JP2004027384A - Negative ion-generating acrylic fiber and method for producing the same - Google Patents

Negative ion-generating acrylic fiber and method for producing the same Download PDF

Info

Publication number
JP2004027384A
JP2004027384A JP2002182457A JP2002182457A JP2004027384A JP 2004027384 A JP2004027384 A JP 2004027384A JP 2002182457 A JP2002182457 A JP 2002182457A JP 2002182457 A JP2002182457 A JP 2002182457A JP 2004027384 A JP2004027384 A JP 2004027384A
Authority
JP
Japan
Prior art keywords
amphibole
average particle
electrically insulating
acrylic fiber
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002182457A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamamoto
山本 俊博
Zenji Wakayama
若山 善治
Chieko Iwamoto
岩本 智江子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2002182457A priority Critical patent/JP2004027384A/en
Publication of JP2004027384A publication Critical patent/JP2004027384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative ion-generating acrylic fiber which uses inexpensive amphibole and generates negative ions in a practical level amount without an exciting agent such as a radioactive substance. <P>SOLUTION: This negative ion-generating acrylic fiber is characterized by containing the amphibole having an average particle diameter of ≤3μm and an electrically insulating substance having an average particle diameter of ≤1μm. The average particle diameter of the amphibole is preferably 0.1 to 1μm. The total content of the amphibole and the electrically insulating substance is preferably 2 to 15 wt. %. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はマイナスイオンを発生するアクリル繊維およびその製造方法に関する。
【0002】
【従来の技術】
一般にマイナスイオンは、大脳皮質や血液中のセロトニン量を低下させたり、血液中の酸素量やSOD酵素を増加させたり、またストレス抑制ホルモン(キャバ)を増加させたりするなど、人体に良好な効果を及ぼすと言われている。また従来より、マイナスイオンを放出する物質として、電気石とも呼ばれるトルマリンや火成岩の一種である角閃石などが知られているが、そのマイナスイオン放出機能はいずれも弱く、実用的ではなかった。
【0003】
そこで、均一に分散されたトルマリン粒子をアクリル繊維に含有させることにより、活性電子を放出して生活細胞に賦活効果を与えるトルマリン含有繊維(特開平10−183422号公報)や、トリウム石などの励起剤と併用して、マイナスイオンの発生効率を高めたマイナスイオン発生温度調節体(特開2001−21165号公報)などが提案されている。しかし、前者のようにトルマリンだけをアクリル繊維に練り込んでもマイナスイオンの発生量は少なく、また後者のように励起剤として放射性物質を使用する場合は、製造時の安全性確保の面から設備などのコスト負担が大きいという問題があった。これらに対し本発明者らは、微粒子のトルマリンと微粒子の電気絶縁性物質を混合してなる組成物をアクリル重合体に均一に練り込むことでマイナスイオン発生量が極めて大きくなることを見出し、提案している。
【0004】
【発明が解決しようとする課題】
しかしながら上述のアクリル重合体からなる繊維は、確かにマイナスイオン発生量は従来より大きくなるものの、実際の製造においてはトルマリンの添加量を飛躍的に削減できたとはいえず、またトルマリン自体が高価であるため、製造コスト面での課題を完全に解消できなかった。
【0005】
そこで本発明者らは上記問題点に鑑みて、アクリル繊維のマイナスイオン発生効率を高めることを鋭意研究した結果、微粒子の角閃石と微粒子の電気絶縁物質をアクリル重合体に均一に練りこむことで、マイナスイオン発生量が極めて大きくなることを見出し、本発明を完成した。
【0006】
すなわち本発明の目的は、トルマリンに比べ安価な角閃石を用いて、放射性物質などの励起剤を使うことなく、実用レベルのマイナスイオン発生量を有する、マイナスイオン発生アクリル繊維およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の要旨とするところは、平均粒径3μm以下の角閃石と平均粒径1μm以下の電気絶縁性物質を含有することを特徴とするマイナスイオン発生アクリル繊維である。
【0008】
さらに上記角閃石の平均粒径が0.1μm以上かつ1μm以下であることが好ましい。そして上記角閃石と電気絶縁性物質の合計含有量は、2〜15重量%であることが好ましい。
【0009】
また本発明のマイナスイオン発生アクリル繊維の製造方法は、アクリロニトリル共重合体およびアクリロニトリル共重合体の溶媒溶液に対し、角閃石微粒子と電気絶縁性物質の微粒子を加えて、所定の濃度に混合調整し、得られる溶液を紡糸用原液として用いることを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において使用するアクリル繊維は、たとえばアクリロニトリルと他の単量体との共重合体を紡出して、得られたもので良い。そして、その割合は特に限定されるものではないが、アクリロニトリル/他の単量体=50重量%以上/50重量%以下が好ましい。また他の単量体としてはアクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン等のハロゲン含有ビニル単量体;スチレン、酢酸ビニル、ビニルエチルエーテル、メタクリロニトリル等の中性単量体;アクリル酸、メタクリル酸、アリルスルフォン酸、メタリルスルフォン酸、スチレンスルフォン酸、2アクリルアミド2メチルプロパンスルフォン酸等の酸性単量体およびこれら単量体のアンモニウム塩、アルカリ金属塩などが挙げられ、これら単独使用または2種以上を組み合わせて用いても良い。さらに他の高分子化合物、たとえば酢酸セルローズ、ポリスチレンなどを添加しても何ら差し支えない。そして、これら他の単量体や他の高分子化合物を適宜選択することにより得られるモダクリル繊維や多孔性アクリル繊維なども本発明において用いることができる。
【0011】
また本発明に使用する角閃石は、火成岩や変成岩の構成鉱物として産出されるものであって、従来から知られているもので良い。すなわち下記一般式(1)で表わされるものである。
(Ca,Na,K)(Mg,Fe,Al)[(Si,Al)Si]O22(OH)   (1)
【0012】
そして、この角閃石の平均粒径は、マイナスイオン放出量と紡糸操業性を良好にするために、3μm以下であることを必要とし、好ましくは、0.1μm以上かつ1μm以下である。角閃石の平均粒径が小さくなる程、マイナスイオン放出量が多くなる。さらに、角閃石の平均粒径が小さくなれば、アクリル繊維紡出時に、濾布に詰まったり口金孔を塞いだりして糸切れをもたらすといった、操業性を低下させる原因にはなりにくい。一方角閃石の平均粒径があまりにも小さいと、角閃石微粒子同士が二次凝集を起こし易くなり、マイナスイオン放出量も低下する傾向にある。
【0013】
そして角閃石を上記平均粒径の大きさにするには、特に方法を限定されるものではないが、一般的な粉砕機を用いての湿式粉砕や乾式粉砕によるものが好ましい。粉砕機としては、たとえば転動ボールミル、ロッドミル、チューブミルなどの転動ミル;ビーズミル、サンドミル、タワーミルなどの撹拌ミル;振動ミル;ジェットミル;遊星ミル;ローラーミルなどが挙げられるが、特に粉砕媒体としてボールを使用するものが均一な微粒子を得やすいため好ましい。すなわち上記粉砕機のうち、転動ミル、撹拌ミル、振動ミル、遊星ミルが該当する。また、工業的に大型のミル容器が可能なものがさらに好ましく、転動ミルや撹拌ミルが最適である。
【0014】
そして乾式粉砕の場合は、角閃石砕料と必要に応じた粉砕媒体と必要に応じた粉砕助剤とを粉砕機に投入して粉砕すれば良い。一方、湿式粉砕の場合は、さらに溶剤が必要となる。この溶剤としては、たとえば扱いやすさの点で水が挙げられるが、他にもジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトン、硝酸水溶液、ロダン塩水溶液や塩化亜鉛水溶液などのアクリル繊維に使用する溶媒であっても良い。特にアクリル繊維に使用する溶媒を用いて湿式粉砕を行うと、角閃石砕生物の粒度分布も比較的狭く、また粉砕後の溶液をそのままアクリル繊維紡出の原料に使用することも可能なので、乾燥工程などの必要がなく好ましい。
【0015】
また本発明に使用する電気絶縁性物質は、電気を通さないか、または、ほとんど通さない無機物質で、常温時は固体であれば良い。たとえばタルク、雲母、第三リン酸カルシウム、ピロリン酸カルシウムなどが挙げられるが、この限りではない。そしてマイナスイオン放出量、紡糸操業性および角閃石との混合性を良好にするために、電気絶縁性物質の平均粒径は1μm以下であることを必要とし、好ましくは、0.1μm以上かつ0.5μm以下である。電気絶縁性物質の平均粒径が小さくなる程、角閃石との混合斑が発生しにくくなるが、あまりにも小さいと、電気絶縁性物質の微粒子同士が二次凝集を起こし易くなる傾向にある。また上述した角閃石と同様に平均粒径が小さい方が、紡糸操業性が改善できる。なお電気絶縁性物質を上記平均粒径の大きさにするには、上述した角閃石同様の方法で良い。
【0016】
そして電気絶縁性物質を角閃石と併用すると、マイナスイオン放出量は著しく向上する。その理由として詳細は定かでないが、角閃石と電気絶縁性物質を混合して用いると、角閃石一次微粒子を包含するような状態で電気絶縁性物質が存在するため、あたかも角閃石を電気絶縁性物質でコーティングした組成物のようになり、角閃石微粒子同士の二次凝集を防止できると考えられる。その結果、角閃石を微粒子のままアクリル繊維中に存在させ得るので、マイナスイオン放出量の低下を防止できると考えられる。また紡糸操業性の低下も見られないという副次効果もある。
【0017】
また本発明において、角閃石微粒子と電気絶縁性物質の微粒子を混合する割合は、前者100重量部に対して、後者は5〜49重量部が好ましく、なお好ましくは10〜20重量部である。そして本発明におけるアクリル繊維に対し、角閃石微粒子と電気絶縁性物質の微粒子の合計含有量は、2〜15重量%が好ましい。これら微粒子の合計含有量が多いほどマイナスイオンの発生量は大きいが、好ましい範囲にすると、紡糸時の操業安定性や、得られた糸の強度や伸度をより良好にできる。
【0018】
次に、本発明のマイナスイオン発生アクリル繊維の製造方法を説明する。製造方法の一例としては、まずアクリロニトリル共重合体の溶媒溶液と同組成の溶媒に角閃石微粒子を分散させ、この角閃石分散溶液に電気絶縁性物質の微粒子を加えて、混合・撹拌して均一化を図った混合溶液を得る。次にアクリロニトリル共重合体およびアクリロニトリル共重合体の溶媒溶液と上記混合溶液とを混合・攪拌して、角閃石と電気絶縁性物質の合計が所定の含有量となるように濃度を調整する。そして、得られた溶液を紡糸用原液として用い、通常の湿式あるいは乾式紡糸で繊維化する。上記溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトン、硝酸水溶液、ロダン塩水溶液や塩化亜鉛水溶液などが挙げられるが、特にジメチルホルムアミド、アセトンが好ましい。また紡出された糸については従来慣用の方法で、すなわち紡糸・延伸・水洗・乾燥・オイリング・クリンピング工程を通して得られる。
【0019】
なお上記製造方法の一例において、角閃石微粒子と電気絶縁性物質の微粒子を、溶媒に対して別々に順次添加することは必須ではなく、二つを同時にアクリロニトリル共重合体の溶媒溶液と同組成の溶媒に投入することも可能である。また微粒子角閃石を最初から用いなくても、上記アクリロニトリル共重合体の溶媒溶液と同組成の溶媒を用いて角閃石を湿式粉砕し、この角閃石微粒子が分散している溶媒溶液に、電気絶縁性物質の微粒子を加えて上記混合溶液を得ることもできる。
【0020】
さらに上記製造方法の一例のように、いったん上記混合溶液を得ることは必ずしも必要ではない。すなわち角閃石微粒子と電気絶縁性物質の微粒子を混合・撹拌して得た混合物を、アクリロニトリル共重合体およびアクリロニトリル共重合体の溶媒溶液と混合・攪拌することでも可能である。たとえば、まず角閃石を乾式粉砕し、得られた角閃石微粒子を分級する。そして、電気絶縁性物質の微粒子を加えて、さらに混合・攪拌して得た混合物を用いることで可能となる。なお乾式粉砕の方法としては、前述した粉砕機を用いれば良い。また分級方法は特に限定されるものではないが、所定の角閃石の微粒子を得られるものであれば一般的な篩い分け機や分級機を用いた分級で良い。分級機としては、湿式と乾式の重力分級機、湿式と乾式の遠心力分級機、乾式の慣性力分級機などがあるが、特に乾式の分級機を用いると、分級後に乾燥工程の必要がなく好ましい。仮に湿式の分級機を用いる場合、溶剤にアクリル繊維に使用する上記溶媒を用いることが好ましい。分級後の溶液に電気絶縁性物質の微粒子を加えれば良いので乾燥工程の必要がないからである。
【0021】
また上記混合物を得るに際し、角閃石を乾式粉砕する代わりに、水を用いて角閃石を湿式粉砕しても良い。そして、角閃石微粒子が分散している水溶液を乾燥し、得られた角閃石微粒子の乾燥凝集体を解砕および/または再粉砕した後、電気絶縁性物質の微粒子を加えて、さらに混合・攪拌して混合物が得られる。なお湿式粉砕の方法としては、上述した粉砕機を用いれば良い。また乾燥方法は特に限定されるものではないが、水を分離できるものであれば一般的な乾燥機を用いた乾燥で良い。乾燥機としては拡散式、熱風式、真空式、凍結式などが挙げられるが、設備の簡易さや製造コスト等を考慮すると熱風式が好ましい。さらに必要に応じて解砕および/または再粉砕する方法としては、一般的な解砕機および/または一般的な粉砕機を用いれば良いが、特にケージミルやインパクトミル等の解砕機および/またはジェットミル粉砕機を用いるのが好ましい。
【0022】
なお上述した製造方法において、角閃石を微粒子にする種々の方法を例示したが、電気絶縁性物質も同様に取り扱うことができる。
【0023】
【実施例】
以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0024】
・マイナスイオン測定方法(A法)
イオンカウンターSC−50(シグマテック社製)を用いて、マイナスイオン量を測定した。具体的には、まずボックス内に試料を置きボックスの反対側から60l/minのエアーを吸引する。そして、試料と吸引出口の中間点でマイナスイオン量を5分間測定し、1ml当たりのマイナスイオン個数の平均値を求め、試料の不在時のマイナスイオン個数と比較し、増加個数を確認した。
【0025】
・マイナスイオン測定方法(B法)
イオンテスターKST−900(神戸電波社製)を用いて、マイナスイオン量を測定した。具体的には、試料を60%RH20℃の雰囲気下で30秒間皮膚とかるく摩擦し、1ml当たりのマイナスイオン個数の平均値を測定した。
【0026】
・紡糸操業性評価方法
濾過面積7cm、濾過布ゴーザミン、0.06mmφ*5000孔の口金を使い、吐出量320ml/min、巻き取り速度10.5m/minで紡糸を1時間行った。そして、この時の濾過布での圧力上昇(濾過性)および単糸切れ状況(糸切れ)にて評価した。
a)濾過性  ◎…0以上0.1未満 ○…0.1以上0.5未満 △…0.5以上1.0未満 ×…1.0以上2.0未満 ××…2.0以上 (各数値は圧上昇値:kg/cm
b)糸切れ  ◎…0以上3未満 ○…3以上6未満 △…6以上12未満 ×…12以上20未満 ××…20以上 (各数値は単糸切れ本数:本)
【0027】
・実施例1〜6
容積300mの転動ボールミルに角閃石#325品100kgと、20mmφボール120kgと、10mmφボール180kgと、ジメチルホルムアミド150kgを加え240時間粉砕した。得られた原液中の角閃石の平均粒径は1μmであった。この原液に平均粒径0.5μmの第三リン酸カルシウム15kgを添加してさらに5時間混合した。濾過してボールを取り除いた溶液に、アクリルドープ(アクリロニトリル/アクリル酸メチル/2アクリルアミド2メチルプロパンスルフォン酸ソーダ=90/8/2(重量%)組成のアクリルポリマーの濃度20%ジメチルホルムアミド溶液)を50kgと、ジメチルホルムアミド溶媒とを加え、角閃石と第三リン酸カルシウム合計が20%溶液になるように濃度調整した。
【0028】
この添加剤溶液を上記組成のアクリルドープ(ポリマー濃度25%ジメチルホルムアミド溶液)に、角閃石と第三リン酸カルシウムの合計含有量が表1に示す割合となるように添加して、ジメチルホルムアミド60%水溶液に0.06mmφの口金にて紡出、凝固させた。その後、延伸・水洗・乾燥・オイリング・クリンピング・130℃熱セット工程を経て約3.3dtexの繊維を得た。この繊維をカード紡績機・ニードルパンチ機に掛け、50g/mの不織布を作成し、マイナスイオン量を測定した。
【0029】
【表1】

Figure 2004027384
【0030】
表1からも明らかなように、角閃石と第三リン酸カルシウムの合計含有量が多くなるほどマイナスイオン量の増加値は大きくなるが、紡糸操業性は低下の傾向にある。また強伸度も小さくなる。
【0031】
・実施例7〜10、比較例1
実施例7〜10、比較例1は、表2に示す各平均粒径の第三リン酸カルシウムを用いた以外は、実施例3と同様に角閃石と第三リン酸カルシウムの合計含有量が5重量%となるようにアクリルドープに添加し、実施例1〜6と同じ方法にてアクリル繊維を得て、さらに不織布を得たものである。
【0032】
【表2】
Figure 2004027384
【0033】
表2からも明らかなように、第三リン酸カルシウムの平均粒径が1μm以下だとマイナスイオン量の増加値は大きく、紡糸操業性に問題もない。一方、1μmを超えた比較例1では、マイナスイオン量の増加値が小さくなり、紡糸操業性にも問題が生じる。これは、角閃石と第三リン酸カルシウムとの混合斑が起こり、紡糸時、濾過布に詰まる傾向が認められるからである。
【0034】
・比較例2〜7
比較例2〜7は、電気絶縁性物質である第三リン酸カルシウム15kgを添加しない以外は、実施例1〜6と同じ方法でアクリル繊維を得て、さらに不織布を得たものである。その際、角閃石の含有量が表3に示す割合となるようにアクリルドープに添加した。
【0035】
【表3】
Figure 2004027384
【0036】
表3から明らかなように、角閃石だけでは、その含有量を多くしてもマイナスイオン量の増加値は極めて小さいものとなっている。また紡糸操業性も著しく低下して実用性が無いことが判る。すなわち第三リン酸カルシウムのような電気絶縁性物質が存在しないと、折角微粒子にした角閃石もすぐに二次凝集が起こるからである。
【0037】
・実施例11〜15、比較例8
角閃石#325品を転動ボールミルで水湿式粉砕を行い、熱風乾燥・ケージミル解砕・ジェットミル通過後、乾式の重力分級機で分級して表4に示す各平均粒径の微粒子100部を得た。その後、平均粒径0.8μmの合成雲母を10部加え、角閃石微粒子と混合し、実施例1〜6と同じアクリルドープ(ポリマー濃度20%ジメチルホルムアミド溶液)を50kgと、ジメチルホルムアミド溶媒とを加え、角閃石と合成雲母合計が20%溶液になるように濃度調整した。これをアクリルドープ(ポリマー濃度25%ジメチルホルムアミド溶液)に対し、角閃石と合成雲母の合計含有量が5重量%になるように添加し、実施例1〜6と同じ方法にて、アクリル繊維を得て、さらに不織布を得たものである。
【0038】
【表4】
Figure 2004027384
【0039】
表4から明らかなように、角閃石の平均粒径が3μmを超えた比較例8では、紡糸操業性が著しく低下し、マイナスイオン量の増加値も小さくなった。一方、平均粒径が小さくなるほどマイナスイオン量の増加値は大きくなるが、紡糸操業性はやや低下する傾向が認められた。
【0040】
・実施例16〜20
平均粒径0.8μmの角閃石90部、平均粒径0.5μmの第三リン酸カルシウム10部の混合物を、モダクリルポリマー(アクリロニトリル/塩化ビニリデン/2アクリルアミド2メチルプロパンスルフォン酸ソーダ=55/42/3(重量%)組成)10部を溶解したジメチルホルム溶媒350部の溶液中に、角閃石と第三リン酸カルシウム合計が20%溶液になるように添加した。
【0041】
この添加剤溶液を上記組成のモダクリルドープ(ポリマー濃度25%ジメチルホルムアミド溶液)に表5に示す割合で添加して、ジメチルホルムアミド60%水溶液に0.06mmφの口金にて紡出、凝固させた。その後、延伸・水洗・乾燥・オイリング・クリンピング・120℃熱セット工程を経て約3.3dtexの繊維を得た。この繊維をカード紡績機・ニードルパンチ機に掛け、50g/mの不織布を作成し、マイナスイオン量を測定した。
【0042】
【表5】
Figure 2004027384
【0043】
表5からも明らかなように、A法においては、角閃石と第三リン酸カルシウムの合計含有量が多くなるほどマイナスイオン量の増加値は大きくなるが、紡糸操業性は低下の傾向にある。また、B法においては、角閃石と第三リン酸カルシウムの合計含有量が少なくても、実施例繊維と皮膚との摩擦により、きわめて高い水準のマイナスイオン量があることがわかる。
【0044】
【発明の効果】
以上のように、本発明によれば、放射性物質などの励起剤を使うことなく、微粒子の角閃石と微粒子の電気絶縁性物質を混合し、アクリロニトリル重合体に均一に練り込むという極めて簡単な手段により、実用範囲まで高めたマイナスイオン発生アクリル繊維を提供することができる。当然この繊維は工業的容易に作ることができ、トルマリンに比べ安価な角閃石を使用するため、コストメリットも極めて大きい。さらに摩擦・剥離によってもマイナスイオンが発生するため、角閃石のもつ効果以上の極めて高いマイナスイオンが発生する。なお、このマイナスイオン発生アクリル繊維は、毛布、シーツ、カーペット、カーテンなどの建寝装用品や、肌着、セーターなどの衣料品や、ぬいぐるみなどの玩具などに適用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an acrylic fiber that generates negative ions and a method for producing the same.
[0002]
[Prior art]
In general, negative ions have good effects on the human body, such as decreasing the amount of serotonin in the cerebral cortex and blood, increasing the amount of oxygen and SOD enzymes in the blood, and increasing stress-suppressing hormones (capas). Is said to exert. Further, conventionally, as a substance that emits negative ions, tourmaline also called tourmaline and amphibolite which is a kind of igneous rock are known, but their negative ion releasing functions are all weak and impractical.
[0003]
Therefore, by containing tourmaline particles dispersed uniformly in acrylic fibers, active electrons are emitted to give living cells an activation effect (Japanese Patent Application Laid-Open No. 10-183422), and excitation of thorium stone and the like is performed. There has been proposed a negative ion generation temperature regulator (JP-A-2001-21165) in which the generation efficiency of negative ions is increased in combination with an agent. However, even if only tourmaline is kneaded into acrylic fiber as in the former case, the amount of anions generated is small, and if a radioactive substance is used as an excitable agent as in the latter, equipment etc. should be used to ensure safety during manufacturing. There is a problem that the cost burden is large. On the other hand, the present inventors have found that by uniformly kneading a composition formed by mixing fine particles of tourmaline and fine particles of an electrically insulating substance into an acrylic polymer, the amount of negative ions generated becomes extremely large, and proposed. are doing.
[0004]
[Problems to be solved by the invention]
However, although the fibers made of the acrylic polymer described above certainly generate a larger amount of negative ions than in the past, it cannot be said that the amount of tourmaline added could be drastically reduced in actual production, and tourmaline itself was expensive. For this reason, it was not possible to completely solve the problem in terms of manufacturing cost.
[0005]
In view of the above problems, the inventors of the present invention have conducted intensive studies to increase the efficiency of generating negative ions in acrylic fibers, and as a result, uniformly knead the amphibole of the fine particles and the electric insulating material of the fine particles into the acrylic polymer. And found that the amount of generated negative ions was extremely large, and completed the present invention.
[0006]
That is, an object of the present invention is to provide an anion-generating acrylic fiber having a practical level of anion generation amount using an amphibole that is less expensive than tourmaline and without using an exciter such as a radioactive substance, and a method for producing the same. Is to do.
[0007]
[Means for Solving the Problems]
The gist of the present invention is a negative ion-generating acrylic fiber comprising an amphibole having an average particle size of 3 μm or less and an electrically insulating substance having an average particle size of 1 μm or less.
[0008]
Further, it is preferable that the average particle size of the amphibole is 0.1 μm or more and 1 μm or less. The total content of the amphibole and the electrically insulating substance is preferably 2 to 15% by weight.
[0009]
Further, the method for producing an anion-generating acrylic fiber of the present invention comprises the steps of: adding amphibole fine particles and fine particles of an electrically insulating substance to a solvent solution of an acrylonitrile copolymer and an acrylonitrile copolymer; And characterized in that the obtained solution is used as a stock solution for spinning.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The acrylic fiber used in the present invention may be obtained by spinning a copolymer of acrylonitrile and another monomer, for example. And although the ratio is not particularly limited, acrylonitrile / other monomer = 50% by weight / 50% by weight or less is preferable. Other monomers include alkyl acrylates such as methyl acrylate and ethyl acrylate; alkyl methacrylates such as methyl methacrylate and ethyl methacrylate; vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide and the like. Halogen-containing vinyl monomers; neutral monomers such as styrene, vinyl acetate, vinyl ethyl ether, and methacrylonitrile; acrylic acid, methacrylic acid, allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, and 2acrylamide 2 Examples thereof include acidic monomers such as methylpropanesulfonic acid, and ammonium salts and alkali metal salts of these monomers. These may be used alone or in combination of two or more. Further, other polymer compounds such as cellulose acetate, polystyrene and the like may be added at all. Modacrylic fibers and porous acrylic fibers obtained by appropriately selecting these other monomers and other high molecular compounds can also be used in the present invention.
[0011]
The amphibole used in the present invention is produced as a constituent mineral of igneous rocks and metamorphic rocks, and may be a conventionally known one. That is, it is represented by the following general formula (1).
(Ca, Na, K) 2 ~ 3 (Mg, Fe, Al) 5 [(Si, Al) 2 Si 6] O 22 (OH) 2 (1)
[0012]
The amphibole needs to have an average particle size of 3 μm or less, and preferably 0.1 μm or more and 1 μm or less in order to improve the amount of anion release and spinning operability. The smaller the average particle size of amphibole, the greater the amount of negative ion release. Further, when the average particle size of the amphibole is small, it does not easily cause a decrease in operability such as clogging of a filter cloth or closing of a mouthpiece hole when spinning an acrylic fiber to cause thread breakage. On the other hand, if the average particle size of amphibolite is too small, secondary agglomeration of amphibolite particles is likely to occur, and the amount of anion release tends to decrease.
[0013]
The method for making the amphibole having the above-mentioned average particle size is not particularly limited, but is preferably wet pulverization or dry pulverization using a general pulverizer. Examples of the pulverizer include a rolling mill such as a rolling ball mill, a rod mill and a tube mill; a stirring mill such as a bead mill, a sand mill and a tower mill; a vibration mill; a jet mill; a planetary mill; It is preferable to use a ball as the material because uniform fine particles can be easily obtained. That is, among the above-mentioned pulverizers, a rolling mill, a stirring mill, a vibration mill, and a planetary mill correspond. Further, those capable of industrially large mill containers are more preferable, and a rolling mill and a stirring mill are most suitable.
[0014]
In the case of dry pulverization, the amphibole crushing material, a pulverizing medium as required, and a pulverizing aid as necessary may be charged into a pulverizer and pulverized. On the other hand, in the case of wet pulverization, a solvent is further required. Examples of this solvent include water in terms of ease of handling, but other solvents used for acrylic fibers such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetone, nitric acid aqueous solution, rodane salt aqueous solution and zinc chloride aqueous solution It may be. In particular, when wet grinding is performed using the solvent used for acrylic fiber, the particle size distribution of amphibolite is relatively narrow, and the solution after grinding can be used as it is as a raw material for spinning acrylic fiber. This is preferable because there is no need for a step or the like.
[0015]
The electrically insulating substance used in the present invention is an inorganic substance that does not conduct electricity or almost does not conduct electricity, and may be a solid at room temperature. Examples include, but are not limited to, talc, mica, tribasic calcium phosphate, calcium pyrophosphate, and the like. The average particle size of the electrically insulating substance needs to be 1 μm or less, and preferably 0.1 μm or more and 0 μm or less, in order to improve the amount of anion release, spinning operability, and mixing with amphibolite. 0.5 μm or less. The smaller the average particle size of the electrically insulating substance is, the less likely it is to cause mixing spots with amphibolite. However, if it is too small, the particles of the electrically insulating substance tend to undergo secondary aggregation. As with the amphibole described above, the smaller the average particle size, the better the spinning operability. In order to make the electrically insulating substance have the above-mentioned average particle size, a method similar to the amphibole described above may be used.
[0016]
When an electrically insulating substance is used in combination with amphibole, the amount of released negative ions is significantly improved. The reason for this is not clear, but if a mixture of amphibolite and an electrically insulating substance is used, the electrically insulating substance exists in such a state as to contain the amphibolite primary fine particles. It is considered that the composition becomes like a composition coated with a substance and that secondary aggregation of amphibole fine particles can be prevented. As a result, it is considered that the amphibole can be present in the acrylic fiber as fine particles, so that a decrease in the amount of released negative ions can be prevented. There is also a secondary effect that no decrease in spinning operability is observed.
[0017]
In the present invention, the mixing ratio of the amphibole fine particles and the fine particles of the electrically insulating substance is preferably from 5 to 49 parts by weight, more preferably from 10 to 20 parts by weight, based on 100 parts by weight of the former. The total content of the amphibole fine particles and the fine particles of the electrically insulating substance with respect to the acrylic fiber in the present invention is preferably 2 to 15% by weight. The larger the total content of these fine particles, the larger the amount of generated negative ions. However, within the preferred range, the operation stability during spinning and the strength and elongation of the obtained yarn can be further improved.
[0018]
Next, a method for producing the negative ion generating acrylic fiber of the present invention will be described. As an example of the production method, first, amphibole fine particles are dispersed in a solvent having the same composition as a solvent solution of an acrylonitrile copolymer, and fine particles of an electrically insulating substance are added to the amphibole dispersion solution, and the mixture is stirred and uniformly mixed. To obtain a mixed solution. Next, the acrylonitrile copolymer and the solvent solution of the acrylonitrile copolymer and the above-mentioned mixed solution are mixed and stirred to adjust the concentration such that the total amount of amphibole and the electrically insulating substance becomes a predetermined content. Then, the resulting solution is used as a stock solution for spinning, and fiberized by ordinary wet or dry spinning. Examples of the solvent include dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetone, an aqueous solution of nitric acid, an aqueous solution of a rodane salt and an aqueous solution of zinc chloride, and dimethylformamide and acetone are particularly preferred. The spun yarn can be obtained by a conventional method, that is, spinning, drawing, washing, drying, oiling and crimping steps.
[0019]
In one example of the above production method, it is not essential that the amphibole fine particles and the fine particles of the electrically insulating substance are sequentially added separately to the solvent, and the two are simultaneously the same in composition as the solvent solution of the acrylonitrile copolymer. It is also possible to charge the solvent. Even without using fine-particle amphibolite from the beginning, amphibolite is wet-pulverized using a solvent having the same composition as the above-mentioned solvent solution of the acrylonitrile copolymer, and electrically insulated into the solvent solution in which the amphibolite particles are dispersed. The mixed solution can also be obtained by adding fine particles of an active substance.
[0020]
Further, it is not always necessary to once obtain the mixed solution as in the example of the above-mentioned production method. That is, the mixture obtained by mixing and stirring the amphibole fine particles and the fine particles of the electrically insulating substance can be mixed and stirred with an acrylonitrile copolymer and a solvent solution of the acrylonitrile copolymer. For example, first, amphibolite is dry-pulverized, and the obtained amphibolite fine particles are classified. Then, it becomes possible by adding fine particles of an electrically insulating substance, and further using a mixture obtained by mixing and stirring. As a method of dry pulverization, the pulverizer described above may be used. The classification method is not particularly limited, but classification using a general sieving machine or a classifier may be used as long as fine particles of predetermined amphibole can be obtained. Classifiers include wet and dry gravity classifiers, wet and dry centrifugal classifiers, and dry inertia classifiers.Especially, with a dry classifier, there is no need for a drying step after classification. preferable. If a wet classifier is used, it is preferable to use the above-mentioned solvent used for acrylic fiber as the solvent. This is because it is only necessary to add fine particles of an electrically insulating substance to the solution after the classification, so that a drying step is not required.
[0021]
In obtaining the above mixture, amphibole may be wet-pulverized with water instead of dry-pulverized amphibolite. Then, the aqueous solution in which the amphibole fine particles are dispersed is dried, and the obtained dried aggregate of the amphibole fine particles is crushed and / or crushed again. Then, the fine particles of the electrically insulating substance are added, and further mixed and stirred. To give a mixture. In addition, what is necessary is just to use the above-mentioned grinder as a method of wet grinding. The drying method is not particularly limited, but may be drying using a general dryer as long as it can separate water. Examples of the dryer include a diffusion type, a hot air type, a vacuum type, a freezing type and the like, and a hot air type is preferable in consideration of simplicity of equipment and production cost. Further, as a method of pulverizing and / or re-pulverizing as necessary, a general pulverizer and / or a general pulverizer may be used. In particular, a pulverizer such as a cage mill and an impact mill and / or a jet mill It is preferable to use a pulverizer.
[0022]
In the above-described manufacturing method, various methods for turning amphibole into fine particles have been exemplified, but an electrically insulating substance can be handled in the same manner.
[0023]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
[0024]
・ Negative ion measurement method (Method A)
The amount of negative ions was measured using an ion counter SC-50 (manufactured by Sigma-Tech). Specifically, first, a sample is placed in a box, and 60 l / min of air is sucked from the opposite side of the box. Then, the amount of negative ions was measured at the midpoint between the sample and the suction outlet for 5 minutes, the average value of the number of negative ions per 1 ml was obtained, and the number was compared with the number of negative ions in the absence of the sample to confirm the increase.
[0025]
・ Negative ion measurement method (Method B)
The amount of negative ions was measured using an ion tester KST-900 (manufactured by Kobe Denpasha). Specifically, the sample was slightly rubbed against the skin in an atmosphere of 60% RH at 20 ° C. for 30 seconds, and the average value of the number of negative ions per ml was measured.
[0026]
-Spinning operability evaluation method Spinning was performed for 1 hour at a discharge rate of 320 ml / min and a take-up speed of 10.5 m / min using a filtration area of 7 cm 2 , a filter cloth Gozamine, and a mouthpiece of 0.06 mmφ * 5000 holes. At this time, evaluation was made based on the pressure increase (filterability) of the filter cloth and the state of single yarn breakage (yarn breakage).
a) Filterability 性: 0 to less than 0.1…: 0.1 to less than 0.5…: 0.5 to less than 1.0 ×: 1.0 to less than 2.0 XX: 2.0 or more ( Each numerical value is a pressure rise value: kg / cm 2 )
b) Thread breaks…: 0 or more and less than 3 3: 3 or more and less than 6…: 6 or more and less than 12…: 12 or more and less than 20 XX: 20 or more
[0027]
-Examples 1 to 6
A rolling ball mill having a capacity of 300 m 3 was charged with 100 kg of amphibolite # 325, 120 kg of 20 mmφ balls, 180 kg of 10 mmφ balls, and 150 kg of dimethylformamide, and pulverized for 240 hours. The average particle size of amphibole in the obtained stock solution was 1 μm. To this stock solution, 15 kg of tricalcium phosphate having an average particle size of 0.5 μm was added and mixed for another 5 hours. Acrylic dope (acrylonitrile / methyl acrylate / 2 acrylamide 2-methylpropane sulfonate = 90/8/2 (weight%) acrylic polymer 20% dimethylformamide solution) was added to the solution from which the balls had been removed by filtration. 50 kg and a dimethylformamide solvent were added, and the concentration was adjusted so that the total of amphibole and tricalcium phosphate became a 20% solution.
[0028]
This additive solution was added to the acrylic dope (25% polymer concentration dimethylformamide solution) having the above composition so that the total content of amphibole and tricalcium phosphate was as shown in Table 1, and a 60% aqueous dimethylformamide solution was added. The mixture was spun and solidified using a 0.06 mmφ die. After that, a fiber of about 3.3 dtex was obtained through a drawing, washing, drying, oiling, crimping, and 130 ° C. heat setting steps. This fiber was set on a card spinning machine / needle punch machine to prepare a 50 g / m 2 nonwoven fabric, and the amount of negative ions was measured.
[0029]
[Table 1]
Figure 2004027384
[0030]
As is clear from Table 1, as the total content of amphibole and tricalcium phosphate increases, the value of the increase in the amount of negative ions increases, but the spinning operability tends to decrease. Also, the elongation is reduced.
[0031]
-Examples 7 to 10, Comparative Example 1
In Examples 7 to 10 and Comparative Example 1, the total content of amphibolite and tricalcium phosphate was 5% by weight, as in Example 3, except that tribasic calcium phosphate having each average particle size shown in Table 2 was used. Thus, acrylic fibers were added to the acrylic dope in the same manner as in Examples 1 to 6 to obtain acrylic fibers, and a nonwoven fabric was further obtained.
[0032]
[Table 2]
Figure 2004027384
[0033]
As is clear from Table 2, when the average particle size of the tricalcium phosphate is 1 μm or less, the increase in the amount of negative ions is large, and there is no problem in spinning operability. On the other hand, in Comparative Example 1 exceeding 1 μm, the increase value of the amount of negative ions was small, and there was a problem in spinning operability. This is because mixing spots of amphibole and tricalcium phosphate occur, and a tendency to clog the filter cloth during spinning is recognized.
[0034]
-Comparative Examples 2 to 7
In Comparative Examples 2 to 7, acrylic fibers were obtained in the same manner as in Examples 1 to 6, except that 15 kg of tribasic calcium phosphate as an electrically insulating substance was not added, and a nonwoven fabric was further obtained. At that time, the amphibole was added to the acrylic dope such that the content was as shown in Table 3.
[0035]
[Table 3]
Figure 2004027384
[0036]
As is clear from Table 3, the increase in the amount of negative ions is extremely small even if the content of the amphibole is increased. In addition, the spinning operability was remarkably reduced, indicating no practicality. That is, if no electrically insulating substance such as tricalcium phosphate is present, secondary agglomeration of the amphibole in the form of angled fine particles immediately occurs.
[0037]
-Examples 11 to 15, Comparative Example 8
Amphibole # 325 product is subjected to water-wet pulverization with a rolling ball mill, hot air drying, cage mill pulverization, and jet milling, and then classified with a dry gravity classifier to obtain 100 parts of fine particles having each average particle diameter shown in Table 4. Obtained. Thereafter, 10 parts of synthetic mica having an average particle diameter of 0.8 μm was added, mixed with amphibole fine particles, and 50 kg of the same acrylic dope (20% polymer concentration dimethylformamide solution) as in Examples 1 to 6 and dimethylformamide solvent were added. In addition, the concentration was adjusted so that the total of the amphibole and the synthetic mica became a 20% solution. This was added to acrylic dope (25% polymer concentration in dimethylformamide solution) so that the total content of amphibole and synthetic mica would be 5% by weight, and acrylic fibers were produced in the same manner as in Examples 1 to 6. The obtained non-woven fabric was obtained.
[0038]
[Table 4]
Figure 2004027384
[0039]
As is clear from Table 4, in Comparative Example 8 in which the average particle size of amphibole exceeds 3 μm, the spinning operability was significantly reduced, and the increase in the amount of negative ions was also small. On the other hand, the smaller the average particle size, the larger the increase value of the amount of negative ions, but the spinning operability tended to slightly decrease.
[0040]
-Examples 16 to 20
A mixture of 90 parts of amphibole having an average particle diameter of 0.8 μm and 10 parts of tricalcium phosphate having an average particle diameter of 0.5 μm was added to a modacrylic polymer (acrylonitrile / vinylidene chloride / 2 acrylamide 2-methylpropane sodium sulfonate = 55/42 / 3 (% by weight)) was added to a solution of 350 parts of dimethylform solvent in which 10 parts of 10 parts were dissolved, so that the total of amphibole and tribasic calcium phosphate became a 20% solution.
[0041]
This additive solution was added to modacrylic dope (25% polymer concentration in dimethylformamide solution) having the above composition at the ratio shown in Table 5, and spun and coagulated in a 60% aqueous dimethylformamide solution with a 0.06 mmφ die. After that, a fiber of about 3.3 dtex was obtained through a stretching, washing, drying, oiling, crimping, and 120 ° C. heat setting steps. This fiber was set on a card spinning machine / needle punch machine to prepare a 50 g / m 2 nonwoven fabric, and the amount of negative ions was measured.
[0042]
[Table 5]
Figure 2004027384
[0043]
As is clear from Table 5, in Method A, the larger the total content of amphibole and tricalcium phosphate, the larger the increase in the amount of negative ions, but the spinning operability tends to decrease. In addition, in the method B, even if the total content of the amphibole and the tricalcium phosphate is small, it can be seen that there is an extremely high level of negative ions due to friction between the fiber of the example and the skin.
[0044]
【The invention's effect】
As described above, according to the present invention, an extremely simple means of mixing fine-particle amphibole and fine-particle electrically insulating material without using an exciter such as a radioactive material, and uniformly kneading the same into an acrylonitrile polymer. Thereby, it is possible to provide a negative ion-generating acrylic fiber which has been raised to a practical range. Naturally, this fiber can be easily manufactured industrially, and since it uses inexpensive amphibole compared to tourmaline, the cost merit is extremely large. Further, since negative ions are also generated by friction and peeling, extremely high negative ions that are more effective than the effect of amphibole are generated. In addition, this negative ion generating acrylic fiber can be applied to building bedding articles such as blankets, sheets, carpets and curtains, clothing such as underwear and sweaters, and toys such as stuffed animals.

Claims (4)

平均粒径3μm以下の角閃石と平均粒径1μm以下の電気絶縁性物質を含有することを特徴とするマイナスイオン発生アクリル繊維。A negative ion-generating acrylic fiber comprising an amphibole having an average particle size of 3 μm or less and an electrically insulating substance having an average particle size of 1 μm or less. 上記角閃石の平均粒径が0.1μm以上かつ1μm以下である請求項1に記載のマイナスイオン発生アクリル繊維。The negative ion generating acrylic fiber according to claim 1, wherein the amphibole has an average particle size of 0.1 µm or more and 1 µm or less. 上記角閃石および上記電気絶縁性物質の合計含有量が2〜15重量%である請求項1または請求項2に記載のマイナスイオン発生アクリル繊維。The negative ion-generating acrylic fiber according to claim 1 or 2, wherein the total content of the amphibole and the electrically insulating substance is 2 to 15% by weight. アクリロニトリル共重合体およびアクリロニトリル共重合体の溶媒溶液に対し、角閃石微粒子と電気絶縁性物質の微粒子を加えて、所定の濃度に混合調整し、得られる溶液を紡糸用原液として用いることを特徴とするマイナスイオン発生アクリル繊維の製造方法。Acrylonitrile copolymer and a solvent solution of the acrylonitrile copolymer are added with amphibole fine particles and fine particles of an electrically insulating substance, mixed and adjusted to a predetermined concentration, and the resulting solution is used as a stock solution for spinning. Method for producing negative ion generating acrylic fiber.
JP2002182457A 2002-06-24 2002-06-24 Negative ion-generating acrylic fiber and method for producing the same Pending JP2004027384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182457A JP2004027384A (en) 2002-06-24 2002-06-24 Negative ion-generating acrylic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182457A JP2004027384A (en) 2002-06-24 2002-06-24 Negative ion-generating acrylic fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004027384A true JP2004027384A (en) 2004-01-29

Family

ID=31178949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182457A Pending JP2004027384A (en) 2002-06-24 2002-06-24 Negative ion-generating acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004027384A (en)

Similar Documents

Publication Publication Date Title
KR101164106B1 (en) Fibers comprising nanodiamond and platinum nanocolloid, and bedding formed thereby
CN102241882A (en) Preparation method of anion polyamide masterbatch and fibers
AU2013291223B2 (en) Water dispersible granule, and method for producing same
JP2003119617A (en) Minus ion generating porous acrylic fiber and method for producing the same
JP2004027384A (en) Negative ion-generating acrylic fiber and method for producing the same
JP3634789B2 (en) Negative ion generation modacrylic fiber
JP2004027385A (en) Negative ion-generating modacrylic fiber and method for producing the same
AT515174B1 (en) Cellulose suspension, process for its preparation and use
JP2009299211A (en) Moisture-retaining rayon fiber and moisture-retaining nonwoven fabric sheet
JP2003119615A (en) Minus ion generating acrylic fiber and method for producing the same
JP3776842B2 (en) Negative ion generating acrylic fiber with different ion balance and method for producing the same
JP3326742B2 (en) Antibacterial functional fiber kneaded with electric stone
JPH0133600B2 (en)
JP2004027389A (en) Negative ion-generating acrylic fiber and method for producing the same
JP3682942B2 (en) Regenerated cellulose fiber by cupra method containing tourmaline fine particles
CN115161885A (en) High-filtration-efficiency polylactic acid nanofiber membrane containing uniformly dispersed biological electrets and preparation method thereof
JP3297581B2 (en) Rayon fiber containing tourmaline fine particles
JPH0999251A (en) Production of organic powder and organic powder
JP2001247781A (en) Functional formed product and functional composite formed product
TWI764957B (en) Fiber powder and its aqueous dispersion
JPH1181032A (en) Electret fiber and its production
CN103343008A (en) Preparation method for organic-ligand-modified LaF3:Tb nanoparticle
JP2892475B2 (en) Polyacrylic fiber film
WO2020218206A1 (en) Inorganic particles for fibers and method for manufacturing same
JP2019044282A (en) Deodorant extra fine fiber laminate and manufacturing method thereof