JP2004026615A - Method and apparatus for manufacturing glass wire rod - Google Patents

Method and apparatus for manufacturing glass wire rod Download PDF

Info

Publication number
JP2004026615A
JP2004026615A JP2002189365A JP2002189365A JP2004026615A JP 2004026615 A JP2004026615 A JP 2004026615A JP 2002189365 A JP2002189365 A JP 2002189365A JP 2002189365 A JP2002189365 A JP 2002189365A JP 2004026615 A JP2004026615 A JP 2004026615A
Authority
JP
Japan
Prior art keywords
heating furnace
glass wire
glass
heat treatment
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002189365A
Other languages
Japanese (ja)
Inventor
Tomohiro Ishihara
石原 朋浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002189365A priority Critical patent/JP2004026615A/en
Priority to PCT/JP2003/008273 priority patent/WO2004002912A1/en
Publication of JP2004026615A publication Critical patent/JP2004026615A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing a glass wire rod which is suppressed of diffusion and infiltration of OH groups into the glass wire rod. <P>SOLUTION: The method for manufacturing the glass wire rod comprises melting a glass preform by a first heat treatment to form a wire rod and subjecting the resulted glass wire rod to a second heat treatment at the temperature lower than the temperature of the first heat treatment, then applying a coating to the outer periphery of the glass wire rod, in which humidity in the circumference of the glass wire rod in performing the second heat treatment is held at ≤0.05 g/kg. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバ母材などのガラス母材を加熱溶融させて線材化するガラス線材の製造方法及び装置に関する。
【0002】
【従来の技術】
光ファイバなどのガラス線材は、ガラス母材(光ファイバプリフォーム)を加熱して溶融させ、線材化する(線引きする)ことによって製造されている。
線材化の技術としては、目的とする線材に要求される特性などに応じて、また、作業性や生産性などを考慮して種々の技術が開発され、提案されている。
【0003】
例えば、光ファイバプリフォームを溶融紡糸して光ファイバとする方法において、ガラス中の原子、分子レベルの欠陥生成を抑え、かつ熱的ゆらぎを小さくして低損失で信頼性の高い光ファイバを得る方法として、溶融紡糸炉の直下に内側に炉心管を有し該炉心管内を光ファイバが通過できるようにした加熱炉を設置して光ファイバを加熱しつつ線引きし、かつ炉心管内の雰囲気を不活性ガス雰囲気、酸素ガスを含む雰囲気又は水素ガスを含む雰囲気のいずれかの雰囲気とする方法がある(特開平4−59631号公報)。
【0004】
一方、光ファイバの伝送損失を大きくする因子の一つにガラス中に含まれるOH基があり、伝送損失を低減させるためにはガラス中のOH基の量をできるだけ少なくすることが必要である。
前記特開平4−59631号公報の方法では、溶融紡糸炉を出たファイバを加熱炉内で熱処理する際に、加熱炉内に外気が混入し、外気中の水分子がガラス線材(光ファイバ)中へ拡散し、OH基による伝送損失悪化が生じるという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明はこのような2段階加熱によるガラス線材の製造技術における問題点を解決し、熱処理時にガラス線材中へOH基の拡散、侵入を抑制したガラス線材の製造方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決する手段として次の(1)〜(6)の方法及び装置を提案するものである。
(1)ガラス母材を第1加熱処理により溶融して線材化し、得られたガラス線材を第1加熱処理よりも低い温度で第2加熱処理した後、ガラス線材外周に被覆を施すガラス線材の製造方法において、前記第2加熱処理の際のガラス線材周囲の雰囲気の湿度を0.05g/kg以下に保持することを特徴とするガラス線材の製造方法。
(2)前記第2加熱処理を加熱炉内で行い、該加熱炉内に不活性ガスを導入し、該不活性ガスの導入量を制御することで加熱炉内の圧力を該加熱炉外部の圧力よりも高く保持することを特徴とする前記(1)のガラス線材の製造方法。
(3)前記第2加熱処理を加熱炉内で行い、該加熱炉内と外部とを繋ぐガス流路の一部に、不活性ガス用パージボックスを設置し、該パージボックス内の圧力を前記加熱炉外部の圧力よりも高く保持することを特徴とする前記(1)のガラス線材の製造方法。
(4)前記第2加熱処理を加熱炉内で行い、該加熱炉内に不活性ガスを導入し、該不活性ガスの導入量を制御することで加熱炉内の圧力を該加熱炉外部の圧力よりも高く保持すると共に、前記加熱炉内と外部とを繋ぐガス流路の一部に、不活性ガス用パージボックスを設置し、該パージボックス内の圧力を前記加熱炉外部の圧力よりも高く保持することを特徴とする前記(1)のガラス線材の製造方法。
【0007】
(5)ガラス母材を第1加熱処理して溶融し線材化する第1加熱炉と、該第1加熱炉の直下に設けられ第1加熱炉を出たガラス線材を第2加熱処理する第2加熱炉を有するガラス線材の製造装置であって、前記第2加熱炉が、加熱炉本体の内部に中心部にガラス線材が通過する空間を有するヒーターと、その外周に設けられた断熱材とを備え、上下に第1加熱炉を出たガラス線材を前記ヒーター中心部の空間に挿入、搬出するための穴が設けられており、該上下の穴に不活性ガス用パージボックスが設けられた構造を有する加熱炉であることを特徴とするガラス線材の製造装置。
(6)ガラス母材を第1加熱処理して溶融し線材化する第1加熱炉と、該第1加熱炉の直下に設けられ第1加熱炉を出たガラス線材を第2加熱処理する第2加熱炉を有するガラス線材の製造装置であって、前記第2加熱炉が、加熱炉本体の内部に中心部にガラス線材が通過する空間を有するヒーターと、その外周に設けられた断熱材とを備え、上下に第1加熱炉を出たガラス線材を前記ヒーター中心部の空間に挿入、搬出するための穴が設けられており、該上下の穴とガラス線材との間のクリアランスを小さく保つための蓋が設けられた構造を有する加熱炉であることを特徴とするガラス線材の製造装置。
【0008】
【発明の実施の形態】
本発明の方法では、ガラス母材を加熱溶融して線材化する第1熱処理工程と、得られたガラス線材を加熱処理処理する第2加熱処理工程を有するガラス線材の製造方法において、第2加熱処理時のガラス線材周囲の雰囲気における湿度を5g/kg以下に保持することを特徴とする。これにより、加熱中にガラス線材が外周雰囲気中の水分子がガラス中に溶解、拡散するのを防止することができ、製造されたガラス線材に残存するOH基の量を低減させることができる。
本発明において、湿度とは比湿を意味し、比湿とは空気塊に含まれる水蒸気の重量とその空気塊の重量の比であり、単位はg/kgである。
【0009】
本発明の方法は、特に光ファイバプリフォームを線引きして光ファイバを製造する方法として好適であり、波長1.38μm付近における吸収損失を低減することができる。1.38μm帯の伝送損失低減は、安価で優れた増幅特性を有するラマン増幅器の光源波長と一致しているため、高速光通信技術において重要である。
【0010】
この第2加熱処理工程以外の延伸、焼結、アニールといったガラス母材の加熱工程においても、ガラス中への水分子の拡散は問題となるが、線材化工程ではガラス径が最も細くなるので水分子がガラス中心部まで浸透しやすいため、特に光ファイバの場合には中心部を構成しているコアにOH基が浸透し、光ファイバの1.38μm帯における伝送損失が大幅に上昇するという問題が生じる。そのため、ガラス線材化工程におけるガラス線材周囲の雰囲気における水分子量の低減は重要である。
【0011】
第2加熱処理におけるガラス線材周囲の雰囲気の湿度を0.05g/kg以下とするための具体的な手段としては、例えば、第2加熱処理を加熱炉中で行うようにし、該加熱炉内に水を含まないドライな(水分0.1〜1ppm程度)不活性ガス(窒素、ヘリウム、アルゴンなど)を導入し、かつ該不活性ガスの導入量を制御して加熱炉内の圧力を加熱炉外部の圧力よりも高く保持し、加熱炉外の水分を含むガス(大気)が加熱炉内(ガラス線材周囲)へ流入するのを防ぐ方法が有効である。この場合、加熱炉本体のガラス線材が挿入又は搬出される穴の部分に蓋を設け、炉本体とガラス線材との間のクリアランスを狭くしておくと効果的である。
【0012】
また、第2加熱処理を加熱炉中で行うようにし、該加熱炉内と外部とを繋ぐガス流路(例えば加熱炉本体のガラス線材が挿入又は搬出される穴の部分)の一部に、不活性ガス用パージボックスを設置し、該パージボックス内の圧力を前記加熱炉外部の圧力よりも高く保持する方法も有効であり、前記加熱炉内の圧力を加熱炉外部の圧力よりも高く保持する方法と併用すれば、更に効果的である。
【0013】
図1に本発明の方法によりガラス母材(光ファイバプリフォーム)からガラス線材(光ファイバ)を製造する装置の1実施態様を示す。
この装置は主要部がガラス母材を加熱溶融して線材化する第1加熱炉1と、第1加熱炉1の直下に設けられたガラス線材を加熱処理するための第2加熱炉18で構成されており、その下方に樹脂被覆を行うための設備が付加されている。
図1の装置において、ガラス母材2は第1加熱炉1の炉心管3内に挿入され、ヒーター4で加熱されて溶融し、ガラス線材8となって第1加熱炉1の下部から引き出される。符号21は炉内に窒素等の不活性ガスを導入するパージガス導入管、20は炉心管3の内外の差圧を測定する差圧測定器、22は断熱材である。
【0014】
第1加熱炉1から引き出されたガラス線材8は、直下に設けられた第2加熱炉18に導入され、断熱材22で囲まれたヒーター19の中心部を通って加熱処理される。第2加熱炉18内にはパージガス導入管6から窒素等の不活性ガスを導入し、差圧測定器20により第2加熱炉18内圧力を炉外より高く管理することでガラス線材8の周囲の湿度を0.05g/kg以下に保持する。
通常の場合、線引き直後のガラス線材8の温度は1200〜2000℃程度であり、これを第2加熱炉18内で1000〜1600℃の温度で加熱処理する。
【0015】
この装置では、第2加熱炉18の上下に設けられたガラス線材8が導入、搬出される穴23を覆い、かつ、ガラス線材8が貫通可能な形で穴23の部分に不活性ガスを流出させて第2加熱炉18内への外気の流入を防止するための不活性ガスのパージボックス5が設けられている。パージボックス5に設置した差圧測定器20によりパージボックス5内と炉外の圧力差を測定し、それに基づいてパージガス導入管7から導入する不活性ガスの導入量を制御することによって、パージボックス5内の圧力を炉外の圧力よりも高く保持する。それによって、第2加熱炉18内への外気の侵入を防止することができ、第2加熱炉18内のガラス線材8の周囲の雰囲気の湿度を0.05g/kg以下に保持することができる。
【0016】
第2加熱炉18で加熱処理されたガラス線材8は、コーティング用のダイス9を通り、例えば紫外線硬化樹脂の一次被覆が施され、硬化装置10で紫外線を照射されてて硬化しガラス線材8と一体化する。10は紫外線硬化樹脂の硬化の妨げとなる酸素を除去するため、窒素等の不活性ガスをパージするパージガス導入管である。
硬化装置11を出た一次被覆線材12は、二次被覆用のコーティングダイス13とパージガス導入管14を有する硬化装置15を通って二次被覆され、二次被覆線材16となり、方向転換ローラ17を介して図示省略した巻取装置に巻き取られるようになっている。
【0017】
図2に本発明の方法によりガラス母材(光ファイバプリフォーム)からガラス線材(光ファイバ)を製造する装置の第2の実施態様を示す。
この装置は、第2加熱炉18の上下の穴23を覆うように設けられたパージボックス5がなく、代わりに、穴23とガラス線材8との間のクリアランスを小さく保つための蓋24が設けられている点を除いては図1の装置と同じである。
蓋24により第2加熱炉18内と外部とを繋ぐガス流路を狭くし、第2加熱炉18に設置した差圧測定器20により第2加熱炉18内と炉外の圧力差を測定し、それに基づいてパージガス導入管6から炉内へ導入する不活性ガスの導入量を制御することによって、第2加熱炉18内の圧力を炉外の圧力よりも高く保持する。それによって、第2加熱炉18内への外気の侵入を防止することができ、第2加熱炉18内のガラス線材8の周囲の雰囲気の湿度を0.05g/kg以下に保持することができる。
なお、図1及び図2に示した装置では、第2加熱炉18には炉心管は設けられていないが、ガラス線材8の周囲のクリーン度を高める場合など必要により炉心管を設けてもよい。
【0018】
【実施例】
以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
図1に示した装置(ヒーター4の長さ:400mm、ヒーター19の長さ:2000mm)を用いて光ファイバプリフォームを線引きして光ファイバ化し、さらに、外周に2層の樹脂を施す。
【0019】
コア/クラッド部を有する直径36mmのプリフォーム(ガラス母材2)を鉛直に第1加熱炉1内に設置し、該プリフォームを加熱炉1内で軟化温度以上に加熱溶融して、ファイバ化する。第2加熱炉18内には窒素ガスを1000SLM導入し、第2加熱炉18内部の圧力を第2加熱炉18の外周の圧力より100Pa高く管理する。また、第2加熱炉18の上下のパージボックス5にも窒素ガスを50SLM導入し、パージボックス5内を第2加熱炉18の外周の圧力より200Pa高く管理する。これらにより、第2加熱炉18内の湿度は0.001〜0.002g/kgに管理される。また、第2加熱炉18のヒーター19の外表面温度は1400℃に制御する。このような条件で光ファイバプリフォームを線引きし、得られた光ファイバの伝送損失を測定したところ、OH吸収による1.38μmのロス増分は0.005dB/kmである。
【0020】
(実施例2)
図2に示した装置(蓋以外は実施例1と同じ)を使用して、光ファイバプリフォームを線引きして光ファイバ化する。コア/クラッド部を有する直径36mmのプリフォーム(ガラス母材2)を鉛直に第1加熱炉1内に設置し、該プリフォームを加熱炉1内で軟化温度以上に加熱溶融して、ファイバ化する。第2加熱炉18内には窒素ガスを1500SLM導入し、第2加熱炉18内部の圧力を第2加熱炉18の外周の圧力より100Pa高く管理する。これにより、第2加熱炉18内の湿度は0.002〜0.003g/kgに管理される。また、第2加熱炉18のヒーター19の外表面温度は1400℃に制御する。このような条件で光ファイバプリフォームを線引きし、得られた光ファイバの伝送損失を測定したところ、OH吸収による1.38μmのロス増分は0.01dB/kmである。
【0021】
(実施例3)
蓋24を設けない外は図2と同じ構造の装置を使用して光ファイバプリフォームを線引きして光ファイバ化する。コア/クラッド部を有する直径36mmのプリフォーム(ガラス母材2)を鉛直に第1加熱炉1内に設置し、該プリフォームを加熱炉1内で軟化温度以上に加熱溶融して、ファイバ化する。第2加熱炉18内には窒素ガスを1000SLM導入し、第2加熱炉18内部の圧力を第2加熱炉18の外周の圧力より50Pa高く管理する。これにより、第2加熱炉18内の湿度は0.004〜0.005g/kgに管理される。また、第2加熱炉18のヒーター19の外表面温度は1400℃に制御する。このような条件で光ファイバプリフォームを線引きし、得られた光ファイバの伝送損失を測定したところ、OH吸収による1.38μmのロス増分は0.03dB/kmである。
【0022】
(比較例1)
実施例1と同じ装置で光ファイバプリフォームを線引きして光ファイバ化する。コア/クラッド部を有する直径36mmのプリフォーム(ガラス母材2)を鉛直に第1加熱炉1内に設置し、該プリフォームを加熱炉1内で軟化温度以上に加熱溶融して、ファイバ化する。第2加熱炉18の上下のパージボックス5には窒素ガスを50SLM導入し、パージボックス5内を第2加熱炉18の外周の圧力より40Pa高く管理する。この時第2加熱炉18内部の圧力は第2加熱炉18の外周の圧力より10Pa高くなる(第2加熱炉18内部への不活性ガスのパージは行わない)。これにより、第2加熱炉18内の湿度は0.06〜0.07g/kgに管理される。また、第2加熱炉18のヒーター19の外表面温度は1400℃に制御する。このような条件で光ファイバプリフォームを線引きし、得られた光ファイバの伝送損失を測定したところ、OH吸収による1.38μmのロス増分は1.0dB/kmである。
【0023】
(比較例2)
実施例1と同じ装置で、パージボックス5を外した状態で光ファイバプリフォームを線引きして光ファイバ化する。コア/クラッド部を有する直径36mmのプリフォーム(ガラス母材2)を鉛直に第1加熱炉1内に設置し、該プリフォームを加熱炉1内で軟化温度以上に加熱溶融して、ファイバ化する。第2加熱炉18内には何もパージせず、第2加熱炉18内の圧力を外部の圧力と同じとする。これにより、第2加熱炉18内の湿度は16〜20g/kgとなる。また、第2加熱炉18のヒーター19の外表面温度は1400℃に制御する。このような条件で光ファイバプリフォームを線引きし、得られた光ファイバの伝送損失を測定したところ、OH吸収による1.38μmのロス増分は10.0dB/kmである。
【0024】
(比較例3)
第2加熱炉18内に導入するガスをHeガス3SLMとし、第2加熱炉18内部の圧力を第2加熱炉18の外周の圧力より1Pa高く管理する外は実施例3と同様にして光ファイバプリフォームを線引きして光ファイバ化する。これにより、第2加熱炉18内の湿度は0.1〜0.2g/kgに管理される。このような条件で光ファイバプリフォームを線引きし、得られた光ファイバの伝送損失を測定したところ、OH吸収による1.38μmのロス増分は5.0dB/kmである。
実施例1〜3、比較例1〜3の結果をまとめて表1に示す。
【0025】
【表1】

Figure 2004026615
【0026】
【発明の効果】
本発明の方法によれば、ガラス母材の2段階加熱によるガラス線材の製造技術において、熱処理時にガラス線材中へOH基が拡散、侵入するのを抑制することができ、OH基による品質低下のないガラス線材を製造することができる。
また、本発明の装置によれば上記方法を容易に実施することができる。
【図面の簡単な説明】
【図1】本発明に係るガラス線材製造装置の1実施態様を示す概略断面説明図。
【図2】本発明に係るガラス線材製造装置の第2の実施態様を示す概略断面説明図。
【符号の説明】
1 第1加熱炉  2 ガラス母材  3 炉心管  4 ヒーター
5 パージボックス  6 パージガス導入管  7 パージガス導入管
8 ガラス線材  9 ダイス  10 パージガス導入管
11 硬化装置  12 一次被覆線材  13 ダイス
14 パージガウ導入管  15 硬化装置  16 二次被覆線材
17 方向転換ロール  18 第2加熱炉  19 ヒーター
20 差圧測定器  21 パージガス導入管  22 断熱材
23 穴  24 蓋[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a glass wire, which heats and melts a glass base material such as an optical fiber base material to form a wire.
[0002]
[Prior art]
BACKGROUND ART A glass wire such as an optical fiber is manufactured by heating and melting a glass base material (optical fiber preform) to form a wire (drawing).
Various technologies have been developed and proposed as a wire rod technology in accordance with characteristics required for a target wire rod and in consideration of workability, productivity, and the like.
[0003]
For example, in a method in which an optical fiber preform is melt-spun into an optical fiber, the generation of defects at the atomic and molecular levels in glass is suppressed, and thermal fluctuation is reduced to obtain an optical fiber with low loss and high reliability. As a method, a heating furnace having a furnace tube inside the melt spinning furnace inside and through which an optical fiber can pass is installed, and the optical fiber is drawn while being heated, and the atmosphere in the furnace tube is controlled. There is a method in which any of an atmosphere including an active gas atmosphere, an atmosphere including oxygen gas, and an atmosphere including hydrogen gas is used (Japanese Patent Laid-Open No. 4-59631).
[0004]
On the other hand, one of the factors that increase the transmission loss of an optical fiber is the OH group contained in the glass. In order to reduce the transmission loss, it is necessary to minimize the amount of the OH group in the glass.
In the method disclosed in Japanese Patent Application Laid-Open No. 4-59631, when the fiber exiting the melt spinning furnace is heat-treated in the heating furnace, outside air is mixed into the heating furnace, and water molecules in the outside air are converted into a glass wire (optical fiber). There is a problem in that the OH group diffuses inward and transmission loss is deteriorated due to OH groups.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems in the technique of manufacturing a glass wire by such two-stage heating and to provide a method and an apparatus for manufacturing a glass wire in which diffusion and intrusion of OH groups into the glass wire during heat treatment are suppressed. And
[0006]
[Means for Solving the Problems]
The present invention proposes the following methods and apparatuses (1) to (6) as means for solving the above problems.
(1) The glass base material is melted into a wire by the first heat treatment, and the obtained glass wire is subjected to the second heat treatment at a lower temperature than the first heat treatment, and then the outer periphery of the glass wire is coated. The method of manufacturing a glass wire, wherein the humidity of the atmosphere around the glass wire during the second heat treatment is maintained at 0.05 g / kg or less.
(2) The second heat treatment is performed in a heating furnace, an inert gas is introduced into the heating furnace, and the amount of the inert gas introduced is controlled to increase the pressure inside the heating furnace to a value outside the heating furnace. The method for producing a glass wire according to the above (1), wherein the pressure is kept higher than the pressure.
(3) The second heat treatment is performed in a heating furnace, a purge box for an inert gas is installed in a part of a gas flow path connecting the inside of the heating furnace and the outside, and the pressure in the purge box is reduced to The method for producing a glass wire according to the above (1), wherein the pressure is kept higher than the pressure outside the heating furnace.
(4) The second heat treatment is performed in a heating furnace, an inert gas is introduced into the heating furnace, and the amount of the inert gas introduced is controlled to increase the pressure inside the heating furnace to a value outside the heating furnace. While maintaining the pressure higher than the pressure, a purge box for an inert gas is installed in a part of a gas flow path connecting the inside of the heating furnace and the outside, and the pressure in the purge box is set higher than the pressure outside the heating furnace. The method for producing a glass wire according to the above (1), wherein the glass wire is kept high.
[0007]
(5) A first heating furnace for melting the glass base material by a first heat treatment to form a wire, and a second heating treatment provided immediately below the first heating furnace and for performing a second heat treatment on the glass wire exiting the first heating furnace. 2. A manufacturing apparatus for a glass wire having a heating furnace, wherein the second heating furnace includes a heater having a space through which a glass wire passes in a central part inside a heating furnace main body, and a heat insulating material provided on an outer periphery thereof. A hole for inserting and carrying out a glass wire rod exiting the first heating furnace into a space in the center of the heater, and a purge box for an inert gas in the upper and lower holes. An apparatus for manufacturing a glass wire, which is a heating furnace having a structure.
(6) A first heating furnace for melting a glass base material by a first heat treatment to form a wire, and a second heating treatment provided immediately below the first heating furnace for performing a second heat treatment on the glass wire exiting the first heating furnace. 2. A manufacturing apparatus for a glass wire having a heating furnace, wherein the second heating furnace includes a heater having a space through which a glass wire passes in a central part inside a heating furnace main body, and a heat insulating material provided on an outer periphery thereof. Holes are provided for inserting and carrying out a glass wire rod exiting the first heating furnace into and out of the space at the center of the heater, and a clearance between the upper and lower holes and the glass wire rod is kept small. An apparatus for producing a glass wire, comprising a heating furnace having a structure provided with a lid for the glass wire.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the method of the present invention, in the method of manufacturing a glass wire having a first heat treatment step of heating and melting the glass base material to form a wire, and a second heat treatment step of heating the obtained glass wire, It is characterized in that the humidity in the atmosphere around the glass wire during the treatment is kept at 5 g / kg or less. Thereby, it is possible to prevent the water molecules in the peripheral atmosphere of the glass wire from being dissolved and diffused into the glass during the heating, and to reduce the amount of OH groups remaining in the manufactured glass wire.
In the present invention, the humidity means the specific humidity, and the specific humidity is a ratio of the weight of the water vapor contained in the air mass to the weight of the air mass, and the unit is g / kg.
[0009]
The method of the present invention is particularly suitable as a method for producing an optical fiber by drawing an optical fiber preform, and can reduce absorption loss near a wavelength of 1.38 μm. Transmission loss reduction in the 1.38 μm band is important in high-speed optical communication technology because it matches the light source wavelength of a Raman amplifier that is inexpensive and has excellent amplification characteristics.
[0010]
In the heating step of the glass base material such as stretching, sintering, and annealing other than the second heat treatment step, diffusion of water molecules into the glass is a problem. Since molecules easily penetrate into the center of the glass, especially in the case of an optical fiber, the OH group penetrates into the core constituting the center, and the transmission loss in the 1.38 μm band of the optical fiber greatly increases. Occurs. Therefore, it is important to reduce the water molecular weight in the atmosphere around the glass wire in the glass wire forming step.
[0011]
As a specific means for reducing the humidity of the atmosphere around the glass wire in the second heat treatment to 0.05 g / kg or less, for example, the second heat treatment is performed in a heating furnace, and A dry inert gas (nitrogen, helium, argon, etc.) containing no water (about 0.1 to 1 ppm) is introduced, and the amount of the inert gas is controlled to control the pressure in the heating furnace. An effective method is to keep the pressure higher than the outside pressure and to prevent the gas (atmosphere) containing moisture outside the heating furnace from flowing into the heating furnace (around the glass wire). In this case, it is effective to provide a lid at the hole of the heating furnace main body where the glass wire is inserted or carried out, and to narrow the clearance between the furnace main body and the glass wire.
[0012]
Further, the second heat treatment is performed in a heating furnace, and a part of a gas flow path (for example, a hole portion of the heating furnace main body into which a glass wire is inserted or carried out) connecting the inside and the outside of the heating furnace, A method of installing a purge box for an inert gas and maintaining the pressure inside the purge box higher than the pressure outside the heating furnace is also effective, and maintaining the pressure inside the heating furnace higher than the pressure outside the heating furnace. It is more effective if used in combination with the above method.
[0013]
FIG. 1 shows an embodiment of an apparatus for producing a glass wire (optical fiber) from a glass preform (optical fiber preform) by the method of the present invention.
This apparatus comprises a first heating furnace 1 whose main part heats and melts a glass base material to form a wire, and a second heating furnace 18 provided immediately below the first heating furnace 1 for heat-treating a glass wire. In addition, equipment for performing resin coating is added underneath.
In the apparatus of FIG. 1, the glass base material 2 is inserted into the furnace tube 3 of the first heating furnace 1, is heated and melted by the heater 4, becomes a glass wire 8, and is pulled out from the lower part of the first heating furnace 1. . Reference numeral 21 denotes a purge gas introduction pipe for introducing an inert gas such as nitrogen into the furnace, reference numeral 20 denotes a differential pressure measuring device for measuring a differential pressure between the inside and outside of the furnace core tube 3, and reference numeral 22 denotes a heat insulating material.
[0014]
The glass wire 8 drawn from the first heating furnace 1 is introduced into a second heating furnace 18 provided immediately below, and is subjected to a heat treatment through a central portion of a heater 19 surrounded by a heat insulating material 22. An inert gas such as nitrogen is introduced from the purge gas introduction pipe 6 into the second heating furnace 18, and the pressure inside the second heating furnace 18 is controlled to be higher than that outside the furnace by the differential pressure measuring device 20 so that the periphery of the glass wire 8 is controlled. Is kept at 0.05 g / kg or less.
In a normal case, the temperature of the glass wire 8 immediately after drawing is about 1200 to 2000 ° C., and this is heated in the second heating furnace 18 at a temperature of 1000 to 1600 ° C.
[0015]
In this apparatus, the glass wire 8 provided above and below the second heating furnace 18 covers the hole 23 to be introduced and carried out, and the inert gas flows out into the hole 23 so that the glass wire 8 can penetrate. In addition, an inert gas purge box 5 for preventing outside air from flowing into the second heating furnace 18 is provided. The pressure difference between the inside of the purge box 5 and the outside of the furnace is measured by the differential pressure measuring device 20 installed in the purge box 5, and the amount of the inert gas introduced from the purge gas introduction pipe 7 is controlled based on the measured pressure difference. The pressure inside 5 is kept higher than the pressure outside the furnace. Thereby, the invasion of outside air into the second heating furnace 18 can be prevented, and the humidity of the atmosphere around the glass wire 8 in the second heating furnace 18 can be maintained at 0.05 g / kg or less. .
[0016]
The glass wire 8 that has been heat-treated in the second heating furnace 18 passes through a coating die 9, for example, is subjected to a primary coating of an ultraviolet curable resin, and is irradiated with ultraviolet rays in a curing device 10 to be cured and cured. Integrate. Reference numeral 10 denotes a purge gas introduction pipe for purging an inert gas such as nitrogen to remove oxygen which hinders the curing of the ultraviolet curable resin.
The primary coated wire 12 that has exited the curing device 11 is secondarily coated through a curing device 15 having a coating die 13 for secondary coating and a purge gas introduction pipe 14, and becomes a secondary coated wire 16. Through a winding device (not shown).
[0017]
FIG. 2 shows a second embodiment of an apparatus for producing a glass wire (optical fiber) from a glass preform (optical fiber preform) by the method of the present invention.
This apparatus does not have the purge box 5 provided so as to cover the upper and lower holes 23 of the second heating furnace 18, but instead has a lid 24 for keeping the clearance between the hole 23 and the glass wire 8 small. It is the same as the apparatus of FIG.
The gas flow path connecting the inside and the outside of the second heating furnace 18 is narrowed by the lid 24, and the pressure difference between the inside and the outside of the second heating furnace 18 is measured by the differential pressure measuring device 20 installed in the second heating furnace 18. The pressure in the second heating furnace 18 is kept higher than the pressure outside the furnace by controlling the amount of the inert gas introduced into the furnace from the purge gas introduction pipe 6 based on the pressure. Thereby, the invasion of outside air into the second heating furnace 18 can be prevented, and the humidity of the atmosphere around the glass wire 8 in the second heating furnace 18 can be maintained at 0.05 g / kg or less. .
In the apparatus shown in FIGS. 1 and 2, the furnace tube is not provided in the second heating furnace 18, but the furnace tube may be provided as necessary, for example, when the degree of cleanness around the glass wire 8 is increased. .
[0018]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
(Example 1)
The optical fiber preform is drawn into an optical fiber using the apparatus shown in FIG. 1 (length of the heater 4: 400 mm, length of the heater 19: 2000 mm), and two layers of resin are applied to the outer periphery.
[0019]
A preform (glass base material 2) having a diameter of 36 mm having a core / cladding portion is vertically set in the first heating furnace 1, and the preform is heated and melted in the heating furnace 1 to a temperature equal to or higher than a softening temperature to form a fiber. I do. Nitrogen gas is introduced into the second heating furnace 18 at 1000 SLM, and the pressure inside the second heating furnace 18 is controlled to be 100 Pa higher than the pressure on the outer periphery of the second heating furnace 18. Also, nitrogen gas is introduced into the purge box 5 above and below the second heating furnace 18 at 50 SLM, and the inside of the purge box 5 is controlled to be 200 Pa higher than the pressure on the outer periphery of the second heating furnace 18. Thus, the humidity in the second heating furnace 18 is controlled to 0.001 to 0.002 g / kg. The outer surface temperature of the heater 19 of the second heating furnace 18 is controlled to 1400 ° C. When the optical fiber preform was drawn under such conditions and the transmission loss of the obtained optical fiber was measured, the loss increment of 1.38 μm due to OH absorption was 0.005 dB / km.
[0020]
(Example 2)
An optical fiber preform is drawn into an optical fiber by using the apparatus shown in FIG. A preform (glass base material 2) having a diameter of 36 mm having a core / cladding portion is vertically set in the first heating furnace 1, and the preform is heated and melted in the heating furnace 1 to a temperature equal to or higher than a softening temperature to form a fiber. I do. Nitrogen gas is introduced into the second heating furnace 18 at 1500 SLM, and the pressure inside the second heating furnace 18 is controlled to be 100 Pa higher than the pressure on the outer periphery of the second heating furnace 18. Thereby, the humidity in the second heating furnace 18 is controlled to 0.002 to 0.003 g / kg. The outer surface temperature of the heater 19 of the second heating furnace 18 is controlled to 1400 ° C. When the optical fiber preform was drawn under such conditions and the transmission loss of the obtained optical fiber was measured, the loss increment of 1.38 μm due to OH absorption was 0.01 dB / km.
[0021]
(Example 3)
An optical fiber preform is drawn into an optical fiber by using an apparatus having the same structure as that of FIG. 2 except that the lid 24 is not provided. A preform (glass base material 2) having a diameter of 36 mm having a core / cladding portion is vertically set in the first heating furnace 1, and the preform is heated and melted in the heating furnace 1 to a temperature equal to or higher than a softening temperature to form a fiber. I do. Nitrogen gas is introduced into the second heating furnace 18 at 1000 SLM, and the pressure inside the second heating furnace 18 is controlled to be 50 Pa higher than the pressure on the outer periphery of the second heating furnace 18. Thereby, the humidity in the second heating furnace 18 is controlled to 0.004 to 0.005 g / kg. The outer surface temperature of the heater 19 of the second heating furnace 18 is controlled to 1400 ° C. When the optical fiber preform was drawn under such conditions and the transmission loss of the obtained optical fiber was measured, the loss increment of 1.38 μm due to OH absorption was 0.03 dB / km.
[0022]
(Comparative Example 1)
An optical fiber preform is drawn into an optical fiber by the same apparatus as in the first embodiment. A preform (glass base material 2) having a diameter of 36 mm having a core / cladding portion is vertically set in the first heating furnace 1, and the preform is heated and melted in the heating furnace 1 to a temperature equal to or higher than a softening temperature to form a fiber. I do. Nitrogen gas is introduced into the purge box 5 above and below the second heating furnace 18 at 50 SLM, and the inside of the purge box 5 is controlled to be 40 Pa higher than the pressure on the outer periphery of the second heating furnace 18. At this time, the pressure inside the second heating furnace 18 becomes higher by 10 Pa than the pressure on the outer periphery of the second heating furnace 18 (the inert gas is not purged into the second heating furnace 18). Thereby, the humidity in the second heating furnace 18 is controlled to 0.06 to 0.07 g / kg. The outer surface temperature of the heater 19 of the second heating furnace 18 is controlled to 1400 ° C. When the optical fiber preform was drawn under such conditions and the transmission loss of the obtained optical fiber was measured, the loss increment of 1.38 μm due to OH absorption was 1.0 dB / km.
[0023]
(Comparative Example 2)
In the same apparatus as in the first embodiment, an optical fiber preform is drawn into an optical fiber with the purge box 5 removed. A preform (glass base material 2) having a diameter of 36 mm having a core / cladding portion is vertically set in the first heating furnace 1, and the preform is heated and melted in the heating furnace 1 to a temperature equal to or higher than a softening temperature to form a fiber. I do. Nothing is purged into the second heating furnace 18, and the pressure inside the second heating furnace 18 is set to the same as the external pressure. Thereby, the humidity in the second heating furnace 18 becomes 16 to 20 g / kg. The outer surface temperature of the heater 19 of the second heating furnace 18 is controlled to 1400 ° C. When the optical fiber preform was drawn under such conditions and the transmission loss of the obtained optical fiber was measured, the loss increment of 1.38 μm due to OH absorption was 10.0 dB / km.
[0024]
(Comparative Example 3)
The gas introduced into the second heating furnace 18 is He gas 3 SLM, and the optical fiber is the same as that of the third embodiment except that the pressure inside the second heating furnace 18 is controlled to be higher than the outer peripheral pressure of the second heating furnace 1 Pa by 1 Pa. The preform is drawn into an optical fiber. Thereby, the humidity in the second heating furnace 18 is controlled to 0.1 to 0.2 g / kg. When the optical fiber preform was drawn under such conditions and the transmission loss of the obtained optical fiber was measured, the loss increment of 1.38 μm due to OH absorption was 5.0 dB / km.
Table 1 summarizes the results of Examples 1 to 3 and Comparative Examples 1 to 3.
[0025]
[Table 1]
Figure 2004026615
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the method of this invention, in the manufacturing technique of the glass wire by two-stage heating of the glass base material, it is possible to suppress the diffusion and intrusion of OH groups into the glass wire during the heat treatment, and to reduce the quality deterioration due to the OH groups. No glass wire can be manufactured.
According to the apparatus of the present invention, the above method can be easily performed.
[Brief description of the drawings]
FIG. 1 is a schematic sectional explanatory view showing one embodiment of a glass wire manufacturing apparatus according to the present invention.
FIG. 2 is a schematic sectional explanatory view showing a second embodiment of the glass wire manufacturing apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 First heating furnace 2 Glass base material 3 Furnace tube 4 Heater 5 Purge box 6 Purge gas introduction tube 7 Purge gas introduction tube 8 Glass wire 9 Dice 10 Purge gas introduction tube 11 Curing device 12 Primary covering wire 13 Dice 14 Purge gau introduction tube 15 Curing device DESCRIPTION OF SYMBOLS 16 Secondary coating wire 17 Direction change roll 18 2nd heating furnace 19 Heater 20 Differential pressure measuring device 21 Purge gas introduction pipe 22 Insulation material 23 Hole 24 Cover

Claims (6)

ガラス母材を第1加熱処理により溶融して線材化し、得られたガラス線材を第1加熱処理よりも低い温度で第2加熱処理した後、ガラス線材外周に被覆を施すガラス線材の製造方法において、前記第2加熱処理の際のガラス線材周囲の雰囲気の湿度を0.05g/kg以下に保持することを特徴とするガラス線材の製造方法。A method of manufacturing a glass wire, in which a glass base material is melted into a wire by a first heat treatment, and the obtained glass wire is subjected to a second heat treatment at a lower temperature than the first heat treatment, and then the outer periphery of the glass wire is coated. A method of manufacturing a glass wire, wherein the humidity of the atmosphere around the glass wire at the time of the second heat treatment is maintained at 0.05 g / kg or less. 前記第2加熱処理を加熱炉内で行い、該加熱炉内に不活性ガスを導入し、該不活性ガスの導入量を制御することで加熱炉内の圧力を該加熱炉外部の圧力よりも高く保持することを特徴とする請求項1に記載のガラス線材の製造方法。Performing the second heat treatment in a heating furnace, introducing an inert gas into the heating furnace, and controlling the amount of the inert gas introduced so that the pressure in the heating furnace is lower than the pressure outside the heating furnace. The method for producing a glass wire according to claim 1, wherein the glass wire is held at a high level. 前記第2加熱処理を加熱炉内で行い、該加熱炉内と外部とを繋ぐガス流路の一部に、不活性ガス用パージボックスを設置し、該パージボックス内の圧力を前記加熱炉外部の圧力よりも高く保持することを特徴とする請求項1に記載のガラス線材の製造方法。The second heat treatment is performed in a heating furnace, and a purge box for an inert gas is installed in a part of a gas flow path connecting the inside of the heating furnace and the outside. The method for producing a glass wire according to claim 1, wherein the pressure is kept higher than the pressure. 前記第2加熱処理を加熱炉内で行い、該加熱炉内に不活性ガスを導入し、該不活性ガスの導入量を制御することで加熱炉内の圧力を該加熱炉外部の圧力よりも高く保持すると共に、前記加熱炉内と外部とを繋ぐガス流路の一部に、不活性ガス用パージボックスを設置し、該パージボックス内の圧力を前記加熱炉外部の圧力よりも高く保持することを特徴とする請求項1に記載のガラス線材の製造方法。The second heat treatment is performed in a heating furnace, an inert gas is introduced into the heating furnace, and the pressure in the heating furnace is controlled to be lower than the pressure outside the heating furnace by controlling the amount of the inert gas introduced. While maintaining a high pressure, a purge box for an inert gas is installed in a part of a gas flow path connecting the inside of the heating furnace and the outside, and the pressure in the purge box is maintained higher than the pressure outside the heating furnace. The method for producing a glass wire according to claim 1, wherein: ガラス母材を第1加熱処理して溶融し線材化する第1加熱炉と、該第1加熱炉の直下に設けられ第1加熱炉を出たガラス線材を第2加熱処理する第2加熱炉を有するガラス線材の製造装置であって、前記第2加熱炉が、加熱炉本体の内部に中心部にガラス線材が通過する空間を有するヒーターと、その外周に設けられた断熱材とを備え、上下に第1加熱炉を出たガラス線材を前記ヒーター中心部の空間に挿入、搬出するための穴が設けられており、該上下の穴に不活性ガス用パージボックスが設けられた構造を有する加熱炉であることを特徴とするガラス線材の製造装置。A first heating furnace for melting a glass base material by a first heat treatment to form a wire, and a second heating furnace provided immediately below the first heating furnace for performing a second heat treatment on the glass wire exiting the first heating furnace An apparatus for manufacturing a glass wire having, wherein the second heating furnace includes a heater having a space through which a glass wire passes in a central portion inside a heating furnace main body, and a heat insulating material provided on an outer periphery thereof. Holes are provided for inserting and carrying out the glass wire rods exiting the first heating furnace into and out of the space in the center of the heater, and a purge box for inert gas is provided in the upper and lower holes. An apparatus for manufacturing a glass wire, which is a heating furnace. ガラス母材を第1加熱処理して溶融し線材化する第1加熱炉と、該第1加熱炉の直下に設けられ第1加熱炉を出たガラス線材を第2加熱処理する第2加熱炉を有するガラス線材の製造装置であって、前記第2加熱炉が、加熱炉本体の内部に中心部にガラス線材が通過する空間を有するヒーターと、その外周に設けられた断熱材とを備え、上下に第1加熱炉を出たガラス線材を前記ヒーター中心部の空間に挿入、搬出するための穴が設けられており、該上下の穴とガラス線材との間のクリアランスを小さく保つための蓋が設けられた構造を有する加熱炉であることを特徴とするガラス線材の製造装置。A first heating furnace for melting a glass base material by a first heat treatment to form a wire, and a second heating furnace provided immediately below the first heating furnace for performing a second heat treatment on the glass wire exiting the first heating furnace An apparatus for manufacturing a glass wire having, wherein the second heating furnace includes a heater having a space through which a glass wire passes in a central part inside a heating furnace main body, and a heat insulating material provided on the outer periphery thereof, A hole is provided for vertically inserting and carrying out a glass wire rod exiting the first heating furnace into a space in the center of the heater, and a lid for keeping a clearance between the upper and lower holes and the glass wire rod small. An apparatus for manufacturing a glass wire, wherein the apparatus is a heating furnace having a structure provided with.
JP2002189365A 2002-06-28 2002-06-28 Method and apparatus for manufacturing glass wire rod Pending JP2004026615A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002189365A JP2004026615A (en) 2002-06-28 2002-06-28 Method and apparatus for manufacturing glass wire rod
PCT/JP2003/008273 WO2004002912A1 (en) 2002-06-28 2003-06-30 Process for producing glass fibrous material and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189365A JP2004026615A (en) 2002-06-28 2002-06-28 Method and apparatus for manufacturing glass wire rod

Publications (1)

Publication Number Publication Date
JP2004026615A true JP2004026615A (en) 2004-01-29

Family

ID=31183810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189365A Pending JP2004026615A (en) 2002-06-28 2002-06-28 Method and apparatus for manufacturing glass wire rod

Country Status (1)

Country Link
JP (1) JP2004026615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113371998A (en) * 2021-04-21 2021-09-10 山东玻纤集团股份有限公司 Glass fiber wire drawing device and glass fiber production system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113371998A (en) * 2021-04-21 2021-09-10 山东玻纤集团股份有限公司 Glass fiber wire drawing device and glass fiber production system

Similar Documents

Publication Publication Date Title
US5320658A (en) Process of drawing optical fiber
US6705126B2 (en) Method for fabricating holey optical fiber
JP2005162610A (en) Method for forming optical fiber
JPH0915464A (en) Single-mode optical transmission fiber and its manufacture
CN111032588B (en) Method for manufacturing optical fiber
JP2007197273A (en) Optical fiber strand and production method therefor
JP2003167144A (en) Manufacturing method of single mode optical fiber and product of single mode optical fiber
JP4198714B2 (en) Optical fiber preform manufacturing method
JP2635475B2 (en) Optical fiber coating forming method
EP0371826B1 (en) Optical fiber production method
JP2004026615A (en) Method and apparatus for manufacturing glass wire rod
JP4089250B2 (en) Optical fiber processing method
JP2006030655A (en) Optical fiber, method for evaluating and manufacturing the same
JPH0471019B2 (en)
JPS63129035A (en) Production of optical fiber
WO2004002912A1 (en) Process for producing glass fibrous material and apparatus therefor
JP2004345919A (en) Method for manufacturing optical fiber
JP2004256367A (en) Manufacturing method of optical fiber strand
JPH0717400B2 (en) Optical fiber manufacturing method
JP2004035367A (en) Method and apparatus for manufacturing glass wire material
JP2003176149A (en) Method and apparatus for manufacturing optical fiber
JPH04224144A (en) Manufacture of hermetically-coated fiber and its device thereof
JPS63129039A (en) Production of optical fiber
JP4215943B2 (en) Manufacturing method of optical fiber
JPS63129040A (en) Production of optical fiber