JP2004167450A - Method and device for injecting ammonia to denitrification apparatus - Google Patents

Method and device for injecting ammonia to denitrification apparatus Download PDF

Info

Publication number
JP2004167450A
JP2004167450A JP2002339161A JP2002339161A JP2004167450A JP 2004167450 A JP2004167450 A JP 2004167450A JP 2002339161 A JP2002339161 A JP 2002339161A JP 2002339161 A JP2002339161 A JP 2002339161A JP 2004167450 A JP2004167450 A JP 2004167450A
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
gas
flue
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339161A
Other languages
Japanese (ja)
Inventor
Ryosuke Nakagawa
了介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002339161A priority Critical patent/JP2004167450A/en
Publication of JP2004167450A publication Critical patent/JP2004167450A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for injecting NH<SB>3</SB>to a denitrification apparatus capable of reducing necessary power of a waste gas circulation fan and improving the plant efficiency. <P>SOLUTION: The device for injecting NH<SB>3</SB>to the denitrification apparatus has NH<SB>3</SB>injecting nozzles 10 successively disposed along the gas fowing direction of a waste gas duct 1 and denitrification catalyst layers 11. Further, the device for injecting NH<SB>3</SB>to the denitrification apparatus is provided with a waste gas branch pipe 2 connected with the preflow of the NH<SB>3</SB>injecting nozzles 10, an evaporator 8 for NH<SB>3</SB>water connected with the waste gas branch pipe 2 via a circulation fan 7, an NH<SB>3</SB>water pipe 5 for supplying the NH<SB>3</SB>water to the evaporator 8 and an NH<SB>3</SB>-containing gas pipe 4 for supplying the NH<SB>3</SB>-containing gas produced in the evaporator 8 to the NH<SB>3</SB>injecting nozzles 10 of the waste gas duct 1. Therein, a gas-liquid heat exchanger 15 for heating the NH<SB>3</SB>water which is supplied to the evaporator 8 is disposed and a secondary branch pipe 6 formed by branching the waste gas branch pipe 2 is connected with the gas inlet side of the gas-liquid heat exchanger 15. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、脱硝装置へのアンモニア注入方法および装置に係り、特に、排ガス循環式のアンモニア注入方法および装置に関する。
【0002】
【従来の技術】
コンバインドサイクルプラント等に設置される排煙脱硝装置において、ガスタービン排ガスに含まれる窒素酸化物は、排ガスダクト内に注入される、還元剤としてのアンモニアと充分混合した後、後流の脱硝触媒層に流入し、脱硝触媒の存在下前記アンモニアと接触して還元、分解処理される。
【0003】
近年、液化アンモニアに比べて保管および取扱いが容易なことから、還元剤としてアンモニア水が用いられるケースが多くなっている。アンモニア水からアンモニアガスを得る方法としては、例えば電気ヒータ蒸発方式、排熱回収ボイラから排ガスの一部を分岐して加熱源として用いる排ガス循環方式があり、プラント効率を向上させる観点から、ユーティリティ使用量が比較的少ない排ガス循環方式が好適に採用されている。
【0004】
図5は、従来の、排ガス循環式の脱硝装置へのアンモニア注入装置を示す説明図である。図5において、このアンモニア注入装置3は、例えば排熱回収ボイラの排ガス煙道に設けられた脱硝装置に適用されたものであり、前記排ガス煙道1のガス流れ方向に沿って順次設けられたアンモニア注入ノズル10および脱硝触媒層11を備えた脱硝装置の、前記アンモニア注入ノズル10の前流に連結された排ガス分岐配管2と、該排ガス分岐配管2に循環ファン7を介して連結されたアンモニア水の蒸発器8と、該蒸発器8にアンモニア源としてアンモニア水を供給するアンモニア水配管5と、前記蒸発器8で発生したアンモニア含有ガスを前記排ガス煙道1のアンモニア注入ノズル10に供給するアンモニア含有ガス4配管とから主として構成されている。9は、アンモニア水配管5に設けられた注入制御弁である。
【0005】
排ガス煙道1から分岐配管2を経て抜き出された排ガスは、アンモニア注入装置3に流入し、循環ファン7の作用を受けて配管機器の圧力損失に打ち勝つ程度まで昇圧された後、アンモニア水蒸発器8へ流入し、ここで、アンモニア水注入制御弁9により流量調整された後、アンモニア水配管5を経て導入され、例えば図示省略したアトマイズ装置によって微粒化されたアンモニア水を加熱、蒸発させ、アンモニアガスが生成する。生成したアンモニアガスは、水蒸気および排ガス等との混合ガスとしてアンモニア含有ガス配管4を経て前記排ガス煙道1のアンモニア注入ノズル10に供給され、該アンモニア注入ノズル10から排ガス煙道1内に注入される。排ガス煙道1内に注入されたアンモニアガスは排ガス中のNOxと混合したのち後流の脱硝触媒層11に流入し、ここで前記NOxを選択的に接触還元、分解して無害化する。
【0006】
しかしながら、上記従来技術では、部分負荷時、起動時等の排ガス温度が低い条件においてはアンモニア水の蒸発に必要な熱量を確保するために、排ガス煙道から抜き出す排ガス量を増加させる必要があることから、循環ファン、配管サイズの大型化およびそれに伴うユーティリティ増加等の問題が生じていた。
【0007】
すなわち、上記従来技術においては、アンモニア水を蒸発させる熱源はあくまでも循環ファンを経て吸引される排ガスであることから、必要アンモニアガス量を確保するためには、ファン容量の決定が設計上重要となってくる。また、近年の傾向として、定格負荷のみならず、部分負荷帯においてもNOx排出規制を遵守しなければならないことから、低温度域を考慮した設計が必要となり、必然的にアンモニア水の蒸発熱量を確保するためにファン容量を増大させる傾向があり、設置上の制約に加え、補機動力、負荷動力も無視できないものとなり、結果としてプラント効率を低下させる要因となっていた。
【特許文献1】特開平05−049856号公報(第1図)
【0008】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解決し、排ガス抜き出し用の循環ファンの必要経費および動力を削減し、これによってプラント効率を向上させ、しかも立地上の制約を解消することができるコンパクトな、脱硝装置へのアンモニア注入方法および装置を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
(1)排ガス煙道のガス流れ方向に沿って順次設けられたアンモニア注入ノズルおよび脱硝触媒層を備えた脱硝装置の、前記排ガス煙道を流通する排ガスの一部を抜き出し、該排ガスの熱量を利用した蒸発器でアンモニア水を蒸発させ、得られたアンモニア含有ガスを前記アンモニア注入ノズルから排ガス煙道内に噴霧する脱硝装置へのアンモニア注入方法において、前記排ガス煙道から抜出した排ガスの一部を用いて前記蒸発器に導入するアンモニア水を加熱することを特徴とする脱硝装置へのアンモニア注入方法。
(2)前記排ガス煙道の脱硝触媒層の後流に誘引送風機を設け、前記アンモニア水を加熱した後の排ガスを、前記誘引送風機で吸引し、該誘引送風機の前流側の排ガス煙道に導入することを特徴とする上記(1)に記載の脱硝装置へのアンモニア注入方法。
【0010】
(3)排ガス煙道のガス流れ方向に沿って順次設けられたアンモニア注入ノズルおよび脱硝触媒層を備えた脱硝装置の、前記アンモニア注入ノズルの前流に連結された排ガス分岐配管と、該排ガス分岐配管に循環ファンを介して連結されたアンモニア水の蒸発器と、該蒸発器にアンモニア源としてアンモニア水を供給するアンモニア水配管と、前記蒸発器で発生したアンモニア含有ガスを前記排ガス煙道のアンモニア注入ノズルに供給するアンモニア含有ガス配管とを有する脱硝装置へのアンモニア注入装置において、前記蒸発器に供給するアンモニア水を加熱する気−液熱交換器を設け、該気−液熱交換器のガス入口側に前記排ガス分岐配管を分岐した二次分岐配管を連結して前記アンモニア水を加熱するようにしたことを特徴とする脱硝装置へのアンモニア注入装置。
(4)前記排ガス煙道の脱硝触媒層の後流に誘引送風機を設け、前記気−液熱交換器のガス出口と、前記排ガス煙道の誘引送風機の前流側とを連結する連結配管を設けたことを特徴とする上記(3)に記載の脱硝装置へのアンモニア注入装置。
【0011】
【発明の実施の形態】
次に、本発明の一実施例を図面を用いて詳細に説明する。
図1は、本発明の一実施例を示す脱硝装置へのアンモニア注入装置の説明図である。図1において、このアンモニア注入装置3は、ガスタービンの排ガス煙道に設けられた脱硝装置に適用したものであり、ガスタービン排ガス煙道1のガス流れ方向に沿って順次設けられたアンモニア注入ノズル10および脱硝触媒層11を備えた脱硝装置の、前記アンモニア注入ノズル10の前流に連結された排ガス分岐配管2と、該排ガス分岐配管2に循環ファン7を介して連結されたアンモニア水の蒸発器8と、該蒸発器8にアンモニア源としてアンモニア水を供給するアンモニア水配管5と、前記蒸発器8で発生したアンモニア含有ガスを前記排ガス煙道1のアンモニア注入ノズル10に供給するアンモニア含有ガス配管4とを有し、前記蒸発器8に供給するアンモニア水を加熱する気−液熱交換器15を設け、該気−液熱交換器15のガス入口側に前記排ガス分岐配管2を分岐した二次分岐配管6を連結し、アンモニア水蒸発器8に流入するアンモニア水を前記排ガスによって加熱するようにしたものである。
【0012】
このような構成において、排ガス煙道1から抜き出された排ガスは分岐配管2を経てアンモニア注入装置3に流入し、その一部は、二次分岐配管6を経て気−液熱交換器15に流入し、ここでアンモニア水配管5を経て蒸発器8に導入されるアンモニア水を加熱し、その後、例えば大気に放出されるかまたは図示省略した煙突へと送られる。このとき、気−液熱交換器15で使用される排ガス量は蒸発器8出口のアンモニア含有ガス温度が一定値以上を保つように制御される。
【0013】
一方、排ガス煙道1から抜き出された残りの排ガスは、分岐配管2を流通し、循環ファン7で配管機器の圧力損失に打ち勝つ程度に昇圧された後、アンモニア水蒸発器8に流入し、ここで前記気−液熱交換器15で所定温度に加熱されたアンモニア水をさらに加熱し、蒸発させてアンモニアガスを生成する。生成したアンモニアガスは、水蒸気、排ガス等との混合ガスとして蒸発器8から流出し、アンモニア含有ガス配管4を経て排ガス煙道1の前記アンモニア注入ノズル10に供給され、該アンモニア注入ノズル10から排ガス煙道1内に噴霧される。このとき排ガス循環ファン7の排ガス流量は排ガス流路1内における可燃性ガスとしてのアンモニア濃度が爆発領域以下となるように調整される。
【0014】
本実施例によれば、分岐配管2を更に分岐した二次分岐配管を気−液熱交換器15のガス入口に連結し、前記排ガス煙道1から抜出した排ガスの一部をアンモニア水の加熱源として使用することにより、循環ファン7のサイズを従来技術に比べて小さくすることができるので、その必要動力が半減し、結果としてプラント効率を向上させることができる。また、装置のコンパクト化が図られ、立地上の制約を解消させることができる。
【0015】
また本実施例によれば、特に排ガス温度が低下する部分負荷域において、二次分岐配管を流通する排ガス量の調整のみで対応することができるので、動力使用量を大幅に低減することができる。さらに、循環排ガス流量が低減するので、蒸発器8以降の全ての機器のコンパクト化が図れることから、立地制約の厳しい場合においても本システムによる対応が可能となる。
【0016】
図2および図3を用いて本発明の作用効果をより詳細に説明する。図2は、本発明の作用効果を従来技術と比較して示した説明図であり、計画排ガス温度に対する、循環ファンと気−液熱交換器(加熱器)が分担する希釈(抜き出し)排ガス流量比との関係を示したものである。図2において、本発明方式によれば、排ガス煙道から抜出した排ガスは、アンモニア水を加熱する気−液熱交換器(加熱器)と、アンモニア水を蒸発させる蒸発器とに分割して供給されるので、循環ファンとしては、熱交換器(加熱器)分を除いた循環ファン分に相当する量だけを確保すればよいことから、全ての排ガス量を循環ファンのみで確保する従来技術に比べて、循環ファンのサイズを小さくすることができ、ファン動力を低減することができる。
【0017】
また、図3は、部分負荷運転時におけるアンモニア水流量比と、循環ファンと気−液熱交換器(加熱器)が分担する希釈(抜き出し)排ガス流量比との関係を示したものである。図3において、本発明方式によれば、部分負荷運転時に負荷が増大し、アンモニア流量比を増加させたい場合は、循環ファンの運転はそのままとし、気−液熱交換器(加熱器)への排ガス供給比を増加するだけで必要熱量を確保し、これによって必要アンモニア流量比を確保できることが分かる。従って、循環ファンのサイズを相対的に小さくすることができ、かつファン動力を低減することができる。なお、従来技術においては,必要熱量の確保を全て循環ファンに依存しており、過剰の排ガス量を循環する運転条件が選択されていたことになる。
【0018】
本発明において、二次分岐配管とは、排ガス煙道に連結した排ガス分岐配管をさらに分岐した再分岐配管をいい、気−液熱交換器にアンモニア水の加熱源としての排ガスを導入するための配管をいう。
【0019】
本発明の脱硝装置へのアンモニア注入装置は、ガスタービン排ガス煙道に設けられた脱硝装置、排熱回収ボイラの排ガス煙道に設けられた脱硝装置の他、一般的ボイラの排ガス煙道に設けられた脱硝装置にも適用することができる。内圧が低いボイラの排ガス煙道に設けられた脱硝装置に適用する際は、排ガス煙道の脱硝触媒層の後流に誘引送風機を設け(既設のものがあればそれを使用)、気−液熱交換器のガス出口と、排ガス煙道の前記誘引送風機の前流側とを連結配管で連結し、前記気−液熱交換器でアンモニア水を加熱した後の排ガスを誘引送風機で吸引し、該誘引送風機の前流側の排ガス煙道に流入させることが好ましい。これによって内圧の低いボイラに適用した場合にも気−液熱交換器への排ガスの流入量を確保してアンモニア水を加熱することができる。
【0020】
図4は、本発明の他の実施例を示す、脱硝装置へのアンモニア注入装置の説明図である。図4において、このアンモニア注入装置3は、内圧の低いボイラ12の排ガス煙道に設けられた脱硝装置に適用したものであり、図1と異なるところは、排ガス煙道の脱硝触媒層11の後流、本実施例ではエアヒータ13の後流に誘引送風機14を設け、気−液熱交換器15のガス出口と、排ガス煙道1の前記誘引送風機14の前流側とを連結する連結配管16を設けた点である。
【0021】
ボイラからの排ガスは、ガスタービン排ガスと比べて内圧が低いことから、その内圧のまま気−液熱交換器15へ導入することは難しいので、熱交換器15側へ排ガスを誘導するために、ボイラの誘引送風機14による吸引排ガス差圧を利用して行うようにしたものである。ボイラ12の排ガス煙道1より抜き出された排ガスは分岐配管2を経てアンモニア注入装置3に流入したのち、2分割され、一方はアンモニア水熱交換器連絡配管としての二次分岐配管6を流通して熱交換器15に流入し、ここでアンモニア水を加熱した後、脱硝触媒11およびエアヒータ13の後流、すなわち誘引送風機14の前流の排ガス煙道1に吸引、導入される。他方、アンモニア水蒸発器連絡配管としての分岐配管2を流通した排ガスは上述した実施例と同様に、循環ファン7を経由し蒸発器8へ送られ、ここで、前記気−液熱交換器15で加熱されたアンモニア水をさらに加熱し、蒸発させたのち、発生したアンモニアガスを伴ってアンモニア注入ノズル10に流入し、該アンモニア注入ノズル10からアンモニアガスを排ガス煙道1内に噴霧する。
【0022】
本実施例においても上記実施例と同様、循環ファン7のサイズを小さくすることができるので、その必要動力が半減し、結果としてプラント効率を向上させることができる。
【0023】
【発明の効果】
本願の請求項1に記載の発明によれば、循環ファンの負担を低減することができるので、全ての排ガスを循環ファンのみで確保するようにした従来技術に比べて、循環ファンのサイズが小さくなり、かつファン動力が低減し、プラント効率が向上する。
本願の請求項2に記載の発明によれば、本発明方法を、内圧の低いボイラ排ガス煙道に設けられた脱硝装置にも適用することもできる。
【0024】
本願の請求項3に記載の発明によれば、循環ファンのサイズをよりコンパクトにすることができ、立地条件が緩和されるとともに、必要動力が低減し、プラント効率が向上する。
本願の請求項4に記載の発明によれば、本発明装置を、内圧の低いボイラの排ガス煙道に設けられた脱硝装置にも適用することもできる。
【0025】
【図面の簡単な説明】
【図1】本発明の一実施例を示す、脱硝装置へのアンモニア注入装置の説明図。
【図2】本発明の作用効果を示す図。
【図3】本発明の作用効果を示す図。
【図4】本発明の他の実施例を示す説明図。
【図5】従来技術を示す説明図。
【符号の説明】
1…排ガス煙道、2…排ガス分岐配管(アンモニア水蒸器気連絡配管)、3…アンモニア注入装置、4…アンモニア含有ガス配管、5…アンモニア水配管、6…二次分岐配管(アンモニア水熱交換器連絡配管)、7…循環ファン、8…アンモニア水蒸発器、9…注入制御弁、10…アンモニア注入ノズル、11…脱硝触媒層、12…ボイラ、13…エアヒータ、14…誘引送風機(IDF)、15…気−液熱交換器(アンモニア水熱交換器)、16…連結配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for injecting ammonia into a denitration apparatus, and more particularly to a method and an apparatus for injecting ammonia into an exhaust gas.
[0002]
[Prior art]
In a flue gas denitration system installed in a combined cycle plant, etc., nitrogen oxides contained in gas turbine exhaust gas are sufficiently mixed with ammonia as a reducing agent injected into an exhaust gas duct, and then a downstream denitration catalyst layer is formed. And is reduced and decomposed by contacting the ammonia in the presence of a denitration catalyst.
[0003]
In recent years, ammonia water is often used as a reducing agent because storage and handling are easier than liquefied ammonia. Methods for obtaining ammonia gas from ammonia water include, for example, an electric heater evaporation method, and an exhaust gas circulation method in which a part of exhaust gas is branched from an exhaust heat recovery boiler and used as a heating source. From the viewpoint of improving plant efficiency, utility is used. An exhaust gas circulation system with a relatively small amount is preferably employed.
[0004]
FIG. 5 is an explanatory diagram showing a conventional ammonia injection device for an exhaust gas circulation type denitration device. In FIG. 5, the ammonia injection device 3 is applied to, for example, a denitration device provided in an exhaust gas flue of an exhaust heat recovery boiler, and is sequentially provided along the gas flow direction of the exhaust gas flue 1. The exhaust gas branch pipe 2 connected to the upstream of the ammonia injection nozzle 10 of the denitration apparatus including the ammonia injection nozzle 10 and the denitration catalyst layer 11, and the ammonia connected to the exhaust gas branch pipe 2 via the circulation fan 7 A water evaporator 8, an ammonia water pipe 5 for supplying ammonia water as an ammonia source to the evaporator 8, and an ammonia-containing gas generated in the evaporator 8 are supplied to an ammonia injection nozzle 10 of the exhaust gas flue 1. It is mainly composed of four pipes containing ammonia-containing gas. Reference numeral 9 denotes an injection control valve provided in the ammonia water pipe 5.
[0005]
Exhaust gas extracted from the exhaust gas flue 1 through the branch pipe 2 flows into the ammonia injection device 3 and is boosted by the action of the circulation fan 7 to a level that overcomes the pressure loss of the piping equipment. The ammonia water flows into the vessel 8, where the flow rate is adjusted by the ammonia water injection control valve 9, and then introduced through the ammonia water pipe 5, and for example, the ammonia water atomized by an atomizing device (not shown) is heated and evaporated. Ammonia gas is generated. The generated ammonia gas is supplied to the ammonia injection nozzle 10 of the exhaust gas flue 1 via the ammonia-containing gas pipe 4 as a mixed gas with steam and exhaust gas, and is injected into the exhaust gas flue 1 from the ammonia injection nozzle 10. You. The ammonia gas injected into the exhaust gas flue 1 mixes with NOx in the exhaust gas and then flows into the downstream denitration catalyst layer 11, where the NOx is selectively catalytically reduced and decomposed to make it harmless.
[0006]
However, in the above-described conventional technology, it is necessary to increase the amount of exhaust gas extracted from the exhaust gas flue in order to secure the amount of heat required for evaporating the ammonia water when the exhaust gas temperature is low, such as at the time of partial load or startup. As a result, there have been problems such as an increase in the size of the circulation fan and the piping and an accompanying increase in utilities.
[0007]
That is, in the above-described conventional technology, since the heat source for evaporating the ammonia water is exhaust gas sucked through the circulation fan, determination of the fan capacity is important in design in order to secure the required amount of ammonia gas. Come. Also, as a trend in recent years, it is necessary to comply with NOx emission regulations not only in the rated load but also in the partial load zone. Therefore, a design considering the low temperature range is required, and the heat of evaporation of the ammonia water is inevitably reduced. There is a tendency to increase the fan capacity in order to secure it, and in addition to installation restrictions, auxiliary power and load power are not negligible, resulting in a decrease in plant efficiency.
[Patent Document 1] Japanese Patent Application Laid-Open No. 05-49856 (FIG. 1)
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, reduce the required cost and power of a circulating fan for exhaust gas extraction, thereby improving plant efficiency and eliminating location constraints. It is an object of the present invention to provide a compact method and apparatus for injecting ammonia into a denitration apparatus.
[0009]
[Means for Solving the Problems]
The invention claimed in the present application to solve the above problems is as follows.
(1) A denitration apparatus provided with an ammonia injection nozzle and a denitration catalyst layer sequentially provided along the gas flow direction of the exhaust gas flue extracts a part of the exhaust gas flowing through the exhaust gas flue, and reduces the calorific value of the exhaust gas. Ammonia water is evaporated by an evaporator used, and the obtained ammonia-containing gas is sprayed from the ammonia injection nozzle into an exhaust gas flue in an ammonia injection method for a denitration apparatus, in which a part of the exhaust gas extracted from the exhaust gas flue is removed. A method for injecting ammonia into a denitration apparatus, wherein the ammonia water introduced into the evaporator is heated by using the method.
(2) An induction blower is provided downstream of the denitration catalyst layer of the exhaust gas flue, and the exhaust gas after heating the ammonia water is sucked by the induction blower, and is discharged into the exhaust gas flue on the upstream side of the induction blower. The method for injecting ammonia into a denitration apparatus according to the above (1), wherein the method is introduced.
[0010]
(3) An exhaust gas branch pipe connected to the upstream of the ammonia injection nozzle of the denitration apparatus including the ammonia injection nozzle and the denitration catalyst layer provided sequentially along the gas flow direction of the exhaust gas flue; An ammonia water evaporator connected to a pipe via a circulation fan, an ammonia water pipe for supplying ammonia water to the evaporator as an ammonia source, and an ammonia-containing gas generated in the evaporator for supplying ammonia to the exhaust gas flue. An ammonia-injection device for an NOx removal device having an ammonia-containing gas pipe for supplying to an injection nozzle, a gas-liquid heat exchanger for heating ammonia water supplied to the evaporator, and a gas for the gas-liquid heat exchanger Denitration characterized in that a secondary branch pipe obtained by branching the exhaust gas branch pipe is connected to an inlet side to heat the ammonia water. Ammonia injection unit to the location.
(4) An induction blower is provided downstream of the denitration catalyst layer of the exhaust gas flue, and a connecting pipe for connecting a gas outlet of the gas-liquid heat exchanger and a upstream side of the induction blower of the exhaust gas flue is provided. The apparatus for injecting ammonia into a denitration apparatus according to the above (3), wherein the apparatus is provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram of an ammonia injection device for a denitration device showing one embodiment of the present invention. In FIG. 1, the ammonia injection device 3 is applied to a denitration device provided in an exhaust gas flue of a gas turbine, and is provided with an ammonia injection nozzle sequentially provided along the gas flow direction of the gas turbine exhaust gas flue 1. The exhaust gas branch pipe 2 connected to the upstream of the ammonia injection nozzle 10 of the denitration apparatus including the denitration catalyst 10 and the denitration catalyst layer 11, and the ammonia water connected to the exhaust gas branch pipe 2 via the circulation fan 7 An ammonia water pipe 5 for supplying ammonia water as an ammonia source to the evaporator 8, and an ammonia-containing gas for supplying the ammonia-containing gas generated in the evaporator 8 to the ammonia injection nozzle 10 of the exhaust gas flue 1. A gas-liquid heat exchanger 15 for heating ammonia water supplied to the evaporator 8; The exhaust gas branch pipes 2 to the gas inlet side connecting the secondary branch pipe 6 branched is ammonia water flowing into the ammonia water evaporator 8 that as heated by the flue gas.
[0012]
In such a configuration, the exhaust gas extracted from the exhaust gas flue 1 flows into the ammonia injection device 3 through the branch pipe 2, and a part of the exhaust gas flows into the gas-liquid heat exchanger 15 through the secondary branch pipe 6. The ammonia water flows into the evaporator 8 via the ammonia water pipe 5 and is then discharged to the atmosphere or sent to a chimney (not shown). At this time, the amount of exhaust gas used in the gas-liquid heat exchanger 15 is controlled so that the temperature of the ammonia-containing gas at the outlet of the evaporator 8 is kept at a certain value or more.
[0013]
On the other hand, the remaining exhaust gas extracted from the exhaust gas flue 1 flows through the branch pipe 2 and is boosted by the circulation fan 7 so as to overcome the pressure loss of the piping equipment, and then flows into the ammonia water evaporator 8, Here, the ammonia water heated to a predetermined temperature in the gas-liquid heat exchanger 15 is further heated and evaporated to generate ammonia gas. The produced ammonia gas flows out of the evaporator 8 as a mixed gas with steam, exhaust gas, etc., is supplied to the ammonia injection nozzle 10 of the exhaust gas flue 1 via the ammonia-containing gas pipe 4, and the ammonia gas is discharged from the ammonia injection nozzle 10 It is sprayed into the flue 1. At this time, the flow rate of the exhaust gas from the exhaust gas circulation fan 7 is adjusted such that the concentration of ammonia as a combustible gas in the exhaust gas flow path 1 becomes lower than the explosion range.
[0014]
According to the present embodiment, a secondary branch pipe further branched from the branch pipe 2 is connected to the gas inlet of the gas-liquid heat exchanger 15, and a part of the exhaust gas extracted from the exhaust gas flue 1 is heated with ammonia water. By using it as a source, the size of the circulating fan 7 can be reduced compared to the prior art, so that the required power is halved, and as a result, the plant efficiency can be improved. In addition, the apparatus can be made compact, and restrictions on location can be eliminated.
[0015]
Further, according to the present embodiment, especially in the partial load region where the exhaust gas temperature is reduced, it is possible to cope with only by adjusting the amount of exhaust gas flowing through the secondary branch pipe, so that the power consumption can be significantly reduced. . Further, since the flow rate of the circulating exhaust gas is reduced, all the devices after the evaporator 8 can be made compact. Therefore, even in the case where the location restriction is severe, the system can cope.
[0016]
The operation and effect of the present invention will be described in more detail with reference to FIGS. FIG. 2 is an explanatory diagram showing the operation and effect of the present invention in comparison with the prior art, and shows the flow rate of a diluted (extracted) exhaust gas shared by a circulation fan and a gas-liquid heat exchanger (heater) with respect to a planned exhaust gas temperature. It shows the relationship with the ratio. In FIG. 2, according to the method of the present invention, the exhaust gas extracted from the exhaust gas flue is separately supplied to a gas-liquid heat exchanger (heater) for heating the ammonia water and an evaporator for evaporating the ammonia water. Therefore, it is only necessary to secure the amount of the circulation fan corresponding to the circulation fan excluding the heat exchanger (heater). In comparison, the size of the circulation fan can be reduced, and the fan power can be reduced.
[0017]
FIG. 3 shows the relationship between the ammonia water flow ratio during the partial load operation and the dilution (extraction) exhaust gas flow ratio shared by the circulation fan and the gas-liquid heat exchanger (heater). In FIG. 3, according to the method of the present invention, when the load increases during the partial load operation and it is desired to increase the ammonia flow ratio, the operation of the circulation fan is kept as it is, and the operation of the gas-liquid heat exchanger (heater) is performed. It can be seen that the required amount of heat can be ensured only by increasing the exhaust gas supply ratio, and thereby the required ammonia flow ratio can be ensured. Therefore, the size of the circulation fan can be relatively reduced, and the fan power can be reduced. It should be noted that, in the prior art, the circulating fan is all used to secure the required amount of heat, which means that the operating conditions for circulating an excessive amount of exhaust gas have been selected.
[0018]
In the present invention, the secondary branch pipe refers to a re-branch pipe further branched from an exhaust gas branch pipe connected to an exhaust gas flue, and is used to introduce exhaust gas as a heating source of ammonia water into a gas-liquid heat exchanger. Refers to piping.
[0019]
The ammonia injection device for the denitration device of the present invention is provided in a flue gas flue of a general boiler, in addition to a denitration device provided in a gas turbine flue gas flue, and a denitration device provided in a flue gas flue of an exhaust heat recovery boiler. The present invention can also be applied to a denitration apparatus provided. When applied to a denitration device installed in the flue gas flue of a boiler with a low internal pressure, an induction blower is installed downstream of the denitration catalyst layer in the flue gas flue (if there is an existing one, use it). The gas outlet of the heat exchanger and the upstream side of the induction blower of the exhaust gas flue are connected by a connection pipe, and the exhaust gas after heating the ammonia water in the gas-liquid heat exchanger is sucked by the induction blower, It is preferable to make the exhaust gas flow into the flue gas on the upstream side of the induction blower. As a result, even when applied to a boiler having a low internal pressure, the amount of exhaust gas flowing into the gas-liquid heat exchanger can be secured and the ammonia water can be heated.
[0020]
FIG. 4 is an explanatory view of an apparatus for injecting ammonia into a denitration apparatus, showing another embodiment of the present invention. In FIG. 4, this ammonia injection device 3 is applied to a denitration device provided in an exhaust gas flue of a boiler 12 having a low internal pressure. The difference from FIG. In the present embodiment, an induction blower 14 is provided downstream of the air heater 13, and a connection pipe 16 connecting the gas outlet of the gas-liquid heat exchanger 15 and the upstream side of the induction blower 14 of the exhaust gas flue 1. This is the point provided.
[0021]
Since the internal pressure of the exhaust gas from the boiler is lower than that of the gas turbine exhaust gas, it is difficult to introduce the exhaust gas to the gas-liquid heat exchanger 15 at that internal pressure. This is performed by utilizing the suction exhaust gas differential pressure of the induction blower 14 of the boiler. Exhaust gas extracted from the exhaust gas flue 1 of the boiler 12 flows into the ammonia injection device 3 via the branch pipe 2 and is then split into two, one of which flows through the secondary branch pipe 6 as a connecting pipe for the ammonia water heat exchanger. After flowing into the heat exchanger 15 and heating the ammonia water here, the ammonia water is sucked and introduced into the exhaust gas flue 1 downstream of the denitration catalyst 11 and the air heater 13, that is, upstream of the induction blower 14. On the other hand, the exhaust gas flowing through the branch pipe 2 serving as the ammonia water evaporator communication pipe is sent to the evaporator 8 via the circulation fan 7 in the same manner as in the above-described embodiment, where the gas-liquid heat exchanger 15 is used. After further heating and evaporating the ammonia water heated by the above, the ammonia water flows into the ammonia injection nozzle 10 together with the generated ammonia gas, and the ammonia gas is sprayed from the ammonia injection nozzle 10 into the exhaust gas flue 1.
[0022]
Also in this embodiment, as in the above embodiment, the size of the circulation fan 7 can be reduced, so that the required power is reduced by half, and as a result, the plant efficiency can be improved.
[0023]
【The invention's effect】
According to the invention as set forth in claim 1 of the present application, the burden on the circulation fan can be reduced, so that the size of the circulation fan is smaller than in the related art in which all exhaust gas is secured only by the circulation fan. And the fan power is reduced, and the plant efficiency is improved.
According to the invention described in claim 2 of the present application, the method of the present invention can also be applied to a denitration device provided in a boiler exhaust gas flue having a low internal pressure.
[0024]
According to the invention described in claim 3 of the present application, the size of the circulating fan can be made more compact, the location conditions are relaxed, the required power is reduced, and the plant efficiency is improved.
According to the invention described in claim 4 of the present application, the device of the present invention can also be applied to a denitration device provided in an exhaust gas flue of a boiler having a low internal pressure.
[0025]
[Brief description of the drawings]
FIG. 1 is an explanatory view of an ammonia injection device to a denitration device, showing one embodiment of the present invention.
FIG. 2 is a view showing the operation and effect of the present invention.
FIG. 3 is a view showing the operation and effect of the present invention.
FIG. 4 is an explanatory view showing another embodiment of the present invention.
FIG. 5 is an explanatory view showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas flue, 2 ... Exhaust gas branch pipe (ammonia water evaporator air communication pipe), 3 ... Ammonia injection device, 4 ... Ammonia containing gas pipe, 5 ... Ammonia water pipe, 6 ... Secondary branch pipe (Ammonia water heat exchange) 7, a circulation fan, 8: ammonia water evaporator, 9: injection control valve, 10: ammonia injection nozzle, 11: denitration catalyst layer, 12: boiler, 13: air heater, 14: induction blower (IDF) , 15 ... gas-liquid heat exchanger (ammonia water heat exchanger), 16 ... connecting pipe.

Claims (4)

排ガス煙道のガス流れ方向に沿って順次設けられたアンモニア注入ノズルおよび脱硝触媒層を備えた脱硝装置の、前記排ガス煙道を流通する排ガスの一部を抜き出し、該排ガスの熱量を利用した蒸発器でアンモニア水を蒸発させ、得られたアンモニア含有ガスを前記アンモニア注入ノズルから排ガス煙道内に噴霧する脱硝装置へのアンモニア注入方法において、前記排ガス煙道から抜出した排ガスの一部を用いて前記蒸発器に導入するアンモニア水を加熱することを特徴とする脱硝装置へのアンモニア注入方法。A denitration apparatus provided with an ammonia injection nozzle and a denitration catalyst layer sequentially provided along the gas flow direction of the exhaust gas flue, extracts a part of the exhaust gas flowing through the exhaust gas flue, and evaporates using the calorie of the exhaust gas. Ammonia water is evaporated in a vessel, and the obtained ammonia-containing gas is sprayed from the ammonia injection nozzle into an exhaust gas flue in an ammonia injection method for a denitration apparatus, in which a part of the exhaust gas extracted from the exhaust gas flue is used. A method for injecting ammonia into a denitration apparatus, comprising heating ammonia water introduced into an evaporator. 前記排ガス煙道の脱硝触媒層の後流に誘引送風機を設け、前記アンモニア水を加熱した後の排ガスを、前記誘引送風機で吸引し、該誘引送風機の前流側の排ガス煙道に導入することを特徴とする請求項1に記載の脱硝装置へのアンモニア注入方法。Providing an induction blower downstream of the denitration catalyst layer of the exhaust gas flue, sucking the exhaust gas after heating the ammonia water with the induction blower, and introducing the exhaust gas into the exhaust gas flue on the upstream side of the induction blower. The method for injecting ammonia into a denitration apparatus according to claim 1, wherein: 排ガス煙道のガス流れ方向に沿って順次設けられたアンモニア注入ノズルおよび脱硝触媒層を備えた脱硝装置の、前記アンモニア注入ノズルの前流に連結された排ガス分岐配管と、該排ガス分岐配管に循環ファンを介して連結されたアンモニア水の蒸発器と、該蒸発器にアンモニア源としてアンモニア水を供給するアンモニア水配管と、前記蒸発器で発生したアンモニア含有ガスを前記排ガス煙道のアンモニア注入ノズルに供給するアンモニア含有ガス配管とを有する脱硝装置へのアンモニア注入装置において、前記蒸発器に供給するアンモニア水を加熱する気−液熱交換器を設け、該気−液熱交換器のガス入口側に前記排ガス分岐配管を分岐した二次分岐配管を連結して前記アンモニア水を加熱するようにしたことを特徴とする脱硝装置へのアンモニア注入装置。A denitration apparatus provided with an ammonia injection nozzle and a denitration catalyst layer sequentially provided along the gas flow direction of the exhaust gas flue, wherein the exhaust gas branch pipe connected to the upstream of the ammonia injection nozzle and the exhaust gas branch pipe is circulated. An ammonia water evaporator connected via a fan, an ammonia water pipe for supplying ammonia water as an ammonia source to the evaporator, and an ammonia-containing gas generated in the evaporator to an ammonia injection nozzle of the exhaust gas flue. In an ammonia injection device for a denitration device having an ammonia-containing gas pipe to be supplied, a gas-liquid heat exchanger for heating ammonia water supplied to the evaporator is provided, and a gas inlet side of the gas-liquid heat exchanger is provided. To a denitration apparatus, wherein the ammonia water is heated by connecting a secondary branch pipe branched from the exhaust gas branch pipe. Ammonia injection unit. 前記排ガス煙道の脱硝触媒層の後流に誘引送風機を設け、前記気−液熱交換器のガス出口と、前記排ガス煙道の誘引送風機の前流側とを連結する連結配管を設けたことを特徴とする請求項3に記載の脱硝装置へのアンモニア注入装置。An induction blower is provided downstream of the denitration catalyst layer of the exhaust gas flue, and a connection pipe is provided for connecting a gas outlet of the gas-liquid heat exchanger and a upstream side of the induction blower of the exhaust gas flue. The apparatus for injecting ammonia into a denitration apparatus according to claim 3, characterized in that:
JP2002339161A 2002-11-22 2002-11-22 Method and device for injecting ammonia to denitrification apparatus Pending JP2004167450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339161A JP2004167450A (en) 2002-11-22 2002-11-22 Method and device for injecting ammonia to denitrification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339161A JP2004167450A (en) 2002-11-22 2002-11-22 Method and device for injecting ammonia to denitrification apparatus

Publications (1)

Publication Number Publication Date
JP2004167450A true JP2004167450A (en) 2004-06-17

Family

ID=32702181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339161A Pending JP2004167450A (en) 2002-11-22 2002-11-22 Method and device for injecting ammonia to denitrification apparatus

Country Status (1)

Country Link
JP (1) JP2004167450A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061912A1 (en) * 2004-12-10 2006-06-15 Babcock-Hitachi Kabushiki Kaisha Exhaust smoke denitrating apparatus and method of exhaust smoke denitration
JP2007307477A (en) * 2006-05-18 2007-11-29 Babcock Hitachi Kk Ammonia injection device and method for exhaust heat recovery boiler
CN102743889A (en) * 2012-07-19 2012-10-24 北京中新国能环保科技有限公司 Liquid ammonia evaporator and liquid ammonia evaporation system for flue gas denitration
CN107044650A (en) * 2017-02-06 2017-08-15 国网安徽省电力公司电力科学研究院 A kind of thermal power plant's liquefied ammonia denitration steam turbine combines energy saving circulating system
JP2019143495A (en) * 2018-02-16 2019-08-29 三菱日立パワーシステムズ株式会社 Nox removal equipment, heat recovery boiler provided with nox removal equipment, gas turbine complex power-generating plant and nox removal method
CN113769582A (en) * 2021-10-26 2021-12-10 安徽金森源环保工程有限公司 Ammonia water evaporator device for kiln denitration

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061912A1 (en) * 2004-12-10 2006-06-15 Babcock-Hitachi Kabushiki Kaisha Exhaust smoke denitrating apparatus and method of exhaust smoke denitration
US7722844B2 (en) 2004-12-10 2010-05-25 Babcock-Hitachi Kabushiki Kaisha Exhaust smoke denitrating apparatus and method of exhaust smoke denitration
JP2007307477A (en) * 2006-05-18 2007-11-29 Babcock Hitachi Kk Ammonia injection device and method for exhaust heat recovery boiler
CN102743889A (en) * 2012-07-19 2012-10-24 北京中新国能环保科技有限公司 Liquid ammonia evaporator and liquid ammonia evaporation system for flue gas denitration
CN102743889B (en) * 2012-07-19 2014-03-12 北京中新国能环保科技有限公司 Liquid ammonia evaporator and liquid ammonia evaporation system for flue gas denitration
CN107044650A (en) * 2017-02-06 2017-08-15 国网安徽省电力公司电力科学研究院 A kind of thermal power plant's liquefied ammonia denitration steam turbine combines energy saving circulating system
CN107044650B (en) * 2017-02-06 2023-04-04 国网安徽省电力公司电力科学研究院 Energy-conserving circulation system is united to thermal power plant's liquid ammonia denitration steam turbine
JP2019143495A (en) * 2018-02-16 2019-08-29 三菱日立パワーシステムズ株式会社 Nox removal equipment, heat recovery boiler provided with nox removal equipment, gas turbine complex power-generating plant and nox removal method
US11530628B2 (en) 2018-02-16 2022-12-20 Mitsubishi Heavy Industries, Ltd. Denitration device, heat recovery steam generator having the same, gas turbine combined cycle power plant and method of denitration
CN113769582A (en) * 2021-10-26 2021-12-10 安徽金森源环保工程有限公司 Ammonia water evaporator device for kiln denitration
CN113769582B (en) * 2021-10-26 2024-04-16 安徽金森源环保工程有限公司 Ammonia water evaporator device for kiln denitration

Similar Documents

Publication Publication Date Title
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US20130074482A1 (en) Extraction of hot gas for reagent vaporization and other heated gas systems
US8479489B2 (en) Turbine exhaust recirculation
EP2354495A2 (en) Integrated exhaust gas cooling system and corresponding method
JP2011038511A (en) Ammonia injecting system
JPH06154552A (en) Method for gasifying aqueous reducing solution by using flue gas energy for reducing nox in flue gas
JP2009270753A (en) Oxygen burning boiler system, remodeling method for pulverized coal burning boiler and device and method for controlling oxygen burning boiler system
JP2009108848A (en) System for recirculating exhaust gas of turbomachine
JPS644051B2 (en)
JP7227827B2 (en) Combustion device
KR102481513B1 (en) Apparatus for treating pollutant
JP2017048787A (en) Methods and systems related to selective catalytic reduction
US20120102913A1 (en) Apparatus for reducing emissions and method of assembly
CN112007507A (en) Waste gas treatment device of thermal power factory
US7722844B2 (en) Exhaust smoke denitrating apparatus and method of exhaust smoke denitration
JP2017044208A (en) System and method for treatment of emissions in power generation plants
US6315969B1 (en) Gas re-circulation selective catalytic reduction system with heat trace
JP2002506165A (en) Gas / steam combined turbine equipment and its operation method
JP2004167450A (en) Method and device for injecting ammonia to denitrification apparatus
JP2004068659A (en) Exhaust emission control device
US20120102951A1 (en) Apparatus for reducing emissions and method of assembly
EP3073096B1 (en) Advanced humid air turbine system and exhaust gas treatment system
JP2004218938A (en) Aqueous ammonia vaporizer for denitrating device
JP3354756B2 (en) Reducing agent injection device for denitration equipment
JP2955136B2 (en) Waste heat recovery boiler device