JP3016116B2 - Coal carbonization method - Google Patents
Coal carbonization methodInfo
- Publication number
- JP3016116B2 JP3016116B2 JP6324696A JP32469694A JP3016116B2 JP 3016116 B2 JP3016116 B2 JP 3016116B2 JP 6324696 A JP6324696 A JP 6324696A JP 32469694 A JP32469694 A JP 32469694A JP 3016116 B2 JP3016116 B2 JP 3016116B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- carbonization
- coke
- layer
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coke Industry (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、室炉式コークス炉に水
分を含む原料炭を装入し、これを乾留してコークスを製
造する石炭の乾留方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of carbonizing coal by charging raw coal containing water into a coke oven furnace and carbonizing the raw coal.
【0002】[0002]
【従来の技術】室炉式コークス炉によるコークスの製造
は、炭化室に装入された水分を含む原料炭をこの炭化室
の両側の炉壁を介して加熱、乾留することにより行われ
る。近年、乾留効率を高めると同時に、一方で炉体寿命
を延ばし、しかも、成品コークスの品質を向上させるこ
とが可能な乾留方法の確立が求められており、そのため
の技術開発が進められている。2. Description of the Related Art Production of coke by a coke oven furnace is carried out by heating and carbonizing raw coal containing water charged in a coking chamber through furnace walls on both sides of the coking chamber. In recent years, it has been required to establish a carbonization method capable of increasing the carbonization efficiency and at the same time extending the life of the furnace body and improving the quality of the product coke. Technical development for this purpose is being promoted.
【0003】例えば、乾留効率の向上を図るために、原
料炭を予め 170〜250 ℃で乾燥予熱して、通常8〜11%
程度含まれている装入炭の水分を0%までに低下させる
予熱炭装入法が実用化されている。この技術は、乾留所
要時間の短縮によるコークス炉の生産性の向上、装入炭
嵩密度の増大と乾留中の石炭の軟化溶融層幅の拡大によ
るコークス化性の改善向上、ならびに乾留所要熱量の低
減を図ることができる。しかし、装入炭を予熱するため
の大規模な設備が必要であり、また、装入炭の嵩密度が
増大するため、乾留の際に炉壁に大きな膨張圧がかか
り、炉壁を損傷するおそれがある。このため、予熱炭装
入法は一般に普及するにいたらず、一部のコークス工場
で採用されるに止まっているのが実状である。[0003] For example, in order to improve the dry distillation efficiency, the raw coal is pre-dried at 170 to 250 ° C in advance and is usually 8 to 11%.
A preheating coal charging method has been put to practical use in which the moisture content of charged coal is reduced to 0%. This technology improves the coke oven productivity by shortening the time required for carbonization, improves the cokeability by increasing the bulk density of the charged coal and increases the width of the softened molten layer of coal during carbonization, and reduces the amount of heat required for carbonization. Reduction can be achieved. However, a large-scale facility for preheating the charged coal is required, and the bulk density of the charged coal is increased, so that a large expansion pressure is applied to the furnace wall during carbonization, and the furnace wall is damaged. There is a risk. For this reason, the preheated charcoal charging method has not been widely used in general, and is actually used only in some coke plants.
【0004】乾留効率を高めるために炭化室の幅(炉
幅)や高さ(炉高)の拡大についての検討もなされてい
る。しかし、この技術は新規にコークス炉を設置する場
合には有効であるが、既設のコークス炉には適用でき
ず、既設炉の乾留効率の向上にはつながらない。[0004] In order to increase the carbonization efficiency, studies have been made on increasing the width (furnace width) and height (furnace height) of the carbonization chamber. However, this technique is effective when a new coke oven is installed, but cannot be applied to an existing coke oven, and does not lead to improvement in the carbonization efficiency of the existing oven.
【0005】炉壁煉瓦を薄くして伝熱性を改善する方法
も一部実用化されているが、この方法は炉体の堅牢性を
損なうおそれがあり、必ずしも推奨できる方法とはいえ
ない。[0005] A method of improving the heat transfer property by thinning the furnace wall bricks has been partially put into practical use, but this method may impair the robustness of the furnace body and is not necessarily a recommended method.
【0006】一方、炉体寿命の延長については、近年、
補修技術が進歩して大きな効果を上げている。しかし、
これは損傷した炉体を補修する技術であって、積極的に
炉体の延命化を図る技術とはいえない。また、炉体寿命
を延ばすためには炉温を下げて操業することも考えられ
るが、乾留効率が低下し、コークスの生産性が悪化す
る。On the other hand, regarding the extension of the life of the furnace body,
The repair technology has progressed and has had a great effect. But,
This is a technique for repairing a damaged furnace body, and cannot be said to be a technique for actively extending the life of the furnace body. In order to extend the life of the furnace body, it is conceivable to operate the furnace at a reduced furnace temperature, but the carbonization efficiency is reduced and the coke productivity is deteriorated.
【0007】上記のように、乾留効率の向上と炉体寿命
の延長とは相反する面を有しているので、乾留効率を高
め、炉体の延命化を図りながら、しかも、コークス品質
の向上ならびに安定化(ばらつきの減少)を達成するこ
とは極めて難しい課題であった。As described above, the improvement of the carbonization efficiency and the extension of the life of the furnace body are in conflict with each other. Therefore, the carbonization efficiency is increased, the life of the furnace body is extended, and the coke quality is improved. In addition, achieving stabilization (reduction in variation) has been a very difficult task.
【0008】この課題に対して、炭化室に装入した炭柱
(原料炭)の中心部からこの炭柱の外側に通じる耐熱性
の金属やセラミックス製の通路を形成し、この通路を通
して未乾留部分から発生する水蒸気を排出しながら乾留
する方法が提案されている(特開平1−198686号公報参
照)。[0008] In order to solve this problem, a heat-resistant metal or ceramic path is formed from the center of the charcoal column (coking coal) charged into the coking chamber to the outside of the charcoal column. A method of carbonizing while discharging water vapor generated from a portion has been proposed (see JP-A-1-198686).
【0009】また、本出願人は、水分を含有する原料炭
を乾留する際、乾留効率を低下させている原因が乾留初
期に石炭層内で発生する水蒸気の炉壁側への流れにある
ことを確認し、炭化室に装入された原料炭の上面をレベ
リングした後、炉上に設けられた装炭口から開孔部材を
石炭層に差し込み、これを引き抜くことによって予め石
炭層内に炭化室上部の空間部と通じる抽気孔を設け、次
いで加熱を行う乾留方法を提案した(特開平2−145687
号公報参照)。[0009] Further, the applicant of the present invention has found that when coking coal containing water, the cause of the reduction in carbonization efficiency is the flow of steam generated in the coal seam to the furnace wall side in the early stage of carbonization. After confirming the above, leveling the upper surface of the coking coal charged into the carbonization chamber, insert a hole member into the coal layer from the coal port provided on the furnace, and pull it out to carbonize the coal layer in advance. A dry distillation method in which a bleed hole communicating with a space in the upper part of the room is provided, and then heating is proposed (JP-A-2-145687)
Reference).
【0010】これらの方法によれば、乾留時間を短縮
し、また、コークス品質(コークス強度)を向上させる
とともに、そのばらつきを減少させることができる。更
に、石炭層内の水蒸気を含むガスの圧力が高まることが
ないので、炉壁に過度の負担がかからず、炉体の延命も
可能である。[0010] According to these methods, the carbonization time can be shortened, the coke quality (coke strength) can be improved, and the variation can be reduced. Further, since the pressure of the gas containing water vapor in the coal seam does not increase, an excessive load is not applied to the furnace wall, and the life of the furnace body can be extended.
【0011】しかし、これらの方法においては、水蒸気
を排出するための通路を設けたり、あるいは抽気孔を形
成したりするための設備を新たに設置しなければなら
ず、多大の投資が必要となる。また、抽気孔を設ける方
法においては、装炭口の位置が限られているため抽気孔
の位置が装炭口の位置の近傍に限定され、従ってその効
果にも限界がある。また、近年、原料炭の水分を6%程
度に調整した後これを炭化室に装入して乾留を行う調湿
炭操業が実用化されているが、この調湿炭を用いた場合
は、開孔部材を石炭層に差し込んで抽気孔を開孔して
も、これを引き抜く際に石炭層の一部が崩れ、安定した
抽気孔を形成することが困難であった。However, in these methods, it is necessary to provide a passage for discharging water vapor, or to newly provide a facility for forming a bleed hole, which requires a large investment. . In addition, in the method of providing the bleed holes, the position of the bleed hole is limited because the position of the bleed hole is limited, and the effect thereof is also limited. Further, in recent years, a humidified coal operation in which the water content of a raw coal is adjusted to about 6%, and then charged into a carbonization chamber to perform dry distillation, has been put into practical use. Even if the bleed holes are opened by inserting the opening member into the coal layer, a part of the coal layer collapses when the bleed holes are pulled out, and it is difficult to form a stable bleed hole.
【0012】[0012]
【発明が解決しようとする課題】本発明は、上記の従来
技術における問題点を解決し、乾留効率の向上と炉体の
延命とを両立させながら、コークス品質の向上ならびに
安定化(ばらつきの減少)を達成し得る乾留方法を提供
することを課題としてなされたものである。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art and improves coke quality and stabilizes coke quality (reduction in variation) while achieving both improvement in carbonization efficiency and life extension of a furnace body. The present invention has been made to provide a carbonization method that can achieve the above.
【0013】[0013]
【課題を解決するための手段】本発明者らは、上記の課
題を達成するため検討を重ねた結果、水分を含んだ原料
炭の上に軟化溶融性を有しない石炭またはコークスを第
2層装入物として装入して乾留する方法が効果的である
ことを見いだし、本発明をなすに至った。Means for Solving the Problems As a result of repeated studies to achieve the above objects, the present inventors have found that a coal or coke having no softening and melting properties is placed on a second coal layer on a raw coal containing water. It has been found that a method for charging and carbonizing as a charge is effective, and has led to the present invention.
【0014】この発明の要旨は、図1に示されるよう
な、下記またはに示す石炭の乾留方法にある。The gist of the present invention resides in a method for carbonizing coal described below or shown in FIG.
【0015】室炉式コークス炉(1) に水分を含む原料
炭(2) を装入して行う石炭の乾留方法において、原料炭
の上に全域に渡り軟化溶融性を有しない石炭またはコー
クスからなる第2層装入物(2d)を装入して乾留すること
を特徴とする石炭の乾留方法。[0015] In a coal carbonization method performed by charging coking coal (2) containing water into a coke oven (1), a coal or coke which does not have softening and melting properties over the entire area of coking coal is used. A carbonization method for coal, comprising charging a second layer charge (2d) and carbonizing.
【0016】室炉式コークス炉(1) に水分を含む原料
炭(2) を装入して行う石炭の乾留方法において、最初に
装入した原料炭の乾留が進行し、嵩減りにより生じた原
料炭上部の空間に軟化溶融性を有しない石炭またはコー
クスからなる第2層装入物を装入して乾留する方法。In the coal dry distillation method in which a raw coal containing water (2) is charged into a coke oven furnace (1), the dry distillation of the initially charged raw coal proceeds and is caused by a decrease in bulk. A method in which a second layer charge made of coal or coke having no softening and melting properties is charged into the space above the raw coal and carbonized.
【0017】前記の水分を含む原料炭とは、通常2〜11
%の水分を含み、室炉式コークス炉によるコークスの製
造で原料炭として用いられている石炭である。軟化溶融
性を有しない石炭に相当する石炭としては、非粘結炭が
あげられる。なお、軟化溶融性を有しない石炭またはコ
ークスからなる第2層装入物(以下、これを単に第2層
装入物という)の厚さは、後述するように100 mm以上と
するのが望ましく、またの方法における原料炭の嵩減
りにより生じる空間部は100 mm以上であるのが望まし
い。The above-mentioned coking coal containing water is usually from 2 to 11
% Of water, and is used as raw coal in the production of coke by a coke oven furnace. Examples of coal corresponding to coal having no softening and melting properties include non-caking coal. The thickness of the second layer charge made of coal or coke having no softening and melting properties (hereinafter, simply referred to as the second layer charge) is desirably 100 mm or more as described later. The space created by the reduction of the coking coal in the other method is preferably 100 mm or more.
【0018】[0018]
【作用】以下、本発明方法について詳細に説明する。Hereinafter, the method of the present invention will be described in detail.
【0019】本発明方法は、後に詳しく述べるように、
装入された通常の原料炭の上に第2層装入物を所定の厚
さで装入することにより、乾留初期に発生する水蒸気の
流れを炭化室の上部空間方向に向かわせる点に特徴があ
る。そこで先ず、実際のコークス炉の乾留過程で生じ
る、原料炭に含まれる水分の脱水挙動について図に基づ
き説明する。The method of the present invention, as described in detail below,
It is characterized in that the flow of steam generated in the early stage of carbonization is directed toward the upper space of the carbonization chamber by charging the second-layer charge at a predetermined thickness onto the charged normal coking coal. There is. Therefore, first, the dehydration behavior of the water contained in the raw coal, which occurs in the actual carbonization process of the coke oven, will be described with reference to the drawings.
【0020】図2はコークス炉の炭化室の一部の幅方向
縦断面図で、乾留途中における石炭層、軟化層およびコ
ークス層の形成状況を模式的に示す図である。図示する
ように、コークス炉1の炭化室の両側の炉壁1a、1aから
中心部(炭中部)に向かって、コークス層2c、軟化層2
b、石炭層2aが形成されている。なお、軟化層2bとは、
石炭の軟化溶融時に形成される通気抵抗の高い層で、乾
留が進行してコークス層2cが厚くなるに従って炉壁1a、
1a側から次第に炭中部に向かって移動し、炭中部で左右
の軟化層2b、2bが合体し、さらに乾留が進むと消失す
る。FIG. 2 is a longitudinal sectional view in the width direction of a part of the carbonization chamber of the coke oven, and is a view schematically showing the formation of a coal layer, a softened layer and a coke layer during carbonization. As shown in the figure, from the furnace walls 1a, 1a on both sides of the coking chamber of the coke oven 1, a coke layer 2c, a softened layer 2
b, Coal layer 2a is formed. The softening layer 2b is
A layer with high airflow resistance formed during softening and melting of coal, and as the carbonization proceeds and the coke layer 2c becomes thicker, the furnace wall 1a,
From the 1a side, it gradually moves toward the middle of the coal, where the left and right softened layers 2b and 2b are united in the middle of the coal, and disappear when further carbonization proceeds.
【0021】図3は炭化室の上部の幅方向縦断面図で、
図2と同様に乾留途中における石炭層、軟化層およびコ
ークス層の形成状況を模式的に示す図である。この図に
示すように、炉上部においても、炉壁1aからの加熱、お
よび上部空間3からの輻射熱を受けて炭化室の上部空間
3側から順にコークス層2c、軟化層2bおよび石炭層2aが
形成されている。即ち、炭化室全体の幅方向における縦
断面を模式的に表した図5に示されるように、石炭層2a
は軟化層2bに取り囲まれた状態で存在し、その外側にコ
ークス層2cが形成されている。FIG. 3 is a longitudinal sectional view in the width direction of the upper part of the carbonization chamber.
It is a figure which shows typically the formation situation of a coal layer, a softening layer, and a coke layer in the middle of dry distillation similarly to FIG. As shown in this figure, also in the upper part of the furnace, the coke layer 2c, the softened layer 2b, and the coal layer 2a are sequentially heated from the upper space 3 side of the carbonization chamber by heating from the furnace wall 1a and receiving radiant heat from the upper space 3. Is formed. That is, as shown in FIG. 5, which schematically shows a longitudinal section in the width direction of the entire carbonization chamber, the coal layer 2a
Exists in a state surrounded by the softening layer 2b, and the coke layer 2c is formed outside the softening layer 2b.
【0022】図4は炭化室の一部の幅方向縦断面図で、
乾留初期における炭化室内の温度分布(図中の実線)と
石炭層2aからの水蒸気の流れ(図中の破線)とを模式的
に示す図で、(a) は炭中部に100 ℃に達していない部分
が存在している場合、(b) は石炭層2a全体が100 ℃以上
に加熱された場合である。石炭層2aに含まれる水分は、
乾留開始から炭中部の石炭層2aの温度が100 ℃に達しな
い間は、図4(a) に破線で示すように蒸発後炭中部に凝
縮し、凝縮熱を与えて炭中部の昇温を助長するが、石炭
層全体が100 ℃に達すると、凝縮せず、軟化層2bに遮ら
れるため次第に蒸気圧が高まり、両側の炉壁1a、1aへの
膨張圧として作用する。更に圧力が上昇して軟化層2bの
通気抵抗を上回るようになると、図4(b) に破線で示す
ように水蒸気は軟化層2bを突き抜けて炉壁1a、1a側へ流
れ出る。FIG. 4 is a longitudinal sectional view in the width direction of a part of the carbonization chamber.
This is a diagram schematically showing the temperature distribution in the carbonization chamber (solid line in the figure) and the flow of steam from the coal seam 2a (dashed line in the figure) in the early stage of carbonization, and (a) shows the temperature reaching 100 ° C in the middle of the coal. (B) is a case where the entire coal seam 2a is heated to 100 ° C. or more. The moisture contained in the coal seam 2a is
As long as the temperature of the coal seam 2a in the middle part of the coal does not reach 100 ° C. from the start of the carbonization, it is condensed in the middle part of the coal after evaporation as shown by the broken line in FIG. However, when the entire coal seam reaches 100 ° C., it does not condense and is blocked by the softening layer 2b, so that the steam pressure gradually increases and acts as expansion pressure to the furnace walls 1a, 1a on both sides. When the pressure further rises to exceed the airflow resistance of the softening layer 2b, the steam passes through the softening layer 2b and flows out to the furnace walls 1a, 1a as shown by the broken line in FIG. 4 (b).
【0023】図5は炭化室内における水蒸気の流れを模
式的に示した図であるが、石炭層2a内で発生した水蒸気
は両側の炉壁1a、1aまで達した後、高温のコークス層2c
および炉壁1a、1aから熱を奪いながら炉壁1a、1aに沿っ
て炉の上部へと流れる。このため炉壁1a、1aから石炭層
2aへ供給される熱流量は減少し、乾留速度が低下して乾
留効率が悪化する。また、水蒸気を含むガスによって炉
壁1a、1aに膨張圧が加わり、炉体へ悪影響を及ぼす。FIG. 5 is a diagram schematically showing the flow of steam in the coking chamber. The steam generated in the coal bed 2a reaches the furnace walls 1a, 1a on both sides and then becomes a high-temperature coke bed 2c.
The heat flows from the furnace walls 1a, 1a to the upper part of the furnace along the furnace walls 1a, 1a while removing heat. For this reason, coal bed from furnace walls 1a, 1a
The heat flow supplied to 2a is reduced, the carbonization speed is reduced, and the carbonization efficiency is deteriorated. In addition, the gas containing water vapor exerts an expansion pressure on the furnace walls 1a, 1a, which adversely affects the furnace body.
【0024】上記のような水蒸気の流れが生じる原因
は、石炭が軟化溶融してできた軟化層2bの通気抵抗が石
炭層2a、コークス層1cに比べて格段に大きく、しかも、
石炭層2aの上方部もこの軟化層2bに覆われていて、石炭
層2aの上方への水蒸気の流れが起こらないことによるも
のである。The cause of the flow of steam as described above is that the softened layer 2b formed by coal softening and melting has much higher airflow resistance than the coal layer 2a and the coke layer 1c.
This is because the upper part of the coal layer 2a is also covered with the softened layer 2b, and the flow of water vapor does not occur above the coal layer 2a.
【0025】本発明方法においては、前記のように水分
を含んだ原料炭を装入した後、その上に、第2層装入物
を装入して乾留するので、炉の上方部では軟化層2bが形
成されず、乾留初期に発生する水蒸気は炭化室の上部空
間3の方向に流れる。In the method of the present invention, the raw coal containing water is charged as described above, and then the second-layer charge is charged thereon and carbonized, so that the upper part of the furnace is softened. The layer 2b is not formed, and the steam generated in the early stage of carbonization flows toward the upper space 3 of the carbonization chamber.
【0026】図1は炭化室全体の幅方向における縦断面
図で、本発明方法により石炭を乾留した場合の乾留途中
における水蒸気の流れを模式的に示す図である。この図
に示されるように、水分を含んだ原料炭2の上に第2層
装入物2dを装入するので、原料炭上部には軟化層2bが形
成されない。その結果、原料炭中の水蒸気の流れは炉の
上部空間3方向に向かい、高温のコークス層2cおよび炉
壁1a,1a から熱が奪われることがないので乾留が促進さ
れ、また、炉壁には水蒸気を含んだガスによる膨張圧が
作用しないので炉壁が損傷する懸念もない。乾留温度が
上昇するので、コークス品質(コークス強度)の向上も
可能になる。FIG. 1 is a longitudinal sectional view of the entire carbonization chamber in the width direction, and is a view schematically showing the flow of steam during carbonization when coal is carbonized by the method of the present invention. As shown in this figure, since the second layer charge 2d is charged on the raw coal 2 containing water, the softened layer 2b is not formed on the upper part of the raw coal. As a result, the flow of steam in the coking coal goes to the upper space 3 direction of the furnace, and heat is not removed from the high-temperature coke layer 2c and the furnace walls 1a, 1a, so that dry distillation is promoted. There is no fear that the furnace wall will be damaged because the expansion pressure by the gas containing water vapor does not act. Since the carbonization temperature increases, the coke quality (coke strength) can be improved.
【0027】水分を含んだ原料炭の上部に装入する第2
層装入物としては、石炭の乾留に影響を及ぼさないもの
であればその材質は問わないが、軟化溶融性を有しない
石炭(たとえば非粘結炭)またはコークスが好適であ
る。[0027] The second charged into the upper part of the coking coal containing water
As the layer charge, any material may be used as long as it does not affect the dry distillation of coal, but coal having no softening and melting properties (for example, non-coking coal) or coke is preferable.
【0028】第2層装入物の粒度は、下部の水分を含ん
だ石炭層2a(原料炭)からのガス流れを均質化し、炭化
室内の石炭層(原料炭)全体を均一に乾留するために25
mm以下とするのが好ましく、粒度の下限は特に限定され
ない。下部石炭層(原料炭)とほぼ同一粒度のものがガ
スの流れを一層均一化できるので、より好ましい。通常
のコークス操業で得られる粉コークス(粒径3mm未満が
100%)が使用に際して新たに粉砕する必要がなく、経
済性の点でも有利である。The particle size of the second layer charge is to homogenize the gas flow from the lower moisture-containing coal layer 2a (coking coal) and uniformly dry-evaporate the entire coal layer (coking coal) in the coking chamber. On 25
mm or less, and the lower limit of the particle size is not particularly limited. Particles having substantially the same particle size as the lower coal layer (coking coal) are more preferable because the gas flow can be made more uniform. Coke powder obtained by normal coke operation (particle size less than 3 mm
(100%) does not require a new pulverization at the time of use, which is advantageous in terms of economy.
【0029】第2層装入物の厚さは、炉体構造によって
も異なるが、100 mm以上とするのが望ましい。これは、
原料炭からの水分の蒸発(脱水)が行われている期間中
に、すなわち炭化室(炉)内に原料炭を装入した後、軟
化層が炉幅方向中央部で合体するまでの期間にほぼ相当
する期間中に、炉の側部で軟化層が進行する距離は炉幅
の 1/2以下であるが、炉の上部における加熱の進行速度
は通常これよりも小さく、第2層装入物の厚さが100 mm
以上あれば、脱水が終了するまでの間に炉内の原料炭の
上部に軟化層が形成されることがなく、原料炭から発生
する水蒸気の炭化室上部空間方向への流れが妨げられる
ことはないからである。The thickness of the second layer charge varies depending on the furnace structure, but is preferably 100 mm or more. this is,
During the period in which the water from the coking coal is being evaporated (dewatered), that is, after charging the coking coal into the coking chamber (furnace), during the period until the softened layer coalesces at the center in the furnace width direction. During the corresponding period, the distance that the softening layer travels on the side of the furnace is less than 1/2 of the furnace width, but the heating speed at the top of the furnace is usually less than this, and Thickness of object is 100 mm
With the above, a softened layer is not formed on the upper part of the coking coal in the furnace until the dehydration is completed, and the flow of steam generated from the coking coal in the direction of the upper space of the coking chamber is prevented. Because there is no.
【0030】第2層装入物の厚さは、原料炭の上部に軟
化層を形成させないという観点からは上限を定める必要
はないが、厚さを増せば高炉用コークスとしての品質を
備えたコークスの生産量が減少する。従って、この層の
厚さは、100 mm以上で、かつ、できるだけ100mm に近い
ことが好ましい。The upper limit of the thickness of the second layer charge does not need to be set from the viewpoint of not forming a softened layer on the upper part of the raw coal, but if the thickness is increased, the quality as coke for blast furnace is obtained. Coke production is reduced. Therefore, the thickness of this layer is preferably at least 100 mm and as close as possible to 100 mm.
【0031】第2層装入物を炭化室内に装入する方法と
しては、100 mm以上の厚さで装入できる方法であればど
のような方法でもよいが、例えば、原料炭を装入した
後、別の装炭車で装入する方法、装炭車補助ホッパーに
第2層装入物を装入するためのホッパーを付設して装入
する方法、レベラー口から装入する方法などが好適であ
る。As a method for charging the second layer charge into the carbonization chamber, any method can be used as long as it can be charged with a thickness of 100 mm or more. After that, a method of charging with another coal-charging vehicle, a method of attaching a hopper for charging the second-layer charging material to a coal-charging vehicle auxiliary hopper, a method of charging from a leveler opening, and the like are preferable. is there.
【0032】なお、炉内に装入された原料炭の上部から
数百mmの部分は通常の乾留でもコークス品質の低い部分
で、高炉用コークスとしては使用されないので、本発明
方法を高炉用コークスの生産に適用してもその生産性が
低下することはない。また、例えば炉内の上方中央部な
ど、コークス炉の性能に応じ、乾留の遅れる部分のみに
本発明方法を適用することも可能である。The part of the coking coal charged into the furnace, which is several hundred mm from the top, is a part of low coke quality even in ordinary dry distillation and is not used as blast furnace coke. Even if it is applied to the production of, its productivity does not decrease. In addition, the method of the present invention can be applied only to a portion where the carbonization is delayed, for example, in accordance with the performance of a coke oven, such as an upper central portion in the oven.
【0033】本発明方法の別の態様として、最初に装入
した原料炭の乾留が進行し、炉高方向の嵩減りによって
生じた原料炭上部の空間に第2層装入物を装入すること
もできる。この方法では、装入された原料炭の上面をレ
ベラーによって均一に均した後、乾留を行い、嵩減りに
よって生じた原料炭上部の空間に第2層装入物を装入
し、さらにその上をレベラーによって均一に均した後、
乾留を行う。従って、従来の方法または前記の方法に比
べ原料炭の装入量が増加するという効果がある。As another embodiment of the method of the present invention, the carbonization of the initially charged coking coal proceeds, and the second layer charge is charged into the space above the coking coal caused by the decrease in the height in the furnace height. You can also. In this method, after the upper surface of the charged coking coal is evenly leveled by a leveler, dry distillation is performed, and the second-layer charging material is charged into the space above the coking coal caused by the reduction in bulk. After leveling evenly with a leveler,
Perform carbonization. Accordingly, there is an effect that the charged amount of the raw coal is increased as compared with the conventional method or the above method.
【0034】図6は、石炭の乾留時間と嵩減り率との関
係を示す図である。装入された原料炭は乾留の2時間後
に約5%の嵩減りが起こっていることがわかる。この量
は、原料炭の装入口からプレートのついた棒を原料炭の
上に下ろすことによって測定でき、第2層装入物を装入
するのは嵩減り量が100 mm以上になった時点で行うのが
好ましい。FIG. 6 is a diagram showing the relationship between the carbonization time of coal and the rate of bulk reduction. It can be seen that the charged coking coal has been reduced in volume by about 5% 2 hours after carbonization. This amount can be measured by lowering a rod with a plate from the coking coal inlet onto the coking coal, and charging the second-layer charge only when the bulk loss exceeds 100 mm It is preferable to carry out.
【0035】[0035]
〔実施例1〕炉幅が実炉と同等の 250kg試験コークス炉
(炭化室:幅0.45m×長さ 1.0m×高さ 1.2m) を用
い、水分 8.2%の実操業で用いる通常原料炭〔粒度:粒
径3mm未満(−3mm)のものが83%〕を炉上部から装炭
高さが900 mmになるように装入し、レベリングした後、
その上に粉コークス (−3mmのものが 100%、本発明方
法1) 、または表1に示す非粘結炭A(本発明方法2)
を100 mmの厚さで上から装入した。[Example 1] 250 kg test coke oven with the same furnace width as the actual furnace
(Carbonization room: width 0.45m x length 1.0m x height 1.2m), and using normal coking coal [particle size: less than 3mm (-3mm) 83%] used in actual operation with a moisture of 8.2% After charging the coal from the furnace top so that the coal height is 900 mm and leveling it,
On top of this, coke breeze (100% of -3 mm, method 1 of the present invention) or non-coking coal A shown in Table 1 (method 2 of the present invention)
Was loaded from above with a thickness of 100 mm.
【0036】[0036]
【表1】 [Table 1]
【0037】次いで、炉壁温度1170℃で乾留を行い、炭
中部 (炉幅方向中央で、長さ方向に0.5m、高さ方向に
0.45mの部位) に設置した熱電対で乾留開始から900 ℃
に到達するまでの時間を計測した。また、乾留開始から
22.5時間後にコークスケーキを有姿のまま排出し、窒素
ガスで冷却した後、炉幅方向および炉高方向に3点づつ
合計9点から試料を採取し、JIS K 2151に規定された回
転強度試験法によりコークス強度を測定した。なお、比
較のため、粉コークスや非粘結炭を装入しない従来法
(従来法1)についても試験を行った。これらの試験結
果を表2に示す。Then, dry distillation was performed at a furnace wall temperature of 1170 ° C., and the middle part of the coal (center in the furnace width direction, 0.5 m in the length direction, and 0.5 m in the height direction)
900 ° C from the start of carbonization with a thermocouple installed at
The time to reach was measured. Also, from the start of carbonization
After 22.5 hours, the coke cake was discharged as it was, cooled with nitrogen gas, and then samples were taken from a total of 9 points, 3 points in the furnace width direction and 3 points in the furnace height direction, and the rotational strength test specified in JIS K 2151 The coke strength was measured by the method. For comparison, a test was also performed on a conventional method (conventional method 1) in which no coke breeze or non-coking coal was charged. Table 2 shows the test results.
【0038】[0038]
【表2】 [Table 2]
【0039】表2からわかるように、本発明方法1、2
によれば、炭中部が900 ℃に到達する時間は従来法1に
比較して約1.5 時間短縮されており、大幅な乾留促進効
果が認められる。また、コークス強度が向上するととも
に、そのばらつきも減少しており、本発明方法はコーク
ス品質の向上ならびに安定化にも有効であることがわか
る。As can be seen from Table 2, the methods of the present invention 1, 2
According to the results, the time required for the middle part of the coal to reach 900 ° C. is reduced by about 1.5 hours as compared with the conventional method 1, and a significant effect of promoting carbonization is recognized. In addition, the coke strength was improved and the variation was reduced, indicating that the method of the present invention is also effective for improving and stabilizing coke quality.
【0040】〔実施例2〕水分を2.3 %と5.8 %に気乾
調整した実操業で用いる原料炭 (−3mmのものが83%)
と、同じく気乾調整した表3に示す非粘結炭B(本発明
方法4)、C(本発明方法3)を用い、実施例1と同じ
条件で試験を行った。ただし、乾留開始からコークスケ
ーキを排出するまでの時間は、用いた非粘結炭の水分が
2.3 %の場合は18時間、5.8 %の場合は20時間とした。
なお、比較のため、粉コークスや非粘結炭を装入しない
従来法(従来法2、3)についても試験を行った。これ
らの試験結果を表4に示す。[Example 2] Coking coal used in actual operation with moisture adjusted to 2.3% and 5.8% (83% for -3mm)
A test was performed under the same conditions as in Example 1 using non-caking coals B (invention method 4) and C (invention method 3) shown in Table 3 which were also air-dried. However, the time from the start of carbonization to the discharge of the coke cake depends on the water content of the non-coking coal used.
18 hours for 2.3% and 20 hours for 5.8%.
For comparison, tests were also performed on conventional methods (conventional methods 2 and 3) in which coke breeze and non-coking coal were not charged. Table 4 shows the test results.
【0041】[0041]
【表3】 [Table 3]
【0042】[0042]
【表4】 [Table 4]
【0043】表4からわかるように、本発明方法4で
は、装入炭(原料炭)水分が低い場合でも従来法3に比
べて乾留が促進され、また、コークス品質ならびにその
安定性が向上する。As can be seen from Table 4, in the method 4 of the present invention, dry distillation is promoted and coke quality and stability are improved as compared with the conventional method 3 even when the charged coal (raw coal) moisture is low. .
【0044】〔実施例3〕図7は、この実施例に使用し
たコークス炉の上部を示す縦断面図であり、(a)は原料
炭を装入しレベリングした後、第2層装入物を装入した
場合、(b) は原料炭の上に第2層装入物を装入した後、
レベリングを行った場合、(c) は原料炭を装入し乾留が
進んだ後、レベリングし第2層装入物を装入した後、再
びレベリングを行った場合である。Embodiment 3 FIG. 7 is a longitudinal sectional view showing the upper part of a coke oven used in this embodiment. FIG. 7 (a) shows a state in which raw coal is charged and leveled, and then the second layer charge is charged. (B), after charging the second-layer charge on coking coal,
In the case of leveling, (c) shows a case in which coking coal is charged, carbonization is advanced, then leveling is performed, the second layer charge is charged, and leveling is performed again.
【0045】図7(b)に示す炉上部をもった炉高 7125mm
、炉長 16500mm、炉幅 460mmの炭化室を有するコーク
ス炉を用いて、表5に示す水分 9.2%の原料炭Aを炭化
室に装入し、さらにその上に粉コークス (−3mmのもの
が100 %) を別の装炭車を用いて装入、レベリングし、
平均フリュー温度1210℃、平均乾留時間22時間の操業条
件で乾留を行った(本発明方法5)。A furnace height of 7125 mm having a furnace upper part shown in FIG.
Using a coke oven having a carbonization chamber with a furnace length of 16500 mm and a furnace width of 460 mm, coking coal A having a water content of 9.2% shown in Table 5 was charged into the carbonization chamber, and further coke breeze (-3 mm was used). 100%) using another coal-equipped car and charging and leveling,
The carbonization was performed under operating conditions of an average flue temperature of 1210 ° C. and an average carbonization time of 22 hours (Method 5 of the present invention).
【0046】[0046]
【表5】 [Table 5]
【0047】二番装炭口(4-2) から炉幅の中心で、炉底
から2、4、6mの高さ位置に設置した熱電対(5) でコ
ークス温度が900 ℃になるまでの時間を測定した。ま
た、一、三、四番装炭口(4-1,4-3,4-4) において炉底か
ら2、4、6mの高さ位置に鉄製の枠を吊り下げ、原料
炭を装入し、乾留した後コークスケーキを押出し、ワー
フから枠中のコークスを回収し、コークス強度の測定を
行った。さらに、乾留初期の上昇管6の温度およびコー
クス排出(窯出し)時における押し出し電流を測定し
た。The temperature until the coke temperature reaches 900 ° C. with a thermocouple (5) installed at the center of the furnace width from the second coal mouth (4-2) and at a height of 2, 4, or 6 m from the furnace bottom. The time was measured. At the first, third and fourth coal mouths (4-1, 4-3, 4-4), an iron frame was hung at a height of 2, 4, and 6 m from the furnace bottom, and coking coal was charged. After carbonization, the coke cake was extruded, the coke in the frame was recovered from the wharf, and the coke strength was measured. Furthermore, the temperature of the riser 6 at the beginning of the carbonization and the extrusion current at the time of discharging the coke (out of the kiln) were measured.
【0048】粉コークスの装入量は炭化室一室当たり3
トン (一装炭口当たり750kg)で、平均厚さ 400mmに相当
する。また、比較のため、従来の乾留方法による試験
(従来法4)においても同様の測定を行った。それらの
試験結果を表6に示す。The charging amount of coke breeze was 3 per room of the carbonization room.
Tons (750 kg per coal port), equivalent to an average thickness of 400 mm. For comparison, the same measurement was performed in a test by the conventional carbonization method (conventional method 4). Table 6 shows the test results.
【0049】[0049]
【表6】 [Table 6]
【0050】この表6から明らかなように、本発明方法
では900 ℃到達時間が従来法に比べて約1.2 時間短縮さ
れており、乾留促進効果が大きく、また、コークスの乾
留温度が上昇するのでコークス強度は向上し、そのばら
つきも減少している。更に、従来法に比べて押し出し電
流が若干低下していることから、乾留中の石炭膨張圧が
低下してコークスケーキの炉壁からの肌離れが十分に行
われたことが伺われ、本発明方法は炉壁保全にも有効で
あるといえる。なお、本発明方法では従来法に比べて乾
留初期の上昇管温度が40℃近くも低下しているが、これ
は乾留中の石炭層で発生する水蒸気が本発明方法では炉
壁の近傍を通らずに石炭層から直接、炉の上部空間に流
出し、炉壁からの熱がコークスの乾留に有効に活用され
ていることを示唆している。As is apparent from Table 6, in the method of the present invention, the time required to reach 900 ° C. is shortened by about 1.2 hours as compared with the conventional method, so that the carbonization promoting effect is large and the carbonization temperature of coke rises. Coke strength has improved and its variability has been reduced. Furthermore, since the extrusion current was slightly reduced as compared with the conventional method, it was suggested that the coal expansion pressure during carbonization was reduced and the coke cake was sufficiently separated from the furnace wall. It can be said that the method is also effective for furnace wall maintenance. In the method of the present invention, the riser temperature in the early stage of carbonization is reduced by nearly 40 ° C. as compared with the conventional method, but this is because steam generated in the coal bed during carbonization passes through the vicinity of the furnace wall in the method of the present invention. Instead of flowing directly from the coal seam into the upper space of the furnace, suggesting that the heat from the furnace wall is being effectively used for carbonization of coke.
【0051】〔実施例4〕実施例3に使用したと同じコ
ークス炉を用いて、表7に示す水分 8.5%の原料炭Bを
炭化室に装入し、図7(c)に示すようにレベラー(7) で
(イ)で示す位置に表面をレベリングした後、乾留を行
い、乾留の途中で装炭口からプレートのついた棒を原料
炭の上面に下ろし、嵩減り量を測定した。Example 4 Using the same coke oven as used in Example 3, raw coal B having a moisture content of 8.5% shown in Table 7 was charged into a carbonization chamber, and as shown in FIG. 7 (c). In Leveler (7)
After leveling the surface to the position shown in (a), carbonization was performed, and a rod with a plate was lowered from the coal charging port to the upper surface of the raw coal during carbonization, and the amount of bulk reduction was measured.
【0052】[0052]
【表7】 [Table 7]
【0053】原料炭の嵩減り量が100 mmに達したとき
(図7(c)で(ロ) で示す位置)、その上に粉コークス (−
3mmのものが 100%) を別の装炭車を用いて装入し、再
びレベリングした(本発明方法8)。そして、平均フリ
ュー温度1200℃で22時間の乾留を行い、コークス温度が
900℃になるまでの時間、コークス強度の測定を実施例
3と同様の方法で行った。When the amount of bulk reduction of the coking coal reached 100 mm (the position indicated by (b) in FIG. 7 (c)), the coke breeze (-
(3% 100%) was charged using another coal-charging truck and leveled again (Method 8 of the present invention). Then, carbonization is performed for 22 hours at an average flu temperature of 1200 ° C, and the coke temperature is reduced.
Coke strength was measured in the same manner as in Example 3 until the temperature reached 900 ° C.
【0054】また、上記原料炭の嵩減り量が100 mmに達
したとき、第2層装入物として表8に示す非粘結炭Dを
1000kg装入(平均厚さ200 mmに相当)し、上記と同様の
試験を行った(本発明方法9)。なお、発明方法6と7
は、図7(a)に示すように原料炭を装入しレベリングした
後、第2層装入物を装入した。また、比較のため、従来
の乾留方法(原料炭の上部に第2層装入物を装入しない
方法、従来法5)による試験を行い、同様の測定を行っ
た。これらの試験結果を表9に示す。When the bulk reduction of the raw coal reached 100 mm, the non-coking coal D shown in Table 8 was charged as the second layer charge.
After charging 1000 kg (corresponding to an average thickness of 200 mm), the same test as above was performed (Method 9 of the present invention). Inventive methods 6 and 7
As shown in FIG. 7 (a), raw coal was charged and leveled, and then a second-layer charge was charged. For comparison, a test was conducted by a conventional carbonization method (a method in which the second-layer charge was not charged on top of the raw coal, conventional method 5), and the same measurement was performed. Table 9 shows the test results.
【0055】[0055]
【表8】 [Table 8]
【0056】[0056]
【表9】 [Table 9]
【0057】この表9から明らかなように、本発明方法
6乃至9では炭中部が900 ℃に到達する時間のばらつき
が従来法5に比べて減少した。また、コークス強度にお
いても、強度が向上するとともに、そのばらつきも減少
しており、本発明方法はいずれもコークス品質の向上並
びに安定化に有効であることがわかる。As is clear from Table 9, in the methods 6 to 9 of the present invention, the variation in the time required for the middle portion of the coal to reach 900 ° C. was reduced as compared with the conventional method 5. In addition, the coke strength was improved as well as the coke strength was reduced, indicating that all the methods of the present invention are effective in improving and stabilizing coke quality.
【0058】[0058]
【発明の効果】本発明方法によれば、既存のコークス炉
を使用して、乾留の効率化と炉体延命とを両立させなが
ら、コークス品質の向上ならびに安定化(ばらつきの減
少)を達成することができる。多大な設備投資を必要と
せず、経済性にも優れている。According to the method of the present invention, by using an existing coke oven, the coke quality is improved and the stabilization (reduction in variation) is achieved while achieving both the efficiency of dry distillation and the life extension of the furnace body. be able to. It does not require a large amount of capital investment and is excellent in economy.
【図1】炭化室全体の幅方向における縦断面図で、本発
明における乾留途中の水蒸気の流れを模式的に示す図で
ある。FIG. 1 is a longitudinal sectional view in the width direction of the entire carbonization chamber, schematically showing a flow of steam during dry distillation in the present invention.
【図2】炭化室の一部の幅方向における縦断面図で、乾
留途中における石炭層、軟化層およびコークス層の形成
状況を模式的に示す図である。FIG. 2 is a longitudinal cross-sectional view of a part of a carbonization chamber in a width direction, schematically illustrating a formation state of a coal layer, a softened layer, and a coke layer during carbonization.
【図3】炭化室の上部の幅方向における縦断面図で、乾
留途中における石炭層、軟化層およびコークス層の形成
状況を模式的に示す図である。FIG. 3 is a longitudinal sectional view in the width direction of an upper portion of a carbonization chamber, schematically showing a state of formation of a coal layer, a softened layer, and a coke layer during carbonization.
【図4】炭化室の一部の幅方向における縦断面図で、炭
化室内の温度分布(図中の実線)と石炭層からの水蒸気
の流れ(図中の破線)とを模式的に示す図である。FIG. 4 is a longitudinal sectional view of a part of the coking chamber in a width direction, schematically showing a temperature distribution in the coking chamber (solid line in the figure) and a flow of steam from the coal seam (dashed line in the figure). It is.
【図5】炭化室内における水蒸気の流れを模式的に示す
図である。FIG. 5 is a diagram schematically showing a flow of water vapor in a carbonization chamber.
【図6】石炭の乾留時間と嵩減り率との関係を示す図で
ある。FIG. 6 is a diagram showing the relationship between the carbonization time of coal and the rate of bulk reduction.
【図7】コークス炉の上部構造を示す縦断面図であり、
(a) は原料炭を装入しレベリングした後、第2層装入物
を装入した場合、(b) は原料炭の上に第2層装入物を装
入した後、レベリングを行った場合、(c) は原料炭を装
入し乾留が進んだ後、レベリングし第2層装入物を装入
した後、再びレベリングを行った場合である。FIG. 7 is a longitudinal sectional view showing an upper structure of the coke oven;
(a) When the second layer charge is charged after charging and leveling of coking coal, (b) is leveling after charging the second layer charging on coking coal In the case (c), the raw coal is charged, the carbonization proceeds, leveling is performed, the second-layer charged material is charged, and leveling is performed again.
1:コークス炉 1a:炉壁 2:
原料炭 2a:石炭層 2b:軟化層 2c:
コークス層 2d:第2層装入物 3:上部空間 4:
装炭口 5:熱電対 6:上昇管 7:
レベラー1: Coke oven 1a: Furnace wall 2:
Coking coal 2a: Coal bed 2b: Softened bed 2c:
Coke layer 2d: Second layer charge 3: Upper space 4:
Charging port 5: Thermocouple 6: Riser 7:
Leveler
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−23479(JP,A) 特開 昭60−221487(JP,A) 特開 平7−228873(JP,A) 実開 平5−125365(JP,U) (58)調査した分野(Int.Cl.7,DB名) C10B 57/02 C10B 47/10 C10B 31/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-23479 (JP, A) JP-A-60-221487 (JP, A) JP-A-7-228873 (JP, A) 125365 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) C10B 57/02 C10B 47/10 C10B 31/02
Claims (1)
入して行う石炭の乾留方法において、原料炭の上に全域
に渡り軟化溶融性を有しない石炭またはコークスからな
る第2層装入物を装入して乾留することを特徴とする石
炭の乾留方法。1. A method for dry-drying coal by charging coking coal containing water into a coke oven furnace, wherein the whole area of coking coal is
Second SoSo carbonization process of coal characterized by dry distillation was charged the initial charge consisting of coal or coke having no thermal plasticity over.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6324696A JP3016116B2 (en) | 1994-03-09 | 1994-12-27 | Coal carbonization method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3798594 | 1994-03-09 | ||
JP6-37985 | 1994-03-09 | ||
JP6324696A JP3016116B2 (en) | 1994-03-09 | 1994-12-27 | Coal carbonization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07300590A JPH07300590A (en) | 1995-11-14 |
JP3016116B2 true JP3016116B2 (en) | 2000-03-06 |
Family
ID=26377165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6324696A Expired - Fee Related JP3016116B2 (en) | 1994-03-09 | 1994-12-27 | Coal carbonization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3016116B2 (en) |
-
1994
- 1994-12-27 JP JP6324696A patent/JP3016116B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07300590A (en) | 1995-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08127778A (en) | Method and apparatus for charging coke oven with coal | |
JPH03197588A (en) | Method and equipment for boring degassing hole in coal charge in coke oven | |
JPH07100794B2 (en) | Extraction method and equipment for coke oven charging | |
JP3016116B2 (en) | Coal carbonization method | |
JPH07300589A (en) | Continuous vertical coke oven and production of coke | |
US5683631A (en) | Carbonaceous packing material for prebaked anode maufacture in open pit ring furnaces | |
KR100987810B1 (en) | Method and device for producing cokes used in iron-refining | |
JPH09255962A (en) | Cover of chamber oven | |
JP3141754B2 (en) | Coking method for coke oven | |
JP2550792B2 (en) | Method and apparatus for extraction and carbonization of coke oven charging coal | |
JP5050696B2 (en) | Coke oven operation method | |
JP3502681B2 (en) | Coke production method | |
JP2008001839A (en) | Method for operating coke oven | |
JP2715858B2 (en) | Manufacturing method of coke for metallurgy | |
JP3179263B2 (en) | Coke production method | |
JPH06322375A (en) | Production of formed coke | |
JPH06248269A (en) | Opening of steam-extracting hole into coal layer fed in coke oven | |
JPH11292620A (en) | Production of zinc oxide ore briquette | |
JPH08283723A (en) | Production of coke for blast furnace | |
JP3314835B2 (en) | Method for producing medium-temperature carbonized coke | |
JPH0532974A (en) | Method for controlling dry distillation in coke oven | |
JP2004026914A (en) | Carbonization method for coal | |
EP0984907A1 (en) | Production of heat-treated carbon bodies | |
JP3021254B2 (en) | Coke oven operation method | |
JP2864585B2 (en) | Coke production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |