JP2004023806A - Motor cooling structure - Google Patents

Motor cooling structure Download PDF

Info

Publication number
JP2004023806A
JP2004023806A JP2002171182A JP2002171182A JP2004023806A JP 2004023806 A JP2004023806 A JP 2004023806A JP 2002171182 A JP2002171182 A JP 2002171182A JP 2002171182 A JP2002171182 A JP 2002171182A JP 2004023806 A JP2004023806 A JP 2004023806A
Authority
JP
Japan
Prior art keywords
seal member
stator
electric machine
tip
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002171182A
Other languages
Japanese (ja)
Inventor
Hirofumi Shimizu
清水 宏文
Masakazu Kobayashi
小林 正和
Noboru Hattori
服部 昇
Masaru Owada
大和田 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002171182A priority Critical patent/JP2004023806A/en
Publication of JP2004023806A publication Critical patent/JP2004023806A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it easy to replace opening-of-slots closing members, in a dynamo-electric machine in which the slots of a stator that store coils are used as coolant passages. <P>SOLUTION: Provided with a plurality of slots 7 that store the coils 3b, this structure comprises a cylindrical stator core 3a on the inside circumferential surface of which the openings of the slots 7 are provided, the coils 3b wound on the teeth 6 of the stator core 3a, and rubber sealing members 20 that close the openings of the slots 7. The slots 7 that are closed by the sealing members 20 are used as the coolant passages 15, with the sealing members 20 supported between the sides 21a of the tips of the neighboring teeth 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は回転電機の冷却構造に関する。
【0002】
【従来の技術】
コイルを収容するステータのスロットを冷媒通路として利用するために、ステータの内周面に開口するスロットの開口部を、樹脂のモールド成形によって閉塞する方法が特開平4−364343号公報に開示されている。
【0003】
【解決すべき課題】
しかしながら前記従来技術では、モールド成形に不良があった場合、またはモールドの劣化、破損などによって十分なシール性が得られなくなった場合には、樹脂材を取り去り、再度モールド成形を行うことになるが、この樹脂を取り去る作業の際にステータコアを構成する薄板状の電磁鋼板を損傷してしまう可能性が高い。
【0004】
本発明はこのような問題を解決するために提案されたもので、ゴム製のシール部材によってスロットの開口部を閉塞することによって、確実なシール性を実現しつつ、シール性に不良があった場合のシール部材の交換を容易にするものである。
【0005】
【課題を解決するための手段】
ケースに収めたステータとロータから構成され、前記ステータのステータコアのスロットにコイルを収容し、前記ステータ内周面に開口するスロットの開口部を閉塞してスロット内部に冷媒通路を形成し、前記ステータコアの隣り合うティース先端部の側面間でゴム製のシール部材を挟する。
【0006】
【作用・効果】
本発明によれば、ゴム製のシール部材はティースの先端部側面で挟持されているだけなので、シール部材の不良、劣化、破損などにより十分なシール性が得られなくなった場合に、シール部材の交換が容易に行える。
【0007】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。
【0008】
図1、2に回転電機の全体構成を示す。図1は図2のB−B矢視図、図2は図1の矢視図である。
【0009】
この回転電機はケース1、ロータ2、ステータ3から構成され、モータやジェネレータとして機能するものである。
【0010】
ケース1は円筒板1aと、この円筒板1aの軸方向の両端を閉塞する側板1b、1cとで構成される。側板1b、1cは中心部に軸受支持用のハウジング1dを有し、円筒板1aにボルト等(図示せず)で固定される。
【0011】
ロータ2は円柱形状のロータコア2aと、ロータコア2aの軸心を貫通する回転軸2bとで構成され、前記回転軸2bの両端が軸受4を介して前記ハウジング1dに回転自由に支持されてケース1の内部に収容される。
【0012】
ステータ3は、円筒状に配列される分割ステータコア3cとステータコイル3bとで構成され、ケース1の円筒板1aの内側に嵌合される。したがってステータ3はケース1に対して固定された状態となっている。また、ステータ3の軸方向の両端面には樹脂製のエンドプレート8、9を設置する。
【0013】
図3(図1のC−C矢視図)にステータ3の詳細を示す。
【0014】
ステータコア3aは円筒板1aの内周に沿う形状のバックコア5と、そこから半径方向内側にむかって突出したティース6を備え、このティース6にステータコイル3bを集中巻きする。また、ティース6の先端に、その側面から周方向に突出する突起部21を設け、その突起部先端面21aは隣り合うティース6の突起部先端面21aと所定の間隔もって対向させる。これにより、それぞれ隣り合うティース6の間には軸方向へ延びる溝状のスロット7が形成される。
【0015】
なお、ステータコア3aを円周方向に分割可能な構造としたのは、製造工程において、ティース6にステータコイル3bを集中巻きする工程を容易にするためである。ステータ3の製造工程を簡単に説明すると、まず、略T字形状の電磁鋼板を多数積層して分割コア3c´(バックコア5の一部と一つのティース6とからなる)を得た後、両端にティース6と同形状の樹脂製エンドプレート8、9を配置した上でティース6にステータコイル3bを巻き回して分割ステータを得る。
【0016】
こうして得た分割ステータ3cを複数個(本実施例では12個)組み合わせて円筒状のステータ3とし、円筒板1aの内部へ組み上げたステータ3を圧入する。
【0017】
この圧入によって、隣接する分割コアのバックコア5が互いに密接するので、磁気性能上は一体のステータコアを使用した場合と変わりがない。
【0018】
上記の回転電機において、図1に示すように、ケース1の側板1bに、ステータ3の内径とほぼ等しい内径を持つ短い円筒部材10をステータ3と同心的に取り付け、ステータ3の一端(エンドプレート8の側面)との隙間をゴム製のリング状シール部材22(以下シール部材22)で閉塞する。これにより、円筒板1aの内周面と、側板1bの内側の側面と、円筒部材10の外周面と、ステータ3の一端とで環状の第一冷却液室11が形成される。第一冷却液室11には円周板1aを貫通するオイル供給口14を設ける。
【0019】
上記と同様に、側板1cにはステータ3の内径とほぼ等しい内径を持つ円筒部材12を取り付け、ステータ3の他端(エンドプレート9の側面)との隙間をゴム製のリング状シール部材23(以下シール部材23)で閉塞する。これにより円筒板1aの内周面と、側板1cの内側の側面と、円筒部材12の外周面と、ステータ3の一端とで環状の第二冷却液室13が形成される。第二冷却液室には円筒板1aを貫通するオイル排出口16を設ける。
【0020】
なお、シール部材22は円筒部材10のステータ側の端面とエンドプレート8の側面で挟持することになる。シール部材22の直径(太さ)は、円筒部材10を設置した側板1bを円筒板1aに固定する際に、円筒部材10とエンドプレート8の側面との間に形成される隙間22aの寸法よりも十分に大きく設定する。
【0021】
これによりシール部材22は、ケース1の軸方向に押し潰された状態で挟持されることになり、十分なシール性を発揮する。
【0022】
シール部材23の直径(太さ)についても同様に、円筒部材12とエンドプレート9の間に形成される隙間23aの寸法より十分大きく設定する。
【0023】
また、本実施形態では、図3に示すように、前記ティース6の互いに向かい合う突起部先端面21aの隙間25を棒状のシール部材20(以下シール部材20)によって閉塞して、スロット7を冷媒通路15として利用する。冷却用オイルが冷媒通路15からロータ側の空間へ漏れないように確実にシールするために、シール部材20の直径は対向する突起部先端面21aの間に形成される隙間25の寸法より十分に大きく設定し、押し潰された状態で隣り合う二つの突起部先端面21aの間に挟持されるようにする。
【0024】
以上により、オイル供給口14から第一冷却液室11に供給された冷却用オイルは、ロータ側の空間に漏れることなく、ステータ3内部の通路15を通って反対側の第二冷却液室13へ流れ、オイル排出口16から排出される。
【0025】
図4にステータ3の内周面(図3のD矢視図)を示す。
【0026】
円筒部材10、12の内周径をステータ3の内周径とほぼ等しくしてあるので、図4に示すようにシール部材20の両端がリング状のシール部材22、23と当接することとなる。そこで、本実施形態ではシール部材20、22、23を一体の部材として形成した。シール部材20とシール部材22、23は直角に接続されるので、接続部分のシール性が他の部分のシール性よりも劣る可能性がある。そこで、エンドプレート8、9の角63、64に円弧部を形成する(Rを付ける)とともに、シール部材20とシール部材22、23の接続部分61、62にもエンドプレート8、9のRと同様のRを付けてある。
【0027】
したがってこの実施形態によれば冷媒通路15を形成するためにスロット7の開口部19を閉塞するシール部材20はステータコア3の隣り合うティース6の先端部側面に設けられた突起21の先端21aで挟持されているだけなので、シール部材20の不良、劣化、破損などにより十分なシール性が得られなくなった場合に、シール部材20の交換が容易に行うことができる。
【0028】
また、シール部材20、22、23は一体に形成されているので、シール部材20、22、23の取り扱いが容易となり、別々に装備するのに比べて組み立て工数を低減できる。
【0029】
第二の実施形態について図5を用いて説明する。
【0030】
第一の実施形態と基本的には同様の構成から成るが、図5に示すとおり、スロット7の開口部19を閉塞するシール部材24の断面形状とこれを挟持するティース6の突起部21の先端形状が第一の実施形態とは異なる。突起部21の先端には、スロット7側の斜面21bとロータ側の斜面21cを形成し、隣り合うティース6の斜面21b間の距離はティース6の先端側にいくほど小さくする(W1>W2)。また、斜面21c間の距離は斜面21bとは逆にティース6の先端に行くほど大きくする(W1<W2)。
【0031】
ゴム製のシール部材24(以下シール部材24)には、突起部21の斜面21b、21cの形状に合わせた溝24dを設け、斜面21bと接する面を斜面24b、斜面21cと接する面を斜面24cとする。また、スロット7側の面にも軸方向へ延びるV型の溝24aを設ける。
【0032】
このようにして本実施形態では、W1>W2であることから、冷媒通路15内のオイル圧力がシール部材24に作用した際に、シール部材24が抜け落ちる恐れがなく、さらに、オイル圧力によって溝24aが押し広げられ、シール部材24の側面24bが平面21bに密着するので確実なシール性が得られる。また、シール部材24配置のためにステータ3内周側からシール部材24を突起部21の隙間に押し込む作業については、溝24a部分を利用してシール部材24を折り込むことによって、良好な作業性が得られる。
【0033】
第三の実施形態について図7を用いて説明する。
【0034】
第一の実施形態と基本的には同様の構成から成るが、図7に示すとおり、ティース6の突起部21の先端形状が第一の実施形態とは異なる。突起部21の先端には、スロット7側の斜面21dとロータ側の斜面21eとによりV型の溝65を形成する。隣り合うティース6の斜面21d間の距離はティース6先端側ほど大きく、斜面21e間の距離はティース6先端ほど小さくする(W3<W4)。
【0035】
シール部材20は第一の実施形態と同様に円形断面である。ただし、本実施形態の場合はステータ3の内周側から突起部21の間にシール部材20を押し込むことが困難である。そこで、分割ステータ3cを円筒状に組み立てる際に、シール部材20の配置も同時に行うことにする。例えば図8に示すような、外径を変えることが可能な略円筒状の治具60(以下治具60)にシール部材20をセットし、シール部材20の間に分割ステータ3cをセットした後、すべての分割ステータ3cを同時に半径方向内向きに移動させればステータ3の組み立てとシール部材20の配置とを同時に行うことができる。
【0036】
治具60は、ブロック73と、複数のテーブル72と、テーブル72を支持する脚部71と、脚部71を収める摺動溝70から構成される。
【0037】
複数の摺動溝70はブロック73に放射状に設けられており、ブロック73の外周方向が開口している。各摺動溝70には脚部71が摺動可能に収められ、各脚部71はシリンダ70から突出した先端部でテーブル72を支持する。したがってテーブル72によって治具60の外周は略円形に形成され、治具60は略円筒形状となる。また、脚部71は油圧、空圧などによって駆動されるが、すべての脚部71が同時に、かつ同方向に同じ量だけ動くように制御される。したがって治具60は常に略円筒形状に保たれる。また、脚部71の動きによって治具60の外周が最小になった場合に、その外径がステータ3の内径よりも小さくなるように設計されている。
【0038】
テーブル72は外周部で分割ステータ3cおよびシール部材20を保持可能な構造とする。
【0039】
したがって、治具60の外径がステータ3の内径よりも大きい状態に保ち、テーブル72にシール部材20を配置し、隣り合うシール部材20の間に分割ステータ3cを配置した後、脚部71を治具60の外径が小さくなる方向に動かすことにより、隣り合う分割ステータ3cは近づき、当接した時点でステータコア3aが形成されると同時に、隣り合うV溝65の間でシール部材20が挟持される。
【0040】
なお、本実施形態のシール部材20は第一の実施形態と同様に、リング状のシール部材22、23と一体化されており、図8に示すとおり円筒形状となっている。このため、治具60へのセットが簡単にでき、作業性を円滑に進めることができる。
【0041】
以上により、本実施形態では単純な円形断面のシール部材20を確実に保持することができ、さらに、冷媒通路15内の圧力によってシール部材20が斜面21eに押し付けられ、良好なシール性を得られる。
【0042】
第四の実施形態について図10から12を用いて説明する。
【0043】
基本的には第一の実施形態と同様の構成から成るが、図11に示すとおりスロット7の開口部を閉塞するシール部材33の断面形状とこれを挟持するティース6形状が第一の実施形態とは異なる。
本実施形態のティース6は先端部の側面に突起部を有しておらず、代わりに円筒面30と斜面31とで作られる溝32を設ける。円筒面30はステータ3と同軸な円筒面の一部である。また、隣り合うティース6の斜面31間の距離は、ティース6先端に行くほど小さくなる(W5>W6)。
【0044】
本実施形態では隣り合うティース6の溝32の間をゴム製のシール部材33で閉塞する。シール部材33は、第3の実施形態と同様に両端にシール部材22と23が一体に形成されており、表面は容易に弾性変形するゴムであるが、ステータ3の磁気特性に影響しないよう非磁性体材料で作られた硬質の芯33aを内部に入れることで全体の剛性を上げてある。
【0045】
なお、隣り合う斜面31間の距離がティース6の先端側にいくほど小さくなっているので、前記第三の実施形態と同様に、ステータ3の内周側から溝32の間にシール部材33を押し込むことは困難である。そこで、本実施形態でも第三の実施形態と同様に治具60を用いて、分割ステータ3cを円筒状のステータ3に組み立てる際に同時にシール部材33の配置を行うこととする。
【0046】
このように、芯33によってシール部材33の全体の剛性をあげ、かつ隣り合う斜面31間の距離はティース6の先端に行くほど小さくなっているので、冷媒通路15の圧力によって、シール部材33が変形して溝32から脱落したりオイル漏れを起こすようなことを防止し、かつ十分なシール性を実現できる。
【0047】
第五の実施形態について図13から図16を用いて説明する。
【0048】
本実施例は基本的に第四の実施例と同じで構成である。第四の実施例との差異は、シール部材34の芯34aが抜き差し可能であるということである。図16は芯34aを差し込んでいない時のシール部材34である。シール部材34には芯34aを差し込むためのスリット状の孔34bが設けられ、この孔34bは芯34aより寸法を若干小さくしてあり、孔34bに芯34aを差し込むと、シール部材34の外形が若干大きくなる。
【0049】
溝32にシール部材34を配置する際には、芯34aを差し込んでいない状態でシール部材34をステータ3の内周側から押し込み、溝32に収まった後で芯34aを軸方向から孔34bに差し込む。芯34aを差し込む前のシール部材34は剛性が低く、かつ寸法が隣り合う溝32が形成する隙間よりも若干小さいため、容易に押し込むことができる。
【0050】
なお、図13、15に示す通り、芯34aの軸方向の長さはシール部材34の本体部分の軸方向の長さより長い。したがって芯34aをシール部材34に差し込むと、その両端がシール部材34から突出する。この突出部分は円筒部材10、12のステータ3側先端面に設けたスリット10a、12aに収容する。
【0051】
以上により、本実施形態ではシール部材34は溝32に配置した後、芯34aを差し込むことによって寸法が若干大きくなり剛性もあがるので、良好なシール性が得られる。
【0052】
また、シール部材34から突出した芯34aを円筒部材10、12のステータ3側先端面に設けたスリット10a、12aに収容することによって、シール部材34が溝32から抜け落ちにくくなる。
【0053】
第六の実施形態について図17を用いて説明する。
【0054】
本実施形態は基本的に前記第五の実施形態と同じ構成であるが、芯34aの替わりに、ステータ3の軸方向略中央で分割された芯34cを使用する点が異なる。芯34cはそれぞれ対応する側の円筒部材10、12と一体化されており、円筒部材10、12が取り付けられた側板1b、1cを円筒板1aに取り付ける際に、芯34cをシール部材34の孔34bに軸方向の両側から差し込むようにする。これにより、確実なシール性を実現しつつ、組み立て工程を簡略化できる。
【0055】
第七の実施形態について図18から20を用いて説明する。
【0056】
本実施形態では、第一、第二冷却液室11、13を画成するための円筒部材41、42を、硬質の芯41a、42aを内包したゴム製とし、かつ冷媒通路15を形成するために隣り合うティース6間に配置されるシール部材40と一体化する。また、側板1b、1cには円筒部材41、42の先端を受ける溝43を設ける。
【0057】
なお、本実施形態では、芯41a、42aを内包しているため、第三の実施形態と同様に治具60によって、一体化されたシール部材40、41、42の配置をステータ3の組み立てと同時に行う。
【0058】
このように円筒部材41、42を芯41a、42aを内包したゴム製とし、シール部材40と一体化したので、確実なシール性を実現しつつ組み立て工程を簡略化できる。
【0059】
第八の実施形態について図21、22を用いて説明する。
【0060】
本実施形態は基本的に前記第一の実施形態と同じであるが、棒状のシール部材20の替わりに円形断面を有する棒状のシール部材50(以下シール部材50)を使用する。ただしシール部材50は、他の部材とは一体化しない。また、シール部材50の長さはステータ3の軸方向の長さよりも若干長くなっている。
【0061】
円筒部材51、52のステータ3側先端面には全周にゴム53、54を溶着する。円筒部材51、52を取り付けた状態の側板1b、1cを円筒板1aに取り付けると、ゴム53、54がステータ3の端面に密着するようになっている。
【0062】
ティース6の突起部21の先端には半円の凹溝21fを設ける。凹溝21fはシール部材50の直径とほぼ等しい円筒面の一部である。隣り合うティース6の凹溝21f間の距離は、ティース6の先端側の距離W3がシール部材50の直径よりも僅かに小さくなっている。なお、図21は側板1b、1cを取り付ける前の状態であり、この状態では凹溝21fとシール部材50との間にわずかな隙間が生じている。
【0063】
突起部21の間にシール部材50を配置する際には、ステータ3の内周側から隙間に押し込む。この作業は凹溝21f間の距離W3とシール部材50の直径との差が僅かなので、比較的容易に行うことができる。シール部材50を配置した後に側板1b、1cを取り付けると、シール部材50が軸方向に押し縮められ、長さが短くなった分だけ直径が大きくなり、円筒面21fにシール部材50が密着してシールが完成する。
【0064】
これにより、治具60を用いることなく用意に組み立てが可能になり、かつ十分なシール性を実現できる。
【0065】
したがって、シール部材50の直径は突起部21の先端間の距離よりも僅かに大きいだけなので、治具60を使わずに容易にシール部材50を突起部21間に配置することができ、なおかつ側板1b、1cを取り付けることによってシール部材50は押し縮められて長さが短くなった分直径が大きくなるので、円筒面21fに密着し、確実なシール性が実現できる。
【0066】
なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で様々な変更を成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の第一実施形態であるモータの断面図。
【図2】図1のA−A断面図。
【図3】ステータの詳細図(図1のC−C断面図)。
【図4】ステータの内周面(図3のD矢視図)。
【図5】本発明の第二の実施形態のステータの詳細図。
【図6】本発明の第二の実施形態で使用するゴム製シール部材の拡大断面図。
【図7】本発明の第三の実施形態のステータの詳細図。
【図8】ステータ、シール材の組み立てに用いる治具の説明図。
【図9】一体化したシール材の全体図。
【図10】第四の実施形態のモータの断面図。
【図11】第四の実施形態のステータの詳細図。
【図12】第四の実施形態のステータの内周面の詳細図。
【図13】第五の実施形態のモータの断面図。
【図14】第五の実施形態のステータの詳細図。
【図15】第五の実施形態のステータの内周面の詳細図。
【図16】第五の実施形態のステータの詳細図。
【図17】第六の実施形態のステータ内周面の詳細図。
【図18】第七の実施形態のモータの断面図。
【図19】第七の実施形態のステータの詳細図。
【図20】第七の実施形態のステータの内周面の詳細図。
【図21】第八の実施形態のモータの断面図。
【図22】第八の実施形態のステータの詳細図。
【符号の説明】
1 ケース
1a円筒板
1b、c側板
1d ハウジング
2 ロータ
2aロータコア
2b回転軸
3ステータ
3aステータコア
3bステータコイル
3c分割ステータ
4軸受
5バックコア
6ティース
7スロット
8,9エンドプレート
10,12円筒部材
10a,12aスリット
11,13冷却液室
14オイル供給口
15冷媒通路
16オイル排出口
20ゴム製の棒状シール部材
21突起部
21a突起部先端面
21b、c、d、e突起部先端面
21f円筒面
22,23ゴム製シール部材
24ゴム製シール部材
24a、d溝
24b、c、d、eシール部材側面
30円筒面
31平面
32溝
33,34ゴム製シール部材
33a,34a芯(非磁性体)
34b芯挿入用の孔
34c分割された芯
40ゴム製シール部材
40a芯(非磁性体)
41,42ゴム製の円筒部材
41a,42a円筒状の芯
50ゴム製シール部材
51,52円筒部材
53,54 51,52に溶着したゴム製シール部材
60治具
70摺動溝
71脚部
72テーブル
73ブロック
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling structure for a rotating electric machine.
[0002]
[Prior art]
Japanese Unexamined Patent Publication No. 4-364343 discloses a method of closing the opening of a slot opened on the inner peripheral surface of the stator by resin molding in order to use the slot of the stator accommodating the coil as a coolant passage. I have.
[0003]
【task to solve】
However, in the conventional technique, when there is a defect in molding, or when sufficient sealing properties cannot be obtained due to deterioration, breakage, etc. of the mold, the resin material is removed and molding is performed again. At the time of removing the resin, there is a high possibility that the thin electromagnetic steel sheet constituting the stator core will be damaged.
[0004]
The present invention has been proposed in order to solve such a problem. By closing the opening of the slot with a rubber sealing member, the sealing performance was poor while realizing a reliable sealing performance. This facilitates replacement of the seal member in such a case.
[0005]
[Means for Solving the Problems]
The stator core comprises a stator and a rotor housed in a case, accommodates a coil in a slot of a stator core of the stator, closes an opening of a slot opened on an inner peripheral surface of the stator to form a refrigerant passage inside the slot, A rubber seal member is sandwiched between the side surfaces of the adjacent tooth tips.
[0006]
[Action / Effect]
According to the present invention, since the rubber seal member is only sandwiched between the side surfaces of the tips of the teeth, when a sufficient seal property cannot be obtained due to failure, deterioration, breakage, etc. of the seal member, the seal member is Exchange is easy.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
1 and 2 show the overall configuration of the rotating electric machine. FIG. 1 is a view taken in the direction of arrows BB in FIG. 2, and FIG. 2 is a view taken in the direction of arrows in FIG.
[0009]
This rotating electric machine includes a case 1, a rotor 2, and a stator 3, and functions as a motor or a generator.
[0010]
The case 1 includes a cylindrical plate 1a and side plates 1b and 1c for closing both ends in the axial direction of the cylindrical plate 1a. The side plates 1b and 1c have a housing 1d for bearing support at the center, and are fixed to the cylindrical plate 1a by bolts or the like (not shown).
[0011]
The rotor 2 includes a cylindrical rotor core 2a and a rotating shaft 2b penetrating the axis of the rotor core 2a. Both ends of the rotating shaft 2b are rotatably supported by the housing 1d via bearings 4 and the case 1 Housed inside.
[0012]
The stator 3 includes a divided stator core 3c and a stator coil 3b arranged in a cylindrical shape, and is fitted inside the cylindrical plate 1a of the case 1. Therefore, the stator 3 is fixed to the case 1. End plates 8 and 9 made of resin are provided on both end surfaces of the stator 3 in the axial direction.
[0013]
FIG. 3 (a view taken in the direction of the arrows CC in FIG. 1) shows details of the stator 3.
[0014]
The stator core 3a includes a back core 5 shaped along the inner periphery of the cylindrical plate 1a, and teeth 6 projecting radially inward therefrom. The stator coil 3b is concentratedly wound around the teeth 6. Further, a projection 21 projecting from the side surface of the tooth 6 in the circumferential direction is provided at the tip of the tooth 6, and the projection tip surface 21 a is opposed to the projection tip surface 21 a of the adjacent tooth 6 at a predetermined interval. Thereby, a groove-like slot 7 extending in the axial direction is formed between the adjacent teeth 6.
[0015]
The reason why the stator core 3a can be divided in the circumferential direction is to facilitate the process of concentratedly winding the stator coil 3b around the teeth 6 in the manufacturing process. The manufacturing process of the stator 3 will be briefly described. First, a plurality of substantially T-shaped electromagnetic steel sheets are laminated to obtain a divided core 3c ′ (consisting of a part of the back core 5 and one tooth 6). After arranging resin end plates 8 and 9 having the same shape as the teeth 6 at both ends, the stator coil 3b is wound around the teeth 6 to obtain a divided stator.
[0016]
A plurality of (12 in this embodiment) split stators 3c thus obtained are combined into a cylindrical stator 3, and the assembled stator 3 is press-fitted into the inside of the cylindrical plate 1a.
[0017]
By this press-fitting, the back cores 5 of the adjacent split cores come into close contact with each other, so that there is no difference in magnetic performance from the case of using an integral stator core.
[0018]
In the above rotating electric machine, as shown in FIG. 1, a short cylindrical member 10 having an inner diameter substantially equal to the inner diameter of the stator 3 is mounted concentrically with the stator 3 on the side plate 1b of the case 1, and one end of the stator 3 (end plate) 8 is closed by a rubber ring-shaped seal member 22 (hereinafter referred to as a seal member 22). Thereby, an annular first coolant chamber 11 is formed by the inner peripheral surface of the cylindrical plate 1a, the inner side surface of the side plate 1b, the outer peripheral surface of the cylindrical member 10, and one end of the stator 3. The first coolant chamber 11 is provided with an oil supply port 14 penetrating through the circumferential plate 1a.
[0019]
Similarly to the above, the cylindrical member 12 having an inner diameter substantially equal to the inner diameter of the stator 3 is attached to the side plate 1c, and a gap with the other end of the stator 3 (side surface of the end plate 9) is formed by a rubber ring-shaped seal member 23 ( Hereinafter, it is closed by the sealing member 23). Thus, an annular second coolant chamber 13 is formed by the inner peripheral surface of the cylindrical plate 1a, the inner side surface of the side plate 1c, the outer peripheral surface of the cylindrical member 12, and one end of the stator 3. The second cooling liquid chamber is provided with an oil discharge port 16 penetrating through the cylindrical plate 1a.
[0020]
The seal member 22 is sandwiched between the end surface of the cylindrical member 10 on the stator side and the side surface of the end plate 8. The diameter (thickness) of the seal member 22 is smaller than the size of the gap 22a formed between the cylindrical member 10 and the side surface of the end plate 8 when the side plate 1b on which the cylindrical member 10 is installed is fixed to the cylindrical plate 1a. Also set large enough.
[0021]
As a result, the seal member 22 is sandwiched in a state where the seal member 22 is crushed in the axial direction of the case 1, and exhibits sufficient sealing performance.
[0022]
Similarly, the diameter (thickness) of the seal member 23 is set to be sufficiently larger than the size of the gap 23 a formed between the cylindrical member 12 and the end plate 9.
[0023]
Further, in the present embodiment, as shown in FIG. 3, the gap 25 between the projecting end surfaces 21a of the teeth 6 facing each other is closed by a rod-shaped sealing member 20 (hereinafter referred to as a sealing member 20), and the slot 7 is formed in the refrigerant passage. Use as 15. To ensure that the cooling oil does not leak from the coolant passage 15 to the space on the rotor side, the diameter of the seal member 20 is sufficiently larger than the size of the gap 25 formed between the opposing protrusion tip surfaces 21a. It is set large so that it is sandwiched between two adjacent projection end surfaces 21a in a crushed state.
[0024]
As described above, the cooling oil supplied from the oil supply port 14 to the first coolant chamber 11 passes through the passage 15 inside the stator 3 without leaking to the space on the rotor side, and the second coolant chamber 13 on the opposite side. And discharged from the oil discharge port 16.
[0025]
FIG. 4 shows an inner peripheral surface of the stator 3 (a view as seen from an arrow D in FIG. 3).
[0026]
Since the inner diameters of the cylindrical members 10 and 12 are substantially equal to the inner diameter of the stator 3, both ends of the seal member 20 come into contact with the ring-shaped seal members 22 and 23 as shown in FIG. . Therefore, in the present embodiment, the seal members 20, 22, and 23 are formed as an integral member. Since the seal member 20 and the seal members 22 and 23 are connected at a right angle, there is a possibility that the sealability of the connection portion is inferior to the sealability of the other portions. Therefore, arc portions are formed at the corners 63 and 64 of the end plates 8 and 9 (R is attached), and the connection portions 61 and 62 between the seal members 20 and the seal members 22 and 23 are also provided with the R of the end plates 8 and 9. The same R is attached.
[0027]
Therefore, according to this embodiment, the seal member 20 that closes the opening 19 of the slot 7 to form the coolant passage 15 is sandwiched between the tips 21 a of the projections 21 provided on the side surfaces of the tips of the adjacent teeth 6 of the stator core 3. The sealing member 20 can be easily replaced when sufficient sealing properties cannot be obtained due to failure, deterioration, breakage, or the like of the sealing member 20.
[0028]
In addition, since the seal members 20, 22, and 23 are formed integrally, the handling of the seal members 20, 22, and 23 becomes easy, and the number of assembly steps can be reduced as compared with the case where the seal members are separately provided.
[0029]
A second embodiment will be described with reference to FIG.
[0030]
Although the configuration is basically the same as that of the first embodiment, as shown in FIG. 5, the cross-sectional shape of the seal member 24 that closes the opening 19 of the slot 7 and the protrusion 21 of the tooth 6 that sandwiches this. The tip shape is different from the first embodiment. A slope 21b on the slot 7 side and a slope 21c on the rotor side are formed at the tip of the projection 21, and the distance between the slopes 21b of the adjacent teeth 6 is reduced toward the tip of the teeth 6 (W1> W2). . In addition, the distance between the slopes 21c is increased toward the tip of the teeth 6 on the contrary to the slope 21b (W1 <W2).
[0031]
The rubber seal member 24 (hereinafter referred to as the seal member 24) is provided with a groove 24d corresponding to the shape of the slopes 21b and 21c of the projection 21, and the surface in contact with the slope 21b is the slope 24b, and the surface in contact with the slope 21c is the slope 24c. And Also, a V-shaped groove 24a extending in the axial direction is provided on the surface on the slot 7 side.
[0032]
In this manner, in the present embodiment, since W1> W2, when the oil pressure in the refrigerant passage 15 acts on the seal member 24, there is no possibility that the seal member 24 will fall off. Is spread out, and the side surface 24b of the seal member 24 comes into close contact with the flat surface 21b, so that reliable sealing performance can be obtained. In the operation of pushing the seal member 24 into the gap between the protrusions 21 from the inner peripheral side of the stator 3 for disposing the seal member 24, good workability is obtained by folding the seal member 24 using the groove 24a. can get.
[0033]
A third embodiment will be described with reference to FIG.
[0034]
Although the configuration is basically the same as that of the first embodiment, as shown in FIG. 7, the shape of the tip of the projection 21 of the tooth 6 is different from that of the first embodiment. A V-shaped groove 65 is formed at the tip of the protrusion 21 by the slope 21d on the slot 7 side and the slope 21e on the rotor side. The distance between the slopes 21d of the adjacent teeth 6 is larger at the tip end side of the tooth 6, and the distance between the slopes 21e is smaller at the tip end of the tooth 6 (W3 <W4).
[0035]
The seal member 20 has a circular cross section as in the first embodiment. However, in the case of the present embodiment, it is difficult to push the seal member 20 between the protrusions 21 from the inner peripheral side of the stator 3. Therefore, when assembling the divided stator 3c into a cylindrical shape, the arrangement of the seal member 20 is performed at the same time. For example, as shown in FIG. 8, after setting the seal member 20 in a substantially cylindrical jig 60 (hereinafter, jig 60) whose outer diameter can be changed, and setting the split stator 3 c between the seal members 20. If all the divided stators 3c are simultaneously moved inward in the radial direction, the assembly of the stator 3 and the arrangement of the seal member 20 can be performed simultaneously.
[0036]
The jig 60 includes a block 73, a plurality of tables 72, legs 71 supporting the tables 72, and sliding grooves 70 for accommodating the legs 71.
[0037]
The plurality of sliding grooves 70 are provided radially in the block 73, and the outer peripheral direction of the block 73 is open. Legs 71 are slidably housed in each sliding groove 70, and each leg 71 supports a table 72 at a tip end projecting from the cylinder 70. Therefore, the outer periphery of the jig 60 is formed in a substantially circular shape by the table 72, and the jig 60 has a substantially cylindrical shape. The legs 71 are driven by hydraulic pressure, pneumatic pressure, etc., and are controlled so that all the legs 71 move simultaneously and in the same direction by the same amount. Therefore, the jig 60 is always maintained in a substantially cylindrical shape. The outer diameter of the jig 60 is designed to be smaller than the inner diameter of the stator 3 when the outer circumference of the jig 60 is minimized by the movement of the leg 71.
[0038]
The table 72 has a structure capable of holding the divided stator 3c and the seal member 20 at the outer peripheral portion.
[0039]
Therefore, the outer diameter of the jig 60 is kept larger than the inner diameter of the stator 3, the seal member 20 is arranged on the table 72, the split stator 3 c is arranged between the adjacent seal members 20, and then the leg 71 is moved. By moving the jig 60 in the direction of decreasing the outer diameter, the adjacent split stators 3c approach each other, and the stator core 3a is formed at the time of contact, and at the same time, the seal member 20 is sandwiched between the adjacent V grooves 65. Is done.
[0040]
Note that the seal member 20 of the present embodiment is integrated with the ring-shaped seal members 22 and 23 as in the first embodiment, and has a cylindrical shape as shown in FIG. For this reason, setting to the jig 60 can be easily performed, and workability can be smoothly advanced.
[0041]
As described above, in the present embodiment, the seal member 20 having a simple circular cross section can be reliably held, and further, the seal member 20 is pressed against the slope 21 e by the pressure in the refrigerant passage 15, so that good sealing properties can be obtained. .
[0042]
A fourth embodiment will be described with reference to FIGS.
[0043]
Basically, the configuration is the same as that of the first embodiment. However, as shown in FIG. 11, the cross-sectional shape of the seal member 33 for closing the opening of the slot 7 and the shape of the teeth 6 for sandwiching the seal member 33 are the same as in the first embodiment. And different.
The tooth 6 of the present embodiment does not have a protrusion on the side surface of the tip portion, and instead has a groove 32 formed by a cylindrical surface 30 and a slope 31. The cylindrical surface 30 is a part of a cylindrical surface coaxial with the stator 3. In addition, the distance between the slopes 31 of the adjacent teeth 6 becomes smaller toward the tip of the teeth 6 (W5> W6).
[0044]
In this embodiment, the space between the grooves 32 of the adjacent teeth 6 is closed by a rubber seal member 33. The seal member 33 has seal members 22 and 23 integrally formed at both ends similarly to the third embodiment, and the surface is made of rubber which is easily elastically deformed. By inserting a hard core 33a made of a magnetic material inside, the overall rigidity is increased.
[0045]
Since the distance between the adjacent slopes 31 decreases toward the tip end of the teeth 6, the seal member 33 is inserted between the groove 32 and the inner periphery of the stator 3 as in the third embodiment. It is difficult to push. Thus, in the present embodiment, as in the third embodiment, the jig 60 is used to dispose the seal member 33 simultaneously when assembling the split stator 3c into the cylindrical stator 3.
[0046]
As described above, the core 33 increases the overall rigidity of the seal member 33, and the distance between the adjacent slopes 31 decreases toward the tip of the teeth 6. It is possible to prevent the resin from being deformed and dropping out of the groove 32 or causing oil leakage, and to achieve sufficient sealing performance.
[0047]
A fifth embodiment will be described with reference to FIGS.
[0048]
This embodiment is basically the same in configuration as the fourth embodiment. The difference from the fourth embodiment is that the core 34a of the seal member 34 can be inserted and removed. FIG. 16 shows the seal member 34 when the core 34a is not inserted. The seal member 34 is provided with a slit-shaped hole 34b for inserting a core 34a, and the hole 34b is slightly smaller in size than the core 34a. When the core 34a is inserted into the hole 34b, the outer shape of the seal member 34 is reduced. Slightly larger.
[0049]
When arranging the seal member 34 in the groove 32, the seal member 34 is pushed from the inner peripheral side of the stator 3 in a state where the core 34a is not inserted, and after being fitted in the groove 32, the core 34a is axially inserted into the hole 34b. Insert. Before the core 34a is inserted, the seal member 34 has low rigidity and is slightly smaller than the gap formed by the adjacent grooves 32, so that it can be easily pushed.
[0050]
13 and 15, the axial length of the core 34a is longer than the axial length of the main body of the seal member 34. Therefore, when the core 34 a is inserted into the seal member 34, both ends thereof protrude from the seal member 34. The protruding portions are accommodated in slits 10a and 12a provided on the distal end surfaces of the cylindrical members 10 and 12 on the stator 3 side.
[0051]
As described above, in the present embodiment, the dimensions are slightly increased and the rigidity is increased by inserting the core 34a after disposing the seal member 34 in the groove 32, so that good sealing performance is obtained.
[0052]
In addition, since the core 34a protruding from the seal member 34 is accommodated in the slits 10a, 12a provided on the distal end surfaces of the cylindrical members 10, 12 on the stator 3 side, the seal member 34 is less likely to fall out of the groove 32.
[0053]
A sixth embodiment will be described with reference to FIG.
[0054]
This embodiment has basically the same configuration as the fifth embodiment, except that a core 34c divided at substantially the center in the axial direction of the stator 3 is used instead of the core 34a. The core 34c is integrated with the corresponding cylindrical members 10 and 12, respectively. When the side plates 1b and 1c to which the cylindrical members 10 and 12 are mounted are attached to the cylindrical plate 1a, the core 34c is inserted into the holes of the seal member 34. 34b is inserted from both sides in the axial direction. Thus, the assembling process can be simplified while realizing a reliable sealing property.
[0055]
A seventh embodiment will be described with reference to FIGS.
[0056]
In the present embodiment, the cylindrical members 41 and 42 for defining the first and second coolant chambers 11 and 13 are made of rubber including the hard cores 41 a and 42 a, and the refrigerant passage 15 is formed. And a seal member 40 arranged between the adjacent teeth 6. Further, the side plates 1b and 1c are provided with grooves 43 for receiving the tips of the cylindrical members 41 and.
[0057]
In the present embodiment, since the cores 41a and 42a are included, the disposition of the integrated seal members 40, 41 and 42 by the jig 60 is similar to that of the assembly of the stator 3 as in the third embodiment. Perform at the same time.
[0058]
As described above, the cylindrical members 41 and 42 are made of rubber including the cores 41a and 42a and are integrated with the seal member 40, so that the assembling process can be simplified while realizing a reliable sealing property.
[0059]
The eighth embodiment will be described with reference to FIGS.
[0060]
This embodiment is basically the same as the first embodiment, except that a rod-shaped seal member 50 having a circular cross section (hereinafter referred to as a seal member 50) is used instead of the rod-shaped seal member 20. However, the sealing member 50 is not integrated with other members. The length of the seal member 50 is slightly longer than the length of the stator 3 in the axial direction.
[0061]
Rubbers 53 and 54 are welded to the entire circumference of the cylindrical members 51 and 52 at the end surfaces on the stator 3 side. When the side plates 1b and 1c with the cylindrical members 51 and 52 mounted thereon are mounted on the cylindrical plate 1a, the rubbers 53 and 54 come into close contact with the end surfaces of the stator 3.
[0062]
A semicircular groove 21f is provided at the tip of the projection 21 of the tooth 6. The concave groove 21f is a part of a cylindrical surface substantially equal to the diameter of the seal member 50. As for the distance between the concave grooves 21f of the adjacent teeth 6, the distance W3 on the tip side of the teeth 6 is slightly smaller than the diameter of the seal member 50. FIG. 21 shows a state before the side plates 1b and 1c are attached. In this state, a slight gap is formed between the concave groove 21f and the seal member 50.
[0063]
When arranging the seal member 50 between the protrusions 21, the seal member 50 is pushed into the gap from the inner peripheral side of the stator 3. This operation can be performed relatively easily because the difference between the distance W3 between the concave grooves 21f and the diameter of the seal member 50 is small. When the side plates 1b and 1c are attached after disposing the seal member 50, the seal member 50 is compressed and shrunk in the axial direction, the diameter is increased by the reduced length, and the seal member 50 comes into close contact with the cylindrical surface 21f. The seal is completed.
[0064]
Thereby, it is possible to easily assemble without using the jig 60 and to achieve a sufficient sealing property.
[0065]
Therefore, since the diameter of the sealing member 50 is only slightly larger than the distance between the tips of the projections 21, the sealing member 50 can be easily arranged between the projections 21 without using the jig 60, and By mounting the seal members 1b and 1c, the seal member 50 is compressed and contracted, and the diameter is increased by the shortened length. Therefore, the seal member 50 is in close contact with the cylindrical surface 21f, and a reliable sealing property can be realized.
[0066]
It is needless to say that the present invention is not limited to the above-described embodiment, and that various changes can be made within the scope of the technical idea described in the claims.
[Brief description of the drawings]
FIG. 1 is a sectional view of a motor according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a detailed view of a stator (a cross-sectional view taken along the line CC in FIG. 1).
FIG. 4 is an inner peripheral surface of the stator (a view as seen from an arrow D in FIG. 3).
FIG. 5 is a detailed view of a stator according to a second embodiment of the present invention.
FIG. 6 is an enlarged sectional view of a rubber seal member used in a second embodiment of the present invention.
FIG. 7 is a detailed view of a stator according to a third embodiment of the present invention.
FIG. 8 is an explanatory view of a jig used for assembling a stator and a sealing material.
FIG. 9 is an overall view of an integrated sealing material.
FIG. 10 is a sectional view of a motor according to a fourth embodiment.
FIG. 11 is a detailed view of a stator according to a fourth embodiment.
FIG. 12 is a detailed view of the inner peripheral surface of the stator according to the fourth embodiment.
FIG. 13 is a sectional view of a motor according to a fifth embodiment.
FIG. 14 is a detailed view of a stator according to a fifth embodiment.
FIG. 15 is a detailed view of the inner peripheral surface of the stator according to the fifth embodiment.
FIG. 16 is a detailed view of a stator according to a fifth embodiment.
FIG. 17 is a detailed view of the inner peripheral surface of the stator according to the sixth embodiment.
FIG. 18 is a sectional view of a motor according to a seventh embodiment.
FIG. 19 is a detailed view of a stator according to a seventh embodiment.
FIG. 20 is a detailed view of the inner peripheral surface of the stator according to the seventh embodiment.
FIG. 21 is a sectional view of a motor according to an eighth embodiment.
FIG. 22 is a detailed view of the stator according to the eighth embodiment.
[Explanation of symbols]
1 Case 1a Cylindrical plate 1b, c side plate 1d Housing 2 Rotor 2a Rotor core 2b Rotating shaft 3 Stator 3a Stator core 3b Stator coil 3c Split stator 4 Bearing 5 Back core 6 Teeth 7 Slot 8, 9 End plate 10, 12 Cylindrical member 10a, 12a Slits 11, 13 Coolant chamber 14 Oil supply port 15 Refrigerant passage 16 Oil discharge port 20 Rubber rod-shaped seal member 21 Projection 21a Projection end surface 21b, c, d, e Projection end surface 21f Cylindrical surfaces 22, 23 Rubber seal member 24 Rubber seal member 24a, d groove 24b, c, d, e seal member side surface 30 cylindrical surface 31 plane 32 groove 33, 34 rubber seal member 33a, 34a core (non-magnetic material)
34b core insertion hole 34c divided core 40 rubber sealing member 40a core (non-magnetic material)
41, 42 Rubber cylindrical members 41a, 42a Cylindrical core 50 Rubber seal members 51, 52 Rubber seal members 60 welded to cylindrical members 53, 54 51, 52 Jig 70 Sliding groove 71 Leg 72 Table 73 blocks

Claims (7)

ケースに収めたステータとロータから構成され、前記ステータのステータコアのスロットにコイルを収容し、前記ステータ内周面に開口するスロットの開口部を閉塞してスロット内部に冷媒通路を形成した回転電機において、前記ステータコアの隣り合うティース先端部の側面間でゴム製のシール部材を挟持し、前記開口部を閉塞したことを特徴とする回転電機。A rotating electric machine comprising a stator and a rotor housed in a case, accommodating a coil in a slot of a stator core of the stator, closing a slot opening on an inner peripheral surface of the stator to form a refrigerant passage inside the slot. A rotating electric machine characterized in that a rubber seal member is sandwiched between side surfaces of adjacent tooth tips of the stator core, and the opening is closed. ティースの先端部側面から円周方向へ突出する突起部を設け、突起部の先端面間で前記シール部材を挟持したことを特徴とする請求項1に記載の回転電機。2. The rotating electric machine according to claim 1, wherein a projection protruding in a circumferential direction from a side surface of a tooth tip is provided, and the seal member is sandwiched between the tip surfaces of the projection. 隣り合うティース先端部側面間の距離がスロット側からロータ側に向かって徐々に短くなる区間が少なくとも一定区間続くようティースの先端部の側面形状を形成した請求項1または2に記載の回転電機。3. The rotating electric machine according to claim 1, wherein a side surface shape of the tooth tip portion is formed such that a section in which a distance between adjacent tooth tip side surfaces gradually decreases from the slot side toward the rotor side continues for at least a certain section. 前記シール部材のスロット側に、軸方向へ延びるV溝を設けたことを特徴とする請求項3に記載の回転電機。The rotating electric machine according to claim 3, wherein a V groove extending in an axial direction is provided on a slot side of the seal member. ティースの先端部側面に軸方向に延びる溝を設け、この溝間で前記シール部材を挟持したことを特徴とする請求項1に記載の回転電機。The rotating electric machine according to claim 1, wherein a groove extending in the axial direction is provided on a side surface of a tip portion of the tooth, and the seal member is sandwiched between the grooves. 前記シール部材を、ゴム製の本体と内包される硬質の芯とで構成したことを特徴とする請求項1から5のいずれか一つに記載の回転電機。The rotating electric machine according to any one of claims 1 to 5, wherein the seal member is configured by a rubber body and a hard core included therein. ティース先端部の側面に設けた突起部先端の軸方向に延びる溝を半円形の凹溝に形成し、この凹溝間で円柱形状のシール部材を挟持したことを特徴とする請求項1に記載の回転電機。The groove extending in the axial direction of the tip of the projection provided on the side surface of the tip of the tooth is formed as a semicircular groove, and a cylindrical sealing member is sandwiched between the grooves. Rotary electric machine.
JP2002171182A 2002-06-12 2002-06-12 Motor cooling structure Pending JP2004023806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171182A JP2004023806A (en) 2002-06-12 2002-06-12 Motor cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171182A JP2004023806A (en) 2002-06-12 2002-06-12 Motor cooling structure

Publications (1)

Publication Number Publication Date
JP2004023806A true JP2004023806A (en) 2004-01-22

Family

ID=31171105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171182A Pending JP2004023806A (en) 2002-06-12 2002-06-12 Motor cooling structure

Country Status (1)

Country Link
JP (1) JP2004023806A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271150A (en) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd Cooling structure of motor-generator
JP2010226870A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp Stator
CN103840574A (en) * 2014-03-31 2014-06-04 北京建筑大学 Switched reluctance motor
CN103840573A (en) * 2014-03-31 2014-06-04 北京建筑大学 Stator seal structure of switched reluctance motor
JP2014207772A (en) * 2013-04-12 2014-10-30 マツダ株式会社 Rotary electric machine
CN104578469A (en) * 2015-01-22 2015-04-29 北京建筑大学 Method and device for lowering vibration and noise of switched reluctance motor
EP2595287A3 (en) * 2011-11-21 2016-01-20 Panasonic Intellectual Property Management Co., Ltd. Cooling structure for brushless motor
CN105356638A (en) * 2015-12-02 2016-02-24 珠海凯邦电机制造有限公司 Winding protection device, stator assembly with same and motor
JP2016174443A (en) * 2015-03-16 2016-09-29 株式会社デンソー Rotary electric machine
WO2020174180A1 (en) * 2019-02-28 2020-09-03 Nidec Psa Emotors Rotary electric machine with improved stator cooling
CN114337112A (en) * 2021-11-29 2022-04-12 中车永济电机有限公司 Independent sealed cooling structure in evaporation cooling stator both ends

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687180B2 (en) * 2005-03-25 2011-05-25 日産自動車株式会社 Motor generator cooling structure
JP2006271150A (en) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd Cooling structure of motor-generator
JP2010226870A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp Stator
US9473001B2 (en) 2011-11-21 2016-10-18 Panasonic Intellectual Property Management Co., Ltd. Brushless motor fan with stator insulator having ventilation recesses and grooves
EP2595287A3 (en) * 2011-11-21 2016-01-20 Panasonic Intellectual Property Management Co., Ltd. Cooling structure for brushless motor
JP2014207772A (en) * 2013-04-12 2014-10-30 マツダ株式会社 Rotary electric machine
CN103840574A (en) * 2014-03-31 2014-06-04 北京建筑大学 Switched reluctance motor
CN103840573A (en) * 2014-03-31 2014-06-04 北京建筑大学 Stator seal structure of switched reluctance motor
CN106230143A (en) * 2014-03-31 2016-12-14 北京建筑大学 A kind of switched reluctance machines
CN104578469A (en) * 2015-01-22 2015-04-29 北京建筑大学 Method and device for lowering vibration and noise of switched reluctance motor
JP2016174443A (en) * 2015-03-16 2016-09-29 株式会社デンソー Rotary electric machine
CN105356638A (en) * 2015-12-02 2016-02-24 珠海凯邦电机制造有限公司 Winding protection device, stator assembly with same and motor
WO2020174180A1 (en) * 2019-02-28 2020-09-03 Nidec Psa Emotors Rotary electric machine with improved stator cooling
FR3093388A1 (en) * 2019-02-28 2020-09-04 Nidec Psa Emotors Rotating electric machine with improved stator cooling
CN114337112A (en) * 2021-11-29 2022-04-12 中车永济电机有限公司 Independent sealed cooling structure in evaporation cooling stator both ends

Similar Documents

Publication Publication Date Title
JP4857910B2 (en) Electric motor and electric compressor
AU2007298344B2 (en) Motor and compressor
US7504753B2 (en) Motor
JP2004023806A (en) Motor cooling structure
US20030057797A1 (en) Stator structure for rotary electric machine
CN110800197B (en) Motor assembling method, centering jig, and electric motor
JP6525331B2 (en) Rotating electric machine and method of manufacturing rotor of rotating electric machine
JPWO2016178368A1 (en) Rotating electric machine and manufacturing method thereof
JP2004104882A (en) Motor, and its manufacturing method and apparatus thereof
JP2009050098A (en) Stator, manufacturing method therefor and compressor
CN204810039U (en) Motor
JP2018161001A (en) Ipm rotor and rotary electric machine
WO2018179736A1 (en) Rotor, and motor with rotor
JP2010268537A (en) Rotating electrical machine and method of manufacturing the same
JP2012222969A (en) Rotor of rotary electric machine
JP5479869B2 (en) Electric vane pump
JP2008035599A (en) Axial gap motor, stator for axial gap motor, and method of manufacturing axial gap motor
JP2005323429A (en) Rotary electric machine and its assembling method
JP2004048878A (en) Manufacturing method for rotary electric machine
JP2023056324A (en) Rotor, rotary electric machine, and pump
JP2001069700A (en) Permanent magnet dynamo-electric machine
JP7166117B2 (en) Electric motors, compressors, and refrigeration cycle equipment
JP2020114077A (en) Permanent magnet embedded type rotor and method for manufacturing the same
WO2023162172A1 (en) Rotor, rotary electrical machine, electric compressor, and method for producing rotor
JP2019221035A (en) Rotary electric machine and rotary electric machine manufacturing method