JP2004027853A - Sealed compressor - Google Patents

Sealed compressor Download PDF

Info

Publication number
JP2004027853A
JP2004027853A JP2002180681A JP2002180681A JP2004027853A JP 2004027853 A JP2004027853 A JP 2004027853A JP 2002180681 A JP2002180681 A JP 2002180681A JP 2002180681 A JP2002180681 A JP 2002180681A JP 2004027853 A JP2004027853 A JP 2004027853A
Authority
JP
Japan
Prior art keywords
pipe
hermetic compressor
suction
inner pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002180681A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Futagami
二上 義幸
Akira Iwashida
鶸田  晃
Noboru Iida
飯田  登
Kiyoshi Sawai
澤井  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002180681A priority Critical patent/JP2004027853A/en
Publication of JP2004027853A publication Critical patent/JP2004027853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed compressor with high reliability of pressure resistance provided by increasing the strength of the portion of the compressor between intake holes. <P>SOLUTION: In the sealed compressor 50, an electric motor part 22 and a compressor mechanism part 23 consisting of pistons 29, 30 driven by the motor part and parallel cylinders 27, 28 enclosing the pistons are contained in a sealed container 21. The intake holes 32a, 32b are bored in the positions of the container's sidewalls opposite the cylinders. Guide pipes 34a, 34b are joined to the intake holes. Intake pipes 33, 38 are guided by the guide pipes and connected to the cylinders. The intake pipe 33 comprises an inner pipe 33b, an outer pipe 33a, and an expanded inner pipe part 33c where the inner pipe is expanded to enable insertion of the outer pipe. The expanded inner pipe part is guided out of the guide pipe 34a to reduce the size of the guide pipes, i.e., the intake holes. In contrast, the spacing between the intake holes is increased to enhance the pressure resistance of the portion 37 between the holes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、業務用、家庭用を問わず各種用途の冷凍空調に使用される密閉型圧縮機に関する。
【0002】
【従来の技術】
冷凍空調用の密閉型圧縮機としては、レシプロ式のもの、ロータリ式のもの、スクロール式のものがあり、いずれの方式も家庭用、業務用の冷凍空調分野で使用され、コスト、性能面等でそれぞれの特長を活かし適用されている。
この従来技術の密閉型圧縮機として、特公昭63−38691号公報に開示された2シリンダ構造のロータリ式の密閉型圧縮機がある。図6に示す密閉型圧縮機55は、円筒状の密閉容器1内に、電動機部2と圧縮機構部3とを備え、密閉容器1の上部にインバータ等により15Hz〜150Hzの周波数で運転する電動機部2が配置され、下部に圧縮機構部3が配置される。電動機部2は、密閉容器1に圧入されるステータ2aと、クランク軸4を軸装したロータ2bとから構成され、電動機部2からの出力はクランク軸4を介して圧縮機構部3に伝達される。クランク軸4は主軸受け5及び副軸受け6により回転自在に支持されている。
また、圧縮機構部3は、2つのシリンダ7,8と、2つのピストン9,10とを有し、重ね合わせたシリンダ7,8にピストン9,10を収容し、その内部にそれぞれの圧縮室を形成する。ピストン9,10は、クランク軸4の偏心部4a,4bに偏心回転自在に装着され、ピストン9,10の偏心回転により、圧縮室内に導入した冷媒の圧縮作用が行われている。
一方、圧縮機構部3の圧縮室と、密閉容器1の外側に設けられるアキュムレータ11とは、吸入管12,13を介して連通され、アキュムレータ11から冷媒が吸入管12,13を通って、圧縮室に導入される。そして、圧縮された冷媒が吐出管18から吐き出されている。
【0003】
【発明が解決しようとする課題】
ところで、最近、フッ素化合物の冷媒(以下、HFC冷媒)に代わるコンプレッサー用冷媒が各種開発されている。この中で、地球環境や可燃性あるいは毒性等を考慮し、自然冷媒である二酸化炭素の冷媒(以下、CO冷媒)が望まれているが、このCO冷媒は、飽和圧力がHFC冷媒の約3倍であり、これを用いると、冷媒圧力が高圧側で約150kg/cmG(超臨界圧力相当)にも達する。
しかるに、上記2シリンダ構造の密閉型圧縮機55では、アキュムレータ11から圧縮機構部3の圧縮室にガス冷媒を導入する吸入管12,13が延設されていて、吸入管12,13は、密閉容器1の吸入用孔15a,15bにガイドパイプ14a,14bを介して、気密に取り付けられる。このとき、吸入管案内用のガイドパイプ14a,14bに、吸入管12,13をその吸入管12,13に形成した拡管部12c,13cも含めて挿入している。そのためガイドパイプ14a,14bの寸法が大きくなり、軸方向に並設したシリンダ7,8の圧縮室ピッチが定まっているので、各圧縮室に対向して形成した吸入用孔15a,15bの吸込用孔ピッチとしての孔間部位17が、逆に小さい寸法になる。
したがって、密閉容器内が高圧になる場合、特に非常に高圧となるCO冷媒を用いる場合には、上記吸入用孔15a,15bの孔間部位17における容器耐圧強度が問題となる。
また、CO冷媒は、HFC冷媒に比べて、能力当たりの比容積が約1/3であるため、シリンダ排除容積を約1/3と小さくしてシリンダ高さを低減し、小型化することも可能であるが、それに伴い圧縮室ピッチが、すなわち孔間部位が更に小さくなるので、孔間部位の容器耐圧強度が著しく低下し、小型化が困難であるという問題がある。
【0004】
そこで、本発明の目的は、密閉容器における吸入用孔同士の孔間部位の強度を上げて、耐圧信頼性の高い密閉型圧縮機を提供することにある。
また、冷媒として二酸化炭素を用いても小型化可能な密閉型圧縮機を提供することにある。
また、冷媒として二酸化炭素を用いて超臨界圧力まで圧縮することのできる密閉型圧縮機を提供することにある。
【0005】
【課題を解決するための手段】
請求項1記載の本発明は、密閉容器内に、電動機部と、当該電動機部により偏心運動するピストンと当該ピストンを内包し並設した少なくとも2個のシリンダとからなる圧縮機構部とを収容し、前記密閉容器側壁の前記各シリンダに対向した位置に複数の吸入用孔を穿設し、前記各吸入用孔にそれぞれガイドパイプを接合し、前記各ガイドパイプで前記シリンダに冷媒を導入するそれぞれの吸入管を案内し且つ前記シリンダに接続し、前記シリンダに導入した前記冷媒を前記ピストンの前記偏心運動によって圧縮する密閉型圧縮機であって、インナパイプとアウタパイプと前記アウタパイプを挿入可能に前記インナパイプを拡大したインナパイプ拡管部とからなる前記各吸入管を、前記インナパイプ拡管部を前記ガイドパイプの外に出して案内したことを特徴とする。
請求項2記載の本発明は、請求項1に記載の密閉型圧縮機において、前記ガイドパイプの外端部に前記インナパイプ拡管部を挿入できるガイドパイプ拡管部を設けたことを特徴とする。
請求項3記載の本発明は、密閉容器内に電動機部と圧縮機構部とを備え、前記密閉容器側壁に複数の孔を穿設し、前記電動機部で駆動する前記圧縮機構部によって冷媒を圧縮する密閉型圧縮機であって、前記密閉容器側壁に他の部分より厚くした側壁厚肉部を形成し、この側壁厚肉部に前記孔を穿設したことを特徴とする。
請求項4記載の本発明は、密閉容器内に電動機部と圧縮機構部とを備え、前記密閉容器側壁に複数の孔を穿設し、前記電動機部で駆動する前記圧縮機構部によって冷媒を圧縮する密閉型圧縮機であって、前記孔を前記密閉容器の周方向にずらして穿設したことを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載の密閉型圧縮機において、前記冷媒として二酸化炭素を用い、超臨界圧力まで圧縮することを特徴とする。
【0006】
【発明の実施の形態】
本発明の第1の実施の形態は、各吸入管を、インナパイプ拡管部を有するインナパイプと、インナパイプ拡管部に端部を挿入するアウタパイプとから構成し、インナパイプ拡管部をガイドパイプの外に配置したものである。本実施の形態によれば、インナパイプ拡管部をガイドパイプの外に出して案内するので、従来のガイドパイプ内にインナパイプ拡管部も案内する場合より、インナパイプ拡管部の分だけガイドパイプ寸法、即ち、吸入用孔寸法を小さくできる。従って、密閉容器側壁に形成する吸入用孔ピッチは大きくなり、吸入用孔同士の孔間部位の耐圧強度を上げることができる。
【0007】
本発明の第2の実施の形態は、第1の実施の形態による密閉型圧縮機において、ガイドパイプの外端部にインナパイプ拡管部を挿入できるガイドパイプ拡管部を設けたものである。本実施の形態によれば、ガイドパイプの外端部に設けたガイドパイプ拡管部にインナパイプ拡管部を挿入することができ、ガイドパイプとインナパイプとアウタパイプとを1度に接合することが可能になる。従って、接合作業性の向上が図られる。
【0008】
本発明の第3の実施の形態は、密閉容器内に電動機部と圧縮機構部とを備え、密閉容器側壁に複数の孔を穿設し、電動機部で駆動する圧縮機構部によって冷媒を圧縮する密閉型圧縮機であって、密閉容器側壁に他の部分より厚くした側壁厚肉部を形成し、この側壁厚肉部に孔を穿設したものである。本実施の形態によれば、孔を側壁厚肉部に穿設することにより、孔同士の孔間部位の肉厚が厚くなり、この孔間部位の容器耐圧強度の低下を回避すること、即ち、肉厚が厚くなった分、容器耐圧強度を増すことができる。
【0009】
本発明の第4の実施の形態は、密閉容器内に電動機部と圧縮機構部とを備え、密閉容器側壁に複数の孔を穿設し、電動機部で駆動する圧縮機構部によって冷媒を圧縮する密閉型圧縮機であって、孔を密閉容器の周方向にずらして穿設したものである。本実施の形態によれば、孔を円周方向にずらすことにより、孔同士の孔間部位の長さを十分に大きく取ることができ、この孔間部位の容器耐圧強度を増すことができる。
【0010】
本発明の第5の実施の形態は、第1から第4の実施の形態による密閉型圧縮機において、冷媒として二酸化炭素を用い、超臨界圧力まで圧縮するものである。二酸化炭素の冷媒を超臨界圧力まで圧縮すると圧力が非常に高くなり、密閉容器の孔間部位に破損危惧が生じるが、本実施の形態によれば、第1から第4の実施の形態によって、密閉容器の孔間部位はその高圧に耐えられるものとなり、二酸化炭素の冷媒を安心して用いることができる。
【0011】
【実施例】
以下、本発明による実施例の密閉型圧縮機について、図面に基づいて説明する。図1は、本発明による第1実施例の密閉型圧縮機を示す断面図である。
第1実施例の密閉型圧縮機50は、2シリンダ構造のロータリ式の密閉型圧縮機であり、密閉容器21と、電動機部22と、圧縮機構部23とを備える。円筒状の密閉容器21は、その内部に、電動機部22と当該電動機部22で駆動するロータリ式の圧縮機構部23とを収容し、電動機部22を軸方向上部に、圧縮機構部23を軸方向下部にそれぞれ設置している。
電動機部22は、密閉容器21内上部に圧入あるいは焼ばめ等で挿入したステータ22aと、ステータ22aに回転自在に設けたロータ22bとを含んで構成され、ロータ22bにクランク軸24を一体で嵌装する。また、クランク軸24は、圧縮機構部23の主軸受け25および副軸受け26により回転自在に支持されている。
圧縮機構部23は、2個のシリンダ27,28と、2個のピストン29,30とを含んで構成されて、軸方向に重ね合わせたシリンダ27,28の内部にそれぞれのピストン29,30を収容し、各シリンダ27,28内にそれぞれの圧縮室を形成した2シリンダ構造である。ピストン29,30は、クランク軸24に設けた偏心部24a,24bに軸装されて、クランク軸24の回転によって偏心運動(即ち、ローリング)する。また、シリンダ27,28の間は、仕切板31により仕切られている。なお、本密閉型圧縮機50は、2気筒形のローリングピストン式回転圧縮機に該当するものでもある。
更に、円筒状の密閉容器21側壁には、シリンダ27,28に対向して吸込用孔32a,32bが形成される。この場合、軸方向に並設したシリンダ27,28の各圧縮室に対向した位置に穿設する吸込用孔32a,32bは、その吸込用孔ピッチがシリンダ高さとしての圧縮室ピッチに一致する。そして、吸込用孔32a,32bに吸入管33,38の案内用のガイドパイプ34a,34bが挿入されて、銀ロー付や銅ロー付け、溶接等により、密閉容器21に気密状態で接合される。
【0012】
一方、アキュムレータ35から圧縮機構部23の圧縮室に冷媒を導入するために延設される吸入管33及び吸入管38の構成は、次の通りである。すなわち、吸込管33は、密閉容器21外に別途設置されるアキュムレータ35に接続するアウタパイプ33aと、ガイドパイプ34aで案内してシリンダ27のシリンダ吸入孔36aに接続するインナパイプ33bとから構成されて、アキュムレータ35と圧縮機構部23とを連通する。ここで、インナパイプ33bは、密閉容器21の外に(即ち、アキュムレータ35側に)向かって、当該インナパイプ33bを拡大してアウタパイプ33aを嵌合可能に形成したインナパイプ拡管部33cを有し、そのインナパイプ拡管部33cをガイドパイプ34aの外に出した状態で、当該ガイドパイプ34aに案内される。吸入管33のインナパイプ33bがガイドパイプ34aの内部に案内されて、さらに、アウタパイプ33aがインナパイプ拡管部33cに挿入されて、それぞれがロー付け等で気密に接合される。
同様に吸込管38は、アキュムレータ35に接続するアウタパイプ38aと、ガイドパイプ34bで案内してシリンダ28のシリンダ吸入孔36bに接続するインナパイプ38bとから構成される。そして、インナパイプ38bを拡管し大きな外径にしたインナパイプ拡管部38cよりも、小さい外径を有するインナパイプ38bのみが、ガイドパイプ34bに案内され、更に、アウタパイプ38aがインナパイプ拡管部38cに挿入されて、アウタパイプ38aとインナパイプ38bとがロー付等で気密に接合される。
最終的に、上記吸入管の延設構成により、アキュムレータ35で気液分離したガス冷媒は、吸入管33,38を通って、シリンダ27,28の圧縮室に導入されて圧縮される。圧縮された冷媒は、密閉容器21内に案内され、吐出管40を通って吐出される。
【0013】
以上のインナパイプ拡管部をガイドパイプの外に出してインナパイプを案内する第1実施例の構成は、図6に示す拡大したインナパイプ拡管部も含めて案内する従来の構成と比べて、ガイドパイプ34a,34bの外径を従来のガイドパイプ14a,14bの外径より、小さくすることができる。その結果、ガイドパイプ34a,34bを取り付けるための吸入用孔32a,32bの径を小さくすることができ、吸込用孔ピッチとガイドパイプ外径とから定まる吸入用孔32a,32bの孔間部位37の長さ寸法を、従来の孔間部位17より、拡大することができる。
したがって、本第1実施例の構成によって、密閉容器における吸入用孔同士の孔間部位の強度向上が図られ、耐圧信頼性の高い密閉型圧縮機を提供することができる。また、冷媒として二酸化炭素を用いて、その超臨界圧力まで圧縮することのできる密閉型圧縮機を提供することができる。
【0014】
次に、第2実施例の密閉型圧縮機について図面に基づいて説明する。図2は、本発明による第2実施例の密閉型圧縮機を示す断面図である。図に示す密閉型圧縮機50では、前述の第1実施例と比べて、吸入管の延設構成が異なる。この異なる構成について説明し、他の構成は、第1実施例と同様でありその説明を省略する。
本第2実施例の密閉型圧縮機50は、ガイドパイプ34a,34bが、密閉容器21の外に向かって(すなわち、アキュムレータ35側へ)拡大するガイドパイプ拡管部34e,34fを、その外端部(延長端部)に有している。そして、ガイドパイプ34aにインナパイプ33bを案内し、このとき、密閉容器21の外に向かって拡大するインナパイプ拡管部33cとガイドパイプ拡管部34eとの両端を合わせ、さらに、インナパイプ拡管部33cにアウタパイプ33aを挿入して、ガイドパイプ拡管部34eとインナパイプ拡管部33c、およびインナパイプ拡管部33cとアウタパイプ33aとを、ロー付け等で同時接合する。同様にガイドパイプ34bにインナパイプ38bを案内し、更に、ガイドパイプ拡管部34fにインナパイプ拡管部38cを挿入し、そして、インナパイプ拡管部38cにアウタパイプ38aを挿入して、ガイドパイプ拡管部34fとインナパイプ拡管部38c、およびインナパイプ拡管部38cとアウタパイプ38aとを、同時接合する。
【0015】
本第2実施例の吸入管の延設構成は、ガイドパイプとインナパイプ、およびインナパイプ拡管部とアウタパイプの2ヶ所を接合する第1実施例の構成と比べて、ガイドパイプとインナパイプとアウタパイプの三者を同時に接合できる。
従って、本第2実施例の密閉型圧縮機では、密閉容器の耐圧強度向上が図られると共に、接合作業性の改善も図られる。
【0016】
次に、第3実施例の密閉型圧縮機について図面に基づいて説明する。図3は、本発明による第3実施例の密閉型圧縮機を示す断面図である。図に示す密閉型圧縮機50では、第1実施例と比べて、吸入用孔を穿設する容器側壁の構成が異なる。この異なる構成について説明し、他の構成は、第1実施例と同様でありその説明を省略する。
本第3実施例の密閉型圧縮機50は、密閉容器21が他の側壁部分より厚く形成した側壁厚肉部21aを有し、この側壁厚肉部21aに、軸方向に並設したシリンダ7,8の各圧縮室に対向させる吸込用孔32a,32bを穿設した構成である。図3の例示は、圧縮機構部23の収容側の外径を、電動機部22の収容側の外径よりも大きくして、側壁厚肉部21aを形成する場合である。なお、圧縮機構部23の収容側の内径を大きくして、側壁厚肉部21aを形成する構成でも良い。また、側壁厚肉部を、密閉容器全周ではなく、吸入用孔の周囲部位に限定した範囲に形成しても良い。さらに、側壁厚肉部を孔間部位37aに限定した範囲に形成しても良い。
上記の側壁厚肉部に吸入用孔を穿設する構成によって、吸込用孔32a,32bの孔間部位37aの肉厚が厚くなるので、孔間部位37aの機械的強度が増し、孔間部位37aの強度低下が回避される。
すなわち、密閉容器内に、電動機部と、軸方向に並設した少なくとも2個のシリンダにそれぞれのピストンを収容した圧縮機構部とを備え、密閉容器側壁のシリンダに対向した位置に複数の吸入用孔を穿設し、この吸入用孔を介してシリンダに導入した冷媒を、電動機部で駆動するピストンの偏心運動によって圧縮するものであって、密閉容器側壁に他の部分より厚くした側壁厚肉部を形成し、この側壁厚肉部に吸入用孔を穿設した本第3実施例の密閉型圧縮機であれば、密閉容器における吸入用孔同士の孔間部位の強度を上げて、耐圧信頼性の高い密閉型圧縮機を提供することができる。また、冷媒として二酸化炭素を用いて超臨界圧力まで圧縮することのできる密閉型圧縮機を提供することができる。さらに、この側壁厚肉部を有する密閉容器は、密閉容器に圧縮機構部を固定する際に、密閉容器の変形が生じ難いものにする利点を有し、耐圧信頼性に加えて、密閉容器と圧縮機構部の固定信頼性が向上する密閉型圧縮機が得られる。
【0017】
次に、第4実施例の密閉型圧縮機について図面に基づいて説明する。図4は、本発明による第4実施例の密閉型圧縮機を示す上面図である。図に示す密閉型圧縮機50では、第1実施例と比べて、吸入用孔の穿設及びシリンダの配設の構成が異なる。これらの異なる構成について説明し、他の構成は、第1実施例と同様でありその説明を省略する。
本第4実施例の密閉型圧縮機50では、円筒状の密閉容器21側壁の吸込用孔32a,32bを、シリンダ7,8(図示省略)の各圧縮室に対向させると共に、円周方向に角度θだけずらした位置に穿設する構成である。このとき、本密閉型圧縮機50では、シリンダ7,8(図示省略)を、軸方向に並設すると共に、そのシリンダ吸入孔36a,36b(図示省略)を、円周方向に角度θだけずらして組み立てたシリンダの配設構成となっている。そして、吸気管の延設構成は、吸込用孔32a,32bにガイドパイプ34a,34bを挿入し、密閉容器21に接合する。更に、ガイドパイプ34a,34bに、吸入管33のインナパイプ33b及び吸入管38のインナパイプ38bを案内して、それぞれを接合するものである。
上記吸入用孔を密閉容器の円周方向にずらして穿設する構成によって、吸込用孔32a,32bの孔間部位37bの長さ寸法を、より一層大きくすることができる。更に、ガイドパイプのずれ角度θを、180度にすれば、孔間部位37bの長さ寸法を最大にすることができる。すなわち、孔間部位37cの機械的強度を大幅に向上することができる。
従って、密閉容器内に、電動機部と、軸方向に並設した少なくとも2個のシリンダにそれぞれのピストンを収容した圧縮機構部とを備え、密閉容器側壁のシリンダに対向した位置に複数の吸入用孔を穿設し、この吸入用孔を介してシリンダに導入した冷媒を、電動機部で駆動するピストンの偏心運動によって圧縮するに、吸入用孔を密閉容器の円周方向にずらして穿設した本第4実施例の密閉型圧縮機であれば、密閉容器の孔間部位の強度が大幅に増し、大きく耐圧信頼性が向上する。その結果、能力当たりの比容積が約1/3である冷媒としての二酸化炭素を用いて、シリンダ排除容積を約1/3と小さくして圧縮室ピッチを低減し、小型化することができる。さらに、冷媒として二酸化炭素を用いて高圧の超臨界圧力まで圧縮することができる。
【0018】
次に、第5実施例の密閉型圧縮機について図面に基づいて説明する。図5は、本発明による第5実施例の密閉型圧縮機を示す上面図である。図に示す密閉型圧縮機50では、上述の第4実施例と比べて、吸込用孔の穿設構成は同様であるが、吸入管の延設構成が異なる。本実施例に関する構成について説明し、他の構成は、第1実施例と同様でありその説明を省略する。
本第5実施例の吸込用孔の穿設構成は、2つの吸込用孔32c,32dの位置を、密閉容器21の円周方向に角度θだけずらして穿設する。この構成は、上述の第4実施例と同様であり、吸込用孔32c,32dの孔間部位37cの長さ寸法を拡大して、孔間部位37cの耐圧強度を向上することができる。
また、吸入管の延設構成は、上記吸込用孔32c,32dに挿入して気密に接合したガイドパイプ34c,34dの内部に、吸入管33,38のインナパイプ33e,38eを案内すると共に、インナパイプ33e,38eに形成したインナパイプ拡管部33f,38fを挿入する。そして、インナパイプ拡管部33f,38fにアウタパイプ33d,38dを挿入して、ガイドパイプとインナパイプ拡管部、およびインナパイプ拡管部とアウタパイプのそれぞれを同時接合する。この吸入管の延設構成により、接合作業性を改善することができる。
すなわち、密閉容器の円周方向にずらして穿設した吸入用孔にガイドパイプを接合し、当該ガイドパイプに吸入管に形成した拡管部を含めて当該吸入管を案内する本第5実施例の密閉型圧縮機であれば、接合作業性の改善が図られると共に、密閉容器の耐圧強度が向上する。そして、CO冷媒を用いた場合でも、信頼性の高い密閉型圧縮機を提供することができる。且つ、CO冷媒を用いても小型化が可能な密閉型圧縮機を提供することもできる。
【0019】
次に、図示しない第6実施例の密閉型圧縮機について、図1を参考にして説明する。図1に示す第1実施例の密閉型圧縮機は、密閉容器21に穿った孔として、容器側壁の2つの吸込用孔32a,32b以外に、容器上面に1つの吐出管40用の吐出用孔がある構成である。これに対して、本第6実施例の密閉型圧縮機は、密閉容器21側壁に、2つの吸込用孔と1つの吐出用孔とを並べて穿設する構成である。なお、容器側壁に、1つの吸込用孔と1つの吐出用孔とを並べて穿設する構成でも良い。
このような密閉容器側壁に複数の孔を穿設する場合において、本第6実施例の密閉型圧縮機では、前述の第3実施例と同様に、密閉容器側壁に他の部分より厚くした側壁厚肉部を形成し、この側壁厚肉部に孔を穿設する構成、または、前述の第4実施例と同様に、孔を密閉容器の周方向にずらして穿設する構成とする。本第6実施例の密閉型圧縮機の構成によって、密閉容器の孔間部位の強度を上げることができる。すなわち、密閉容器側壁における孔同士の孔間部位の強度を上げて、耐圧信頼性の高い密閉型圧縮機を提供することができる。また、冷媒として二酸化炭素を用いても小型化可能な密閉型圧縮機を提供することができる。また、冷媒として二酸化炭素を用いて超臨界圧力まで圧縮することのできる密閉型圧縮機を提供することができる。
【0020】
【発明の効果】
以上のように、本発明の密閉型圧縮機は、シリンダに嵌合する吸入管の拡管部を密閉容器とガイドパイプとが固着される位置より外側に形成した構成である。この構成によれば、密閉容器に取り付けられるガイドパイプの外で、シリンダの吸入孔に挿入される吸入管が拡管されているので、密閉容器の吸入管を取り付ける2本の吸入用孔の径を小さくでき、2本の吸入用孔ピッチを大きく取ることができる。このため、密閉容器の耐圧強度が低下する吸入用孔の孔間部位強度が向上し、例えば、高圧の二酸化炭素を冷媒として用いた場合でも、信頼性の高い密閉型圧縮機を実現できるという効果を奏する。すなわち、耐圧信頼性の高い2気筒形のローリングピストン式回転圧縮機を実現できる効果もある。
また、本発明の密閉型圧縮機は、シリンダに嵌合する吸入管の拡管部を密閉容器とガイドパイプとが固着される位置より外側に形成し、且つ吸入管の拡管部を挿入するガイドパイプの拡管部を形成した構成である。この構成によれば、密閉容器の吸入用孔の孔間部位強度が向上すると共に、ガイドパイプとインナパイプとアウタパイプの三者を同時に接合できるので、接合作業性の改善が図られるという効果を奏する。
また、本発明の密閉型圧縮機は、密閉容器に形成される吸入用孔の孔間部位の肉厚を、密閉容器の電動機部の挿入部よりも厚くした構成である。この構成によれば、密閉容器の吸入管を取り付ける吸入用孔同士の孔間部位板厚が厚肉構造となり、耐圧強度が向上できる。このため、高圧の二酸化炭素を冷媒として用いた場合にも、密閉容器耐圧強度が低下する孔間部位強度が向上し、信頼性の高い密閉型圧縮機を実現できるという効果を奏する。
また、本発明の密閉型圧縮機は、密閉容器に形成される吸入用孔を円周方向にずれた位置に設けた構成である。この構成によれば、密閉容器に形成される吸入用孔同士の孔間部位の距離を一層大きくすることができる。このため、二酸化炭素を冷媒として用いても、耐圧信頼性の高い密閉型圧縮機を実現できると共に、小型化が可能な密閉型圧縮機を提供できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明による第1実施例の密閉型圧縮機を示す断面図
【図2】本発明による第2実施例の密閉型圧縮機を示す断面図
【図3】本発明による第3実施例の密閉型圧縮機を示す断面図
【図4】本発明による第5実施例の密閉型圧縮機を示す上面図
【図5】本発明による第5実施例の密閉型圧縮機を示す上面図
【図6】従来の密閉型圧縮機を示す断面図
【符号の説明】
1,21  密閉容器
2,22  電動機部
3,23  圧縮機構部
2a,22a ステータ
2b,22b ロータ
4,24  クランク軸
4a,4b,24a,24b 偏心部
5,25  主軸受け
6,26  副軸受け
7,8,27,28 シリンダ
9,10,29,30 ピストン
11,35 アキュムレータ
12,13,33,38 吸入管
12c,13c  拡管部
14a,14b,34a,34b,34c,34d  ガイドパイプ
15a,15b,32a,32b,32c,32d 吸入用孔
17,37,37a,37b,37c 孔間部位
18,40 吐出管
21a   側壁厚肉部
31    仕切板
33a,33d,38a,38d アウタパイプ
33b,33e,38b,38e インナパイプ
33c,33f,38c,38f インナパイプ拡管部
34e,34f ガイドパイプ拡管部
36a,36b シリンダ吸入孔
50,55 密閉型圧縮機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hermetic compressor used for refrigeration and air conditioning for various uses irrespective of business use or home use.
[0002]
[Prior art]
There are reciprocating compressors, rotary compressors, and scroll compressors for hermetic compressors for refrigeration and air conditioning, all of which are used in the home and commercial refrigeration and air conditioning fields. It is applied taking advantage of each feature.
As this conventional hermetic compressor, there is a rotary hermetic compressor having a two-cylinder structure disclosed in Japanese Patent Publication No. 63-38691. The hermetic compressor 55 shown in FIG. 6 includes an electric motor section 2 and a compression mechanism section 3 in a cylindrical hermetic container 1, and is operated at a frequency of 15 Hz to 150 Hz by an inverter or the like above the hermetic container 1. The section 2 is arranged, and the compression mechanism section 3 is arranged below. The electric motor unit 2 includes a stator 2 a that is press-fitted into the closed casing 1 and a rotor 2 b on which a crankshaft 4 is mounted. Output from the electric motor unit 2 is transmitted to the compression mechanism unit 3 via the crankshaft 4. You. The crankshaft 4 is rotatably supported by a main bearing 5 and a sub-bearing 6.
The compression mechanism 3 has two cylinders 7, 8 and two pistons 9, 10, and accommodates the pistons 9, 10 in the superposed cylinders 7, 8, respectively, and has the respective compression chambers therein. To form The pistons 9 and 10 are eccentrically mounted on the eccentric portions 4a and 4b of the crankshaft 4, and compress the refrigerant introduced into the compression chamber by the eccentric rotation of the pistons 9 and 10.
On the other hand, the compression chamber of the compression mechanism section 3 and the accumulator 11 provided outside the closed casing 1 are communicated via suction pipes 12 and 13, and the refrigerant from the accumulator 11 passes through the suction pipes 12 and 13 and is compressed. Introduced into the room. Then, the compressed refrigerant is discharged from the discharge pipe 18.
[0003]
[Problems to be solved by the invention]
By the way, recently, various kinds of compressor refrigerants have been developed in place of fluorine compound refrigerants (hereinafter, HFC refrigerants). In consideration of the global environment, flammability, toxicity, etc., the refrigerant of carbon dioxide (hereinafter referred to as CO 2 Refrigerant), this CO 2 The refrigerant has a saturation pressure of about three times that of the HFC refrigerant, and when this refrigerant is used, the refrigerant pressure is about 150 kg / cm on the high pressure side. 2 G (equivalent to supercritical pressure) is reached.
However, in the hermetic compressor 55 having the two-cylinder structure, the suction pipes 12 and 13 for introducing the gas refrigerant from the accumulator 11 to the compression chamber of the compression mechanism 3 extend, and the suction pipes 12 and 13 are hermetically closed. The container 1 is hermetically attached to the suction holes 15a and 15b via the guide pipes 14a and 14b. At this time, the suction pipes 12, 13 are inserted into the guide pipes 14a, 14b for guiding the suction pipes, including the expanded pipe portions 12c, 13c formed on the suction pipes 12, 13. Therefore, the dimensions of the guide pipes 14a and 14b are increased, and the pitch of the compression chambers of the cylinders 7 and 8 arranged in the axial direction is fixed. Conversely, the inter-hole portion 17 as the hole pitch has a small size.
Therefore, when the pressure inside the closed vessel becomes high, especially when the pressure becomes extremely high, 2 When a refrigerant is used, the pressure resistance of the container in the inter-hole portion 17 between the suction holes 15a and 15b becomes a problem.
Also, CO 2 Since the refrigerant has a specific volume per capacity of about 1/3 as compared with the HFC refrigerant, it is also possible to reduce the cylinder height by reducing the cylinder exclusion volume to about 1/3 and to reduce the size. However, the pitch of the compression chambers, that is, the portion between the holes is further reduced, which causes a problem that the pressure resistance of the container at the portion between the holes is significantly reduced, and it is difficult to reduce the size.
[0004]
Therefore, an object of the present invention is to provide a hermetic compressor having high pressure resistance reliability by increasing the strength of a portion between suction holes in a closed container.
Another object of the present invention is to provide a hermetic compressor that can be reduced in size even when carbon dioxide is used as a refrigerant.
Another object of the present invention is to provide a hermetic compressor capable of compressing to supercritical pressure using carbon dioxide as a refrigerant.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, an electric motor unit, a compression mechanism unit including a piston eccentrically moved by the electric motor unit and at least two cylinders including the piston and arranged side by side are housed in a closed container. A plurality of suction holes are formed at positions on the side wall of the closed container facing the respective cylinders, and guide pipes are respectively joined to the respective suction holes, and refrigerant is introduced into the cylinders by the respective guide pipes. A hermetic compressor for guiding the suction pipe of the cylinder and connecting the cylinder to the cylinder, and compressing the refrigerant introduced into the cylinder by the eccentric movement of the piston, wherein the inner pipe, the outer pipe, and the outer pipe are insertable. Each of the suction pipes composed of an inner pipe expanded portion obtained by enlarging the inner pipe is drawn out of the guide pipe through the inner pipe expanded portion. Characterized in that it was.
According to a second aspect of the present invention, there is provided the hermetic compressor according to the first aspect, wherein a guide pipe expanding portion into which the inner pipe expanding portion can be inserted is provided at an outer end of the guide pipe.
According to a third aspect of the present invention, an electric motor section and a compression mechanism section are provided in the closed container, a plurality of holes are formed in the side wall of the closed container, and the refrigerant is compressed by the compression mechanism section driven by the electric motor section. A thicker side wall portion than the other portion is formed on the side wall of the closed container, and the hole is formed in the thick side wall portion.
According to a fourth aspect of the present invention, a motor unit and a compression mechanism are provided in the closed container, a plurality of holes are formed in the side wall of the closed container, and the refrigerant is compressed by the compression mechanism driven by the motor unit. And wherein the holes are formed so as to be shifted in a circumferential direction of the closed container.
According to a fifth aspect of the present invention, in the hermetic compressor according to any one of the first to fourth aspects, carbon dioxide is used as the refrigerant and the refrigerant is compressed to a supercritical pressure.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first embodiment of the present invention, each suction pipe is constituted by an inner pipe having an inner pipe expansion section, and an outer pipe having an end inserted into the inner pipe expansion section, and the inner pipe expansion section is formed by a guide pipe. It is placed outside. According to the present embodiment, since the inner pipe expanded portion is guided out of the guide pipe, the guide pipe size is reduced by the amount of the inner pipe expanded portion compared to the case where the inner pipe expanded portion is also guided in the conventional guide pipe. That is, the size of the suction hole can be reduced. Therefore, the pitch of the suction holes formed on the side wall of the closed container becomes large, and the pressure resistance of the portion between the suction holes can be increased.
[0007]
In the second embodiment of the present invention, the hermetic-type compressor according to the first embodiment is provided with a guide pipe expansion section into which an inner pipe expansion section can be inserted at an outer end of the guide pipe. According to the present embodiment, the inner pipe expanding section can be inserted into the guide pipe expanding section provided at the outer end of the guide pipe, and the guide pipe, the inner pipe, and the outer pipe can be joined at one time. become. Therefore, the joining workability is improved.
[0008]
According to the third embodiment of the present invention, a motor unit and a compression mechanism are provided in a closed container, a plurality of holes are formed in a side wall of the closed container, and a refrigerant is compressed by a compression mechanism driven by the motor. A hermetic compressor in which a side wall thick portion thicker than other portions is formed on a side wall of a closed container, and a hole is formed in the side wall thick portion. According to the present embodiment, by piercing the hole in the side wall thick portion, the thickness of the portion between the holes becomes thicker, and it is possible to avoid a decrease in the container pressure resistance of the portion between the holes, that is, As the thickness increases, the pressure resistance of the container can be increased.
[0009]
In the fourth embodiment of the present invention, a motor unit and a compression mechanism unit are provided in a closed container, a plurality of holes are formed in a side wall of the closed container, and the refrigerant is compressed by a compression mechanism unit driven by the motor unit. This is a hermetic compressor in which holes are formed by being shifted in the circumferential direction of the hermetic container. According to the present embodiment, by displacing the holes in the circumferential direction, the length of the portion between the holes can be made sufficiently large, and the pressure resistance of the container at the portion between the holes can be increased.
[0010]
In the fifth embodiment of the present invention, in the hermetic compressor according to the first to fourth embodiments, carbon dioxide is used as a refrigerant and compressed to a supercritical pressure. When the refrigerant of carbon dioxide is compressed to a supercritical pressure, the pressure becomes extremely high, and there is a fear of breakage at the portion between the holes of the closed container. According to this embodiment, according to the first to fourth embodiments, The portion between the holes of the closed container can withstand the high pressure, and the refrigerant of carbon dioxide can be used with confidence.
[0011]
【Example】
Hereinafter, a hermetic compressor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a hermetic compressor of a first embodiment according to the present invention.
The hermetic compressor 50 of the first embodiment is a rotary hermetic compressor having a two-cylinder structure, and includes a hermetic container 21, an electric motor section 22, and a compression mechanism section 23. The cylindrical hermetic container 21 houses therein an electric motor section 22 and a rotary compression mechanism section 23 driven by the electric motor section 22. The electric motor section 22 is axially upper, and the compression mechanism section 23 is It is installed at the bottom of each direction.
The motor section 22 includes a stator 22a inserted into the upper portion of the closed container 21 by press-fitting or shrink fitting, and a rotor 22b rotatably provided on the stator 22a. The crankshaft 24 is integrally formed with the rotor 22b. Fit. The crankshaft 24 is rotatably supported by a main bearing 25 and a sub-bearing 26 of the compression mechanism 23.
The compression mechanism 23 includes two cylinders 27, 28 and two pistons 29, 30. Each of the pistons 29, 30 is placed inside the cylinders 27, 28 superposed in the axial direction. It has a two-cylinder structure in which the compression chambers are housed and each compression chamber is formed in each of the cylinders 27 and 28. The pistons 29, 30 are mounted on eccentric portions 24a, 24b provided on the crankshaft 24, and eccentrically move (ie, roll) by the rotation of the crankshaft 24. The cylinders 27 and 28 are partitioned by a partition plate 31. The hermetic compressor 50 corresponds to a two-cylinder rolling piston rotary compressor.
Further, suction holes 32a and 32b are formed in the side wall of the cylindrical closed container 21 so as to face the cylinders 27 and 28. In this case, the suction holes 32a, 32b formed at positions facing the respective compression chambers of the cylinders 27, 28 arranged side by side in the axial direction have a suction hole pitch corresponding to the compression chamber pitch as the cylinder height. . Then, guide pipes 34a and 34b for guiding the suction pipes 33 and 38 are inserted into the suction holes 32a and 32b, and are joined to the airtight container 21 in an airtight state by silver brazing, copper brazing, welding, or the like. .
[0012]
On the other hand, the configuration of the suction pipe 33 and the suction pipe 38 extending to introduce the refrigerant from the accumulator 35 into the compression chamber of the compression mechanism 23 is as follows. That is, the suction pipe 33 is composed of an outer pipe 33a connected to an accumulator 35 separately installed outside the closed vessel 21, and an inner pipe 33b guided by the guide pipe 34a and connected to the cylinder suction hole 36a of the cylinder 27. , The accumulator 35 and the compression mechanism 23 are communicated. Here, the inner pipe 33b has an inner pipe expanding portion 33c formed so that the inner pipe 33b is enlarged toward the outside of the closed container 21 (that is, toward the accumulator 35) so that the outer pipe 33a can be fitted therein. The inner pipe expanding portion 33c is guided by the guide pipe 34a in a state where the inner pipe expanding portion 33c is out of the guide pipe 34a. The inner pipe 33b of the suction pipe 33 is guided inside the guide pipe 34a, and the outer pipe 33a is inserted into the inner pipe expanding portion 33c, and each is airtightly joined by brazing or the like.
Similarly, the suction pipe 38 includes an outer pipe 38a connected to the accumulator 35, and an inner pipe 38b guided by the guide pipe 34b and connected to the cylinder suction hole 36b of the cylinder 28. Then, only the inner pipe 38b having a smaller outer diameter than the inner pipe expanding portion 38c in which the inner pipe 38b is expanded to have a larger outer diameter is guided by the guide pipe 34b, and further, the outer pipe 38a is connected to the inner pipe expanding portion 38c. After being inserted, the outer pipe 38a and the inner pipe 38b are hermetically joined by brazing or the like.
Finally, the gas refrigerant separated by the accumulator 35 is introduced into the compression chambers of the cylinders 27 and 28 and compressed by passing through the suction pipes 33 and 38 due to the extended configuration of the suction pipe. The compressed refrigerant is guided into the closed container 21 and discharged through the discharge pipe 40.
[0013]
The configuration of the first embodiment in which the above-described inner pipe expansion portion is guided out of the guide pipe to guide the inner pipe is different from the conventional configuration in which the inner pipe expansion portion shown in FIG. The outer diameter of the pipes 34a, 34b can be made smaller than the outer diameter of the conventional guide pipes 14a, 14b. As a result, the diameter of the suction holes 32a, 32b for attaching the guide pipes 34a, 34b can be reduced, and the inter-hole portion 37 of the suction holes 32a, 32b determined from the suction hole pitch and the guide pipe outer diameter. Can be made longer than the conventional inter-hole portion 17.
Therefore, according to the configuration of the first embodiment, the strength of the portion between the suction holes in the closed container is improved, and a hermetic compressor with high pressure resistance reliability can be provided. Further, it is possible to provide a hermetic compressor which can compress carbon dioxide as a refrigerant to a supercritical pressure thereof.
[0014]
Next, a hermetic compressor according to a second embodiment will be described with reference to the drawings. FIG. 2 is a sectional view showing a hermetic compressor of a second embodiment according to the present invention. The hermetic compressor 50 shown in the drawing differs from the first embodiment in the extension of the suction pipe. This different configuration will be described, and the other configuration is the same as in the first embodiment, and description thereof will be omitted.
In the hermetic compressor 50 of the second embodiment, the guide pipes 34a and 34b have guide pipe expansion portions 34e and 34f which expand toward the outside of the closed vessel 21 (that is, toward the accumulator 35). (Extended end). Then, the inner pipe 33b is guided to the guide pipe 34a, and at this time, both ends of the inner pipe expansion section 33c and the guide pipe expansion section 34e that expand toward the outside of the closed container 21 are aligned, and further, the inner pipe expansion section 33c The outer pipe 33a is inserted into the outer pipe 33a, and the guide pipe expansion part 34e and the inner pipe expansion part 33c, and the inner pipe expansion part 33c and the outer pipe 33a are simultaneously joined by brazing or the like. Similarly, the inner pipe 38b is guided to the guide pipe 34b, the inner pipe expanded section 38c is inserted into the guide pipe expanded section 34f, and the outer pipe 38a is inserted into the inner pipe expanded section 38c, thereby forming the guide pipe expanded section 34f. And the inner pipe expanding portion 38c, and the inner pipe expanding portion 38c and the outer pipe 38a are simultaneously joined.
[0015]
The extended configuration of the suction pipe of the second embodiment is different from the configuration of the first embodiment in which the guide pipe and the inner pipe, and the inner pipe expansion section and the outer pipe are joined at two locations. Can be joined at the same time.
Therefore, in the hermetic-type compressor of the second embodiment, the pressure resistance of the hermetic container is improved, and the joining workability is also improved.
[0016]
Next, a hermetic compressor according to a third embodiment will be described with reference to the drawings. FIG. 3 is a sectional view showing a hermetic compressor of a third embodiment according to the present invention. The hermetic compressor 50 shown in the drawing is different from the first embodiment in the configuration of the container side wall in which the suction hole is formed. This different configuration will be described, and the other configuration is the same as in the first embodiment, and description thereof will be omitted.
In the hermetic-type compressor 50 of the third embodiment, the hermetic container 21 has a side wall thick portion 21a formed thicker than the other side wall portions, and the cylinders 7 arranged in the axial direction on the side wall thick portion 21a. , 8 are provided with suction holes 32a, 32b facing each other. 3 illustrates a case where the outer diameter of the housing of the compression mechanism 23 is made larger than the outer diameter of the housing of the electric motor 22 to form the side wall thick portion 21a. Note that a configuration may be adopted in which the inner diameter of the compression mechanism 23 on the accommodation side is increased to form the side wall thick portion 21a. Further, the side wall thick portion may be formed not in the entire circumference of the closed container but in a range limited to a portion around the suction hole. Further, the side wall thick portion may be formed in a range limited to the inter-hole portion 37a.
With the above-described configuration in which the suction hole is formed in the thick part of the side wall, the thickness of the space 37a between the suction holes 32a and 32b is increased, so that the mechanical strength of the space 37a is increased, and the space between the holes is increased. The reduction in strength of 37a is avoided.
That is, the closed casing includes an electric motor section and a compression mechanism section in which at least two cylinders arranged in the axial direction accommodate respective pistons. A hole is formed, and a refrigerant introduced into a cylinder through the suction hole is compressed by eccentric motion of a piston driven by an electric motor unit. In the hermetic compressor according to the third embodiment in which a suction hole is formed in the thick portion of the side wall, the strength of the portion between the suction holes in the sealed container is increased to increase the pressure resistance. A highly reliable hermetic compressor can be provided. Further, it is possible to provide a hermetic compressor capable of compressing to supercritical pressure using carbon dioxide as a refrigerant. Furthermore, the closed container having the side wall thick portion has an advantage that when the compression mechanism is fixed to the closed container, the sealed container is less likely to be deformed. A hermetic compressor in which the fixing reliability of the compression mechanism is improved.
[0017]
Next, a closed type compressor of a fourth embodiment will be described with reference to the drawings. FIG. 4 is a top view showing a fourth embodiment of the hermetic compressor according to the present invention. The hermetic compressor 50 shown in the drawing is different from the first embodiment in the configuration of the perforation of the suction hole and the arrangement of the cylinder. These different configurations will be described, and other configurations are the same as in the first embodiment, and description thereof will be omitted.
In the hermetic compressor 50 of the fourth embodiment, the suction holes 32a, 32b in the side wall of the cylindrical hermetic container 21 are opposed to the respective compression chambers of the cylinders 7, 8 (not shown), and are arranged in the circumferential direction. In this configuration, the hole is formed at a position shifted by the angle θ. At this time, in the hermetic compressor 50, the cylinders 7 and 8 (not shown) are arranged in the axial direction, and the cylinder suction holes 36a and 36b (not shown) are shifted in the circumferential direction by an angle θ. The cylinders are assembled and assembled. In the extension configuration of the intake pipe, the guide pipes 34a and 34b are inserted into the suction holes 32a and 32b, and are joined to the sealed container 21. Further, the inner pipe 33b of the suction pipe 33 and the inner pipe 38b of the suction pipe 38 are guided to the guide pipes 34a and 34b, and are joined to each other.
With the configuration in which the suction holes are formed so as to be shifted in the circumferential direction of the sealed container, the length of the portion 37b between the suction holes 32a and 32b can be further increased. Further, if the deviation angle θ of the guide pipe is set to 180 degrees, the length of the inter-hole portion 37b can be maximized. That is, the mechanical strength of the inter-hole portion 37c can be significantly improved.
Therefore, an electric motor section and a compression mechanism section in which at least two pistons are accommodated in at least two cylinders arranged side by side in the axial direction are provided in the closed container, and a plurality of suction ports are provided at positions opposed to the cylinders on the side wall of the closed container. In order to compress the refrigerant introduced into the cylinder through the suction hole by the eccentric motion of the piston driven by the electric motor, the suction hole was formed by shifting the suction hole in the circumferential direction of the closed container. In the case of the hermetic compressor of the fourth embodiment, the strength of the portion between the holes of the hermetic container is greatly increased, and the pressure resistance reliability is greatly improved. As a result, using carbon dioxide as a refrigerant having a specific volume per capacity of about 1/3, the cylinder exclusion volume can be reduced to about 1/3, thereby reducing the compression chamber pitch and downsizing. Furthermore, it can be compressed to a high supercritical pressure using carbon dioxide as a refrigerant.
[0018]
Next, a hermetic compressor according to a fifth embodiment will be described with reference to the drawings. FIG. 5 is a top view showing a hermetic compressor of a fifth embodiment according to the present invention. In the hermetic compressor 50 shown in the drawing, the suction hole has the same configuration as that of the above-described fourth embodiment, but the extension configuration of the suction pipe is different. The configuration relating to the present embodiment will be described, and the other configuration is the same as that of the first embodiment, and description thereof will be omitted.
In the fifth embodiment, the suction holes are formed by shifting the positions of the two suction holes 32c and 32d by an angle θ in the circumferential direction of the sealed container 21. This configuration is the same as that of the above-described fourth embodiment. The length of the inter-hole portion 37c of the suction holes 32c and 32d can be increased, and the pressure resistance of the inter-hole portion 37c can be improved.
Further, the extended construction of the suction pipes is such that the inner pipes 33e, 38e of the suction pipes 33, 38 are guided into the guide pipes 34c, 34d inserted into the suction holes 32c, 32d and joined in an airtight manner. The inner pipe expanding portions 33f, 38f formed in the inner pipes 33e, 38e are inserted. Then, the outer pipes 33d and 38d are inserted into the inner pipe expansion sections 33f and 38f, and the guide pipe and the inner pipe expansion section, and the inner pipe expansion section and the outer pipe are simultaneously bonded. With this extended configuration of the suction pipe, the joining workability can be improved.
That is, in the fifth embodiment, a guide pipe is joined to a suction hole formed by being shifted in the circumferential direction of the closed container, and the guide pipe is guided by the guide pipe including an expanded portion formed in the suction pipe. With a hermetic compressor, the joining workability is improved, and the pressure resistance of the hermetic container is improved. And CO 2 Even when a refrigerant is used, a highly reliable hermetic compressor can be provided. And CO 2 It is also possible to provide a hermetic compressor that can be downsized even using a refrigerant.
[0019]
Next, a hermetic compressor of a sixth embodiment (not shown) will be described with reference to FIG. In the hermetic compressor of the first embodiment shown in FIG. 1, a hole for a discharge pipe 40 for one discharge pipe 40 is provided on the upper surface of the container in addition to the two suction holes 32a and 32b in the container side wall. It has a configuration with holes. On the other hand, the hermetic-type compressor of the sixth embodiment has a configuration in which two suction holes and one discharge hole are bored side by side on the side wall of the sealed container 21. Note that a configuration in which one suction hole and one discharge hole are bored side by side in the container side wall may be used.
In the case where a plurality of holes are formed in such a closed container side wall, in the closed type compressor of the sixth embodiment, as in the above-described third embodiment, the side wall of the closed container side wall is made thicker than other portions. A thick portion is formed and a hole is formed in the side wall thick portion, or a hole is formed by shifting the hole in the circumferential direction of the closed container, as in the fourth embodiment. With the structure of the hermetic compressor of the sixth embodiment, the strength of the portion between the holes of the hermetic container can be increased. That is, it is possible to provide a hermetic compressor having high pressure resistance reliability by increasing the strength of the portion between the holes in the closed container side wall. Further, it is possible to provide a hermetic compressor that can be downsized even when carbon dioxide is used as a refrigerant. Further, it is possible to provide a hermetic compressor capable of compressing to supercritical pressure using carbon dioxide as a refrigerant.
[0020]
【The invention's effect】
As described above, the hermetic compressor of the present invention has a configuration in which the expanded portion of the suction pipe fitted to the cylinder is formed outside the position where the hermetic container and the guide pipe are fixed. According to this configuration, since the suction pipe inserted into the suction hole of the cylinder is expanded outside the guide pipe attached to the closed container, the diameter of the two suction holes for attaching the suction pipe of the closed container is reduced. It is possible to reduce the size, and to increase the pitch of the two suction holes. For this reason, the strength of the inter-hole portion of the suction hole, in which the pressure resistance of the sealed container is reduced, is improved. For example, even when high-pressure carbon dioxide is used as the refrigerant, a highly reliable hermetic compressor can be realized. To play. That is, there is an effect that a two-cylinder rolling piston type rotary compressor having high pressure resistance reliability can be realized.
Further, in the hermetic compressor according to the present invention, the expansion pipe portion of the suction pipe fitted to the cylinder is formed outside the position where the hermetic container and the guide pipe are fixed, and the expansion pipe section of the suction pipe is inserted into the expansion pipe section. This is a configuration in which the expanded portion is formed. According to this configuration, the strength of the inter-hole portion of the suction hole of the closed container is improved, and the guide pipe, the inner pipe, and the outer pipe can be simultaneously joined, so that the joining workability is improved. .
Further, the hermetic-type compressor of the present invention has a configuration in which the thickness of the portion between the suction holes formed in the hermetic container is larger than the insertion portion of the electric motor portion of the hermetic container. According to this configuration, the thickness of the portion between the suction holes to which the suction pipe of the closed container is attached has a thick structure, and the pressure resistance can be improved. For this reason, even when high-pressure carbon dioxide is used as the refrigerant, the strength of the inter-hole portion where the pressure resistance of the sealed container is reduced is improved, and an effect that a highly reliable hermetic compressor can be realized is achieved.
Further, the hermetic compressor of the present invention has a configuration in which a suction hole formed in a hermetic container is provided at a position shifted in a circumferential direction. According to this configuration, the distance between the holes between the suction holes formed in the closed container can be further increased. For this reason, even if carbon dioxide is used as the refrigerant, it is possible to realize a hermetic compressor with high pressure resistance and to provide a hermetic compressor that can be downsized.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a hermetic compressor according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing a hermetic compressor of a second embodiment according to the present invention.
FIG. 3 is a sectional view showing a hermetic compressor according to a third embodiment of the present invention.
FIG. 4 is a top view showing a hermetic compressor according to a fifth embodiment of the present invention.
FIG. 5 is a top view showing a hermetic compressor according to a fifth embodiment of the present invention.
FIG. 6 is a sectional view showing a conventional hermetic compressor.
[Explanation of symbols]
1,21 closed container
2,22 motor unit
3,23 Compression mechanism
2a, 22a Stator
2b, 22b rotor
4,24 crankshaft
4a, 4b, 24a, 24b Eccentric part
5,25 main bearing
6,26 sub bearing
7, 8, 27, 28 cylinder
9,10,29,30 piston
11,35 accumulator
12,13,33,38 Suction pipe
12c, 13c Expansion part
14a, 14b, 34a, 34b, 34c, 34d Guide pipe
15a, 15b, 32a, 32b, 32c, 32d Suction hole
17, 37, 37a, 37b, 37c Inter-hole area
18,40 discharge pipe
21a Thick wall
31 Divider
33a, 33d, 38a, 38d Outer pipe
33b, 33e, 38b, 38e Inner pipe
33c, 33f, 38c, 38f Inner pipe expanding section
34e, 34f Guide pipe expansion section
36a, 36b Cylinder suction hole
50,55 hermetic compressor

Claims (5)

密閉容器内に、電動機部と、当該電動機部により偏心運動するピストンと当該ピストンを内包し並設した少なくとも2個のシリンダとからなる圧縮機構部とを収容し、前記密閉容器側壁の前記各シリンダに対向した位置に複数の吸入用孔を穿設し、前記各吸入用孔にそれぞれガイドパイプを接合し、前記各ガイドパイプで前記シリンダに冷媒を導入するそれぞれの吸入管を案内し且つ前記シリンダに接続し、前記シリンダに導入した前記冷媒を前記ピストンの前記偏心運動によって圧縮する密閉型圧縮機であって、
前記各吸入管を、インナパイプ拡管部を有するインナパイプと、前記インナパイプ拡管部に端部を挿入するアウタパイプとから構成し、前記インナパイプ拡管部を前記ガイドパイプの外に配置したことを特徴とする密閉型圧縮機。
A motor unit, a compression mechanism comprising a piston eccentrically moved by the motor unit and at least two cylinders including the piston and arranged side by side are housed in the closed container, and the cylinders on the side wall of the closed container are housed. A plurality of suction holes are drilled at positions opposed to each other, a guide pipe is joined to each of the suction holes, and each of the guide pipes guides a respective suction pipe for introducing a refrigerant into the cylinder, and the cylinder A hermetic compressor that compresses the refrigerant introduced into the cylinder by the eccentric movement of the piston,
The suction pipes each include an inner pipe having an inner pipe expansion section, and an outer pipe that inserts an end into the inner pipe expansion section, and the inner pipe expansion section is arranged outside the guide pipe. And hermetic compressor.
前記ガイドパイプの外端部に前記インナパイプ拡管部を挿入できるガイドパイプ拡管部を設けたことを特徴とする請求項1記載の密閉型圧縮機。2. The hermetic compressor according to claim 1, wherein a guide pipe expansion section is provided at an outer end of the guide pipe so that the inner pipe expansion section can be inserted therein. 密閉容器内に電動機部と圧縮機構部とを備え、前記密閉容器側壁に複数の孔を穿設し、前記電動機部で駆動する前記圧縮機構部によって冷媒を圧縮する密閉型圧縮機であって、前記密閉容器側壁に他の部分より厚くした側壁厚肉部を形成し、この側壁厚肉部に前記孔を穿設したことを特徴とする密閉型圧縮機。A hermetic compressor including a motor portion and a compression mechanism portion in a closed container, a plurality of holes formed in the side wall of the closed container, and compressing a refrigerant by the compression mechanism portion driven by the motor portion, A hermetic-type compressor, wherein a thicker side wall portion is formed on the side wall of the closed container than other portions, and the hole is formed in the thicker side wall portion. 密閉容器内に電動機部と圧縮機構部とを備え、前記密閉容器側壁に複数の孔を穿設し、前記電動機部で駆動する前記圧縮機構部によって冷媒を圧縮する密閉型圧縮機であって、前記孔を前記密閉容器の周方向にずらして穿設したことを特徴とする密閉型圧縮機。A hermetic compressor including a motor portion and a compression mechanism portion in a closed container, a plurality of holes formed in the side wall of the closed container, and compressing a refrigerant by the compression mechanism portion driven by the motor portion, A hermetic compressor characterized in that the holes are formed so as to be shifted in a circumferential direction of the hermetic container. 前記冷媒として二酸化炭素を用い、超臨界圧力まで圧縮することを特徴とする請求項1から請求項4のいずれかに記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 4, wherein the refrigerant is compressed to a supercritical pressure using carbon dioxide.
JP2002180681A 2002-06-21 2002-06-21 Sealed compressor Pending JP2004027853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180681A JP2004027853A (en) 2002-06-21 2002-06-21 Sealed compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180681A JP2004027853A (en) 2002-06-21 2002-06-21 Sealed compressor

Publications (1)

Publication Number Publication Date
JP2004027853A true JP2004027853A (en) 2004-01-29

Family

ID=31177719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180681A Pending JP2004027853A (en) 2002-06-21 2002-06-21 Sealed compressor

Country Status (1)

Country Link
JP (1) JP2004027853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074637A1 (en) * 2005-12-28 2007-07-05 Daikin Industries, Ltd. Compressor
JP2007187115A (en) * 2006-01-16 2007-07-26 Sanyo Electric Co Ltd Hermetic rotary compressor
US7780427B2 (en) 2008-01-10 2010-08-24 Fujitsu General Limited Two-stage rotary compressor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956392U (en) * 1982-10-06 1984-04-12 株式会社東芝 rotary compressor
JPS6279977U (en) * 1985-11-11 1987-05-22
JPH02123289A (en) * 1988-10-31 1990-05-10 Toshiba Corp Structure of rotary compressor and manufacture thereof
JPH0444492U (en) * 1990-08-14 1992-04-15
JPH0524988U (en) * 1991-09-04 1993-04-02 三洋電機株式会社 Sealed case for multi-cylinder rotary compressor
JPH0979161A (en) * 1995-09-12 1997-03-25 Toshiba Corp Rotary compressor
JPH109171A (en) * 1996-06-19 1998-01-13 Matsushita Electric Ind Co Ltd Closed type compressor
JP2000104689A (en) * 1998-09-25 2000-04-11 Sanyo Electric Co Ltd Rotary compressor
JP2001173559A (en) * 2000-11-09 2001-06-26 Toshiba Kyaria Kk Compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956392U (en) * 1982-10-06 1984-04-12 株式会社東芝 rotary compressor
JPS6279977U (en) * 1985-11-11 1987-05-22
JPH02123289A (en) * 1988-10-31 1990-05-10 Toshiba Corp Structure of rotary compressor and manufacture thereof
JPH0444492U (en) * 1990-08-14 1992-04-15
JPH0524988U (en) * 1991-09-04 1993-04-02 三洋電機株式会社 Sealed case for multi-cylinder rotary compressor
JPH0979161A (en) * 1995-09-12 1997-03-25 Toshiba Corp Rotary compressor
JPH109171A (en) * 1996-06-19 1998-01-13 Matsushita Electric Ind Co Ltd Closed type compressor
JP2000104689A (en) * 1998-09-25 2000-04-11 Sanyo Electric Co Ltd Rotary compressor
JP2001173559A (en) * 2000-11-09 2001-06-26 Toshiba Kyaria Kk Compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074637A1 (en) * 2005-12-28 2007-07-05 Daikin Industries, Ltd. Compressor
AU2006329386B2 (en) * 2005-12-28 2010-02-04 Daikin Industries, Ltd. Compressor
US7704060B2 (en) 2005-12-28 2010-04-27 Daikin Industries, Ltd. Compressor having muffler outlets orthogonally arranged relative to the suction mouth
JP2007187115A (en) * 2006-01-16 2007-07-26 Sanyo Electric Co Ltd Hermetic rotary compressor
JP4744305B2 (en) * 2006-01-16 2011-08-10 三洋電機株式会社 Hermetic rotary compressor
US7780427B2 (en) 2008-01-10 2010-08-24 Fujitsu General Limited Two-stage rotary compressor

Similar Documents

Publication Publication Date Title
KR100269951B1 (en) Sucking muffler of a compressor
JP3723408B2 (en) 2-cylinder two-stage compression rotary compressor
KR101375979B1 (en) Rotary compressor
JP2003328972A (en) Sealed two-cylinder rotary compressor and manufacturing method thereof
EP2749735B1 (en) Compressor
US7704060B2 (en) Compressor having muffler outlets orthogonally arranged relative to the suction mouth
KR20090012839A (en) 2 stage rotary compressor
US20060056990A1 (en) Compressor having discharge mufflers
JP2012188982A (en) Rotary compressor
KR20110072312A (en) Twin type rotary compressor
JP7012843B2 (en) Sealed compressor and manufacturing method of sealed compressor
JPH07318179A (en) Sealed compressor, and freezer and air conditioner including the compressor
JP2004027853A (en) Sealed compressor
JP2006097549A (en) Compressor
US10920775B2 (en) Scroll compressor with different sized gaps formed between inner and outer peripheral surfaces of scroll laps
EP1041285B1 (en) Reciprocating type compressor comprising a suction chamber and partition walls in a cylinder head
JP6274041B2 (en) Rotary compressor
JPH11241693A (en) Compressor
JPH11230072A (en) Compressor
US20060073058A1 (en) Orbiting vane compressor with side-inlet structure
KR101328229B1 (en) Rotary compressor
JP3987323B2 (en) Two-stage compression reciprocating compressor and refrigeration cycle equipment
US20040213681A1 (en) Hermetic compressor
JPH07167059A (en) Compressor
JPH109171A (en) Closed type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527