JP2004026914A - Carbonization method for coal - Google Patents

Carbonization method for coal Download PDF

Info

Publication number
JP2004026914A
JP2004026914A JP2002182362A JP2002182362A JP2004026914A JP 2004026914 A JP2004026914 A JP 2004026914A JP 2002182362 A JP2002182362 A JP 2002182362A JP 2002182362 A JP2002182362 A JP 2002182362A JP 2004026914 A JP2004026914 A JP 2004026914A
Authority
JP
Japan
Prior art keywords
coal
carbonization
mass
coke
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002182362A
Other languages
Japanese (ja)
Inventor
Koji Hanaoka
花岡 浩二
Tetsuya Yamamoto
山本 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002182362A priority Critical patent/JP2004026914A/en
Publication of JP2004026914A publication Critical patent/JP2004026914A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonization method for coal with a chamber oven, especially one whereby stable operation and life extension of a coke oven can be achieved. <P>SOLUTION: After a coal with a water content of 8 mass% or lower is charged into a carbonization chamber 1 of a chamber oven, an air bleed hole 3 is opened above a coal layer 2 in the carbonization chamber 1, the inside of the air bleed hole is filled with a charge 4 consisting of waste wood having a water content of 50 mass% or lower, and carbonization of the coal is conducted. The waste wood may be replaced with a mixture consisting of the waste wood and a waste pulp liquid and having an average water content of 50 mass% or lower, and carbonization of the coal is performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、室炉式コークス炉による石炭の乾留方法に関し、特に、コークス炉の安定操業とコークス炉の寿命延長化を図ることが可能な石炭の乾留方法に関するものである。
【0002】
【従来の技術】
高炉用コークスは、例えば炭化室と燃焼室が炉壁で交互に仕切られた室炉式コークス炉の炭化室で石炭を乾留し、コークスケーキを炭化室の窯口から押出機により室外に排出し、冷却して製造される。室炉式コークス炉の炭化室の形状は例えば幅400 〜500 mm程度、高さ4〜7m程度、長さ13〜17m程度であって、図1に示すように、左右の炉壁1A間の幅が狭く、上下に高く、前後方向に長い部屋である。なお、図1は炭化室1の装入口5近くの要部を示す縦断面模式図であり、前後に平行な方向がコークス押し出し方向である。炭化室内の直方体状の乾留後のコークスはコークスケーキと称される。炉壁1Aはレンガを積層して普通構築されている。
【0003】
室炉式コークス炉で石炭を乾留する際には、装入口5から石炭を装入し、炭化室1の上部近くにまで充填し、幅方向に隣接する燃焼室から左右の炉壁1Aを介して熱を与え、2次元的に乾留する。このような石炭の乾留プロセスでは、石炭の乾留が左右の炉壁1Aを介した間接加熱によること、石炭充填層の熱伝導率が非常に小さいことなどにより、炭化室1に装入された質量が15〜40t 程度の石炭をコークス化するのに16〜24時間要するのが普通である。この熱源は、炭化室1内で石炭が乾留される時に発生、生成する燃料性ガス(Cガス)、またはCガスと高炉で生成するBガスを混合したMガスを燃焼室内で燃焼させた熱を用いるのが一般的である。
【0004】
ところでこのような室炉式コークス炉は、わが国においてはその建設から20年以上経過しており、その老朽化が著しく、炭化室1の炉壁1Aを構成するレンガの損傷や、炉壁1Aを構成するレンガ間の目地切れなどが起こりやすくなっている。レンガの目地切れは、これを放置して操業を続けた場合、燃焼室への微粉石炭の流出を招き、燃焼室内での酸素不足により黒煙発生に(不完全燃焼によるすすの生成)つながる。このため、早期に炭化室1の補修工事や隣接する燃焼室での燃焼ガスの燃焼停止を行わなければならず、コークス操業を不安定にする。
【0005】
上記の問題点から、コークス炉の操業においては、またレンガの損傷が発生した場合、これを補修しないとコークス押し出し時、損傷が生じた凸凹に起因して余分な力が炉壁に加わることになり、炉体に大きなダメージを与えることになる。炉体の老朽化に対応する炉寿命の延長技術と安定操業によるコークスの生産性向上が望まれている。
【0006】
しかしながら、石炭乾留速度の向上によるコークスの生産性向上と炉体寿命の延長とを両立させる操業は非常に困難である。
例えばコークス炉操業における石炭乾留速度の向上は、これまで石炭の水分含有量が9〜10mass%程度の湿炭を装入することから始まり、石炭の水分含有量が5〜7mass%程度の調湿炭の装入(CMC)を経、石炭の水分含有量が2〜3mass%程度の炭塊成化装入法(DAPS)や、石炭の水分含有量が0mass%の予熱炭装入等、炭化室へ装入する石炭の水分含有量を低減することにより達成されてきた。
【0007】
だが、このような装入炭の水分含有量の低減は、炭化室内における装入炭の充填密度が増加し、装入炭の充填密度が増加したことにより石炭を乾留する際、膨張圧が大きくなって炉壁へのダメージを大きくし、炉体寿命の延長に対しては相反していた。
安定操業による生産性向上と炉体寿命の延長とを両立させるという課題に対して、特開平2−145687号公報には、炭化室で石炭を乾留する際、発生する水蒸気を効率よく逃がすため図1に示すような抽気孔3を迅速にかつ確実に形成する技術が開示されている。また、特開平8−183958号公報には、石炭を乾留する際、軟化溶融物等の流動性の高い物質が図1に示す抽気孔3に流れ込んで抽気孔が塞がれてしまうのを防止するため、抽気孔内に装入物4としてコークスを装入する技術が開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特開平8−183958号公報に開示された方法は、コークス炉寿命の延長効果があるかどうかが不明であるうえ、コークス炉の生産物であるコークスを装入物として抽気孔に充填しているため、この抽気孔の体積物に相当するコークスが再使用されてしまうという無駄があった。
【0009】
本発明は、石炭を乾留する際、抽気孔を有効に利用したうえに、抽気孔が高流動性物質で塞がれてしまうのを防止することができかつ安定操業とコークス炉寿命の延長を図ることが可能な石炭の乾留方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、安定操業とコークス炉寿命の延長を図る方法として、石炭を乾留する前に水蒸気を効率よく逃がすための抽気孔を設け、この抽気孔への装入物を限定することにより上記課題を解決した。
本発明は、以下の通りである。
1.水分含有量が8mass%以下の石炭を室炉式コークス炉の炭化室に装入した後、前記炭化室内の石炭層の上部に抽気孔を開口し、次いで該抽気孔の内部に水分含有量が50mass%以下の廃木材を充填し、前記石炭の乾留を行うことを特徴とする石炭の乾留方法。
2.水分含有量が8mass%以下の石炭を室炉式コークス炉の炭化室に装入した後、前記炭化室内の石炭層の上部に抽気孔を開口し、次いで該抽気孔の内部に平均水分含有量が50mass%以下となるように廃木材とパルプ廃液を混合した廃材を充填し、前記石炭の乾留を行うことを特徴とする石炭の乾留方法。
【0011】
【発明の実施の形態】
本発明の実施の形態について図1を用いて説明する。
本発明では、石炭を炭化室に装入した後、図1に示すように開口冶具である例えば金棒6を装入口5から下降させ、炭化室1内の石炭層2の上部に抽気孔3を開口し、次いで該抽気孔3の内部に装入物4を充填し、その後石炭を乾留する。
【0012】
その際、装入物4について種々検討し、水分含有量が50mass%以下の廃木材、あるいは平均水分含有量が50mass%以下となるように廃木材とパルプ廃液を混合した廃材を装入物4とすることにより、石炭を乾留する際の抽気孔を保持する効果に加え、炭化室1の炉壁1Aとコークスケーキ間のクリアランス量の増大を図ることができた。また、さらに炭化室1 の炉壁面を含む炭化室1上部面へのカーボン付着量の低減も達成した。
【0013】
炉壁1Aとコークスケーキ間のクリアランス量の増大により、コークス押し出し時、コークスケーキから炉壁に加わる力が減少し、コークス炉に対するダメージを少なくできるのである。なお、炉壁1Aとコークスケーキ間のクリアランス量が増大したということは、石炭を乾留する際、炉壁1Aへ加わる圧力が減少していることになるから、炉体寿命の延長につながる効果が大きい。また、装入物から発生する水蒸気ガスにより、炭化室1上部空間の温度低下とCガス濃度低下により、Cガスの分解による炭化室1の炉壁面を含む炭化室1上部面へのカーボン付着量の低減が達成でき、カーボン付着による押出しトラブルの軽減という効果を奏する。
【0014】
さらに本発明では、装入物4として抽気孔3にコークスを充填するのではなく、上記した廃材を充填したので、抽気孔3の体積を有効利用して資源のリサイクルを行いつつ、コークスの生成量もわずかながら増加する。また、抽気孔3に水分含有量が50mass%以下の廃材を充填するように限定した理由は、水分含有量が50mass%を超えた場合、乾留消費熱量増や、逆に抽気孔周辺部の乾留不良などの不都合が発生する。一方、水分含有量が50mass%以下の廃材の場合には、抽気孔の容積を有効利用して資源のリサイクルを行いつつ、廃材の有する水分と石炭の有する水分とで乾留中の水蒸気生成量が増加し、炭化室1上部空間においてカーボンと水蒸気による水生ガス化反応等の反応が促進され、炭化室1の炉壁1A面を含む炭化室1上部面へのカーボン付着量を低減することができるからである。なお、水分含有量が5mass%を下回るようになると、廃材から発生する水蒸気量が少なくなって、カーボン付着量の低減効果が小さくなるので廃材の平均水分含有量を5mass%以上とするのが好ましい。
【0015】
なお、前記廃材の水分含有量の調整は、廃木材に比べ含水率の高いパルプ廃液を混合して50mass%以下とする他、脱水処理を施しても良く、脱水処理としては天火乾燥、遠心脱水等で行えば良い。水分含有量が不足する時は加水して加湿すれば良い。
勿論、本発明では、図1で示したように石炭を乾留する前に予め抽気孔3に上記したコークス化する装入物4を充填し、その後石炭を乾留するので、抽気孔3が高流動性物質で塞がれてしまうのを防止することができ、石炭の乾留速度を速めることができる。
【0016】
【実施例】
コークス炉の炭化室内に水分8%以下の石炭を装入した後、図1に示すように炭化室内の石炭層の上部に所定深さの抽気孔を開口し、次いで該抽気孔の内部に表1に示す装入物を充填した場合、本発明の範囲内では、抽気孔を設けない場合より炭火室内の膨張圧が低下し、炉壁とコークスケーキ間のクリアランス量増大効果が有ることを確かめた。
【0017】
鋼鉄製レトルトが装入できる石炭充填量が40Kg乾留炉を用い、この乾留炉に水分含有量が6mass%の石炭を装入し、乾留時間(炭芯が950 ℃になった時間、hr)、乾留炉内にセッティングしたカーボン付着用レンガについたカーボン量(g/t−coal)、コークス歩留(%)、およびコークスタンブラー強度(400 回転後の6mm以上の歩留%)を調査した。また、石炭充填量が2Kg(dry )の小型模擬炉を用い、この小型炉に水分含有量が6mass%の石炭を装入し、クリアランス測定用コークスを製造してクリアランス量を調べた。
【0018】
なお、40Kg乾留炉の乾留条件は、石炭粒度:−6mm100 %、石炭充填密度:775Kg/m3 (dry )、乾留温度:1050℃、乾留時間:炭芯が950 ℃になった時間であり、40Kg乾留炉の容器寸法は、幅400 mm、高さ300 mm、長さ500 mmである。また、2Kgの小型模擬炉の乾留条件は、石炭粒度を−3mm100 %とした以外は40Kg乾留炉の乾留条件と同じとした。
【0019】
【表1】

Figure 2004026914
【0020】
実施例1は、石炭充填後に、レトルト中心の上部に直径100 mm、深さ200 mmの抽気孔を開け、その抽気孔の内部に水分含有量が7.1 mass%の廃木材(辺の長さが約20mmの立方体)を290 gだけ充填した。実施例2は、石炭充填後に、実施例1と同じ寸法の抽気孔を開け、廃木材(約20mm)を290 gと脱水パルプ廃液1000gを充填した。抽気孔に充填した廃木材と脱水パルプ廃液の水分含有量はそれぞれ7.1 mass%と58.3%massで、平均水分含有量は46.8mass%である。実施例3は、石炭充填後に、実施例1と同じ寸法の抽気孔を開け、廃木材(約20mm)を290 gと脱水パルプ廃液500 gを充填した。充填物の平均水分含有量は39.5%である。
【0021】
これら実施例1〜3に対し、比較例1は石炭充填後に抽気孔を設けず、乾留を行った場合であり、比較例2は石炭充填後に、実施例1と同じ寸法の抽気孔を開け、その内部に本発明の範囲を外れた装入物として脱水パルプ廃液500 gのみを充填し、乾留を行った場合である。その他の条件は実施例と同じとした。
表1に示す実験結果から以下のことがわかる。
【0022】
本発明の範囲内の装入物を充填した実施例1、2、3の場合、抽気孔を設けてない比較例1に比べてカーボン付着量が低減し、クリアランス量が増加した。さらに、石炭乾留速度を速めることができるため乾留時間が短縮され、コークス歩留が向上した。
また、廃木材に脱水パルプ廃液を加えて装入物とした実施例2、3の場合、カーボン付着量の低減効果は実施例1よりも大きいものの、クリアランス量の増大効果は実施例1よりも小さい。なお、実施例2、3のコークス歩留は実施例1より高くなる一方、乾留時間は実施例1より長くなる。コークス強度については、いずれの実施例でも問題はなかった。
【0023】
一方、装入物の水分含有量が本発明の範囲外の比較例2の場合、カーボン付着量の低下効果はあるものの、抽気孔を設けない比較例1と比べてクリアランス量を増大することができないうえに、コークス歩留向上効果も小さく、乾留時間は大幅に長くなった。
以上の石炭乾留結果より抽気孔に水分が50mass%以下の廃木材を充填するか、または水分が50mass%以下となるように廃木材とパルプ廃液を混合して充填することによって、カーボン付着量の低減と炉壁とコークスケーキ間のクリアランス量の増加が達成できることがわかった。またさらに、乾留時間を短縮することができ、コークス歩留を向上できることがわかった。
【0024】
【発明の効果】
以上説明したように、本発明によれば、カーボン付着量の低減とクリアランスの増加が達成できるので、コークス炉の安定操業とコークス炉の寿命延長化が可能である。また、本発明によれば、コークスの生産性を向上することもできる。
【図面の簡単な説明】
【図1】図1は炭化室の装入口近くの要部を示す縦断面模式図である。
【符号の説明】
1 炭化室
1A 炉壁
2 石炭層
3 抽気孔
4 装入物
5 装入口
6 金棒(開口冶具)
7 金棒押し込み方向[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method of carbonizing coal using a room-type coke oven, and more particularly, to a method of carbonizing coal that can stably operate a coke oven and extend the life of the coke oven.
[0002]
[Prior art]
For blast furnace coke, for example, coal is carbonized in the coking chamber of a coke oven type coke oven in which a coking chamber and a combustion chamber are alternately separated by a furnace wall, and the coke cake is discharged outside from the coking chamber kiln mouth by an extruder. Manufactured by cooling. The shape of the carbonization chamber of the chamber coke oven is, for example, about 400 to 500 mm in width, about 4 to 7 m in height, about 13 to 17 m in length, and as shown in FIG. The room is narrow, high up and down, and long in the front-back direction. FIG. 1 is a schematic longitudinal sectional view showing a main part near the charging port 5 of the carbonization chamber 1, and a direction parallel to the front and rear is a coke extrusion direction. The coke after carbonization in the shape of a rectangular parallelepiped in the carbonization chamber is called a coke cake. The furnace wall 1A is usually constructed by stacking bricks.
[0003]
When the coal is carbonized in the coke oven, the coal is charged from the charging port 5 and charged to near the upper part of the coking chamber 1, and from the combustion chamber adjacent in the width direction through the left and right furnace walls 1A. To give a two-dimensional carbonization. In such a coal carbonization process, since the carbonization of coal is caused by indirect heating through the left and right furnace walls 1A and the thermal conductivity of the coal packed bed is very small, the mass charged into the carbonization chamber 1 is increased. It usually takes 16 to 24 hours to coke coal of about 15 to 40 tons. This heat source is generated by burning carbonaceous gas (C gas) generated when coal is carbonized in the carbonization chamber 1 or M gas obtained by mixing C gas and B gas generated in the blast furnace in the combustion chamber. Is generally used.
[0004]
By the way, such a coke oven furnace has been constructed for more than 20 years in Japan, and its aging is remarkable, and the bricks constituting the furnace wall 1A of the coking chamber 1 are damaged and the furnace wall 1A is damaged. Joint breaks between the constituent bricks are likely to occur. If the bricks are left uncut and the operation is continued, fine coal will flow out into the combustion chamber, and the lack of oxygen in the combustion chamber will lead to the generation of black smoke (the generation of soot by incomplete combustion). For this reason, the repair work of the carbonization chamber 1 and the stoppage of combustion gas combustion in the adjacent combustion chamber must be performed at an early stage, which makes the coke operation unstable.
[0005]
Due to the above problems, in the operation of coke ovens, if the bricks are damaged, if the bricks are not repaired, when coke is extruded, extra force will be applied to the furnace wall due to the damaged irregularities. And cause severe damage to the furnace body. There is a demand for technology to extend the life of the furnace in response to the aging of the furnace body and to improve coke productivity through stable operation.
[0006]
However, it is very difficult to achieve both an improvement in coke productivity due to an increase in the coal carbonization rate and an increase in the life of the furnace.
For example, the improvement of the coal dry distillation rate in the coke oven operation has been started by charging wet coal having a moisture content of about 9 to 10 mass% in the past, and controlling the humidity in the case where the moisture content of the coal is about 5 to 7 mass%. After charging coal (CMC), carbonization such as coal agglomeration charging method (DAPS) with a moisture content of coal of about 2 to 3 mass% and preheating coal charging with a coal moisture content of 0 mass%. This has been achieved by reducing the moisture content of the coal charged to the chamber.
[0007]
However, such a reduction in the moisture content of the charged coal is caused by an increase in the packing density of the charged coal in the coking chamber and an increase in the expansion pressure when carbonizing the coal due to the increase in the charged density of the charged coal. As a result, the damage to the furnace wall was increased and the life of the furnace body was prolonged.
To cope with the problem of simultaneously improving productivity and extending the life of the furnace by stable operation, Japanese Patent Application Laid-Open No. 2-145687 discloses a method for efficiently releasing steam generated when carbonizing coal in a carbonization chamber. A technique for quickly and reliably forming the bleed holes 3 as shown in FIG. Japanese Patent Application Laid-Open No. 8-183958 discloses that when coal is carbonized, it is possible to prevent a material having high fluidity such as a softened molten material from flowing into the bleed holes 3 shown in FIG. 1 to block the bleed holes. Therefore, a technique of charging coke as the charge 4 into the bleed hole is disclosed.
[0008]
[Problems to be solved by the invention]
However, in the method disclosed in Japanese Patent Application Laid-Open No. 8-183958, it is not clear whether or not there is an effect of extending the life of the coke oven. In addition, coke, which is a product of the coke oven, is charged into the bleed hole as a charge. Therefore, there is a waste that coke corresponding to the volume of the bleed hole is reused.
[0009]
The present invention, when carbonizing coal, effectively utilizes the bleed holes, can prevent the bleed holes from being blocked by a highly fluid substance, and achieves stable operation and prolongs the life of the coke oven. It is an object of the present invention to provide a method of carbonizing coal which can be achieved.
[0010]
[Means for Solving the Problems]
The present inventors, as a method of extending the life of the coke oven and stable operation, by providing a bleed hole for efficient release of steam before carbonizing the coal, by limiting the charge to the bleed hole The above problem has been solved.
The present invention is as follows.
1. After charging coal having a water content of 8 mass% or less into the coking chamber of the coke oven, a bleed hole is opened in the upper part of the coal layer in the coking chamber, and then the bleed hole has a water content inside the bleed hole. A coal carbonization method, comprising filling waste wood of 50 mass% or less and carbonizing the coal.
2. After coal having a water content of 8 mass% or less is charged into the coking chamber of the coke oven, a bleed hole is opened in the upper part of the coal layer in the coking chamber, and then the average water content is set in the bleed hole. A method for coal carbonization, comprising filling a waste material obtained by mixing waste wood and pulp waste liquid such that the content of the coal is 50 mass% or less, and performing carbonization of the coal.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
In the present invention, after charging coal into the carbonization chamber, an opening jig, for example, a metal rod 6 is lowered from the charging inlet 5 as shown in FIG. It is opened and then the charge 4 is filled inside the bleed hole 3, and then the coal is carbonized.
[0012]
At that time, the charge 4 was examined in various ways, and waste wood having a water content of 50 mass% or less or waste wood in which waste wood and pulp waste liquid were mixed such that the average water content was 50 mass% or less was charged. By doing so, it was possible to increase the clearance between the furnace wall 1A of the coking chamber 1 and the coke cake in addition to the effect of retaining the bleed holes when carbonizing the coal. Further, the amount of carbon adhered to the upper surface of the carbonization chamber 1 including the furnace wall surface of the carbonization chamber 1 was also reduced.
[0013]
By increasing the clearance between the furnace wall 1A and the coke cake, the force applied from the coke cake to the furnace wall during coke extrusion is reduced, and damage to the coke oven can be reduced. In addition, the fact that the amount of clearance between the furnace wall 1A and the coke cake has increased means that the pressure applied to the furnace wall 1A during the carbonization of coal has decreased, and the effect of prolonging the life of the furnace body has been obtained. large. In addition, the amount of carbon adhering to the upper surface of the carbonization chamber 1 including the furnace wall of the carbonization chamber 1 due to the decomposition of the C gas due to the decrease in the temperature of the upper space of the carbonization chamber 1 and the decrease in the C gas concentration due to the steam gas generated from the charge. And an effect of reducing extrusion trouble due to carbon adhesion can be achieved.
[0014]
Furthermore, in the present invention, as the charge 4 is not filled with the coke in the bleed holes 3, but is filled with the above-mentioned waste material, the volume of the bleed holes 3 is effectively used to recycle resources while producing coke. The amount also increases slightly. Also, the reason why the waste material having a moisture content of 50 mass% or less is limited to be filled into the bleed hole 3 is that when the moisture content exceeds 50 mass%, the amount of heat consumed for dry distillation increases, and conversely, the dry distillation around the bleed hole is reduced. Inconveniences such as defects occur. On the other hand, in the case of waste materials having a water content of 50 mass% or less, while recycling resources by effectively utilizing the volume of the bleed holes, the amount of steam generated during carbonization by the moisture of the waste materials and the moisture of the coal is reduced. As a result, a reaction such as an aquatic gasification reaction of carbon and water vapor is promoted in the upper space of the carbonization chamber 1, and the amount of carbon attached to the upper surface of the carbonization chamber 1 including the furnace wall 1 </ b> A of the carbonization chamber 1 can be reduced. Because. When the water content falls below 5 mass%, the amount of water vapor generated from the waste material decreases, and the effect of reducing the amount of carbon attached becomes small. Therefore, it is preferable to set the average moisture content of the waste material to 5 mass% or more. .
[0015]
The water content of the waste material is adjusted by mixing a pulp waste liquid having a higher water content than waste wood to 50 mass% or less, and may be subjected to dehydration treatment. And so on. When the water content is insufficient, it may be humidified by adding water.
Of course, in the present invention, as shown in FIG. 1, before the coal is carbonized, the bleed holes 3 are charged with the charge 4 to be coked beforehand, and then the coal is carbonized. Can be prevented from being clogged with a volatile substance, and the carbonization rate of coal can be increased.
[0016]
【Example】
After charging coal having a moisture content of 8% or less into the coking chamber of the coke oven, a bleed hole having a predetermined depth is opened above the coal layer in the coking chamber as shown in FIG. When the charge shown in No. 1 was filled, it was confirmed that the expansion pressure in the charcoal combustion chamber was reduced and the effect of increasing the clearance amount between the furnace wall and the coke cake was obtained within the scope of the present invention as compared with the case where no bleed hole was provided. Was.
[0017]
A coal retort capable of charging a steel retort with a coal filling amount of 40 kg was used, and coal having a water content of 6 mass% was charged into the carbonization furnace, and the carbonization time (time when the carbon core became 950 ° C., hr) The carbon amount (g / t-coal), the coke yield (%), and the coke tumbler strength (yield% of 6 mm or more after 400 rotations) attached to the brick for carbon deposition set in the carbonization furnace were investigated. In addition, a small simulated furnace having a coal filling amount of 2 kg (dry) was charged with coal having a water content of 6 mass% in this small furnace, and coke for clearance measurement was produced to check the clearance amount.
[0018]
The carbonization conditions of the 40 kg carbonization furnace were coal particle size: -6 mm 100%, coal packing density: 775 kg / m 3 (dry), carbonization temperature: 1050 ° C, carbonization time: time when the carbon core became 950 ° C, The container dimensions of the 40 kg carbonization furnace are 400 mm in width, 300 mm in height, and 500 mm in length. The carbonization conditions for the 2 kg small model furnace were the same as those for the 40 kg carbonization furnace except that the coal particle size was -3 mm100%.
[0019]
[Table 1]
Figure 2004026914
[0020]
In Example 1, after filling with coal, a bleed hole having a diameter of 100 mm and a depth of 200 mm was opened in the upper part of the center of the retort, and waste wood having a water content of 7.1 mass% (length of side) was formed inside the bleed hole. (A cube having a length of about 20 mm) was filled in by 290 g. In Example 2, after filling with coal, a bleed hole having the same size as in Example 1 was opened, and 290 g of waste wood (about 20 mm) and 1,000 g of dewatered pulp waste liquid were filled. The water content of the waste wood and the dewatered pulp waste liquid filled in the bleed holes are 7.1 mass% and 58.3% mass, respectively, and the average water content is 46.8 mass%. In Example 3, after filling with coal, a bleed hole having the same dimensions as in Example 1 was opened, and 290 g of waste wood (about 20 mm) and 500 g of dewatered pulp waste liquid were filled. The average moisture content of the filling is 39.5%.
[0021]
In contrast to these Examples 1 to 3, Comparative Example 1 was a case in which dry distillation was performed without providing bleed holes after coal filling, and Comparative Example 2 opened bleed holes having the same dimensions as Example 1 after filling coal. In this case, only 500 g of dewatered pulp waste liquid was charged as a charge outside the scope of the present invention, and dry distillation was performed. Other conditions were the same as in the example.
The following can be seen from the experimental results shown in Table 1.
[0022]
In the case of Examples 1, 2, and 3 in which the charge within the scope of the present invention was filled, the amount of carbon adhesion was reduced and the amount of clearance was increased as compared with Comparative Example 1 in which no bleed hole was provided. Furthermore, since the coal carbonization speed could be increased, the carbonization time was shortened, and the coke yield was improved.
In addition, in the case of Examples 2 and 3 in which waste wood was added with dewatered pulp waste liquid, the effect of reducing the amount of deposited carbon was greater than that of Example 1, but the effect of increasing the amount of clearance was greater than that of Example 1. small. The coke yield of Examples 2 and 3 is higher than that of Example 1, while the dry distillation time is longer than that of Example 1. Regarding coke strength, there was no problem in any of the examples.
[0023]
On the other hand, in the case of Comparative Example 2 in which the water content of the charge is out of the range of the present invention, although there is an effect of reducing the carbon adhesion amount, the clearance amount may be increased as compared with Comparative Example 1 in which no bleed hole is provided. In addition to this, the effect of improving the coke yield was small, and the carbonization time was greatly increased.
From the above coal dry distillation results, the bleed holes are filled with waste wood having a water content of 50 mass% or less, or waste wood and pulp waste liquid are mixed and filled so that the water content becomes 50 mass% or less, whereby the carbon adhesion amount is reduced. It was found that reduction and increase in the clearance between the furnace wall and coke cake could be achieved. Further, it was found that the carbonization time could be shortened and the coke yield could be improved.
[0024]
【The invention's effect】
As described above, according to the present invention, a reduction in the amount of carbon deposition and an increase in clearance can be achieved, so that stable operation of the coke oven and extension of the life of the coke oven can be achieved. Further, according to the present invention, the productivity of coke can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a main part near a charging inlet of a carbonization chamber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coalization room 1A Furnace wall 2 Coal bed 3 Bleed hole 4 Charge 5 Charge inlet 6 Gold rod (opening jig)
7 Push-in direction

Claims (2)

水分含有量が8mass%以下の石炭を室炉式コークス炉の炭化室に装入した後、前記炭化室内の石炭層の上部に抽気孔を開口し、次いで該抽気孔の内部に水分含有量が50mass%以下の廃木材を充填し、前記石炭の乾留を行うことを特徴とする石炭の乾留方法。After charging coal having a water content of 8 mass% or less into the coking chamber of the coke oven, a bleed hole is opened in the upper part of the coal layer in the coking chamber, and then the bleed hole has a water content inside the bleed hole. A coal carbonization method comprising filling waste wood of 50 mass% or less and carbonizing the coal. 水分含有量が8mass%以下の石炭を室炉式コークス炉の炭化室に装入した後、前記炭化室内の石炭層の上部に抽気孔を開口し、次いで該抽気孔の内部に平均水分含有量が50mass%以下となるように廃木材とパルプ廃液を混合した廃材を充填し、前記石炭の乾留を行うことを特徴とする石炭の乾留方法。After coal having a water content of 8 mass% or less is charged into the coking chamber of the coke oven, a bleed hole is opened in the upper part of the coal layer in the coking chamber, and then the average water content is set in the bleed hole. A method for coal carbonization, comprising filling a waste material obtained by mixing waste wood and pulp waste liquid such that the content of the coal is 50 mass% or less, and performing carbonization of the coal.
JP2002182362A 2002-06-24 2002-06-24 Carbonization method for coal Pending JP2004026914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182362A JP2004026914A (en) 2002-06-24 2002-06-24 Carbonization method for coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182362A JP2004026914A (en) 2002-06-24 2002-06-24 Carbonization method for coal

Publications (1)

Publication Number Publication Date
JP2004026914A true JP2004026914A (en) 2004-01-29

Family

ID=31178887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182362A Pending JP2004026914A (en) 2002-06-24 2002-06-24 Carbonization method for coal

Country Status (1)

Country Link
JP (1) JP2004026914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002136A (en) * 2005-06-24 2007-01-11 Kansai Coke & Chem Co Ltd Method for producing coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002136A (en) * 2005-06-24 2007-01-11 Kansai Coke & Chem Co Ltd Method for producing coke

Similar Documents

Publication Publication Date Title
JP2914198B2 (en) Coking furnace coal charging method and apparatus
JPH03197588A (en) Method and equipment for boring degassing hole in coal charge in coke oven
JP2004026914A (en) Carbonization method for coal
CN106007724A (en) Method for preparing high-strength graphite and silicon carbide containing crucible for melting metal
JPH07300589A (en) Continuous vertical coke oven and production of coke
CN207738793U (en) A kind of external-heat coal-based direct reduction iron reduction shaft furnace room of pressure-adjustable
CN108981385B (en) Biomass furnace for aluminum smelting
CN106045518A (en) Production process capable of upgrading vitrification degrees of graphite and silicon carbide crucibles
CN108950216B (en) Method for recycling waste aluminum
JP3016116B2 (en) Coal carbonization method
US2885327A (en) Process of coking solid carbonizable material
JPH09255962A (en) Cover of chamber oven
JP2013108629A (en) Waste melting method
US1289800A (en) Ore-reducing furnace and process.
CN106566569A (en) Coal moisture control-based system for synchronously realizing dry quenching of coke and preparation of water gas
JP4239790B2 (en) Coke oven operation method
JPH09165580A (en) Continuous vertical coke production facility and its operation
JP4072001B2 (en) Coke oven combustion method
JP2006233108A (en) Method and apparatus for producing coke
JPH06248269A (en) Opening of steam-extracting hole into coal layer fed in coke oven
JP4022655B2 (en) Heating method of coal particles charged near the top of coke carbonization furnace
JP2550792B2 (en) Method and apparatus for extraction and carbonization of coke oven charging coal
JP2002138286A (en) Manufacturing method of coke
JPH09328688A (en) Carbonization of coal
JP2001303065A (en) Method for producing coke