JP2004025360A - Three-dimensional operation mechanism for minute work - Google Patents

Three-dimensional operation mechanism for minute work Download PDF

Info

Publication number
JP2004025360A
JP2004025360A JP2002185163A JP2002185163A JP2004025360A JP 2004025360 A JP2004025360 A JP 2004025360A JP 2002185163 A JP2002185163 A JP 2002185163A JP 2002185163 A JP2002185163 A JP 2002185163A JP 2004025360 A JP2004025360 A JP 2004025360A
Authority
JP
Japan
Prior art keywords
base
piezoelectric elements
piezoelectric element
operated
passive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185163A
Other languages
Japanese (ja)
Inventor
Tomoo Uchigata
内潟 外茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2002185163A priority Critical patent/JP2004025360A/en
Publication of JP2004025360A publication Critical patent/JP2004025360A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional minute operation mechanism for three-dimensionally minutely operating a matter to be operated by use of piezoelectric elements, which can realize the three-dimensional operation of the matter to be operated with a minimized number of piezoelectric elements, is free from the fear of breaking the piezoelectric elements by operating reaction, and has no free space or sliding part which causes an error. <P>SOLUTION: This device has a receiving base 4 supported on a base 2 by three or more radially arranged support legs 5. Each support leg 5 has driven members 12 pressed in the respective axial directions of piezoelectric elements by the respective piezoelectric elements concerned 3, and each driven member is located on the radially outside of the base 2. Each driven member 12 is integrally connected to the base 2 through an axially deflecting parallel plate spring group 20 arranged radially at intervals. Each driven member 12 is integrally connected to the receiving base 4 through a deflecting member 21 deflected in the radial direction and tangential direction. The matter to be operated 1 such as finger, needle, fork or the like which is three-dimensionally operated to perform a minute work is stationarily mounted on the receiving base 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、精密位置決めや微細加工に用いる微少動作装置に関するもので、圧電素子を用いて動作対象物を3次元的に微少動作させる装置に関するものである。
【0002】
【従来の技術】
圧電素子を駆動源とする3次元微少動作機構として、特開平6−170761号公報に開示されたものがある。この公報記載のものは、フィンガ等の被動作物を固定する受台と基台とを両端をピボット結合した6本の圧電素子で連結し、これら6本の圧電素子にそれぞれ異なる動作電圧を加えることによって、被動作物の3次元動作を実現している。
【0003】
圧電素子は、電圧制御によって微少な変形量を制御できるため、微少動作を正確に制御することが可能であるが、動作反力が圧電素子に曲げ応力や引張応力として作用すると、圧電素子を破損するおそれがあるので、動作反力が圧電素子の軸方向に圧縮力として作用するように配慮する必要がある。また、被動作物に所望の動作をさせるのに要する圧電素子の数は、少なければ少ないほどよく、駆動制御系も簡略化されて、装置全体を安価にできる。また、圧電素子の軸方向の伸縮動作を被動作物の自由な3次元動作に変換するための機構は、できるだけ単純でかつ誤差の原因となるような遊隙を有しない構造とすることが必要である。従って、例えば軸と孔による枢着構造や球体と凹球面によるピボット構造を用いると、それらの摺動面に不可避的に存在する遊隙が誤差の原因となる。微少動作装置では、被動作物の所望の動作自体が非常に小さいので、これらの遊隙による誤差がたとえ小さくても、本来の動作量に対する誤差量の割合は非常に大きくなる。
【0004】
【発明が解決しようとする課題】
この発明は、上記のような種々の制約条件の中で圧電素子を駆動源として被動作物に3次元的な微少動作を行わせる動作機構を得ることを課題としており、少ない本数の圧電素子で被動作物の3次元動作を実現でき、動作反力で圧電素子を破損するおそれがなく、かつ動作機構を構成する部材相互の間に誤差の原因となる遊隙や摺動部を有していない3次元微少動作機構を提供することを課題としている。
【0005】
【課題を解決するための手段】
この出願の請求項1の発明に係る微細作業用3次元動作機構は、放射状に配置された3本以上の支持脚5で基台2に支持された受台4を備えている。各支持脚5は、それぞれの圧電素子3で当該それぞれの圧電素子の軸方向に押動される受動部材12を備え、各受動部材は基台2より放射方向外側に位置している。各受動部材12と基台2とは、放射方向に間隔を隔てて配置した軸方向に撓む平行板バネ群20で一体に連結され、各受動部材12と受台4とは、放射方向及び接線方向に撓む撓み部材21で一体に連結されている。3次元方向に動作して微細作業を行なうフィンガ、ニードル、フォークなどの被動作物1は、受台4に固定して装着される。
【0006】
平行板バネ群20は、好ましくは、放射方向に間隔を隔てて配置した板バネと、圧電素子3の押動位置を挟んで対称に配置した板バネとを含む、3枚以上の板バネによって形成される。
【0007】
請求項2の発明は、上記微細作業用3次元動作機構の撓み部材21が、直列に連結された放射方向に撓む板バネ37と接線方向に撓む板バネ38、39とを含む板バネ群で形成されている3次元動作機構である。
【0008】
受台4は、放射方向に配置した3本以上の支持脚5で支持されており、その支持脚のそれぞれが圧電素子3で軸方向に個別駆動されている。従って、3本の圧電素子3の印加電圧を個別に制御することにより、受台4の自由な方向への傾斜移動が可能であり、これによって受台4に固定されたフィンガや工具の先端を軸直角方向の2次元面内で自由に揺動させることができる。そして、3本以上の圧電素子に同電圧を加えることによって、受台4の軸方向移動が可能であり、これらの組み合わせによって受台4に固定したフィンガや工具やワークの先端を3次元的に任意に運動させることができる。
【0009】
基台2と各支持脚の受動部材12とを連結する平行板バネ群20は、平行リンク機構を構成しており、圧電素子3で受動部材12が押動されたとき、受動部材12は主として軸方向に移動し、圧電素子に曲げ力を作用させない。圧電素子3の移動ストロークは、最大でも数十ミクロン程度であり、平行板バネ群20の延在方向を放射方向ないし軸方向に傾斜した放射方向とすることにより、受動部材12が軸方向に移動した際の放射方向移動量を十分に小さくすることができ、この微少な放射方向移動は、圧電素子と受動部材とを固定する繋ぎ部材23、24や接着剤層の剪断変形によって吸収できる。従って、受動部材12を押動駆動する圧電素子の両端を接着剤等によって受動部材12と基台2とに固定することができ、受動部材12と圧電素子3との間に摺動部やピン結合部部などの誤差が入り込むおそれのある連結構造を介在させない構造とすることができる。
【0010】
受動部材12と受台4とは、撓み部材(実施例の複合板バネ群)21で一体的に連結されており、この受動部材12と受台4との間にも摺動部やピン結合部などの不可避的な遊隙を有する連結構造を有していないので、受動部材12の動きが正確に受台4に固定したフィンガ1や工具などに伝達される。
【0011】
【発明の実施の形態】
以下、図面に示す実施例を参照して、この発明を更に説明する。図1は、この発明の構造でニードルフィンガ1を支持した例を示しており、各部の詳細が図1ないし6に示されている。
【0012】
図中2は基台で、この基台は、微小物品を搬送ないし操作するハンドリング装置のアーム先端や移動台、あるいは微細加工機械のテーブルや加工ヘッドなどに取付られる部材である。3は互いに平行に配置した3本の圧電素子、4は動作対象物を取付ける受台、5は各圧電素子3の軸方向(伸縮方向)延長上に位置して基台2と受台4とを連結している支持脚であり、被動作物であるニードルフィンガ1は、受台4に固定されている。基台2はコラム6の両端に基フランジ7と先フランジ8とを一体に備えた構造で、円周を3等分する位置に3本の圧電素子3が、その基端を基フランジ7に固定して、コラム6と平行に装着されている。以下、この明細書ではコラム6の中心軸方向を軸方向、この中心軸を中心として広がる方向を放射方向、中心軸の軸直角平面内で放射方向と直交する方向を接線方向という(図4参照)。
【0013】
各圧電素子には、変位をフィードバックするための歪ゲージ9が貼着されている。先フランジ8には、圧電素子3の延長部分に放射方向の切欠10が設けられている。
【0014】
各支持脚5は、図5ないし6に示すように、基台2に固定される基板11と、この基板に斜め放射方向の平行板バネ群20で一体に連結した受動部材12と、この受動部材12に第1及び第2繋ぎ板23、24を介在させた複合板バネ群21で一体に連結した台ブラケット13とを備えている。基板11は、ボルト26で前記基台の先フランジ8に固定されており、圧電素子3の延長上部分には、先フランジ8に設けたと同様な放射方向の切欠14が設けられている。
【0015】
圧電素子3は、両端に取付ブロック28、29が接着剤により固定され、基端の取付ブロック28はボルト31で基フランジ7に固定されている。先端の取付ブロック29は、ねじブロック32を介して植込みねじ33で受動部材12に固定されている。ねじブロック32には、これを回動させるための十字孔34が設けられている。
【0016】
基板11と受動部材12とを連結する平行板バネ群20は、互いに平行な4枚の帯板バネ36からなる。各帯板バネは、両端を基板11及び受動部材12に斜めに削り出した溝に両端を嵌め込んで接着されている。4枚の帯板バネは、放射方向に間隔を隔てて外側と内側とに平行に配置されると共に、圧電素子3の連結部を挟んで接線方向に対称に配置されている。各帯板バネ36の撓み方向は、軸方向ないし放射方向内側に傾いた軸方向である。
【0017】
この4枚の帯板バネ36は、放射方向外側と内側のものが平行リンク機構を構成しており、圧電素子3で受動部材12が軸方向に押動されたとき、内側と外側の帯板バネ36が同じ形状で撓んで受動部材12を平行移動させる。帯板バネ36の延在方向が正確に放射方向であれば、この軸方向移動のときに受動部材12は放射方向には変位しないが、図示実施例に示すように、帯板バネ36が傾斜しているときは、受動部材12は軸方向移動に伴って放射方向にも移動する。この放射方向移動は、前述したように圧電素子3と取付ブロック28、29との間の接着剤層やねじブロック32の剪断変形によって吸収できる大きさとすることができる。すなわち、帯板バネ36の方向を放射方向に近付けることにより、受動部材12の軸方向移動に伴う放射方向移動を無視できる程度に小さくすることができる。
【0018】
受動部材12と複合板バネ群の第1繋ぎ板23とは、面を接線方向にして放射方向に間隔を隔てて設けた2枚の短板バネ38によって連結されている。第1繋ぎ板23と第2繋ぎ板24とは、面を斜め放射方向にした互いに平行な4枚の帯板バネ37で連結されている。第2繋ぎ板24と台ブラケット13とは、面を接線方向にして放射方向に間隔を隔てて設けた2枚の短板バネ39で連結されている。これらの板バネ37、38、39の両端は、受動部材12と第1繋ぎ板23、第1繋ぎ板23と第2繋ぎ板24、第2繋ぎ板24と台ブラケット13に削り出された溝に両端を嵌め込んで接着してある。なお、第1繋ぎ板23と第2繋ぎ板24を連結する4枚の帯板バネ37の配置は、前記平行板バネ群20の帯板バネ36の配置と略同一で、その傾斜方向が反対である。
【0019】
この板バネ37、38、39を介した連結により、受動部材12の軸方向移動が台ブラケット13に伝達される一方、台ブラケット13の各方向の傾きが複合板バネ群21で吸収される。
【0020】
上記した構造の支持脚5の3本が、基台2の中心軸を中心とする円周を3等分する位置に、受動部材12が基板11より放射方向外側に位置するようにして配置されている。そして、3本の支持脚の3個の台ブラケット13に1個の受台4がねじ41によって固定されている。受台4には適宜な固定構造により、フィンガ、工具、ワークなどの被動作物が固定される。図1に示した例では、尖った先端を有するニードルフィンガ1が受台と一体の固定ブラケット40に螺合した固定ねじ41で固定されている。
【0021】
上記構造において、基台2の中心軸回りの円周を3等分する位置に配置した3本の圧電素子3に等しい電圧を印可することにより、ニードルフィンガ1の先端を軸方向に進退させることができる。そして、1個の圧電素子にのみ高い電圧を印加すると、ニードルフィンガ1の先端は、放射方向反対側に振れ、この放射方向の振れ動作は、3本の圧電素子3に印可する電圧を制御することにより、その振れ方向と振れ量とを制御できる。従って、上記動作の組み合わせにより、ニードルフィンガ1の先端を3次元的に動作させることができる。
【0022】
そして、圧電素子3に固定された受動部材12が平行リンク機構を構成する平行板バネ群20で支持されているため、圧電素子3に曲げ応力や大きな剪断応力を作用させない。そして、受動部材12と圧電素子3及び基台2と受台4とは、摺動部やピン連結部が存在しない接着ないしねじ締結構造により連結されているので、微少運動の誤差となる遊隙が存在せず、従って圧電素子3の制御により、受台4に装着したフィンガ、工具、ワークなどの被動作物を所望の3次元空間内で正確に運動させることができる。
【図面の簡単な説明】
【図1】実施例の全体構成を示す斜視図
【図2】図1の装置の縦断面図
【図3】図1の装置の支持構造部の縦断面図
【図4】図2の支持構造部の正面図
【図5】1本の支持脚を示す側面図
【図6】1本の支持脚を示す平面図
【符号の説明】
1 ニードルフィンガ
2 基台
3 圧電素子
4 受台
5 支持脚
12 受動部材
20 平行板バネ群
21 複合板バネ群
37 帯板バネ
38 短板バネ
39 短板バネ
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro-operation device used for precision positioning and micro-machining, and more particularly to an apparatus for three-dimensionally operating an operation target using a piezoelectric element.
[0002]
[Prior art]
As a three-dimensional minute operation mechanism using a piezoelectric element as a driving source, there is one disclosed in Japanese Patent Application Laid-Open No. H6-170761. In this publication, a receiving base for fixing an object to be operated, such as a finger, and a base are connected by six piezoelectric elements whose both ends are pivotally connected, and different operating voltages are applied to these six piezoelectric elements. This realizes a three-dimensional operation of the object.
[0003]
Since the piezoelectric element can control minute deformation by voltage control, it is possible to accurately control the micro operation.However, when the reaction force acts on the piezoelectric element as bending stress or tensile stress, the piezoelectric element is damaged. Therefore, it is necessary to consider that the reaction force acts as a compressive force in the axial direction of the piezoelectric element. In addition, the number of piezoelectric elements required for causing the object to perform a desired operation is preferably as small as possible, and the drive control system is simplified, so that the entire apparatus can be manufactured at low cost. Also, the mechanism for converting the axial expansion and contraction movement of the piezoelectric element into a free three-dimensional movement of the object to be operated must have a structure that is as simple as possible and has no play space that causes an error. It is. Therefore, for example, when a pivot structure using a shaft and a hole or a pivot structure using a sphere and a concave spherical surface is used, an unavoidable play space on the sliding surfaces causes an error. In the micro operation device, the desired operation itself of the object to be operated is very small. Therefore, even if the error due to these play gaps is small, the ratio of the error amount to the original operation amount becomes very large.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an operation mechanism for performing a three-dimensional micro operation on an object to be operated by using a piezoelectric element as a drive source under the above-described various constraint conditions. A three-dimensional operation of the object to be operated can be realized, there is no risk of damaging the piezoelectric element due to an operation reaction force, and there are play gaps and sliding parts between members constituting the operation mechanism, which cause errors. It is an object of the present invention to provide a three-dimensional micro operation mechanism.
[0005]
[Means for Solving the Problems]
The three-dimensional operation mechanism for fine work according to the invention of claim 1 of the present application includes a receiving table 4 supported on the base 2 by three or more support legs 5 arranged radially. Each support leg 5 includes a passive member 12 that is pushed by the corresponding piezoelectric element 3 in the axial direction of the corresponding piezoelectric element, and each passive member is positioned radially outward from the base 2. Each passive member 12 and the base 2 are integrally connected by a group of parallel leaf springs 20 that are radially spaced and that bend in the axial direction, and that each passive member 12 and the pedestal 4 are They are integrally connected by a flexure member 21 that flexes in a tangential direction. An object 1 such as a finger, a needle, a fork or the like, which operates in a three-dimensional direction and performs a fine work, is fixedly mounted on the receiving table 4.
[0006]
The parallel leaf spring group 20 preferably includes three or more leaf springs including a leaf spring arranged at intervals in the radial direction and a leaf spring arranged symmetrically with respect to the pressing position of the piezoelectric element 3. It is formed.
[0007]
According to a second aspect of the present invention, the bending member 21 of the three-dimensional operation mechanism for fine work includes a leaf spring 37 which is connected in series and is bent in a radial direction and leaf springs 38 and 39 which are bent in a tangential direction. This is a three-dimensional operation mechanism formed by groups.
[0008]
The cradle 4 is supported by three or more support legs 5 arranged in the radial direction, and each of the support legs is individually driven in the axial direction by the piezoelectric element 3. Therefore, by individually controlling the voltages applied to the three piezoelectric elements 3, the cradle 4 can be tilted in a free direction, whereby the tips of the fingers and tools fixed to the cradle 4 can be moved. It can swing freely in a two-dimensional plane perpendicular to the axis. By applying the same voltage to three or more piezoelectric elements, the pedestal 4 can be moved in the axial direction, and the tips of the fingers, tools, and works fixed to the pedestal 4 can be three-dimensionally combined. Can be exercised arbitrarily.
[0009]
The group of parallel leaf springs 20 connecting the base 2 and the passive member 12 of each support leg constitutes a parallel link mechanism. When the passive member 12 is pushed by the piezoelectric element 3, the passive member 12 is mainly It moves in the axial direction and does not apply bending force to the piezoelectric element. The moving stroke of the piezoelectric element 3 is at most about several tens of microns, and the passive member 12 moves in the axial direction by setting the extending direction of the parallel leaf spring group 20 to the radial direction or the radial direction inclined in the axial direction. In this case, the amount of movement in the radial direction can be made sufficiently small, and the minute movement in the radial direction can be absorbed by shearing deformation of the connecting members 23 and 24 for fixing the piezoelectric element and the passive member and the adhesive layer. Therefore, both ends of the piezoelectric element that pushes and drives the passive member 12 can be fixed to the passive member 12 and the base 2 with an adhesive or the like, and a sliding portion or a pin is provided between the passive member 12 and the piezoelectric element 3. It is possible to adopt a structure that does not interpose a connection structure such as a joint portion where an error may enter.
[0010]
The passive member 12 and the pedestal 4 are integrally connected by a flexible member (composite leaf spring group of the embodiment) 21, and a sliding portion or a pin connection is also provided between the passive member 12 and the pedestal 4. Since there is no connecting structure having an unavoidable play space such as a part, the movement of the passive member 12 is accurately transmitted to the finger 1 or the tool fixed to the receiving table 4.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be further described with reference to embodiments shown in the drawings. FIG. 1 shows an example in which a needle finger 1 is supported by the structure of the present invention, and details of each part are shown in FIGS.
[0012]
In the drawing, reference numeral 2 denotes a base, which is a member attached to an arm tip or a moving base of a handling device for conveying or manipulating minute articles, or a table or a processing head of a fine processing machine. Reference numeral 3 denotes three piezoelectric elements arranged in parallel with each other, 4 denotes a pedestal for mounting an operation target, and 5 denotes a base 2 and a pedestal 4 which are located on the extension of each piezoelectric element 3 in the axial direction (extension and contraction direction). The needle finger 1, which is a support leg that is connected to the moving object, is fixed to the receiving table 4. The base 2 has a structure in which a base flange 7 and a front flange 8 are integrally provided at both ends of a column 6, and three piezoelectric elements 3 are provided at positions that divide the circumference into three equal parts. It is fixed and mounted parallel to the column 6. Hereinafter, in this specification, the direction of the central axis of the column 6 is referred to as the axial direction, the direction extending around the central axis is referred to as the radial direction, and the direction perpendicular to the radial direction in a plane perpendicular to the central axis is referred to as the tangential direction (see FIG. 4). ).
[0013]
A strain gauge 9 for feeding back the displacement is attached to each piezoelectric element. The front flange 8 is provided with a radial cutout 10 at an extension of the piezoelectric element 3.
[0014]
As shown in FIGS. 5 and 6, each support leg 5 includes a substrate 11 fixed to the base 2, a passive member 12 integrally connected to the substrate by a group of parallel leaf springs 20 in oblique radial directions, A base bracket 13 integrally connected to the member 12 by a composite leaf spring group 21 with first and second connecting plates 23 and 24 interposed therebetween. The substrate 11 is fixed to the front flange 8 of the base with bolts 26, and a cutout 14 in the radial direction similar to that provided on the front flange 8 is provided in an extended upper portion of the piezoelectric element 3.
[0015]
The mounting blocks 28 and 29 are fixed to both ends of the piezoelectric element 3 with an adhesive, and the mounting block 28 at the base end is fixed to the base flange 7 with bolts 31. The mounting block 29 at the distal end is fixed to the passive member 12 with a stud 33 via a screw block 32. The screw block 32 is provided with a cross hole 34 for rotating the screw block 32.
[0016]
The parallel leaf spring group 20 that connects the substrate 11 and the passive member 12 includes four strip leaf springs 36 that are parallel to each other. Both ends of each band leaf spring are fitted and adhered to grooves obliquely cut into the substrate 11 and the passive member 12. The four strip springs are arranged parallel to the outside and the inside at intervals in the radial direction, and are arranged symmetrically in the tangential direction with the connecting portion of the piezoelectric element 3 interposed therebetween. The bending direction of each band spring 36 is an axial direction or an axial direction inclined radially inward.
[0017]
The four band springs 36 constitute a parallel link mechanism in the radially outer and inner directions. When the piezoelectric element 3 pushes the passive member 12 in the axial direction, the inner and outer band plates 36 are moved. The spring 36 flexes in the same shape and translates the passive member 12. If the extending direction of the band spring 36 is exactly the radial direction, the passive member 12 will not be displaced in the radial direction during this axial movement, but as shown in the illustrated embodiment, the band spring 36 is inclined. In this case, the passive member 12 also moves in the radial direction along with the axial movement. As described above, the radial movement can be set to a size that can be absorbed by the adhesive layer between the piezoelectric element 3 and the mounting blocks 28 and 29 and the shear deformation of the screw block 32. That is, by making the direction of the band spring 36 closer to the radial direction, the radial movement accompanying the axial movement of the passive member 12 can be reduced to a negligible degree.
[0018]
The passive member 12 and the first connecting plate 23 of the composite leaf spring group are connected to each other by two short leaf springs 38 which are spaced apart in the radial direction with their faces tangential. The first connecting plate 23 and the second connecting plate 24 are connected to each other by four parallel band springs 37 whose surfaces are in oblique radial directions. The second connecting plate 24 and the base bracket 13 are connected to each other by two short leaf springs 39 that are provided with a surface in a tangential direction and are spaced apart in a radial direction. Both ends of these leaf springs 37, 38, and 39 are formed by cutting the passive member 12 and the first connecting plate 23, the first connecting plate 23 and the second connecting plate 24, and the second connecting plate 24 and the base bracket 13. Both ends are fitted and adhered. Note that the arrangement of the four band springs 37 connecting the first connecting plate 23 and the second connecting plate 24 is substantially the same as the arrangement of the band springs 36 of the parallel leaf spring group 20, and their inclination directions are opposite. It is.
[0019]
By the connection via the leaf springs 37, 38, 39, the axial movement of the passive member 12 is transmitted to the base bracket 13, while the inclination of the base bracket 13 in each direction is absorbed by the composite leaf spring group 21.
[0020]
The three supporting legs 5 having the above-described structure are arranged at positions where the circumference around the center axis of the base 2 is divided into three equal parts so that the passive member 12 is located radially outside the substrate 11. ing. One pedestal 4 is fixed to three pedestal brackets 13 of three support legs by screws 41. An object to be operated such as a finger, a tool, or a work is fixed to the receiving table 4 by an appropriate fixing structure. In the example shown in FIG. 1, the needle finger 1 having a sharp tip is fixed by a fixing screw 41 screwed to a fixing bracket 40 integrated with the receiving table.
[0021]
In the above structure, the tip of the needle finger 1 is advanced and retracted in the axial direction by applying the same voltage to the three piezoelectric elements 3 arranged at a position where the circumference around the central axis of the base 2 is equally divided into three. Can be. When a high voltage is applied to only one piezoelectric element, the tip of the needle finger 1 oscillates in the direction opposite to the radiation direction, and the oscillating operation in the radiation direction controls the voltage applied to the three piezoelectric elements 3. Thus, the direction and amount of the shake can be controlled. Therefore, the tip of the needle finger 1 can be three-dimensionally operated by a combination of the above operations.
[0022]
Since the passive member 12 fixed to the piezoelectric element 3 is supported by the group of parallel leaf springs 20 constituting the parallel link mechanism, no bending stress or large shear stress is applied to the piezoelectric element 3. Since the passive member 12 and the piezoelectric element 3 and the base 2 and the pedestal 4 are connected by an adhesive or screw fastening structure in which a sliding portion or a pin connecting portion does not exist, a play gap which causes an error in a minute motion. Therefore, an object such as a finger, a tool, or a work mounted on the receiving table 4 can be accurately moved in a desired three-dimensional space by controlling the piezoelectric element 3.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the overall configuration of an embodiment. FIG. 2 is a longitudinal sectional view of the apparatus of FIG. 1. FIG. 3 is a longitudinal sectional view of a support structure of the apparatus of FIG. 1. FIG. FIG. 5 is a side view showing one support leg. FIG. 6 is a plan view showing one support leg.
DESCRIPTION OF SYMBOLS 1 Needle finger 2 Base 3 Piezoelectric element 4 Cradle 5 Support leg 12 Passive member 20 Parallel leaf spring group 21 Composite leaf spring group 37 Band leaf spring 38 Short leaf spring 39 Short leaf spring

Claims (2)

放射状に配置された3本以上の支持脚(5)で基台(2)に支持された受台(4)を備え、各支持脚はそれぞれの圧電素子(3)で軸方向に押動される受動部材(12)を備え、各受動部材は基台(2)より放射方向外側に位置し、各受動部材と基台(2)とは放射方向に間隔を隔てて配置した軸方向に撓む平行板バネ群(20)で一体に連結され、各受動部材と受台(4)とは放射方向及び接線方向に撓む撓み部材(21)で一体に連結されており、前記受台に被動作物(1)が固定される、微細作業用3次元動作機構。A pedestal (4) supported on the base (2) with three or more support legs (5) arranged radially is provided, and each support leg is pushed in the axial direction by a corresponding piezoelectric element (3). Passive members (12), each passive member being located radially outward from the base (2), and each passive member and the base (2) being flexed in an axial direction spaced apart in a radial direction. The passive members and the pedestal (4) are integrally connected by a flexible member (21) that bends in a radial direction and a tangential direction, and is connected to the pedestal. A three-dimensional operation mechanism for fine work in which the object (1) is fixed. 前記撓み部材が直列に連結された放射方向に撓む板バネ(37)と接線方向に撓む板バネ(38,39)とを含む板バネ群(21)で形成されている、請求項1記載の3次元動作機構。The said flexible member is formed of the leaf spring group (21) which contains the leaf spring (37) and the leaf spring (38,39) which bend in the tangential direction connected in series. A three-dimensional operating mechanism according to claim 1.
JP2002185163A 2002-06-25 2002-06-25 Three-dimensional operation mechanism for minute work Pending JP2004025360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185163A JP2004025360A (en) 2002-06-25 2002-06-25 Three-dimensional operation mechanism for minute work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185163A JP2004025360A (en) 2002-06-25 2002-06-25 Three-dimensional operation mechanism for minute work

Publications (1)

Publication Number Publication Date
JP2004025360A true JP2004025360A (en) 2004-01-29

Family

ID=31180892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185163A Pending JP2004025360A (en) 2002-06-25 2002-06-25 Three-dimensional operation mechanism for minute work

Country Status (1)

Country Link
JP (1) JP2004025360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994023B2 (en) 2007-08-10 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of SOI substrate and semiconductor device
CN103950027A (en) * 2014-04-24 2014-07-30 南京航空航天大学 Linear supersonic motor-based two-finger parallel connection micro operation hand and operation method
CN105881505A (en) * 2016-05-16 2016-08-24 安庆米锐智能科技有限公司 Special inspection robot for electric power distribution cabinet
CN107720691A (en) * 2017-11-02 2018-02-23 南京航空航天大学 Six degree of freedom is double to refer to micro-/nano operating device in parallel and its operating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994023B2 (en) 2007-08-10 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of SOI substrate and semiconductor device
CN103950027A (en) * 2014-04-24 2014-07-30 南京航空航天大学 Linear supersonic motor-based two-finger parallel connection micro operation hand and operation method
CN105881505A (en) * 2016-05-16 2016-08-24 安庆米锐智能科技有限公司 Special inspection robot for electric power distribution cabinet
CN107720691A (en) * 2017-11-02 2018-02-23 南京航空航天大学 Six degree of freedom is double to refer to micro-/nano operating device in parallel and its operating method

Similar Documents

Publication Publication Date Title
KR970010616B1 (en) Micro manipulator
CN100533799C (en) Positioner device
JP2005268760A (en) Stage apparatus
CN102446563A (en) Three-degree-of-freedom microoperation orthogonal parallel operating platform used for ultraprecise location
US4600854A (en) Piezoelectric stepping rotator
JP2005511333A (en) Micromanipulator including piezoelectric bender
CN109514594A (en) A kind of piezo mechanical hand and its control method based on spherical joint
JP4838865B2 (en) Piezoelectric motor and electronic device with piezoelectric motor
JP2006322714A (en) Motion stage
JP2004506529A (en) Device for multi-axially and precisely adjustable support of components
JP2004025360A (en) Three-dimensional operation mechanism for minute work
JP2013052487A (en) Parallel mechanism and positioning device using parallel mechanism
JP3434709B2 (en) Table mechanism
US7284459B2 (en) Remote center of rotation positioning device
JP2021013991A (en) Needle gripper and actuator
JP2003062773A (en) Micromanipulator
JPH0386434A (en) Precision stage device
JP4946770B2 (en) Adjustment stage and adjustment stage apparatus
JP3772005B2 (en) Moving device and scanning probe microscope having the moving device
JP2000009867A (en) Stage moving device
JP7547173B2 (en) Vibration actuator, multi-axis stage, multi-joint robot and device
JP4803462B2 (en) manipulator
JP2019170079A (en) Vibration type actuator and device
JPH08318482A (en) Hinge mechanism and micro manipulator using it
JP2773781B2 (en) Precision fine movement stage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Effective date: 20061107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619