axis of each optical element is arranged obliquely with respect to the optical axes of the other optical elements, the subject areas to be imaged by each optical element are different from each other. The optical element 112a forms an image on the imaging element region 123a and is imaged by the imaging element region 123a. Similarly, an image obtained by each optical element is captured by a corresponding imaging element region. As described above, by capturing images of different object areas by using a plurality of optical elements, it is possible to image a wide object area as the whole compound eye optical system. In such a compound-eye optical system, since the optical axis of each optical element is inclined, it is desirable to set the lens shape of each optical element so that aberration is minimized at the inclination of the optical axis. In, the lens shape of each optical element is configured differently.
[0012]
In this embodiment, the optical elements 123a to 123e are separately formed. In molding, it is molded by a technique such as molding, pressing, or injection molding. In general, in these molding methods, it is necessary to appropriately set the shape of the mold and the pressure at the time of molding in order to obtain a desired optical surface shape. It is difficult to set.
[0013]
In this embodiment, since each optical element is separately molded as described above, each optical element can be molded under optimal conditions, and the molding process can be simplified, and molding can be performed under optimal conditions. By doing so, the yield of optical elements can be improved.
[0014]
Next, the assembly adjustment of the optical element in this embodiment will be described.
[0015]
FIG. 1 is a diagram showing a configuration in which a plurality of optical elements forming a compound eye are aligned in a compound-eye optical system that performs photographing by dividing the photographing range.
[0016]
FIG. 1 is a sectional view of a compound eye optical system 14 including a plurality of optical elements 11a to 11e constituting a compound eye optical system and a holding member 12 holding the optical elements. Each of the plurality of optical elements 11a to 11e is fitted and held in a corresponding holding opening 13a to 13e formed in the holding member 12 as shown in FIG. The compound eye optical system 14 in which the elements 11a to 11e are arranged in parallel is formed.
[0017]
FIG. 2 is an enlarged view of the optical element 11a and the holding opening 13a. In all of the following drawings, components having the same reference numerals in the drawings have the same functions, and description thereof will be omitted. The optical element 11a is divided into a light beam effective area 21 and an outer periphery 22, and the outer periphery 22 is provided with a positioning reference 23a. The alignment reference 23a is aligned with the alignment reference 24a provided around the holding opening 13a on the holding member 12, and the optical element 11a is easily aligned by bonding after fitting. Similarly, in the optical elements 11b to 11e, a positioning reference is formed on the outer periphery of the optical element. The shape of the positioning reference is different from that of the positioning reference 23a, for example, a triangle or a quadrangle.
[0018]
Further, the positioning reference having the same shape as the positioning reference formed in the optical elements 11b to 11e is also formed in the holding openings 13b to 13e formed on the holding member 12. By aligning the alignment references with each other, the optical elements 11b to 11e are aligned, and are bonded and held after fitting into the holding openings 13b to 13e. Further, since the alignment reference shape is different, the mounting position of each optical element is not confused.
[0019]
A second embodiment will be described with reference to FIG. FIG. 3 shows a compound eye optical system including nine optical elements 31a to 31i. In a two-dimensionally arranged compound eye optical system, each of the optical elements 31a to 31i has a different field of view and a different shape. The optical elements 31a to 31i are fitted into holding openings 32a to 32i on the holding member 12, respectively.
[0020]
FIG. 4 is an enlarged view of one optical element 31a in FIG. As shown in FIG. 4, at least one alignment reference 23a is provided on the outer periphery 22 of the optical element. The shape and position of the alignment reference 23a differ for each optical element. For example, in FIG. 3, in the optical element 31a, two circular marks are formed at positions rotated by 135 degrees in the circumferential direction as a positioning reference, but the positioning reference of the optical element 31c is two circular marks. The mark is formed at a position rotated by 180 degrees in the circumferential direction.
[0021]
Similarly to the positioning reference 23a, the optical element 31a is inserted into the holding opening 32a having the positioning reference 24a formed at a position where two circular marks are rotated by 135 degrees in the circumferential direction. Are held so as to coincide with the alignment reference 24a. Similarly, by fitting the plurality of optical elements 32b to 32i into the holding openings 32b to 32i in which the shape and position of the alignment reference coincide with each other, the optical elements 32a to 32i are aligned. And constitute the compound eye optical system 14. Further, by changing the shape and position of the mark serving as a reference for alignment for each optical element and each holding opening, it is possible to prevent the arrangement of the optical elements from being mistaken at the time of assembly.
[0022]
A third embodiment will be described with reference to FIG. In the third embodiment, a projection 52 is provided on the outer edge of each of the optical elements 51a to 51i, and is used as a reference for positioning. At least one projection 52 is provided on the outer edge of each of the optical elements 51a to 51i, and the shape and size of the projections 52 are different for each optical element. The holding openings 32a to 32i formed on the holding member 12 are provided with recesses 53 having a shape and size corresponding to the projections 52. The projections 52 are aligned with the recesses 53, and the optical elements are fitted into the holding openings. Thereafter, by bonding, the optical elements 51a to 51i are held in an aligned state.
[0023]
As shown in FIG. 6, various shapes such as a triangle, an ellipse, and a rectangle are conceivable. The shape and size of the recess 53 are equal to the shape and size of the projection 52 formed on the optical element adhered to the holding opening 13 in which the recess 53 is formed. By changing the shape and size of the projection 52 and the shape and size of the corresponding recess for each optical element and each holding opening on the holding member, the holding of the optical element and the optical element on the holding member 12 is performed. Since the combination of the openings is uniquely determined, the arrangement positions of the individual optical elements 51a to 51i are not confused.
[0024]
A fourth embodiment will be described with reference to FIG. FIG. 7 is a schematic diagram of the fourth embodiment. Further, in FIG. 7, cross-sectional views of the compound eye optical system 14 taken along diagonal lines 73 and straight lines 74 are shown in FIGS. 14A and 14B, respectively.
[0025]
FIG. 14A is a sectional view taken along a diagonal line 73, and FIG. 14B is a sectional view taken along a straight line 74. The cross section along the diagonal line 73 is a plane including the optical axes of the optical elements 71a, 71c, and 71d. Similarly, the cross section of the straight line 75 includes the optical axes of the optical elements 71a, 71g, and 71h.
[0026]
In FIG. 14A, the inclination angles 141 and 142 of the optical axes of the optical elements 71c and 71d are equal, and only the direction of the optical axis differs. Therefore, the optical characteristics of the optical elements 71c and 71d are equal.
[0027]
In FIG. 14B, the optical axes of the optical elements 71g and 71h have different directions of the optical axis, and the inclination angles 143 and 144 have the same magnitude. That is, the optical characteristics of the optical elements 71g and 71h are equal to each other. The magnitudes of the inclinations 141 and 142 are different from the magnitudes of the inclinations 143 and 144. In both cross sections, the direction of the optical axis of the central optical element 71 a is perpendicular to the image sensor 121.
[0028]
In FIG. 7, the cross-sectional shapes of the compound eye optical system 14 at diagonal lines 73 and 75 are equal, and the cross-sectional shapes at straight lines 74 and 76 are also equal. Accordingly, the optical elements 71b to 71e and 71f to 71i are arranged such that the optical elements having the same shape are rotated by 90 degrees around the optical element 71a and fitted around the optical element 71a on the holding member 12. Since the optical element 71a is a rotationally symmetric optical element, a positioning reference is not required. The optical elements 71b to 71e have the same egg shape, and 71f to 71i have an egg shape different from 71b to 71e.
[0029]
FIG. 8 is an enlarged view of the optical element 71c and the holding opening 72c. The holding opening 72c opened in the holding member 12 has an egg shape that matches the optical element 71c to be fitted. Since the optical element has an oval shape, the optical element 71c is correctly fitted into the holding opening 72c and alignment is performed without making a mistake in the mounting position of the optical element in the rotation direction.
[0030]
Similarly, as shown in FIG. 7, by making the outer peripheral shapes of the optical elements 71c to 71i and the holding openings 72c to 72i into an egg-shaped astigmatic symmetry, the optical element can be merely fitted into the holding opening in the correct direction. Element alignment is performed. In addition, with respect to the two kinds of egg-shaped optical elements, the shape of the holding opening for fitting and holding becomes two kinds of egg-shaped shapes, and the same egg-shaped optical elements have the same optical performance. Since they are elements, the arrangement of the optical elements does not get confused. Since the optical element 71a is a rotationally symmetric optical element, the optical element 71a is aligned by fitting it into the holding opening 72a without using a positioning reference.
[0031]
A fifth embodiment will be described with reference to FIG. In the fifth embodiment, nine optical elements constituting the compound eye optical system 14 are manufactured by being divided into strip-shaped optical element members 91a to 91c. Each of the optical element members 91a to 91c includes three optical elements.
[0032]
At least one projection 92 or recess 93 is formed on each of the optical element members 91a to 91c as a positioning reference. The positions and shapes of the projections 92 and the recesses 93 are different among the optical element members 91a to 91c. The alignment of the optical element members 91a and 91b is performed by aligning the projections 92 and the concave portions 93. Similarly, the compound eye optical system 14 is formed by combining the protrusion of the optical element member 91b and the recess of the optical element member 91c. In addition, since the positions of the projections and the concave portions of the optical members 91a and 91c do not match, the arrangement of the optical members 91a to 91c is not confused.
[0033]
In the fifth embodiment, the shape of the optical element member is defined as a strip including three optical elements. However, if the optical element member includes at least two optical elements and has at least one alignment reference, it is particularly preferable. The shape and the number of optical elements included are not limited.
[0034]
A sixth embodiment will be described with reference to FIG. In the sixth embodiment, the optical elements 101a and 101b constituting the compound eye are manufactured on one optical element member 102 having an astigmatic symmetry.
[0035]
As shown in FIG. 11, the optical element member 102 is fitted and held in four holding openings 112 formed at positions rotated by 90 degrees in the rotation direction on the holding member 12 around the optical element 111 as shown in FIG. The shape of the holding opening 112 is the same asymmetry of the optical element member 102. The optical elements 101a and 101b are different from each other in the direction and tilt amount of the optical axis. The optical element 111 is a rotationally symmetric optical system, and has an optical axis perpendicular to the paper surface. A straight line obtained by projecting the optical axis of each of these optical elements onto a plane is a two-dot line in FIG.
[0036]
The field of view of the optical elements 101a and 101b included in the optical element member 102 is continuous with the field of view of the optical element 111. By arranging the optical element member 102 and the optical element 111 as shown in FIG. 11, a compound eye optical system for imaging a wide field of view centered on the field of view of the optical element 111 is formed. At this time, since the optical element member 102 has a non-point symmetric shape, alignment is performed only by fitting and holding the holding opening 112 without changing the fitting direction. Further, since only one kind of optical element member is fitted, there is no possibility that the arrangement is confused. Since the optical element 111 is a rotationally symmetric optical system, alignment is performed only by fitting it into the holding opening 113.
[0037]
In the sixth embodiment, the number of optical elements included in the optical element member 102 is limited to two. However, in the compound eye optical system, the optical element included in the optical element member 102 has a continuous visual field range with respect to the inner optical element. The number is not limited as long as at least two optical elements having are included.
[0038]
Further, in the first embodiment, the number and the arrangement of the optical elements of the compound eye optical system are set to 25 grids, and in the second to sixth embodiments, the number and the array are set to 9 grids. However, the desired optical performance is satisfied as the compound eye optical system. If so, the number and arrangement structure of the optical elements are not particularly limited.
[0039]
【The invention's effect】
As described above, by using a plurality of optical elements and a holding member for holding the same, a compound-eye optical system having a complicated shape is formed as separate optical elements having different shapes, instead of integrally forming which is difficult to form. By assembling them, a compound-eye optical system can be easily manufactured.
[0040]
In addition, by providing a positioning reference having a different shape and size for each optical element, similarly forming a positioning reference having the same shape and size as the optical element on the holding member, and aligning both, It is possible to easily align an optical element having a complicated shape such as eccentricity or an aspherical surface, and to assemble the optical element without changing the arrangement of the optical element.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a first embodiment of the present invention. FIG. 2 is an enlarged view of an optical element and a holding opening in the first embodiment. FIG. 3 is a schematic diagram of a second embodiment of the present invention. 4 is an enlarged view of an optical element and a holding opening in Embodiment 2. FIG. 5 is a schematic view of Embodiment 3 in the present invention. FIG. 6 is an example of an optical element and holding opening in Embodiment 3. 7 is a schematic view of Embodiment 4 of the present invention. FIG. 8 is an enlarged view of an optical element and a holding opening in Embodiment 4. FIG. 9 is a schematic view of Embodiment 5 of the present invention. FIG. 11 is a schematic view of an optical element according to Embodiment 6 of the present invention. FIG. 11 is a schematic view of Embodiment 6 of the present invention. FIG. 12 is a diagram illustrating an image forming action of a compound eye optical system according to the present invention. 13 is a schematic diagram of a configuration of a compound eye optical system according to the present invention [ 14 is a cross-sectional view of a compound eye optical system in Example 4 [Description of symbols]
11a to 11e Optical element 12 Holding members 13a to 13e Holding opening 14 Compound eye optical system 21 Ray effective area 22 Outer periphery 23a Positioning reference 24a Positioning reference 31a to 31i Optical element 32a to 32i Holding opening 51a to 51i Optical element 52 Projection 53 Concave part 71a to 71i Optical elements 72a to 72i Holding openings 73, 75 Diagonal lines 74, 76 Straight lines 91a to 91c Optical element members 92 Projections 93 Recesses 101a to 101b Optical elements 102 Optical element members 111 Optical elements 112 Holding openings 121 Imaging elements 122a to 122e Optics Elements 123a to 123e Image sensor area 131 Optical elements 141 to 144 Tilt angle

Claims (9)

結像作用を有する複数の光学素子と、該複数の光学素子を保持する保持部材と、該光学素子にて結像される被写体像を撮像する少なくとも1つの撮像素子からなる複眼光学系において、前記光学素子は、前記保持部材に保持されると共に、前記光学素子に位置合わせ用の基準が設けられていることを特徴とする複眼光学系。In a compound-eye optical system including a plurality of optical elements having an imaging function, a holding member that holds the plurality of optical elements, and at least one image sensor that captures a subject image formed by the optical elements, The compound eye optical system, wherein the optical element is held by the holding member, and a reference for alignment is provided in the optical element. 前記光学素子の基準が、光学素子の光線有効領域外に設けられたマークであることを特徴とする請求項1記載の複眼光学系。2. The compound eye optical system according to claim 1, wherein the reference of the optical element is a mark provided outside a light beam effective area of the optical element. 前記光学素子の基準が、光学素子外周に設けられた突起であることを特徴とする請求項1記載の複眼光学系。The compound eye optical system according to claim 1, wherein the reference of the optical element is a protrusion provided on an outer periphery of the optical element. 前記光学素子の基準が、非点対称に構成された外周形状であることを特徴とする請求項1記載の複眼光学系。The compound eye optical system according to claim 1, wherein the reference of the optical element is an outer peripheral shape configured to be astigmatically symmetric. 前記複眼光学系を構成する複数の光学素子には、互いに異なる基準を設けてあることを特徴とする請求項1記載の複眼光学系。2. The compound eye optical system according to claim 1, wherein the plurality of optical elements constituting the compound eye optical system have different references. 前記複眼光学系を構成する光学素子は、光学素子のいくつかが一体で構成されることを特徴とする請求項1記載の複眼光学系。2. The compound eye optical system according to claim 1, wherein some of the optical elements constituting the compound eye optical system are integrally formed. 前記複数の光学素子は、互いに異なる視野領域を撮像することを特徴とする請求項1記載の複眼光学系。The compound eye optical system according to claim 1, wherein the plurality of optical elements image different visual field regions. 前記複数の光学素子の保持方法は、前記保持部材と前記複数の光学素子の勘合であることを特徴とする請求項1記載の複眼光学系。The compound eye optical system according to claim 1, wherein the method of holding the plurality of optical elements includes fitting the holding member and the plurality of optical elements. 前記複数の光学素子の保持方法は、保持部材への接着であることを特徴とする請求項1記載の複眼光学系。The compound eye optical system according to claim 1, wherein the method of holding the plurality of optical elements is bonding to a holding member.
JP2002181306A 2002-06-21 2002-06-21 Compound eye optical system Pending JP2004029101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181306A JP2004029101A (en) 2002-06-21 2002-06-21 Compound eye optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181306A JP2004029101A (en) 2002-06-21 2002-06-21 Compound eye optical system

Publications (1)

Publication Number Publication Date
JP2004029101A true JP2004029101A (en) 2004-01-29

Family

ID=31178181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181306A Pending JP2004029101A (en) 2002-06-21 2002-06-21 Compound eye optical system

Country Status (1)

Country Link
JP (1) JP2004029101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1585122A2 (en) * 2004-04-07 2005-10-12 Thomson Licensing Device for reading from and/or writing to optical recording media
CN102937733A (en) * 2012-10-24 2013-02-20 江苏大学 Adjustable compound eye structure optical receiver with visible light wireless communication large view field
WO2014042164A1 (en) * 2012-09-11 2014-03-20 コニカミノルタ株式会社 Imaging device and lens unit
CN104950416A (en) * 2014-03-26 2015-09-30 优志旺电机株式会社 Optical part and making method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1585122A2 (en) * 2004-04-07 2005-10-12 Thomson Licensing Device for reading from and/or writing to optical recording media
EP1585122A3 (en) * 2004-04-07 2007-02-07 Thomson Licensing Device for reading from and/or writing to optical recording media
US7428113B2 (en) 2004-04-07 2008-09-23 Thomson Licensing Device for reading from and/or writing to optical recording media
CN100456370C (en) * 2004-04-07 2009-01-28 汤姆森特许公司 Device for reading from and/or writing to optical recording media
WO2014042164A1 (en) * 2012-09-11 2014-03-20 コニカミノルタ株式会社 Imaging device and lens unit
CN102937733A (en) * 2012-10-24 2013-02-20 江苏大学 Adjustable compound eye structure optical receiver with visible light wireless communication large view field
CN104950416A (en) * 2014-03-26 2015-09-30 优志旺电机株式会社 Optical part and making method thereof
JP2015187624A (en) * 2014-03-26 2015-10-29 ウシオ電機株式会社 Optical member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4275717B2 (en) Imaging device
US9507129B2 (en) Apparatus comprising a compact catadioptric telescope
JP4147273B2 (en) Compound eye camera module and manufacturing method thereof
US8953087B2 (en) Camera system and associated methods
JP2008129606A (en) Lens assembly and manufacturing method thereof
JP3462736B2 (en) Solid-state imaging device
JPWO2006109638A1 (en) Solid-state imaging device and manufacturing method thereof
JP2004304605A (en) Small size camera module
US20140118834A1 (en) Compound-Eye Unit
US20120113276A1 (en) Multi-Camera
JP4691674B2 (en) Optical unit, imaging device, and portable terminal
JP2006251613A (en) Imaging lens device
KR20170061990A (en) Camera module for taking picture using visible light or infrared ray
JP2005018024A (en) Lens unit, imaging unit equipped with lens unit, and portable terminal
JP4248586B2 (en) IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND PORTABLE INFORMATION TERMINAL AND IMAGING DEVICE WITH THE IMAGING DEVICE
JP4708970B2 (en) Focus detection device and imaging device having the focus detection device
JP2004029101A (en) Compound eye optical system
JP4185236B2 (en) Solid-state imaging device and imaging apparatus
WO2015019768A1 (en) Lens array, lens array stack, and method for fabrication thereof
JP2001005054A (en) Image pickup device
JP2005176117A (en) Imaging apparatus
JP5621615B2 (en) Imaging device
JP2002354301A (en) Imaging device
JP2002171447A (en) Compound eye imaging system, imaging device and electronic equipment
JP4314476B2 (en) Imaging device