JP2004028558A - Exhaust gas temperature reducing method using hot water and its device - Google Patents

Exhaust gas temperature reducing method using hot water and its device Download PDF

Info

Publication number
JP2004028558A
JP2004028558A JP2003118325A JP2003118325A JP2004028558A JP 2004028558 A JP2004028558 A JP 2004028558A JP 2003118325 A JP2003118325 A JP 2003118325A JP 2003118325 A JP2003118325 A JP 2003118325A JP 2004028558 A JP2004028558 A JP 2004028558A
Authority
JP
Japan
Prior art keywords
temperature
hot water
water
exhaust gas
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118325A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sato
佐藤 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003118325A priority Critical patent/JP2004028558A/en
Publication of JP2004028558A publication Critical patent/JP2004028558A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To constantly and stably spray a necessary amount of pressurized hot water and prevent dispersion of atomized particle size even when a spray amount of the pressurized hot water is reduced or a temperature of the pressurized hot water drops in activation and deactivation of a combustion device in regard to temperature reducing method for exhaust gas using the pressurized hot water. <P>SOLUTION: In the exhaust gas temperature reducing method using the hot water in a combustion furnace or a boiler facility using the pressurized hot water with a temperature higher than a boiling point of water under atmospheric pressure as temperature reducing water and spraying it into the exhaust gas, a temperature reducing water spray nozzle spraying the hot water into the exhaust gas as the temperature reducing water can provide both two fluid spraying and one fluid spraying, and a nozzle conduit attached with the temperature reducing water spray nozzle in a tip is a double wall structure. The hot water is sprayed into the exhaust gas by a two fluid spraying method by passing the hot water through an outer passage of the nozzle conduit with the double wall structure, and passing pressurized air through an inner passage of the nozzle conduit when a pressure of the hot water drops to a vicinity of a saturation vapor pressure at that temperature or a temperature of the pressurized hot water drops to a saturation temperature or less at a pressure of its spray area. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却炉やボイラ等の燃焼装置から排出される排ガスの処理に利用されるものであり、加圧熱水を排ガス内へ噴霧するようにした排ガス減温システムに於いて、燃焼装置の立上げや立下げ時等の加圧熱水の噴霧量が減少したような場合や、加圧熱水の温度が低下したような場合でも、安定した所要量の加圧熱水の噴霧を行なえると共に、噴霧粒の粒径の増大を有効に防止できるようにした熱水を利用した排ガス減温方法とその装置に関するものである。
【0002】
【従来の技術】
出願人は先きに、図5に示す如き熱水を利用した排ガス減温方法を開発し、これを特開2000−274654号として公開している。
即ち図5に於いて、1はガス冷却室、1aは排ガス入口、1bは排ガス出口、1cは灰出口、1dは灰出フィーダー、3は減温水量制御弁、4は温度制御装置、4aは出口側排ガス温度検出器、4bは入口側排ガス温度検出器、12は熱水タンク、13はポンプ、14は減温水ノズル、15は配管路、Ghは高温排ガス、Glは低温排ガス、Cは灰、Wtは加圧熱水、Wは水、Sは加熱用蒸気であり、大気圧に於ける水の沸点(100℃)よりも高温に保持された加圧熱水を、減温水ノズル14から高温排ガスGh内へ噴霧して短時間内に急速蒸発させることにより、加圧熱水の蒸発潜熱と水蒸気の顕熱により高温排ガスGhを減温するよう構成されている。
【0003】
上記図5に示した熱水を利用した排ガス減温方法は、従前の低温水を利用した排ガス減温方法に比較して、▲1▼水滴の付着等によるガス冷却室壁面の損傷や壁面へのダスト堆積等のトラブルが防止できること、▲2▼ガス冷却室の大幅な小型化が図れること及び▲3▼排ガス減温設備の簡素化やランニングコストの引下げが図れること、等の点で優れた実用的効用を奏するものである。
【0004】
【発明が解決しようとする課題】
しかし、上記図5に示した従前の熱水を利用した排ガス減温方法は解決すべき問題が多く残されており、その中でも、加圧熱水Wtの供給量が減少した場合や、加圧熱水の温度が低下した場合に、減温水ノズル14からの噴霧量が不安定になり易いことが、早急に解決を要する問題として残されている。
【0005】
即ち、前記減温水ノズル14から噴霧する加圧熱水Wtの流量は減温水量制御弁3の開閉制御により制御されている。そのため、都市ごみ焼却炉(燃焼装置)の立上げや立下げ時に、減温水量制御弁3を絞って加圧熱水Wtの噴霧量を減少させると、減温水量制御弁3の流路抵抗の増大と加圧熱水Wtの流量減少とが相俟って、加圧熱水Wtの圧力がその温度に於ける飽和蒸気圧付近にまで低下してしまうことになる。その結果、減温水量制御弁3から減温水ノズル14までの配管路15内で加圧熱水Wtの一部が蒸発することになり、減温水ノズル14からの加圧熱水Wtの噴霧量が不安定になったり、噴霧粒径が大きくなったりする。また、立上げや立下げ時に加圧熱水が得られない場合には、減温効果が悪化したり、噴霧粒径が大きくなったりする。
【0006】
本願発明は、従前の加圧熱水を利用した排ガス減温方法に於ける上述の如き問題、即ち加圧熱水Wtの供給量が減少した場合や、加圧熱水の温度が低下した場合に、減温水ノズルからの熱水の噴霧量が不安定になったり、噴霧粒径が増大する等の問題を解決せんとするものであり、燃焼装置の立上げや立下げ時等に於いても、常に必要量の加圧熱水を安定して噴霧することができると共に、噴霧粒径の増大もほぼ完全に防止できるようにした熱水を利用した排ガス減温方法とこれに用いる排ガス減温装置を提供するものである。
【0007】
【課題を解決するための手段】
本願発明の請求項1に記載の発明は、大気圧下で水の沸点よりも高い温度の加圧熱水を減温水として排ガス内へ噴霧するようにした焼却炉やボイラ設備における熱水を利用した排ガス減温方法に於いて、加圧熱水を減温水として排ガス内へ噴霧する減温水噴霧ノズルを二流体噴霧と一流体噴霧の両方が可能な減温水噴霧ノズルとすると共に、加圧熱水の噴霧量の減少時に、減温水量制御弁の下流側に於ける前記加圧熱水の圧力がその温度での飽和蒸気圧の近傍にまで低下したとき、又は加圧熱水の温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときには、前記減温水噴霧ノズルへ加圧空気を流通させ、二流体噴霧方式により排ガス内へ加圧熱水を噴霧するようにしたことを発明の基本構成とするものである。
【0008】
本願発明の請求項2に記載の発明は、大気圧下で水の沸点よりも高い温度の加圧熱水を減温水として排ガス内へ噴霧するようにした焼却炉やボイラ設備における熱水を利用した排ガス減温方法に於いて、加圧熱水を減温水として排ガス内へ噴霧する減温水噴霧ノズルを二流体噴霧と一流体噴霧の両方が可能な減温水噴霧ノズルとすると共に、先端に減温水噴霧ノズルを取付けしたノズル導管を二重壁構造のノズル導管とし、当該二重壁構造のノズル導管の外側通路に加圧熱水を流通させると共に、当該加圧熱水の圧力がその温度での飽和蒸気圧の近傍にまで低下したとき、又は加圧熱水の温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときには、前記ノズル導管の内側通路に加圧空気を流通させ、二流体噴霧方式により排ガス内へ加圧熱水を噴霧するようにしたことを発明の基本構成とするものである。
【0009】
請求項3に記載の発明は、請求項1又は請求項2の発明に於いて、加圧熱水を減温水としてガス冷却室又は排ガスダクト内へ噴霧するようにしたものである。
【0010】
請求項4に記載の発明は、請求項2又は請求項3の発明に於いて、ノズル導管内の加圧熱水の圧力がその温度での飽和蒸気圧+0.1(MPaG)以下に低下したとき、又は加圧熱水の温度がその噴霧場の圧力での飽和温度+20℃以下に低下したときにに、加圧空気を流通させるようにしたものである。
【0011】
請求項5に記載の発明は、請求項2又は請求項3の発明に於いて、二流体噴霧方式のときの加圧空気の流量を、排ガス内へ噴霧する加圧熱水の流量に対して比例させる制御とするようにしたものである。
【0012】
請求項6に記載の発明は、ガス入口とガス出口とを備えたガス冷却室又は排ガスダクトと、大気圧下で水の沸点よりも高い温度の加圧熱水を供給する加圧熱水の供給源と、加圧熱水の供給源からの加圧熱水をガス冷却室又は排ガスダクト内へ噴霧する減温水噴霧ノズルと、減温水噴霧ノズルへ供給する加圧熱水量を調整する減温水量制御弁と、ガス入口から流入する高温排ガスとガス出口から流出する低温排ガスの何れか一方又は両方の温度検出器と、前記温度検出器からの検出信号により減温水量制御弁を開閉制御する温度制御装置とから成る熱水を利用した排ガス減温装置に於いて、前記減温水噴霧ノズルを一流体噴霧と二流体噴霧の両方が可能な減温水噴霧ノズルとし、また前記減温水噴霧ノズルと減温水量制御弁との間に混合器を設け、当該混合器へ加圧空気制御弁を介設して圧縮空気供給装置を連結し、更に、前記減温水量制御弁の下流側に加圧熱水の圧力検出器及び温度検出器を設け、当該圧力検出器の検出圧力が加圧熱水のその温度での飽和蒸気圧の近傍にまで低下したとき、又は温度検出器の検出温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときに、加圧空気制御装置を介して前記加圧空気制御弁を開閉制御し、二流体噴霧方式により排ガス内へ加圧熱水を噴霧するようにしたことを発明の基本構成とするものである。
【0013】
本願の請求項7に記載の発明は、ガス入口とガス出口とを備えたガス冷却室又は排ガスダクトと、大気圧下で水の沸点よりも高い温度の加圧熱水を供給する加圧熱水の供給源と、加圧熱水の供給源からの加圧熱水をガス冷却室又は排ガスダクト内へ噴霧する減温水噴霧ノズルと、減温水噴霧ノズルへ供給する加圧熱水量を調整する減温水量制御弁と、ガス入口から流入する高温排ガスとガス出口から流出する低温排ガスの何れか一方又は両方の温度検出器と、前記温度検出器からの検出信号により減温水量制御弁を開閉制御する温度制御装置とから成る熱水を利用した排ガス減温装置に於いて、前記減温水噴霧ノズルを一流体噴霧と二流体噴霧の両方が可能な減温水噴霧ノズルとし、また前記減温水噴霧ノズルと減温水量制御弁間のノズル導管を二重壁構造の導管としてその内側通路を加圧空気の流通路にすると共に外側通路を加圧熱水の通路とし、更に、前記ノズル導管の内側通路へ加圧空気制御弁を介設して圧縮空気供給装置を連結すると共に、前記ノズル導管に外側通路内の加圧熱水の圧力検出器及び温度検出器を設け、当該圧力検出器の検出圧力が加圧熱水のその温度での飽和蒸気圧の近傍にまで低下したとき、又は又は温度検出器の検出温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときには、加圧空気制御装置を介して前記加圧空気制御弁を開閉制御し、二流体噴霧方式により排ガス内へ加圧熱水を噴霧するようにしたことを発明の基本構成とするものである。
【0014】
請求項8の発明は、請求項6又は請求項8の発明に於いて、圧力検出器の検出圧力が、加圧熱水のその温度での飽和蒸気圧+0.1(MPaG)以下に低下したとき、又は温度検出器の検出温度が、その噴霧場の圧力での飽和温度+20℃以下に低下したときに、加圧空気制御弁を開放するようにしたものである。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明の第1実施形態に係る排ガス減温方法とこれに用いる装置の説明図であり、図に於いて1はガス冷却室、1aは排ガス入口、1bは排ガス出口、1cは灰出口、1dは灰出フィーダー、2は減温水噴霧ノズル、3は減温水量制御弁、4は温度制御装置、4a・4bは温度検出器、5は加圧空気制御弁、6は加圧空気制御装置、6aは圧力検出器、6bは加圧熱水の温度検出器、7はノズル導管、Ghは高温排ガス、Glは低温排ガス、Cは灰、Wtは加圧熱水、Aは加圧空気である。
また、図2は、減温水噴霧ノズル2と減温水量制御弁3との間を連結するノズル導管7の断面図であり、ノズル導管7は外管7aと内管7bとから成る二重壁構造の導管であって、外側通路7cを減温水(加圧熱水)Wtが、また内側通路7dを加圧空気Aが夫々流通する。
【0016】
本発明に於いては、前記減温水噴霧ノズル2として一流体噴霧と二流体噴霧の両方が可能なノズルが使用されており、後述する如く燃焼装置(図示省略)が定常運転中等の加圧熱水Wtの噴霧量が多い場合には、加圧熱水Wtのみを噴霧する一流体噴霧ノズルとして作動される。また、燃焼装置の立上げや立下げ時等の加圧熱水Wtの噴霧量が少ない場合や、加圧熱水Wtの温度が低下した場合には、加圧空気Aと加圧熱水Wtとを混合噴霧する二流体噴霧ノズルとして作動される。
【0017】
尚、減温水噴霧ノズル2の構造は、一流体噴霧と二流体噴霧との切換噴霧が可能な構造のものであれば如何なる構造のものであってもよく、図1の実施形態に於いては、減温水噴霧ノズル2の噴出口の手前に於いて加圧熱水Wtの流れの中央部へ加圧空気Aを混入させ、両者の混合体を噴出口から外方へ向けて噴射させる構造のノズルを使用している。
【0018】
前記減温水(加圧熱水)Wtは、大気圧下に於ける沸点(100℃)よりも高温度の水(加圧熱水)であり、その温度における飽和蒸気圧以上の圧力を保持するものである。この加圧熱水Wtの圧力は通常0.1〜10MPaGの間に選定されており、廃熱ボイラや熱水貯留タンク等の熱水供給源(図示省略)の設備面から、加圧熱水Wtの圧力は0.3〜1.0MPaG位とするのが望ましい。
【0019】
前記加圧空気Aの空気源としてはコンプレッサー等が使用されており、その圧力は加圧熱水Wtの圧力に近い値に設定されている。具体的には、加圧空気Aの圧力は0.1〜10MPaGの間、望ましくは0.3〜0.7MPaGの圧力に設定されている。
【0020】
尚、図1に於けるガス冷却室1や減温水量制御弁3、温度制御装置4等の構成は、前記特開2000−274654号の場合と略同一であるため、ここではその説明を省略する。
また、図1では、ガス冷却室1内に於ける高温排ガスGhの減温について記載しているが、本発明を排ガスダクト(図示省略)内に於ける高温排ガスGhの減温にも適用できることは勿論である。
更に、図1に於いては、加圧熱水Wtとして通常の水を利用しているが、高温排ガスGh内の酸性ガスを除去するために、アルカリ性溶液等を含んだ水を加圧熱水Wtとしてもよいことは勿論である。
【0021】
次に、本発明による高温排ガスGhの減温について説明する。
図1及び図2を参照して、燃焼装置(図示省略)等が定常運転中であって減温水量(加圧熱水量)が相対的に多い場合には、加圧空気制御弁5は閉鎖されている。その結果、加圧熱水Wtは減温水量制御弁3を通してノズル導管7の外側通路7c内へ導入され、減温水噴霧ノズル2から所謂一流体噴霧方式により高温排ガスGh内へ噴霧される。
【0022】
尚、加圧熱水Wtの噴霧量は、高温排ガスGhの温度検出器4b及び低温排ガスGlの温度検出器4aからの各検出信号により、温度制御装置4を介して減温水量制御弁3の開度制御をすることにより自動調整されており、これによって低温排ガスGlの温度が設定範囲内の温度に制御されている。
【0023】
また、ノズル導管7の外側通路7a内を流通する加圧熱水Wtの圧力及び温度は、圧力検出器6a及び温度検出器6bによって常時検出されており、その各検出信号により加圧空気制御装置6を介して、加圧空気制御弁5が開閉制御される。
【0024】
具体的には、圧力検出器6aによる加圧熱水Wtの検出圧力値が、その温度に於ける加圧熱水Wtの飽和蒸気圧Psの近傍値(例えば、飽和蒸気圧Ps±1.0(MPaG)、望ましくは飽和蒸気圧Ps+0.1(MPaG)以下の圧力になれば、加圧空気制御弁5を開放してノズル導管7の内側通路7d内へ加圧空気Aを供給する。
同様に、温度検出器6bによる加圧熱水Wtの温度検出値が、加圧熱水Wtの噴霧場の圧力での飽和温度近傍の温度(例えば飽和温度+20℃以下の温度)になれば、加圧空気制御弁5を開放してノズル導管7の内側通路7d内へ加圧空気Aを供給する。
これにより、減温水噴霧ノズル2は二流体方式の噴霧ノズルとして作動することになり、後述するように噴霧量の変動や噴霧粒径の大粒径化が防止されることになる。
【0025】
例えば、燃焼装置(図示省略)の立上げや立下げ時には、入口側の高温排ガスGhの温度や排ガス量が定常運転時の排ガス温度や排ガス量に比較して下降する。その結果、排ガスの減温に必要とする加圧熱水Wtの噴霧量自体も定常運転時の噴霧量に比較して少なくなる。
一方、減温水量制御弁3を絞ることによって加圧熱水Wtの噴霧量を減少させると、制御弁3の部分の流路抵抗が増大して、この部分に於ける圧力損失が増大すると共に、加圧熱水Wtの流通する外側通路7cの有効断面積が相当大きいため、絞りによって小流量とされた加圧熱水Wtの一部が外側通路7c内で蒸発することになる。その結果、加圧熱水Wtの圧力は、その温度に於ける飽和蒸気圧近傍或いは飽和蒸気圧よりも低い圧力にまで低下することになる。
【0026】
ところで、外側通路7c内を流通する加圧熱水Wtの圧力が、その温度に於ける飽和蒸気圧近傍或いは飽和蒸気圧より低い圧力にまで低下すると、減温水噴霧ノズル2から高温排ガスGh内へ噴出される加圧熱水Wtの噴霧量が時間的に脈動すると共に、霧化された加圧熱水Wtの噴霧粒径が大きくなり、結果として噴霧水による高温排ガスGhの冷却能力が低下したり、水滴がガス冷却室の壁面に直接当って流下することにより、耐火材の破損やダストの付着・堆積を招くことになる。
【0027】
そのため、前述の通り減温水量制御弁3の下流側の加圧熱水Wtの圧力が、その温度に於ける飽和蒸気圧近傍にまで低下すると、加圧空気制御弁5を開放して所定流量・圧力の加圧空気Aを内側通路7b内へ供給し、減温水噴霧ノズル2を二流体噴霧方式のノズルとして作動させる。
即ち、ノズル2の本体内部に於いて、加圧熱水Wtの中央部へその流れ方向と同方向に加圧空気Aを噴出させ、当該加圧空気Aの流れの有するエネルギーによって加圧熱水Wtの流れを均一化させると共に、ノズル2からの噴霧粒の粒径を細粒化させる。
【0028】
尚、図1の実施形態に於いては、減温水量制御弁3より下流側の加圧熱水Wtの圧力(圧力検出器6aの検出圧力)が、その温度に於ける飽和蒸気圧Ps+0.1(MPaG)以下の値となった時に加圧空気制御弁5を開放し、圧力が0.3〜0.7MPaGの所定流量の加圧空気Aを減温水噴霧ノズル2へ供給するようにしている。
【0029】
また、図1の実施形態に於いては、圧力検出器6aにより検出した加圧熱水Wtの圧力により、加圧空気制御装置6を介して加圧空気制御弁5を開又は閉とし、所定圧力・流量の加圧空気Aを供給(又は供給停止)するだけの制御しか行なっていないが、前記加圧空気制御弁5及び加圧空気制御装置6に温度制御要素を付加することにより、加圧空気Aの供給量を噴霧する加圧熱水Wtの流量に関連付けて制御する構成とすることも可能である。
【0030】
更に、図1の実施形態に於いては、二重壁構造のノズル導管7の外側通路7cへ加圧熱水Wtを流通させるようにしているため、ノズル導管7の表面温度が常に所謂排ガスGhの酸性ガスの酸露点温度よりも高い温度に保持されることになり、結果として排ガスGh内のHClやSOxなどによるノズル導管7の腐食が有効に防止されることになる。
【0031】
尚、上記説明に於いては、燃焼装置(図示省略)の立上げや立下げ時に、減温水量制御弁3を絞った場合に生ずる加圧熱水Wtの圧力低下のケースを例に挙げて説明をしているが、燃焼装置(図示省略)の立上げや立下げ時に、加圧熱水Wtの温度が加圧熱水Wtの噴霧場での飽和温度以下に下降したような場合でも、上記の説明と全く同様である。
【0032】
図3は、本発明の第2実施形態を示すものであり、前記図1に於ける加圧空気制御弁5の下流側に加圧空気量制御弁8を設け、当該加圧空気制御弁8を温度制御装置4を介して減温水量制御弁3と並列的に制御することにより、二流体噴霧時に於ける加圧空気Aの供給流量を加圧熱水Wtの噴霧量に比例させるようにしたものである。
【0033】
上述のように、加圧空気Aの供給流量を加圧熱水Wtの噴霧量に比例させることにより、加圧熱水Wtの噴霧量の少ない二流体噴霧時に於いても、より高度な噴霧量制御が可能となると共に、従前の二流体噴霧方式の場合に比較して、加圧空気Aの消費量を大幅に削減することが出来る。
【0034】
図4は、本発明の第3実施形態を示す説明図である。
当該第3実施形態に於いては、減温水量制御弁3の下流側に混合器9を設け、混合器9で加圧熱水Wtと加圧空気Aとを混合させたあと、両者の混合流体を配管路10を通して減温水噴霧ノズル2へ供給する構成が採用されている。
【0035】
尚、当該第3実施形態に於いても、加圧空気制御弁5が開放されるのは、燃焼装置の立上げや立下げ時に、圧力検出器6aによる加圧熱水Wtの検出圧力値が、加圧熱水Wtのその温度に於ける飽和蒸気圧近傍にまで低下した場合、又は温度検出器6bによる加圧熱水Wtの温度がその噴霧場の圧力での飽和温度の近傍にまで低下した場合のみであり、加圧熱水Wtの噴霧量が定常値に近いような場合には、加圧熱水Wtのみを噴霧する所謂一流体噴霧方式により高温排ガスGhの減温が行なわれる。
また、当該第3実施形態に於いては、配管路10が通常の単管でよいことは勿論である。
【0036】
【発明の効果】
本発明に於いては、減温水噴霧ノズルを一流体噴霧と二流体噴霧の切換え作動が可能な減温水ノズルとし、当該加圧熱水の圧力がその温度に於ける飽和蒸気圧の近傍にまで低下したとき又は、加圧熱水Wtの温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときには、加圧空気の供給による二流体噴霧により加圧熱水を噴霧する構成としている。
その結果、燃焼装置の立上げや立下げ時に於いても、常に安定した状態で必要な量の加圧熱水を排ガス内へ噴霧することが出来ると共に、噴霧粒径が大きくなることも防止でき、排ガス冷却性能の低下及び水滴の流下による壁面耐火材の損傷やダストの堆積等のトラブルを完全に防止することができる。
【0037】
また、ノズル導管を2重壁構造とすることにより、高温排ガスGh等と接触する部分の酸性ガス腐食が有効に防止されることになり、好都合である。
【0038】
更に、二流体噴霧時に於ける加圧空気の供給制御を、加圧空気量が加圧熱水噴霧量に比例する制御とすることにより、より高精度な加圧熱水の噴霧量制御と加圧空気の消費量の削減が可能となる。
【0039】
加えて、本発明に於いては、燃焼装置の立上げや立下げ時のような加圧熱水の噴霧量の減少時や加圧熱水の温度低下時にだけ、二流体噴霧方式により高温排ガスの減温を行なう構成としているため、従前の二流体噴霧方式による排ガス減温方法に比較して、高圧空気の消費量を大幅に押えることが可能となる。
本発明は上述の通り優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示すものであり、本発明を排ガス冷却室へ適用した場合の説明図である。
【図2】本発明で使用するノズル導管の断面概要図である。
【図3】本発明の第2実施形態を示すものであり、本発明を排ガス冷却室へ適用した場合の説明図である。
【図4】本発明の第3実施形態を示すものであり、本発明を排ガス冷却室へ適用した場合の説明図である。
【図5】従前の熱水を利用した排ガス減温方法の説明図である。
【符号の説明】
Ghは高温排ガス、Glは低温排ガス、Wtは加圧熱水、Aは加圧空気、Cは灰、1はガス冷却室、1aは排ガス入口、1bは排ガス出口、1cは灰出口、1dは灰出フィーダー、2は減温水噴霧ノズル、3は減温水量制御弁、4は温度制御装置、4a・4bは温度検出器、5は加圧空気制御弁、6は加圧空気制御装置、6aは圧力検出器、6bは温度検出器、7はノズル導管、7aは外管、7bは内管、7cは外側通路、7dは内側通路、8は加圧空気量制御弁、9は混合器、10は配管路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used for treating exhaust gas discharged from a combustion device such as a refuse incinerator or a boiler, and is used in an exhaust gas temperature reduction system in which pressurized hot water is sprayed into the exhaust gas. Even when the spray amount of pressurized hot water decreases when the equipment is started or shut down, or when the temperature of pressurized hot water decreases, a stable required amount of pressurized hot water is sprayed. The present invention relates to a method and a device for reducing the temperature of exhaust gas using hot water, which can effectively prevent an increase in the particle size of spray particles.
[0002]
[Prior art]
The applicant has previously developed a method for reducing the temperature of exhaust gas using hot water as shown in FIG. 5, and has disclosed this method as JP-A-2000-274654.
That is, in FIG. 5, 1 is a gas cooling chamber, 1a is an exhaust gas inlet, 1b is an exhaust gas outlet, 1c is an ash outlet, 1d is an ash feeder, 3 is a dewatering water amount control valve, 4 is a temperature control device, and 4a is Outlet-side exhaust gas temperature detector, 4b is the inlet-side exhaust gas temperature detector, 12 is a hot water tank, 13 is a pump, 14 is a reduced temperature water nozzle, 15 is a pipeline, Gh is high-temperature exhaust gas, Gl is low-temperature exhaust gas, and C is ash. , Wt is pressurized hot water, W is water, and S is heating steam. Pressurized hot water maintained at a temperature higher than the boiling point (100 ° C.) of water at atmospheric pressure is discharged from the de-heated water nozzle 14. The high-temperature exhaust gas Gh is configured to be sprayed into the high-temperature exhaust gas Gh and rapidly evaporated within a short time, so that the high-temperature exhaust gas Gh is cooled by the latent heat of vaporization of the pressurized hot water and the sensible heat of steam.
[0003]
The exhaust gas temperature reduction method using hot water shown in FIG. 5 is different from the conventional exhaust gas temperature reduction method using low-temperature water in (1) damage to the wall of the gas cooling chamber due to adhesion of water droplets and the like. It is superior in that it can prevent troubles such as dust accumulation in the air, (2) can greatly reduce the size of the gas cooling chamber, and (3) can simplify the exhaust gas temperature reduction equipment and reduce the running cost. It has practical utility.
[0004]
[Problems to be solved by the invention]
However, the conventional exhaust gas temperature reducing method using hot water shown in FIG. 5 has many problems to be solved. Among them, when the supply amount of pressurized hot water Wt is reduced, When the temperature of the hot water decreases, the amount of spray from the desuperheated water nozzle 14 tends to be unstable, which remains as a problem that needs to be solved immediately.
[0005]
That is, the flow rate of the pressurized hot water Wt sprayed from the deheated water nozzle 14 is controlled by opening and closing the deheated water control valve 3. Therefore, when the municipal solid waste incinerator (combustion device) is started up or shut down, the amount of spray of the pressurized hot water Wt is reduced by squeezing the dewatering water amount control valve 3. Together with the decrease in the flow rate of the pressurized hot water Wt, the pressure of the pressurized hot water Wt decreases to near the saturated vapor pressure at that temperature. As a result, part of the pressurized hot water Wt evaporates in the piping 15 from the deheated water amount control valve 3 to the deheated water nozzle 14, and the spray amount of the pressurized hot water Wt from the deheated water nozzle 14 Becomes unstable or the spray particle size becomes large. If pressurized hot water cannot be obtained at the time of startup or shutdown, the effect of reducing the temperature will deteriorate or the spray particle size will increase.
[0006]
The invention of the present application has the above-mentioned problems in the conventional exhaust gas temperature reduction method using pressurized hot water, that is, when the supply amount of the pressurized hot water Wt is reduced or when the temperature of the pressurized hot water is reduced. In addition, the problem that the spray amount of hot water from the desuperheater nozzle becomes unstable or the spray particle diameter increases is not solved. In addition, the required amount of pressurized hot water can always be sprayed stably, and the exhaust gas temperature reduction method using hot water, which can almost completely prevent the increase in spray particle size, and the exhaust gas A heating device is provided.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention utilizes hot water in an incinerator or a boiler facility in which pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure is sprayed as desuperheated water into exhaust gas. In the exhaust gas temperature reduction method, the desuperheated water spray nozzle that sprays the pressurized hot water as desuperheated water into the exhaust gas is replaced with a desuperheated water spray nozzle that can perform both two-fluid spray and one-fluid spray. When the spray amount of water decreases, the pressure of the pressurized hot water downstream of the desuperheated water amount control valve decreases to near the saturated vapor pressure at that temperature, or the temperature of the pressurized hot water decreases. When the temperature drops to near the saturation temperature at the spraying field pressure, pressurized air is circulated to the desuperheated water spray nozzle, and pressurized hot water is sprayed into the exhaust gas by a two-fluid spray method. This is a basic configuration of the present invention.
[0008]
The invention described in claim 2 of the present invention utilizes hot water in an incinerator or a boiler facility in which pressurized hot water having a temperature higher than the boiling point of water at atmospheric pressure is sprayed into exhaust gas as desuperheated water. In the exhaust gas temperature reduction method adopted above, the temperature-reduced water spray nozzle that sprays pressurized hot water as temperature-reduced water into the exhaust gas was replaced with a temperature-reduced water spray nozzle that can perform both two-fluid spray and single-fluid spray, and reduced to the tip. The nozzle conduit fitted with the hot water spray nozzle is a double-walled nozzle conduit, and pressurized hot water flows through the outer passage of the double-walled nozzle conduit. When the temperature of the pressurized hot water has dropped to near the saturation temperature at the pressure of the spray station, or when the temperature of the pressurized hot water has dropped to near the saturated vapor pressure of In exhaust gas by two-fluid spray method It is an basic configuration of the invention that was to spray pressurized hot water.
[0009]
According to a third aspect of the present invention, in the first or second aspect, the pressurized hot water is sprayed into the gas cooling chamber or the exhaust gas duct as desuperheated water.
[0010]
According to a fourth aspect of the present invention, in the second or third aspect of the present invention, the pressure of the pressurized hot water in the nozzle conduit is reduced to a saturated vapor pressure at that temperature +0.1 (MPaG) or less. At this time, or when the temperature of the hot pressurized water drops to + 20 ° C. or lower of the saturation temperature at the pressure of the spray site, pressurized air is allowed to flow.
[0011]
According to a fifth aspect of the present invention, in the second or third aspect, the flow rate of the pressurized air in the case of the two-fluid spraying method is set to the flow rate of the pressurized hot water sprayed into the exhaust gas. The control is made proportional.
[0012]
The invention according to claim 6 provides a gas cooling chamber or an exhaust gas duct having a gas inlet and a gas outlet, and pressurized hot water for supplying pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure. A supply source, a desuperheated water spray nozzle that sprays pressurized hot water from the pressurized hot water supply source into the gas cooling chamber or the exhaust gas duct, and desuperheated water that adjusts the amount of pressurized hot water supplied to the desuperheated water spray nozzle An amount control valve, a temperature detector for one or both of a high-temperature exhaust gas flowing from a gas inlet and a low-temperature exhaust gas flowing out from a gas outlet, and opening / closing control of a desuperheated water amount control valve based on a detection signal from the temperature detector. In an exhaust gas desuperheater using hot water comprising a temperature controller, the desuperheated water spray nozzle is a desuperheated water spray nozzle capable of performing both one-fluid spray and two-fluid spray. A mixer is installed between the control valve and the temperature control valve. Connecting a compressed air supply device to the mixer with a pressurized air control valve interposed therebetween, and further providing a pressure detector and a temperature detector for the pressurized hot water downstream of the deheated water control valve, When the pressure detected by the pressure detector drops to near the saturated vapor pressure at that temperature of the pressurized hot water, or the temperature detected by the temperature detector drops to near the saturation temperature at the spray field pressure. The basic structure of the present invention is that when this is done, the pressurized air control valve is controlled to open and close via a pressurized air control device to spray pressurized hot water into exhaust gas by a two-fluid spray method. It is.
[0013]
The invention according to claim 7 of the present application provides a gas cooling chamber or an exhaust gas duct having a gas inlet and a gas outlet, and a pressurized heat supply for supplying pressurized hot water having a temperature higher than the boiling point of water at atmospheric pressure. A water supply source, a desuperheated water spray nozzle for spraying pressurized hot water from a pressurized hot water supply source into a gas cooling chamber or an exhaust gas duct, and an amount of pressurized hot water supplied to the deheated water spray nozzle are adjusted. A temperature-reducing water amount control valve, one or both of a high-temperature exhaust gas flowing from a gas inlet and a low-temperature exhaust gas flowing out from a gas outlet, and a temperature-reducing water amount control valve according to a detection signal from the temperature detector. A temperature control device for controlling the temperature of the exhaust gas, wherein the temperature-reduced water spray nozzle is a temperature-reduced water spray nozzle capable of performing both one-fluid spray and two-fluid spray. Nozzle connection between nozzle and temperature control valve Is a double-walled conduit, the inner passage of which is a pressurized air flow passage, the outer passage is a passage of pressurized hot water, and a pressurized air control valve is interposed in the inner passage of the nozzle conduit. And a pressure detector and a temperature detector for the pressurized hot water in the outer passage are provided in the nozzle conduit, and the detection pressure of the pressure detector is set at the temperature of the pressurized hot water at the temperature. When the temperature decreases to near the saturated vapor pressure, or when the temperature detected by the temperature detector decreases to near the saturation temperature at the pressure of the spray field, the pressurized air control is performed via the pressurized air control device. The basic configuration of the present invention is to control the opening and closing of a valve and spray pressurized hot water into exhaust gas by a two-fluid spray method.
[0014]
According to an eighth aspect of the present invention, in the sixth or eighth aspect of the invention, the pressure detected by the pressure detector is reduced to not more than a saturated vapor pressure at that temperature of the pressurized hot water + 0.1 (MPaG). The pressurized air control valve is opened when the temperature detected by the temperature detector drops below the saturation temperature at the pressure of the spray field + 20 ° C. or less.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a method for cooling exhaust gas according to a first embodiment of the present invention and an apparatus used for the method. In the figure, 1 is a gas cooling chamber, 1a is an exhaust gas inlet, 1b is an exhaust gas outlet, and 1c is ash. Outlet, 1d is ash feeder, 2 is desuperheated water spray nozzle, 3 is desuperheated water flow control valve, 4 is temperature control device, 4a and 4b are temperature detectors, 5 is pressurized air control valve, 6 is pressurized air Control device, 6a is a pressure detector, 6b is a temperature detector of pressurized hot water, 7 is a nozzle conduit, Gh is high temperature exhaust gas, Gl is low temperature exhaust gas, C is ash, Wt is pressurized hot water, and A is pressurized. It is air.
FIG. 2 is a cross-sectional view of a nozzle conduit 7 connecting between the desuperheated water spray nozzle 2 and the desuperheated water amount control valve 3. The nozzle conduit 7 has a double wall composed of an outer pipe 7a and an inner pipe 7b. This is a conduit having a structure, in which temperature-reduced water (pressurized hot water) Wt flows through the outer passage 7c, and pressurized air A flows through the inner passage 7d.
[0016]
In the present invention, a nozzle capable of performing both one-fluid spraying and two-fluid spraying is used as the temperature-reduced water spraying nozzle 2, and as described later, a combustion device (not shown) is used to generate pressurized heat during steady operation or the like. When the spray amount of the water Wt is large, it is operated as a one-fluid spray nozzle that sprays only the pressurized hot water Wt. Further, when the spray amount of the pressurized hot water Wt is small when the combustion device is started or shut down, or when the temperature of the pressurized hot water Wt decreases, the pressurized air A and the pressurized hot water Wt are used. Is operated as a two-fluid spray nozzle for mixing and spraying.
[0017]
The structure of the desuperheated water spray nozzle 2 may be any structure as long as it can switch between one-fluid spray and two-fluid spray. In the embodiment shown in FIG. A structure in which the compressed air A is mixed into the center of the flow of the pressurized hot water Wt just before the ejection port of the temperature-reduced water spray nozzle 2, and a mixture of both is ejected outward from the ejection port. Nozzles are used.
[0018]
The temperature-reduced water (pressurized hot water) Wt is water (pressurized hot water) having a temperature higher than the boiling point (100 ° C.) under atmospheric pressure, and maintains a pressure higher than the saturated vapor pressure at that temperature. Things. The pressure of the pressurized hot water Wt is usually selected to be in the range of 0.1 to 10 MPaG, and the pressure of the pressurized hot water Wt is reduced in terms of facilities of a hot water supply source (not shown) such as a waste heat boiler and a hot water storage tank. The pressure of Wt is desirably about 0.3 to 1.0 MPaG.
[0019]
A compressor or the like is used as an air source of the pressurized air A, and the pressure is set to a value close to the pressure of the pressurized hot water Wt. Specifically, the pressure of the pressurized air A is set between 0.1 and 10 MPaG, preferably 0.3 to 0.7 MPaG.
[0020]
The configurations of the gas cooling chamber 1, the dewatering water amount control valve 3, the temperature control device 4 and the like in FIG. 1 are substantially the same as those in the case of Japanese Patent Application Laid-Open No. 2000-274654. I do.
Although FIG. 1 describes the temperature reduction of the high-temperature exhaust gas Gh in the gas cooling chamber 1, the present invention can also be applied to the temperature reduction of the high-temperature exhaust gas Gh in an exhaust gas duct (not shown). Of course.
Further, in FIG. 1, ordinary water is used as the pressurized hot water Wt. However, in order to remove an acidic gas in the high-temperature exhaust gas Gh, water containing an alkaline solution or the like is removed by the pressurized hot water Wt. Needless to say, Wt may be used.
[0021]
Next, the temperature reduction of the high-temperature exhaust gas Gh according to the present invention will be described.
Referring to FIGS. 1 and 2, when a combustion device (not shown) or the like is in a steady operation and the amount of deheated water (the amount of pressurized hot water) is relatively large, the pressurized air control valve 5 is closed. Have been. As a result, the pressurized hot water Wt is introduced into the outside passage 7c of the nozzle conduit 7 through the desuperheated water amount control valve 3, and is sprayed from the desuperheated water spray nozzle 2 into the high-temperature exhaust gas Gh by a so-called one-fluid spray method.
[0022]
The spray amount of the pressurized hot water Wt is determined by the detection signals from the temperature detector 4b of the high-temperature exhaust gas Gh and the temperature detector 4a of the low-temperature exhaust gas Gl via the temperature control device 4, The opening degree is controlled automatically so that the temperature of the low-temperature exhaust gas Gl is controlled to a temperature within a set range.
[0023]
Further, the pressure and the temperature of the pressurized hot water Wt flowing in the outside passage 7a of the nozzle conduit 7 are constantly detected by the pressure detector 6a and the temperature detector 6b, and the pressurized air control device is detected by each detection signal. Via 6, the pressurized air control valve 5 is controlled to open and close.
[0024]
Specifically, the pressure value of the pressurized hot water Wt detected by the pressure detector 6a is close to the saturated vapor pressure Ps of the pressurized hot water Wt at that temperature (for example, the saturated vapor pressure Ps ± 1.0). When the pressure reaches (MPaG), desirably the saturated vapor pressure Ps + 0.1 (MPaG) or less, the pressurized air control valve 5 is opened to supply the pressurized air A into the inside passage 7 d of the nozzle conduit 7.
Similarly, if the temperature detection value of the pressurized hot water Wt by the temperature detector 6b becomes a temperature near the saturation temperature of the pressure of the spraying station of the pressurized hot water Wt (for example, a temperature equal to or lower than the saturation temperature + 20 ° C.) The pressurized air control valve 5 is opened to supply the pressurized air A into the inside passage 7d of the nozzle conduit 7.
As a result, the temperature-reduced water spray nozzle 2 operates as a two-fluid spray nozzle, thereby preventing a change in the spray amount and an increase in the spray particle diameter as described later.
[0025]
For example, when a combustion device (not shown) starts up or shuts down, the temperature and the exhaust gas amount of the high-temperature exhaust gas Gh on the inlet side decrease as compared with the exhaust gas temperature and the exhaust gas amount during steady operation. As a result, the spray amount of the pressurized hot water Wt itself required for reducing the temperature of the exhaust gas also becomes smaller than the spray amount during the steady operation.
On the other hand, when the spray amount of the pressurized hot water Wt is reduced by squeezing the dewatering water amount control valve 3, the flow path resistance of the portion of the control valve 3 increases, and the pressure loss in this portion increases. Since the effective cross-sectional area of the outer passage 7c through which the pressurized hot water Wt flows is considerably large, a part of the pressurized hot water Wt whose flow rate is reduced by the throttle evaporates in the outer passage 7c. As a result, the pressure of the pressurized hot water Wt decreases to a pressure close to or lower than the saturated vapor pressure at that temperature.
[0026]
By the way, when the pressure of the pressurized hot water Wt flowing through the outside passage 7c decreases to a pressure near the saturated vapor pressure at that temperature or a pressure lower than the saturated vapor pressure, the degassed water spray nozzle 2 flows into the high-temperature exhaust gas Gh. The spray amount of the pressurized hot water Wt to be ejected pulsates with time, and the spray particle diameter of the atomized pressurized hot water Wt increases, and as a result, the cooling capability of the hot exhaust gas Gh by the spray water decreases. Also, water drops directly hit the wall surface of the gas cooling chamber and flow down, thereby causing damage to the refractory material and adhesion / deposition of dust.
[0027]
Therefore, as described above, when the pressure of the pressurized hot water Wt on the downstream side of the temperature-reducing water amount control valve 3 decreases to near the saturated vapor pressure at that temperature, the pressurized air control valve 5 is opened and the predetermined flow rate is reduced. The pressurized air A is supplied to the inside of the inner passage 7b, and the nozzle 2 is operated as a two-fluid spray nozzle.
That is, inside the main body of the nozzle 2, the pressurized air A is ejected to the center of the pressurized hot water Wt in the same direction as the flow direction of the pressurized hot water Wt. The flow of Wt is made uniform and the particle size of the spray particles from the nozzle 2 is made finer.
[0028]
In the embodiment shown in FIG. 1, the pressure of the pressurized hot water Wt downstream of the temperature-reducing water control valve 3 (the pressure detected by the pressure detector 6a) is equal to the saturated vapor pressure Ps + 0. When the pressure becomes equal to or less than 1 (MPaG), the pressurized air control valve 5 is opened to supply the pressurized air A having a predetermined flow rate of 0.3 to 0.7 MPaG to the desuperheated water spray nozzle 2. I have.
[0029]
Further, in the embodiment of FIG. 1, the pressurized air control valve 5 is opened or closed via the pressurized air control device 6 by the pressure of the pressurized hot water Wt detected by the pressure detector 6a. Although only control for supplying (or stopping supply of) pressurized air A at a pressure and flow rate is performed, by adding a temperature control element to the pressurized air control valve 5 and the pressurized air control device 6, it is possible to increase the pressure. It is also possible to adopt a configuration in which the supply amount of the compressed air A is controlled in association with the flow rate of the pressurized hot water Wt to be sprayed.
[0030]
Further, in the embodiment of FIG. 1, since the pressurized hot water Wt is caused to flow to the outer passage 7c of the nozzle pipe 7 having the double-wall structure, the surface temperature of the nozzle pipe 7 is always the so-called exhaust gas Gh. Is maintained at a temperature higher than the acid dew point of the acidic gas, and as a result, corrosion of the nozzle conduit 7 due to HCl or SOx in the exhaust gas Gh is effectively prevented.
[0031]
In the above description, a case where the pressure of the pressurized hot water Wt is reduced when the deheated water control valve 3 is throttled when the combustion device (not shown) is started or shut down is exemplified. Although described, even when the temperature of the pressurized hot water Wt falls below the saturation temperature of the spraying station of the pressurized hot water Wt at the time of startup or shutdown of the combustion device (not shown), This is exactly the same as the above description.
[0032]
FIG. 3 shows a second embodiment of the present invention. A pressurized air control valve 8 is provided downstream of the pressurized air control valve 5 in FIG. Is controlled in parallel with the temperature-reducing water amount control valve 3 via the temperature control device 4 so that the supply flow rate of the pressurized air A during the two-fluid spraying is proportional to the spray amount of the pressurized hot water Wt. It was done.
[0033]
As described above, by making the supply flow rate of the pressurized air A proportional to the spray amount of the pressurized hot water Wt, even at the time of two-fluid spraying where the spray amount of the pressurized hot water Wt is small, a higher spray amount can be obtained. Control becomes possible, and the consumption of the pressurized air A can be greatly reduced as compared with the conventional two-fluid spraying method.
[0034]
FIG. 4 is an explanatory diagram showing a third embodiment of the present invention.
In the third embodiment, a mixer 9 is provided on the downstream side of the temperature-reducing water amount control valve 3, and after the pressurized hot water Wt and the pressurized air A are mixed by the mixer 9, the two are mixed. A configuration is employed in which a fluid is supplied to the desuperheated water spray nozzle 2 through the piping 10.
[0035]
In the third embodiment as well, the reason why the pressurized air control valve 5 is opened is that the detected pressure value of the pressurized hot water Wt detected by the pressure detector 6a when the combustion device starts up or shuts down. If the temperature of the pressurized hot water Wt drops to near the saturated vapor pressure at that temperature, or the temperature of the pressurized hot water Wt by the temperature detector 6b drops to near the saturation temperature at the pressure of the spraying station. When the spray amount of the pressurized hot water Wt is close to a steady value, the temperature of the high-temperature exhaust gas Gh is reduced by a so-called one-fluid spray method in which only the pressurized hot water Wt is sprayed.
In the third embodiment, the pipe 10 may be a single pipe.
[0036]
【The invention's effect】
In the present invention, the temperature-reduced water spray nozzle is a temperature-reduced water nozzle capable of switching between one-fluid spray and two-fluid spray, and the pressure of the pressurized hot water becomes close to the saturated vapor pressure at that temperature. When the temperature of the pressurized hot water Wt drops to near the saturation temperature at the pressure of the spray field, the pressurized hot water is sprayed by the two-fluid spray by the supply of pressurized air. .
As a result, the required amount of pressurized hot water can always be sprayed into the exhaust gas in a stable state even when the combustion device is started or shut down, and the spray particle size can be prevented from increasing. In addition, it is possible to completely prevent troubles such as damage to the wall refractory material and accumulation of dust due to a decrease in exhaust gas cooling performance and flow of water droplets.
[0037]
In addition, since the nozzle conduit has a double wall structure, acid gas corrosion in a portion that comes into contact with the high-temperature exhaust gas Gh or the like is effectively prevented, which is advantageous.
[0038]
Furthermore, by controlling the supply of pressurized air during the two-fluid spraying to control the amount of pressurized air to be proportional to the amount of pressurized hot water spray, more precise control of the spray amount of pressurized hot water can be performed. The consumption of compressed air can be reduced.
[0039]
In addition, in the present invention, only when the spray amount of pressurized hot water decreases or when the temperature of pressurized hot water decreases, such as when starting or shutting down the combustion device, the high-temperature exhaust gas is discharged by the two-fluid spray method. , It is possible to significantly reduce the consumption of high-pressure air as compared with the conventional exhaust gas temperature reduction method using the two-fluid spray method.
The present invention has excellent practical utility as described above.
[Brief description of the drawings]
FIG. 1 illustrates a first embodiment of the present invention, and is an explanatory diagram in a case where the present invention is applied to an exhaust gas cooling chamber.
FIG. 2 is a schematic cross-sectional view of a nozzle conduit used in the present invention.
FIG. 3 illustrates a second embodiment of the present invention, and is an explanatory diagram in a case where the present invention is applied to an exhaust gas cooling chamber.
FIG. 4 illustrates a third embodiment of the present invention, and is an explanatory diagram in a case where the present invention is applied to an exhaust gas cooling chamber.
FIG. 5 is an explanatory diagram of a conventional exhaust gas temperature reducing method using hot water.
[Explanation of symbols]
Gh is high-temperature exhaust gas, Gl is low-temperature exhaust gas, Wt is pressurized hot water, A is pressurized air, C is ash, 1 is a gas cooling chamber, 1a is an exhaust gas inlet, 1b is an exhaust gas outlet, 1c is an ash outlet, and 1d is Ashing feeder, 2 is a reduced temperature water spray nozzle, 3 is a reduced temperature water control valve, 4 is a temperature control device, 4a and 4b are temperature detectors, 5 is a pressurized air control valve, 6 is a pressurized air control device, 6a Is a pressure detector, 6b is a temperature detector, 7 is a nozzle conduit, 7a is an outer tube, 7b is an inner tube, 7c is an outer passage, 7d is an inner passage, 8 is a pressurized air amount control valve, 9 is a mixer, 10 is a pipeline.

Claims (8)

大気圧下で水の沸点よりも高い温度の加圧熱水を減温水として排ガス内へ噴霧するようにした焼却炉やボイラ設備における熱水を利用した排ガス減温方法に於いて、加圧熱水を減温水として排ガス内へ噴霧する減温水噴霧ノズルを二流体噴霧と一流体噴霧の両方が可能な減温水噴霧ノズルとすると共に、加圧熱水の噴霧量の減少時に、減温水量制御弁の下流側に於ける前記加圧熱水の圧力がその温度での飽和蒸気圧の近傍にまで低下したとき、又は加圧熱水の温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときには、前記減温水噴霧ノズルへ加圧空気を流通させ、二流体噴霧方式により排ガス内へ加圧熱水を噴霧するようにしたことを特徴とする熱水を利用した排ガス減温方法。In an incinerator or a boiler facility that uses hot water in an incinerator or a boiler facility, the hot water pressurized at a temperature higher than the boiling point of water at atmospheric pressure is sprayed as desuperheated water. The temperature-reduced water spray nozzle that sprays water into the exhaust gas as temperature-reduced water is a temperature-reduced water spray nozzle that can perform both two-fluid spray and single-fluid spray. When the pressure of the pressurized hot water downstream of the valve drops to near the saturated vapor pressure at that temperature, or when the temperature of the pressurized hot water becomes close to the saturated temperature at the spray field pressure. When the temperature of the exhaust gas is lowered, pressurized air is circulated to the deheated water spray nozzle, and pressurized hot water is sprayed into the exhaust gas by a two-fluid spray method. . 大気圧下で水の沸点よりも高い温度の加圧熱水を減温水として排ガス内へ噴霧するようにした焼却炉やボイラ設備における熱水を利用した排ガス減温方法に於いて、加圧熱水を減温水として排ガス内へ噴霧する減温水噴霧ノズルを二流体噴霧と一流体噴霧の両方が可能な減温水噴霧ノズルとすると共に、先端に減温水噴霧ノズルを取付けしたノズル導管を二重壁構造のノズル導管とし、当該二重壁構造のノズル導管の外側通路に加圧熱水を流通させると共に、当該加圧熱水の圧力がその温度での飽和蒸気圧の近傍にまで低下したとき、又は加圧熱水の温度がその噴霧場の圧力での飽和温度の近傍にまで低下したときには、前記ノズル導管の内側通路に加圧空気を流通させ、二流体噴霧方式により排ガス内へ加圧熱水を噴霧するようにしたことを特徴とする熱水を利用した排ガス減温方法。In an incinerator or a boiler facility that uses hot water in an incinerator or a boiler facility, the hot water pressurized at a temperature higher than the boiling point of water at atmospheric pressure is sprayed as desuperheated water. The temperature-reduced water spray nozzle that sprays water into the exhaust gas as temperature-reduced water is a temperature-reduced water spray nozzle that can perform both two-fluid spray and single-fluid spray, and a double-walled nozzle conduit with a reduced-temperature water spray nozzle attached to the tip. When the pressurized hot water flows through the outer passage of the double-walled nozzle conduit when the pressure of the pressurized hot water decreases to near the saturated vapor pressure at that temperature, Alternatively, when the temperature of the pressurized hot water has dropped to near the saturation temperature at the pressure of the spraying field, pressurized air is circulated through the inner passage of the nozzle conduit, and pressurized heat is discharged into the exhaust gas by a two-fluid spray method. Spraying water Exhaust gas decreased temperature method using hot water, characterized. 加圧熱水を減温水としてガス冷却室又は排ガスダクト内へ噴霧するようにした請求項1又は請求項2に記載の熱水を利用した排ガス減温方法。The exhaust gas temperature reducing method using hot water according to claim 1 or 2, wherein the pressurized hot water is sprayed into the gas cooling chamber or the exhaust gas duct as temperature reducing water. ノズル導管内の加圧熱水の圧力が、その温度での飽和蒸気圧+0.1(MPaG)以下に低下したとき、又は加圧熱水の温度が、その噴霧場の圧力での飽和温度+20℃以下に低下したときに、加圧空気を流通させるようにした請求項2又は請求項3に記載の熱水を利用した排ガス減温方法。When the pressure of the pressurized hot water in the nozzle conduit falls below the saturated vapor pressure at that temperature +0.1 (MPaG) or when the temperature of the pressurized hot water becomes the saturated temperature at the pressure of the spraying field +20 The method for reducing exhaust gas temperature using hot water according to claim 2 or 3, wherein the pressurized air is allowed to flow when the temperature falls to or below ° C. 二流体噴霧方式のときの加圧空気の流量を、排ガス内へ噴霧する加圧熱水の流量に対して比例させる制御とした請求項2又は請求項3に記載の排ガス減温方法。The exhaust gas cooling method according to claim 2 or 3, wherein the flow rate of the pressurized air in the two-fluid spray method is controlled to be proportional to the flow rate of the pressurized hot water sprayed into the exhaust gas. ガス入口とガス出口とを備えたガス冷却室又は排ガスダクトと、大気圧下で水の沸点よりも高い温度の加圧熱水を供給する加圧熱水の供給源と、加圧熱水の供給源からの加圧熱水をガス冷却室又は排ガスダクト内へ噴霧する減温水噴霧ノズルと、減温水噴霧ノズルへ供給する加圧熱水量を調整する減温水量制御弁と、ガス入口から流入する高温排ガスとガス出口から流出する低温排ガスの何れか一方又は両方の温度検出器と、前記温度検出器からの検出信号により減温水量制御弁を開閉制御する温度制御装置とから成る熱水を利用した排ガス減温装置に於いて、前記減温水噴霧ノズルを一流体噴霧と二流体噴霧の両方が可能な減温水噴霧ノズルとし、また前記減温水噴霧ノズルと減温水量制御弁との間に混合器を設け、当該混合器へ加圧空気制御弁を介設して圧縮空気供給装置を連結し、更に、前記減温水量制御弁の下流側に加圧熱水の圧力検出器及び温度検出器を設け、当該圧力検出器の検出圧力が加圧熱水のその温度での飽和蒸気圧の近傍にまで低下したとき、又は温度検出器の検出温度が加圧熱水のその噴霧場の圧力での飽和温度の近傍にまで低下したときには、加圧空気制御装置を介して前記加圧空気制御弁を開閉制御し、二流体噴霧方式により排ガス内へ加圧熱水を噴霧する構成としたことを特徴とする熱水を利用した排ガス減温装置。A gas cooling chamber or an exhaust gas duct having a gas inlet and a gas outlet, a supply source of pressurized hot water for supplying pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure, A desuperheated water spray nozzle that sprays pressurized hot water from the supply source into the gas cooling chamber or exhaust gas duct, a deheated water flow control valve that adjusts the amount of pressurized hot water supplied to the deheated water spray nozzle, and flows in from the gas inlet Hot water comprising a high-temperature exhaust gas and / or a low-temperature exhaust gas flowing out of a gas outlet, and hot water comprising a temperature control device that controls the opening and closing of a dewatering water amount control valve by a detection signal from the temperature detector. In the exhaust gas temperature reduction device used, the temperature-reduced water spray nozzle is a temperature-reduced water spray nozzle capable of performing both one-fluid spray and two-fluid spray. Provision of a mixer and pressurized air A compressed air supply device is connected via a control valve, and a pressure detector and a temperature detector for pressurized hot water are further provided downstream of the dewatering water amount control valve. When the pressure of the pressurized hot water drops to near the saturated vapor pressure at that temperature, or when the temperature detected by the temperature detector drops to near the saturation temperature at the pressure of the spraying field of the pressurized hot water, The exhaust gas temperature reduction using hot water, characterized in that the pressurized air control valve is controlled to open and close via a pressurized air control device, and pressurized hot water is sprayed into the exhaust gas by a two-fluid spray method. apparatus. ガス入口とガス出口とを備えたガス冷却室又は排ガスダクトと、大気圧下で水の沸点よりも高い温度の加圧熱水を供給する加圧熱水の供給源と、加圧熱水の供給源からの加圧熱水をガス冷却室又は排ガスダクト内へ噴霧する減温水噴霧ノズルと、減温水噴霧ノズルへ供給する加圧熱水量を調整する減温水量制御弁と、ガス入口から流入する高温排ガスとガス出口から流出する低温排ガスの何れか一方又は両方の温度検出器と、前記温度検出器からの検出信号により減温水量制御弁を開閉制御する温度制御装置とから成る熱水を利用した排ガス減温装置に於いて、前記減温水噴霧ノズルを一流体噴霧と二流体噴霧の両方が可能な減温水噴霧ノズルとし、また前記減温水噴霧ノズルと減温水量制御弁間のノズル導管を二重壁構造の導管としてその内側通路を加圧空気の流通路にすると共に外側通路を加圧熱水の通路とし、更に、前記ノズル導管の内側通路へ加圧空気制御弁を介設して圧縮空気供給装置を連結すると共に、前記ノズル導管に外側通路内の加圧熱水の圧力検出器及び温度検出器を設け、当該圧力検出器の検出圧力が加圧熱水のその温度での飽和蒸気圧の近傍にまで低下したとき、又は温度検出器の検出温度が加圧熱水のその噴霧場の圧力での飽和温度の近傍にまで低下したときには、加圧空気制御装置を介して前記加圧空気制御弁を開閉制御し、二流体噴霧方式により排ガス内へ加圧熱水を噴霧する構成としたことを特徴とする熱水を利用した排ガス減温装置。A gas cooling chamber or an exhaust gas duct having a gas inlet and a gas outlet, a supply source of pressurized hot water for supplying pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure, A desuperheated water spray nozzle that sprays pressurized hot water from the supply source into the gas cooling chamber or exhaust gas duct, a deheated water flow control valve that adjusts the amount of pressurized hot water supplied to the deheated water spray nozzle, and flows in from the gas inlet Hot water comprising a high-temperature exhaust gas and / or a low-temperature exhaust gas flowing out of a gas outlet, and hot water comprising a temperature control device that controls the opening and closing of a dewatering water amount control valve by a detection signal from the temperature detector. In the exhaust gas temperature reducing apparatus used, the temperature reducing water spray nozzle is a temperature reducing water spray nozzle capable of performing both one-fluid spraying and two-fluid spraying, and a nozzle conduit between the temperature reducing water spray nozzle and the temperature reducing water amount control valve As a double-walled conduit The side passage is a flow passage for compressed air, the outside passage is a passage for pressurized hot water, and a compressed air supply device is connected to the inside passage of the nozzle conduit via a pressurized air control valve. Providing a pressure detector and a temperature detector for the pressurized hot water in the outer passage in the nozzle conduit, wherein the detected pressure of the pressure detector has dropped to near the saturated vapor pressure at that temperature of the pressurized hot water. When, or when the temperature detected by the temperature detector drops to near the saturation temperature of the pressurized hot water at the pressure of the spray field, the pressurized air control valve is controlled to open and close via a pressurized air control device. An exhaust gas temperature reducing apparatus using hot water, wherein pressurized hot water is sprayed into exhaust gas by a two-fluid spray method. 圧力検出器の検出圧力が、加圧熱水のその温度での飽和蒸気圧+0.1(MPaG)以下に低下したとき、又は温度検出器の検出温度が、その噴霧場の圧力での飽和温度+20℃以下に低下したときに、加圧空気制御弁を開放するようにした請求項6又は請求項7に記載の熱水を利用した排ガス減温装置。When the pressure detected by the pressure detector falls to or below the saturated vapor pressure of the pressurized hot water +0.1 (MPaG) at that temperature, or when the temperature detected by the temperature detector becomes the saturation temperature at the pressure of the spray field. The exhaust gas temperature reducing apparatus using hot water according to claim 6 or 7, wherein the pressurized air control valve is opened when the temperature falls to + 20 ° C or lower.
JP2003118325A 2002-05-07 2003-04-23 Exhaust gas temperature reducing method using hot water and its device Pending JP2004028558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118325A JP2004028558A (en) 2002-05-07 2003-04-23 Exhaust gas temperature reducing method using hot water and its device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002131149 2002-05-07
JP2003118325A JP2004028558A (en) 2002-05-07 2003-04-23 Exhaust gas temperature reducing method using hot water and its device

Publications (1)

Publication Number Publication Date
JP2004028558A true JP2004028558A (en) 2004-01-29

Family

ID=31190076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118325A Pending JP2004028558A (en) 2002-05-07 2003-04-23 Exhaust gas temperature reducing method using hot water and its device

Country Status (1)

Country Link
JP (1) JP2004028558A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139403A (en) * 2005-10-19 2007-06-07 Sanki Eng Co Ltd Proportional control method and device for two-fluid flow water jet nozzle
JP2010538237A (en) * 2007-09-04 2010-12-09 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Quenching vessel
JP2011021810A (en) * 2009-07-15 2011-02-03 Ohkawara Kakohki Co Ltd Straightening device for cooling tower for cooling high temperature gas
JP2013134044A (en) * 2011-12-27 2013-07-08 Daikin Industries Ltd Air conditioner
CN103808163A (en) * 2014-01-26 2014-05-21 济南承乾工程技术有限公司 Water spraying humidifier
JP2016014516A (en) * 2014-07-03 2016-01-28 株式会社流機エンジニアリング Exhaust gas cooling device and exhaust gas cooling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139403A (en) * 2005-10-19 2007-06-07 Sanki Eng Co Ltd Proportional control method and device for two-fluid flow water jet nozzle
JP2010538237A (en) * 2007-09-04 2010-12-09 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Quenching vessel
JP2011021810A (en) * 2009-07-15 2011-02-03 Ohkawara Kakohki Co Ltd Straightening device for cooling tower for cooling high temperature gas
JP2013134044A (en) * 2011-12-27 2013-07-08 Daikin Industries Ltd Air conditioner
CN103808163A (en) * 2014-01-26 2014-05-21 济南承乾工程技术有限公司 Water spraying humidifier
JP2016014516A (en) * 2014-07-03 2016-01-28 株式会社流機エンジニアリング Exhaust gas cooling device and exhaust gas cooling method

Similar Documents

Publication Publication Date Title
US7722844B2 (en) Exhaust smoke denitrating apparatus and method of exhaust smoke denitration
JP2004028558A (en) Exhaust gas temperature reducing method using hot water and its device
KR100345408B1 (en) Method and apparatus for cooling exhaust gases using heated water
JP2007307477A (en) Ammonia injection device and method for exhaust heat recovery boiler
JP2004132642A (en) Latent heat recovery type gas hot-water supplier
CN210485760U (en) Organic waste liquid gasification furnace
JP2011173072A (en) Chemical agent spraying device and chemical agent spraying method
JP4578268B2 (en) Corrosion prevention method for one-fluid spray nozzle in exhaust gas temperature reduction device
JP3978702B2 (en) Exhaust gas cooling equipment and operation method thereof
JP3820093B2 (en) Waste incineration facility and exhaust gas cooling method
JP3869604B2 (en) Exhaust gas temperature reduction method and apparatus using hot water
JP4230398B2 (en) Exhaust gas temperature reduction device and exhaust gas temperature reduction method using hot water
US6841138B2 (en) Method and device for temperature reduction of exhaust gas by making use of thermal water
JP2004167450A (en) Method and device for injecting ammonia to denitrification apparatus
JP2006275317A (en) Temperature decreasing tower
JPS605269Y2 (en) Fully evaporative gas cooling tower
JP3782609B2 (en) High-pressure steam condensate system for heat recovery equipment attached to waste treatment equipment
JP4178100B2 (en) Steam supply method and steam supply system
CN214664376U (en) Flue gas recirculation system and boiler
JPH0120518Y2 (en)
CN212954387U (en) Three-fluid spray gun for desulfurization wastewater atomization and waste gas treatment device
JPH08136096A (en) Refrigerant gas control device in heat pump system
JP2001269530A (en) Water spray device and gas cooling system equipped therewith
JPH0619952Y2 (en) Water spray cooling system
JPS594767Y2 (en) Exhaust gas cooling spray device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071114