JP2004022334A - Organic electroluminescence element and display device - Google Patents

Organic electroluminescence element and display device Download PDF

Info

Publication number
JP2004022334A
JP2004022334A JP2002175598A JP2002175598A JP2004022334A JP 2004022334 A JP2004022334 A JP 2004022334A JP 2002175598 A JP2002175598 A JP 2002175598A JP 2002175598 A JP2002175598 A JP 2002175598A JP 2004022334 A JP2004022334 A JP 2004022334A
Authority
JP
Japan
Prior art keywords
compound
group
organic
layer
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002175598A
Other languages
Japanese (ja)
Other versions
JP4106974B2 (en
Inventor
Mitsuyoshi Matsuura
松浦 光宜
Taketoshi Yamada
山田 岳俊
Hiroshi Kita
北 弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002175598A priority Critical patent/JP4106974B2/en
Publication of JP2004022334A publication Critical patent/JP2004022334A/en
Application granted granted Critical
Publication of JP4106974B2 publication Critical patent/JP4106974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element which achieves improvement in emission luminance and emission efficiency and coexistence of them and endurance and provide a display device which uses the organic EL element, has high emission luminance and has good durability. <P>SOLUTION: The organic electroluminescence element which includes a light-emitting layer containing a host compound and a phosphorescent compound is characterized by that a compound represented by formula (1) is contained in any one of layers constituting the element. In the formula, Ar<SB>1</SB>, Ar<SB>2</SB>and Ar<SB>3</SB>represent a 6-membered aromatic group and Ar<SB>12</SB>and Ar<SB>13</SB>represent the 6-membered aromatic group or a 5-membered monocyclic aromatic group. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス素子(有機EL素子)及び表示装置に関し、詳しくは発光輝度、発光効率及び耐久性に優れた有機エレクトロルミネッセンス素子、及びそれを有する表示装置に関する。
【0002】
【従来の技術】
発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(無機EL素子)や有機エレクトロルミネッセンス素子が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0003】
しかしながら、今後の実用化に向けた有機EL素子には、更なる低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。
【0004】
例えば、特許第3,093,796号では、スチルベン誘導体、ジスチリルアリーレン誘導体又はトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。
【0005】
又、8−ヒドロキシキノ燐アルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(特開昭63−264692号公報)、8−ヒドロキシキノ燐アルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(特開平3−255190号公報)が知られている。以上のように、蛍光量子収率の高い蛍光体をドープすることによって、従来の素子に比べて発光輝度を向上させている。
【0006】
しかし、上記のドープされる微量の蛍光体からの発光は、励起一重項からの発光であり、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。ところが、プ燐ストン大から励起三重項からの燐光発光を用いる有機EL素子が報告がされて以来(M.A.Baldo et al.,nature、395巻、151〜154頁(1998年))、室温で燐光を示す材料の研究が活発になってきている(例えば、M.A.Baldo et al.,nature、403巻、17号、750〜753頁(2000年)、US特許6,097,147号など)。励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が最大4倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目されている。
【0007】
燐光性化合物をドーパントとして用いるときのホストは、燐光性化合物の発光極大波長よりも短波な領域に発光極大波長を有することが必要であることはもちろんであるが、その他にも満たすべき条件があることが分かってきた。
【0008】
The 10th International Workshop on Inorganic and Organic Electroluminescence(EL ’00、浜松)では、燐光性化合物についていくつかの報告がなされている。例えば、Ikaiらはホール輸送性の化合物を燐光性化合物のホストとして用いている。又、M.E.Tompsonらは、各種電子輸送性材料を燐光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。更に、Tsutsuiらは、ホールブロック層の導入により高い発光効率を得ている。
【0009】
燐光性化合物のホスト化合物については、例えば、C.Adachi et al.,Appl.Phys.Lett.,77巻、904頁(2000年)等に詳しく記載されているが、高輝度の有機エレクトロルミネッセンス素子を得るためにホスト化合物に必要とされる性質について、より新しい観点からのアプローチが必要である。
【0010】
しかし、何れの報告も、素子の発光輝度の向上及び耐久性を両立しうる構成は得られていない。
【0011】
【発明が解決しようとする課題】
従って、本発明は上記事情に鑑みなされたものであり、その目的は発光輝度、発光効率の向上、及びそれらと耐久性の両立を達成した有機EL素子、及び該有機EL素子を用いた発光輝度の高い、耐久性の良好な表示装置を提供するものである。
【0012】
【課題を解決するための手段】
本発明の目的は以下に示す構成により達成される。
【0013】
1.ホスト化合物及び燐光性化合物を含有する発光層を有する有機エレクトロルミネッセンス素子であって、該素子を構成する何れかの層に上記一般式(1)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0014】
2.一般式(1)において、Ar、Ar、Ar、Ar11、Ar12及びAr が全て単環芳香族基を表すことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
【0015】
3.一般式(1)において、Ar、Ar及びArが炭化水素芳香族基であり、Ar11、Ar12及びAr13が6員複素芳香族基であることを特徴とする前記1又は2に記載の有機エレクトロルミネッセンス素子。
【0016】
4.上記一般式(2)で表される化合物を含有することを特徴とする前記1〜3に記載の有機エレクトロルミネッセンス素子。
【0017】
5.一般式(2)において、R、R及びRがアルキル基であり、l、m及びnが2〜4であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
【0018】
6.一般式(2)において、Ar21、Ar22又はAr23のうち少なくとも1つがチエニル基であることを特徴とする前記4又は5に記載の有機エレクトロルミネッセンス素子。
【0019】
7.一般式(1)又は一般式(2)で表される化合物を電子輸送層に含有することを特徴とする前記1〜6の何れか1項に記載の有機エレクトロルミネッセンス素子。
【0020】
8.一般式(1)又は一般式(2)で表される化合物をホスト化合物として発光層に含有することを特徴とする前記1〜7の何れか1項に記載の有機エレクトロルミネッセンス素子。
【0021】
9.燐光性化合物がイリジウム化合物、オスミウム化合物又は白金化合物であることを特徴とする前記1〜8の何れか1項に記載の有機エレクトロルミネッセンス素子。
【0022】
10.燐光性化合物がイリジウム化合物であることを特徴とする前記9に記載の有機エレクトロルミネッセンス素子。
【0023】
11.前記1〜10の何れか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【0024】
本発明者等は、燐光発光用の材料について鋭意検討を重ねた結果、分子内に特定構造を有するトリアジン誘導体を有機EL素子を構成する何れかの層に含有させて有機EL素子を形成した場合、該素子の発光輝度、発光効率及び寿命が格段に改善されることを見出し本発明に至ったものである。
【0025】
トリアジン誘導体を有機EL素子材料として用いた例としては、特開平5−263074、同7−157473、同8−199163、同11−292860、特表平11−514143等にて開示されている。しかし、何れの報告も、燐光性化合物を発光層に含有した素子に適用した例はない。又、特開2002−100476では燐光性化合物を含有した素子に適用した例はあるが、本発明で挙げた特定構造のトリアジン誘導体についての記載はなく、特に、ホスト化合物として用いた場合の有用性を示すデータの開示はない。
【0026】
以下に本発明を詳細に説明する。
本発明の有機EL素子は、ホスト化合物及び燐光性化合物を含有する発光層を有し、該素子を構成する何れかの層に上記一般式(1)で表される化合物を含有することを特徴とする。
【0027】
本発明において「ホスト化合物」とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。従って、本発明における燐光性化合物はドーパント化合物の一種である。
【0028】
本発明における「燐光性化合物」とは励起三重項からの発光が観測される化合物であり、燐光量子収率が、25℃において0.001以上の化合物である。燐光量子収率は好ましくは0.01以上、更に好ましくは0.1以上である。
【0029】
上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられる燐光性化合物は、任意の溶媒の何れかにおいて上記燐光量子収率が達成されれば良い。
【0030】
本発明で用いられる燐光性化合物としては、好ましくは元素の周期律表でVIII属の金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)であり、中でも最も好ましいのはイリジウム化合物である。
【0031】
以下に、本発明で用いられる燐光性化合物の具体例を示すが、これらに限定されるものではない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
【0032】
【化3】

Figure 2004022334
【0033】
【化4】
Figure 2004022334
【0034】
【化5】
Figure 2004022334
【0035】
又、別の形態では、ホスト化合物と燐光性化合物の他に、燐光性化合物からの発光の極大波長よりも長波な領域に、蛍光極大波長を有する蛍光性化合物を少なくとも1種含有する場合もある。この場合、ホスト化合物と燐光性化合物からのエネルギー移動で、有機EL素子としての電界発光は蛍光性化合物からの発光が得られる。蛍光性化合物として好ましいのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は10%以上、特に30%以上が好ましい。具体的な蛍光性化合物は、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
【0036】
ここでの蛍光量子収率も、前記第4版実験化学講座7の分光IIの362頁(1992年版、丸善)に記載の方法により測定することが出来る。
【0037】
前記燐光性化合物は、前記のような燐光量子収率が、25℃において0.001以上である他、前記ホストとなる蛍光性化合物の蛍光極大波長よりも長い燐光発光極大波長を有するものである。これにより、例えば、ホストとなる蛍光性化合物の発光極大波長より長波の燐光性化合物を用いて燐光性化合物の発光、即ち三重項状態を利用した、ホスト化合物の蛍光極大波長よりも長波において電界発光するEL素子を得ることができる。従って、用いられる燐光性化合物の燐光発光極大波長としては特に制限されるものではなく、原理的には、中心金属、配位子、配位子の置換基等を選択することで得られる発光波長を変化させることができる。
【0038】
例えば、350〜440nmの領域に蛍光極大波長を有する蛍光性化合物をホスト化合物として用い、例えば、緑の領域に燐光を有するイリジウム錯体を用いることで緑領域に電界発光する有機EL素子を得ることが出来る。
【0039】
又、別の形態では、前記のように、ホスト化合物としての蛍光性化合物Aと燐光性化合物の他に、燐光性化合物からの発光の極大波長よりも長波な領域に、蛍光極大波長を有するもう一つの蛍光性化合物Bを少なくとも1種含有する場合もあり、蛍光性化合物Aと燐光性化合物からのエネルギー移動で、有機EL素子としての電界発光は蛍光性化合物Bからの発光を得ることも出来る。
【0040】
本明細書の蛍光性化合物が発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(ミノルタ製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0041】
続いて本発明に用いられるホスト化合物について説明する。
本発明におけるホスト化合物としては、特定構造を有するトリアジン誘導体であり、とりわけ一般式(1)で表される化合物であることを要する。最初に一般式(1)で表される化合物について説明する。
【0042】
式中、Ar、Ar及びArは6員芳香族基を表し、Ar11、Ar12、Ar は6員芳香族基又は5員単環芳香族基を表す。Ar、Ar、Ar、Ar11、Ar12及びAr13で表される6員芳香族基は、更に縮合環を形成しても良い。具体的には炭化水素芳香族基(フェニル基、ナフチル基、フェナンスリル基、アントリル基、p−トリル基、p−クロロフェニル基等)又は複素芳香族基(ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、キノリル基、トリアジニル基、キナゾキニル基、アクリジニル基等)を表す。
【0043】
Ar11、Ar12、Ar13で表される5員単環芳香族基としては、ピロリル基、チエニル基、フリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基等が挙げられる。Ar、Ar、Ar、Ar11、Ar12及びAr13は更に置換基を有していても良い。
【0044】
一般式(1)で表される化合物は、好ましくはAr、Ar、Ar、Ar11、Ar12及びAr13が全て単環芳香族基であり、更に好ましくはAr、Ar及びArが炭化水素芳香族基であり、Ar11、Ar12、Ar13が6員複素芳香族基である場合、又はAr11、Ar12、Ar13の少なくとも1つがチエニル基である場合である。
【0045】
本発明に用いられるトリアジン誘導体は、更に好ましくは一般式(2)で表される場合である。一般式(2)においてAr21、Ar22及びAr23は、6員芳香族基又は5員単環芳香族基を表し、R、R及びRは一価の置換基を表す。l、m及びnはそれぞれ1〜4の整数を表す。Ar21、Ar22及びAr23で表される6員芳香族基、5員芳香族基としては一般式(1)中のAr11、Ar12、Ar13と同様のものが挙げられる。
【0046】
、R及びRで表される一価の置換基としては、アルキル基(メチル基、エチル基、i−プロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、ベンジル基等)、アリール基(フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基等)、アルケニル基(ビニル基、プロペニル基、スチリル基等)、アルキニル基(エチニル基等)、アルキルオキシ基(メトキシ基、エトキシ基、i−プロポキシ基、ブトキシ基等)、アリールオキシ基(フェノキシ基等)、アルキルチオ基(メチルチオ基、エチルチオ基、i−プロピルキオ基等)、アリールチオ基(フェニルチオ基等)、アミノ基、アルキルアミノ基(ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基等)、アリールアミノ基(アニリノ基、ジフェニルアミノ基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、複素環基(ピロール基、ピロリジル基、ピラゾリル基、イミダゾリル基、ピリジル基、ベンズイミダゾリル基、ベンゾチアゾリル基、ベンゾオキサゾリル基等)等が挙げられる。
【0047】
一般式(2)において、好ましくはR、R及びRがアルキル基であり、l、m及びnが2〜4のときであり、最も好ましくは、R、R及びRがメチル基であり、l、m及びnが4のときである。
【0048】
一般式(2)において、好ましくはAr21、Ar22又はAr23のうち少なくとも1つがチエニル基である。
【0049】
以下に、具体的化合物例を示すが、本発明におけるホスト化合物がこれらに限定されるものではない。
【0050】
【化6】
Figure 2004022334
【0051】
【化7】
Figure 2004022334
【0052】
【化8】
Figure 2004022334
【0053】
【化9】
Figure 2004022334
【0054】
【化10】
Figure 2004022334
【0055】
【化11】
Figure 2004022334
【0056】
【化12】
Figure 2004022334
【0057】
【化13】
Figure 2004022334
【0058】
【化14】
Figure 2004022334
【0059】
【化15】
Figure 2004022334
【0060】
【化16】
Figure 2004022334
【0061】
又、ホスト化合物の分子量は600〜2000であることが好ましい。分子量が600〜2000であるとTg(ガラス転移温度)が上昇し、熱安定性が向上し、素子寿命が改善される。より好ましい分子量は800〜2000である。
【0062】
これらの化合物は公知の方法によって製造が可能であるが、例えば特開2001−93670等に記載された方法を用いることができる。
【0063】
以下、有機EL素子について説明する。
有機EL素子における発光層は、広義の意味では、陰極と陽極からなる電極に電流を流した際に発光する層のことを指す。具体的には、陰極と陽極からなる電極に電流を流した際に発光する蛍光性化合物を含有する層のことを指す。通常、EL素子は一対の電極の間に発光層を挟持した構造をとる。
【0064】
本発明の有機EL素子は、必要に応じ発光層の他に、正孔輸送層、電子輸送層、陽極バッファー層及び陰極バッファー層等を有し、陰極と陽極で挟持された構造をとる。具体的には以下に示される構造が挙げられる。
(i)陽極/発光層/陰極
(ii)陽極/正孔輸送層/発光層/陰極
(iii)陽極/発光層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
上記化合物を用いて発光層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜を形成する方法があるが、特に分子堆積膜であることが好ましい。ここで、分子堆積膜とは、上記化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜はLB法により形成された薄膜(分子累積膜)と、凝集構造、高次構造の相違やそれに起因する機能的な相違により区別することができる。
【0065】
又、この発光層は、特開昭57−51781号に記載されているように、樹脂などの結着材と共に発光材料として上記化合物を溶剤に溶かして溶液とした後、これをスピンコート法などにより塗布して薄膜形成することにより得ることができる。
【0066】
このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm〜5μmの範囲である。
【0067】
次に正孔注入層、正孔輸送層、電子注入層、電子輸送層等、発光層と組み合わせてEL素子を構成するその他の層について説明する。
【0068】
正孔注入層、正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、その上、発光層に陰極、電子注入層又は電子輸送層より注入された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。この正孔注入層、正孔輸送層の材料(以下、正孔注入材料、正孔輸送材料という)については、前記の陽極より注入された正孔を発光層に伝達する機能を有する性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔注入層、正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0069】
上記正孔注入材料、正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の何れかを有するものであり、有機物、無機物の何れであってもよい。この正孔注入材料、正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニ燐系共重合体、又、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。正孔注入材料、正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
【0070】
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更に米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。
【0071】
更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0072】
又、p型−Si、p型−SiCなどの無機化合物も正孔注入材料、正孔輸送材料として使用することができる。この正孔注入層、正孔輸送層は、上記正孔注入材料、正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔注入層、正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度である。この正孔注入層、正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0073】
更に、必要に応じて用いられる電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
【0074】
この電子輸送層に用いられる材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサ燐環を有するキノキサ燐誘導体も、電子輸送材料として用いることができる。
【0075】
更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0076】
又、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料として好ましく用いることができる。又、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiCなどの無機半導体も電子輸送材料として用いることができる。
【0077】
この電子輸送層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚は特に制限はないが、通常は5nm〜5μmの範囲で選ばれる。この電子輸送層は、これらの電子輸送材料一種又は二種以上からなる一層構造であってもよいし、或いは、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0078】
又、本発明においては、蛍光性化合物は発光層のみに限定することはなく、発光層に隣接した正孔輸送層、又は電子輸送層に前記燐光性化合物のホスト化合物となる蛍光性化合物と同じ領域に蛍光極大波長を有する蛍光性化合物を少なくとも1種含有させてもよく、それにより更にEL素子の発光効率を高めることができる。これらの正孔輸送層や電子輸送層に含有される蛍光性化合物としては、発光層に含有されるものと同様に蛍光極大波長が350〜440nm、更に好ましくは390〜410nmの範囲にある蛍光性化合物が用いられる。
【0079】
又、本発明においては、発光効率、及び耐久性の点から一般式(1)又は一般式(2)で表される化合物を電子輸送層に含有することが好ましい。
【0080】
本発明の有機EL素子に好ましく用いられる基盤は、ガラス、プラスチックなどの種類には特に限定はなく、又、透明のものであれば特に制限はない。本発明の有機EL素子に好ましく用いられる基盤としては例えばガラス、石英、光透過性プラスチックフィルムを挙げることができる。
【0081】
光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。
【0082】
次に、該有機EL素子を作製する好適な例を説明する。例として、前記の陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなるEL素子の作製法について説明する。
【0083】
まず適当な基板上に、所望の電極用物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる薄膜を形成させる。
【0084】
更に、陽極と発光層又は正孔注入層の間、及び、陰極と発光層又は電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。
【0085】
バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(第123頁〜第166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
【0086】
陽極バッファー層は、特開平9−45479号、同9−260062号、同8−288069号等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニ燐(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0087】
陰極バッファー層は、特開平6−325871号、同9−17574号、同10−74586号等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウム、酸化リチウムに代表される酸化物バッファー層等が挙げられる。
【0088】
上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1〜100nmの範囲が好ましい。
【0089】
更に上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよく、例えば特開平11−204258号、同11−204359号、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第237頁等に記載されている正孔阻止(ホールブロック)層などのような機能層を有していても良い。
【0090】
バッファー層は、陰極バッファー層又は陽極バッファー層の少なくとも何れか1つの層内に一般式(1)又は(2)で表される化合物の少なくとも1種が存在して、発光層として機能してもよい。
【0091】
次に有機EL素子の電極について説明する。有機EL素子の電極は、陰極と陽極からなる。
【0092】
この有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAuなどの金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnOなどの導電性透明材料が挙げられる。
【0093】
上記陽極は蒸着やスパッタリングなどの方法によりこれらの電極物質の薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、或いはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、又、陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10nm〜200nmの範囲で選ばれる。
【0094】
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性及び酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好適である。上記陰極は、これらの電極物質を蒸着やスパッタリングなどの方法で薄膜を形成させることにより作製することができる。又、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmの範囲で選ばれる。尚、発光を透過させるため、有機EL素子の陽極又は陰極の何れか一方が、透明又は半透明であれば発光効率が向上するので好都合である。
【0095】
次に有機EL素子の作製方法について説明する。
薄膜化の方法としては、前記の如くスピンコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、かつピンホールが生成しにくいなどの点から、真空蒸着法が好ましい。薄膜化に真空蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類、分子堆積膜の目的とする結晶構造、会合構造などにより異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−3Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選ぶことが望ましい。
【0096】
前記の様に、適当な基板上に所望の電極用物質、例えば陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製した後、該陽極上に前記の通り正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる各層薄膜を形成させた後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリングなどの方法により形成させて陰極を設け、所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫してこの様に正孔注入層から陰極まで作製するのが好ましいが、作製順序を逆にして、陰極、電子注入層、発光層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた有機EL素子に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧5〜40V程度を印加すると、発光が観測できる。又、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。
【0097】
本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用しても良いし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用しても良い。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでも良い。又、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
【0098】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0099】
実施例1
〈有機EL素子の作製〉
有機EL素子OLED1−1〜1−12を以下のように作製した。
【0100】
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を150nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
【0101】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにカルバゾール誘導体(CBP)を200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、別のモリブデン製抵抗加熱ボートに燐光性化合物(Ir−1)を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。
【0102】
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し、膜厚45nmの正孔輸送層を設けた。更に、CBPとIr−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/sec、0.01nm/secで前記正孔輸送層上に共蒸着して膜厚20nmの発光層を設けた。尚、蒸着時の基板温度は室温であった。更に、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層の上に蒸着して膜厚10nmの正孔阻止の役割も兼ねた電子輸送層を設けた。その上に、更に、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記電子輸送層の上に蒸着して更に膜厚40nmの電子注入層を設けた。尚、蒸着時の基板温度は室温であった。
【0103】
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子OLED1−1を作製した。
【0104】
発光層のCBPを表1に示す化合物に置き換えた以外は全く同じ方法で、有機EL素子OLED1−2〜1−12を作製した。
【0105】
上記で使用した化合物の構造を以下に示す。
【0106】
【化17】
Figure 2004022334
【0107】
〈有機EL素子の評価〉
以下のようにして得られた有機EL素子の評価を行い、結果を表1に示す。
(発光輝度、発光効率)
有機EL素子OLED1−1では、初期駆動電圧3Vで電流が流れ始め、発光層のドーパントである燐光性化合物からの緑色の発光を示した。有機EL素子OLED1−1の温度23℃、乾燥窒素ガス雰囲気下で10V直流電圧を印加した時の発光輝度(cd/m)、発光効率(lm/W)を測定した。
【0108】
発光輝度、発光効率は有機EL素子OLED1−1を100とした時の相対値で表した。発光輝度については、CS−1000(ミノルタ製)を用いて測定した。
(耐久性)
10mA/cmの一定電流で駆動したときに初期輝度が元の半分に低下するのに要した時間である半減寿命時間を指標として表した。半減寿命時間は有機EL素子OLED1−1を100とした時の相対値で表した。
【0109】
【表1】
Figure 2004022334
【0110】
表1から明らかなように、一般式(1)又は(2)で表されるトリアジン誘導体化合物をホスト化合物に用いた有機EL素子は、発光輝度及び発光効率が高く、半減寿命時間が長いことから、有機EL素子として非常に有用であることが判る。
【0111】
又、燐光性化合物(Ir−1)をIr−12又はIr−9に変更した以外は有機EL素子OLED1−1〜1−12と同様にして作製した有機EL素子においても同様の効果が得られた。尚、Ir−12を用いた素子からは青色の発光が、Ir−9を用いた素子からは赤色の発光が得られた。
【0112】
実施例2
実施例1の有機EL素子OLED1−1の電子輸送層におけるBCPを表2に示す化合物に置き換えた以外は全く同じ方法で有機EL素子OLED2−1〜2−9を作製した。
【0113】
次いで実施例1と同様の方法で発光輝度、発光効率及び半減寿命時間(耐久性)を測定した。得られた結果を表2に示す。
【0114】
【表2】
Figure 2004022334
【0115】
表2から明らかなように、一般式(1)又は(2)で表されるトリアジン誘導体化合物を電子輸送層に用いた有機EL素子は、発光輝度、発光効率及び耐久性が改善されているのが分かる。特に耐久性においては、半減寿命時間が顕著に改善されているのが分かる。
【0116】
実施例3
実施例1で作製したそれぞれ赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に示すアクティブマトリクス方式フルカラー表示装置を作製した。図1には作製したフルカラー表示装置の表示部Aの模式図のみを示した。即ち同一基板上に、複数の走査線2及びデータ線3を含む配線部と、並置した複数の画素1(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線2及び複数のデータ線3はそれぞれ導電材料からなり、走査線2とデータ線3は格子状に直交して、直交する位置で画素1に接続している(詳細は図示せず)。前記複数画素1は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線2から走査信号が印加されると、データ線3から画像データ信号を受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示が可能となる。
【0117】
該フルカラー表示装置を駆動することにより、輝度の高く耐久性の良好な、鮮明なフルカラー動画表示が得られた。
【0118】
【発明の効果】
本発明によれば発光輝度に優れ、長寿命な有機EL素子及び該有機EL素子を有する表示装置が得られるという顕著に優れた効果を奏する。
【図面の簡単な説明】
【図1】フルカラー表示装置の表示部の模式図。
【符号の説明】
A 表示部
1 画素
2 走査線
3 データ線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic electroluminescent element (organic EL element) and a display device, and more particularly, to an organic electroluminescent element excellent in light emission luminance, luminous efficiency and durability, and a display device having the same.
[0002]
[Prior art]
As a light emitting type electronic display device, there is an electroluminescence display (ELD). ELD includes an inorganic electroluminescent element (inorganic EL element) and an organic electroluminescent element. Inorganic electroluminescent devices have been used as flat light sources, but require a high AC voltage to drive the light emitting devices. An organic electroluminescence element has a configuration in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode. Electrons and holes are injected into the light-emitting layer and recombination causes exciton (exciton) to be generated. An element that emits light by utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated and emits light at a voltage of about several V to several tens of volts. Because of this, it is rich in viewing angle, has high visibility, and is a thin-film type completely solid-state element.
[0003]
However, development of an organic EL element that emits light with high efficiency and low power consumption is desired for an organic EL element for practical use in the future.
[0004]
For example, in Japanese Patent No. 3,093,796, a stilbene derivative, a distyrylarylene derivative, or a tristyrylarylene derivative is doped with a trace amount of a fluorescent substance, thereby achieving an improvement in light emission luminance and a long life of the device.
[0005]
Also, an element having an organic light emitting layer in which an 8-hydroxyquinophosphorum aluminum complex is used as a host compound and a small amount of a phosphor is added thereto (JP-A-63-264692), and an 8-hydroxyquinophosphorum aluminum complex is used as a host compound An element having an organic light emitting layer doped with a quinacridone dye (Japanese Patent Application Laid-Open No. 3-255190) is known. As described above, by doping the phosphor having a high fluorescence quantum yield, the emission luminance is improved as compared with the conventional device.
[0006]
However, the light emission from the doped small amount of phosphor is light emission from an excited singlet. When light emission from an excited singlet is used, the generation ratio between a singlet exciton and a triplet exciton is 1: 1. 3, the generation probability of the luminescent excited species is 25%, and the light extraction efficiency is about 20%. Therefore, the limit of the external extraction quantum efficiency (ηext) is 5%. However, since an organic EL device using phosphorescence from an excited triplet was reported from Princeton University (MA Baldo et al., Nature, 395, 151-154 (1998)). Research on materials exhibiting phosphorescence at room temperature has been actively conducted (for example, MA Baldo et al., Nature, vol. 403, No. 17, 750-753 (2000), US Pat. No. 6,097, No. 147). When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%, so that the luminous efficiency is up to four times in principle compared to the case of the excited singlet, and the performance almost equal to that of the cold cathode tube is obtained. It is also applicable to applications and is attracting attention.
[0007]
When the phosphorescent compound is used as a dopant, the host needs to have a light emission maximum wavelength in a shorter wavelength region than the light emission maximum wavelength of the phosphorescent compound, but there are other conditions to be satisfied. I understand that.
[0008]
Several reports have been made on phosphorescent compounds in The 10th International International Workshop on Inorganic and Organic Electronic Control (EL'00, Hamamatsu). For example, Ikai et al. Use a hole transporting compound as a host for a phosphorescent compound. M. E. FIG. Tompson et al. Use various electron transporting materials as a host of a phosphorescent compound and dope them with a novel iridium complex. Further, Tsutsui et al. Obtain high luminous efficiency by introducing a hole blocking layer.
[0009]
As for the host compound of the phosphorescent compound, for example, C.I. Adachi @ et @ al. , Appl. Phys. Lett. 77, p. 904 (2000), etc., but it is necessary to take a newer approach to the properties required for the host compound in order to obtain a high-brightness organic electroluminescent device. .
[0010]
However, none of the reports has obtained a configuration capable of achieving both improvement in light emission luminance and durability.
[0011]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to improve an emission luminance, an emission efficiency, and an organic EL element achieving both of these and durability, and an emission luminance using the organic EL element. And a display device with high durability and good durability.
[0012]
[Means for Solving the Problems]
The object of the present invention is achieved by the following configurations.
[0013]
1. An organic electroluminescence device having a light emitting layer containing a host compound and a phosphorescent compound, wherein any one of the layers constituting the device contains the compound represented by the general formula (1). Organic electroluminescent element.
[0014]
2. In the general formula (1), Ar1, Ar2, Ar3, Ar11, Ar12And Ar1 3Represents an all-monocyclic aromatic group.
[0015]
3. In the general formula (1), Ar1, Ar2And Ar3Is a hydrocarbon aromatic group, and Ar11, Ar12And Ar13Is a 6-membered heteroaromatic group, the organic electroluminescent device according to the above 1 or 2, wherein
[0016]
4. 4. The organic electroluminescent device according to any one of the above items 1 to 3, comprising a compound represented by the general formula (2).
[0017]
5. In the general formula (2), R1, R2And R3Is an alkyl group, and l, m, and n are 2-4, The organic electroluminescent element of said 4 characterized by the above-mentioned.
[0018]
6. In the general formula (2), Ar21, Ar22Or Ar236. The organic electroluminescent device according to the above item 4 or 5, wherein at least one of them is a thienyl group.
[0019]
7. 7. The organic electroluminescent device according to any one of the above items 1 to 6, wherein the compound represented by the general formula (1) or (2) is contained in the electron transport layer.
[0020]
8. 8. The organic electroluminescent device according to any one of the above items 1 to 7, wherein the compound represented by the general formula (1) or (2) is contained in the light emitting layer as a host compound.
[0021]
9. 9. The organic electroluminescent device according to any one of items 1 to 8, wherein the phosphorescent compound is an iridium compound, an osmium compound, or a platinum compound.
[0022]
10. 10. The organic electroluminescent device according to the above item 9, wherein the phosphorescent compound is an iridium compound.
[0023]
11. A display device comprising the organic electroluminescence device according to any one of the above items 1 to 10.
[0024]
The present inventors have conducted intensive studies on materials for phosphorescence, and found that a triazine derivative having a specific structure in a molecule is contained in any of layers constituting an organic EL element to form an organic EL element. The present inventors have found that the luminous brightness, luminous efficiency and life of the device are remarkably improved, and have reached the present invention.
[0025]
Examples of using a triazine derivative as an organic EL device material are disclosed in JP-A-5-2630074, JP-A-7-157473, JP-A-8-199163, JP-A-11-292860, and JP-A-11-514143. However, none of the reports apply to a device containing a phosphorescent compound in a light-emitting layer. Japanese Patent Application Laid-Open No. 2002-100476 discloses an example in which the invention is applied to a device containing a phosphorescent compound. However, there is no description about the triazine derivative having a specific structure described in the present invention. No data is disclosed.
[0026]
Hereinafter, the present invention will be described in detail.
The organic EL device of the present invention has a light emitting layer containing a host compound and a phosphorescent compound, and any of the layers constituting the device contains the compound represented by the general formula (1). And
[0027]
In the present invention, the “host compound” means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more compounds, and the other compounds are referred to as “dopant compounds”. . For example, the light-emitting layer is composed of two kinds of compound A and compound B, and if the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Further, the light emitting layer is composed of three kinds of compound A, compound B and compound C, and if the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, Compound C is the host compound. Therefore, the phosphorescent compound in the present invention is a kind of the dopant compound.
[0028]
The “phosphorescent compound” in the present invention is a compound in which light emission from an excited triplet is observed, and a compound having a phosphorescence quantum yield of 0.001 or more at 25 ° C. The phosphorescence quantum yield is preferably at least 0.01, more preferably at least 0.1.
[0029]
The phosphorescence quantum yield can be measured by the method described in Spectroscopy II, 4th Edition, Experimental Chemistry Course, Spectroscopy II, p. 398 (1992 edition, Maruzen). The phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescent compound used in the present invention only needs to achieve the above-mentioned phosphorescence quantum yield in any arbitrary solvent.
[0030]
The phosphorescent compound used in the present invention is preferably a complex compound containing a metal belonging to Group VIII in the periodic table of elements, and more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). ), And among them, the most preferable is an iridium compound.
[0031]
Hereinafter, specific examples of the phosphorescent compound used in the present invention are shown, but the invention is not limited thereto. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711.
[0032]
Embedded image
Figure 2004022334
[0033]
Embedded image
Figure 2004022334
[0034]
Embedded image
Figure 2004022334
[0035]
In another embodiment, in addition to the host compound and the phosphorescent compound, at least one fluorescent compound having a fluorescence maximum wavelength may be contained in a region longer than the maximum wavelength of light emission from the phosphorescent compound. . In this case, by the energy transfer from the host compound and the phosphorescent compound, electroluminescence as the organic EL element can be obtained from the fluorescent compound. Preferred as the fluorescent compound is a compound having a high fluorescence quantum yield in a solution state. Here, the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more. Specific fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, Examples include stilbene dyes, polythiophene dyes, and rare earth complex fluorescent materials.
[0036]
The fluorescence quantum yield here can also be measured by the method described in Spectroscopy II, page 362 (1992 edition, Maruzen) of the 4th edition of Experimental Chemistry Lecture 7.
[0037]
The phosphorescent compound has a phosphorescence quantum yield as described above of not less than 0.001 at 25 ° C. and a phosphorescent emission maximum wavelength longer than the fluorescence maximum wavelength of the fluorescent compound serving as the host. . Thereby, for example, light emission of the phosphorescent compound using a phosphorescent compound having a longer wavelength than the emission maximum wavelength of the fluorescent compound serving as the host, that is, utilizing the triplet state, electroluminescence at a wavelength longer than the fluorescence maximum wavelength of the host compound EL element can be obtained. Accordingly, the maximum phosphorescent emission wavelength of the phosphorescent compound used is not particularly limited, and in principle, the emission wavelength obtained by selecting a central metal, a ligand, a substituent of a ligand, and the like. Can be changed.
[0038]
For example, by using a fluorescent compound having a maximum fluorescence wavelength in a region of 350 to 440 nm as a host compound and using, for example, an iridium complex having phosphorescence in a green region, an organic EL device which emits light in the green region can be obtained. I can do it.
[0039]
In another embodiment, as described above, in addition to the fluorescent compound A and the phosphorescent compound as the host compound, another compound having a fluorescent maximum wavelength in a region longer than the maximum wavelength of light emission from the phosphorescent compound. In some cases, at least one kind of the fluorescent compound B is contained. By the energy transfer from the fluorescent compound A and the phosphorescent compound, the electroluminescence as the organic EL device can also obtain the light emission from the fluorescent compound B. .
[0040]
The color emitted by the fluorescent compound of the present specification is shown in FIG. 4.16 on page 108 of the “New Edition of Color Science Handbook” (edited by The Japan Society of Color Science, The University of Tokyo Press, 1985), and is shown in FIG. (Minolta) is determined by the color when the result of measurement is applied to the CIE chromaticity coordinates.
[0041]
Next, the host compound used in the present invention will be described.
The host compound in the present invention is a triazine derivative having a specific structure, particularly, a compound represented by the general formula (1). First, the compound represented by the general formula (1) will be described.
[0042]
Where Ar1, Ar2And Ar3Represents a 6-membered aromatic group, and Ar11, Ar12, Ar1 3Represents a 6-membered aromatic group or a 5-membered monocyclic aromatic group. Ar1, Ar2, Ar3, Ar11, Ar12And Ar13The 6-membered aromatic group represented by may further form a condensed ring. Specifically, a hydrocarbon aromatic group (phenyl group, naphthyl group, phenanthryl group, anthryl group, p-tolyl group, p-chlorophenyl group, etc.) or a heteroaromatic group (pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group) Quinolyl group, triazinyl group, quinazoquinyl group, acridinyl group, etc.).
[0043]
Ar11, Ar12, Ar13Examples of the 5-membered monocyclic aromatic group represented by are a pyrrolyl group, a thienyl group, a furyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, and a thiazolyl group. Ar1, Ar2, Ar3, Ar11, Ar12And Ar13May further have a substituent.
[0044]
The compound represented by the general formula (1) is preferably Ar1, Ar2, Ar3, Ar11, Ar12And Ar13Are all monocyclic aromatic groups, more preferably Ar1, Ar2And Ar3Is a hydrocarbon aromatic group, and Ar11, Ar12, Ar13Is a 6-membered heteroaromatic group, or Ar11, Ar12, Ar13Is a thienyl group.
[0045]
The triazine derivative used in the present invention is more preferably the case represented by the general formula (2). In the general formula (2), Ar21, Ar22And Ar23Represents a 6-membered aromatic group or a 5-membered monocyclic aromatic group;1, R2And R3Represents a monovalent substituent. 1, m and n each represent an integer of 1 to 4. Ar21, Ar22And Ar23As the 6-membered aromatic group and the 5-membered aromatic group represented by11, Ar12, Ar13And the same.
[0046]
R1, R2And R3Examples of the monovalent substituent represented by are an alkyl group (methyl group, ethyl group, i-propyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, cyclopentyl group, cyclohexyl group, Benzyl group, etc.), aryl group (phenyl group, naphthyl group, p-tolyl group, p-chlorophenyl group, etc.), alkenyl group (vinyl group, propenyl group, styryl group, etc.), alkynyl group (ethynyl group, etc.), alkyloxy Group (methoxy group, ethoxy group, i-propoxy group, butoxy group, etc.), aryloxy group (phenoxy group, etc.), alkylthio group (methylthio group, ethylthio group, i-propylquio group, etc.), arylthio group (phenylthio group, etc.) , Amino group, alkylamino group (dimethylamino group, diethylamino group, ethylmethylamino group ), Arylamino group (anilino group, diphenylamino group, etc.), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), cyano group, nitro group, heterocyclic group (pyrrole group, pyrrolidyl group, pyrazolyl group) , An imidazolyl group, a pyridyl group, a benzimidazolyl group, a benzothiazolyl group, a benzoxazolyl group, etc.).
[0047]
In the general formula (2), preferably, R1, R2And R3Is an alkyl group, and when l, m and n are 2 to 4, most preferably R1, R2And R3Is a methyl group, and l, m and n are 4.
[0048]
In the general formula (2), preferably, Ar21, Ar22Or Ar23At least one is a thienyl group.
[0049]
Hereinafter, specific compound examples are shown, but the host compound in the present invention is not limited thereto.
[0050]
Embedded image
Figure 2004022334
[0051]
Embedded image
Figure 2004022334
[0052]
Embedded image
Figure 2004022334
[0053]
Embedded image
Figure 2004022334
[0054]
Embedded image
Figure 2004022334
[0055]
Embedded image
Figure 2004022334
[0056]
Embedded image
Figure 2004022334
[0057]
Embedded image
Figure 2004022334
[0058]
Embedded image
Figure 2004022334
[0059]
Embedded image
Figure 2004022334
[0060]
Embedded image
Figure 2004022334
[0061]
Further, the molecular weight of the host compound is preferably from 600 to 2,000. When the molecular weight is from 600 to 2,000, Tg (glass transition temperature) is increased, thermal stability is improved, and the life of the device is improved. A more preferred molecular weight is from 800 to 2,000.
[0062]
These compounds can be produced by a known method. For example, a method described in JP-A-2001-93670 can be used.
[0063]
Hereinafter, the organic EL device will be described.
The light emitting layer in the organic EL element refers to a layer which emits light when a current is applied to an electrode composed of a cathode and an anode in a broad sense. Specifically, it refers to a layer containing a fluorescent compound that emits light when an electric current is applied to an electrode composed of a cathode and an anode. Usually, an EL element has a structure in which a light emitting layer is sandwiched between a pair of electrodes.
[0064]
The organic EL device of the present invention has a structure in which a hole transport layer, an electron transport layer, an anode buffer layer, a cathode buffer layer, and the like are provided in addition to a light emitting layer as necessary, and is sandwiched between a cathode and an anode. Specifically, the structure shown below is mentioned.
(I) anode / light-emitting layer / cathode
(Ii) anode / hole transport layer / light-emitting layer / cathode
(Iii) anode / light-emitting layer / electron transport layer / cathode
(Iv) anode / hole transport layer / light-emitting layer / electron transport layer / cathode
(V) anode / anode buffer layer / hole transport layer / emission layer / electron transport layer / cathode buffer layer / cathode
As a method for forming a light-emitting layer using the above compound, for example, there is a method for forming a thin film by a known method such as a vapor deposition method, a spin coating method, a casting method, and an LB method. preferable. Here, the molecular deposition film refers to a thin film formed by depositing the compound from a gaseous state or a film formed by solidifying the compound from a molten state or a liquid state. In general, this molecular deposition film can be distinguished from a thin film (molecule accumulation film) formed by the LB method by a difference in an aggregated structure and a higher-order structure and a functional difference resulting therefrom.
[0065]
As described in JP-A-57-51781, this light-emitting layer is prepared by dissolving the above compound as a light-emitting material in a solvent together with a binder such as a resin in a solvent, and then spin-coating. To form a thin film.
[0066]
The thickness of the light emitting layer formed in this way is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 μm.
[0067]
Next, other layers constituting an EL element in combination with a light emitting layer, such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, will be described.
[0068]
The hole injection layer and the hole transport layer have a function of transmitting holes injected from the anode to the light emitting layer, and the hole injection layer and the hole transport layer are interposed between the anode and the light emitting layer. Due to this, many holes are injected into the light-emitting layer at a lower electric field, and furthermore, electrons injected from the cathode, the electron injection layer or the electron transport layer into the light-emitting layer are separated from the light-emitting layer and the hole injection layer or the hole transport layer. Due to the barrier of electrons existing at the interface between the layers, the element is accumulated at the interface within the light emitting layer, and the device has excellent light emitting performance, such as improved luminous efficiency. The material of the hole injection layer and the hole transport layer (hereinafter, referred to as a hole injection material and a hole transport material) has a property of transmitting the holes injected from the anode to the light emitting layer. There is no particular limitation as long as the material is a conventional photoconductive material, which is conventionally used as a hole charge injection / transport material, or a known material used for a hole injection layer or a hole transport layer of an EL element. Any one can be selected from and used.
[0069]
The hole injection material and the hole transport material have any of hole injection or transport and electron barrier properties, and may be any of an organic substance and an inorganic substance. Examples of the hole injection material and the hole transport material include a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative and a pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, an amino-substituted chalcone derivative, and oxazole. Derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based copolymers, conductive polymer oligomers, especially thiophene oligomers, and the like. As the hole injecting material and the hole transporting material, those described above can be used, and porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds may be used. preferable.
[0070]
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N' -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1- Bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p- Tolaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N -Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadri Phenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenyl Amino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and two of those described in U.S. Pat. No. 5,061,569. Having a condensed aromatic ring in the molecule thereof, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 No. 8,4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units are connected in a starburst form. MTDATA).
[0071]
Further, a polymer material in which these materials are introduced into a polymer chain, or a polymer material in which these materials are used as a polymer main chain, can also be used.
[0072]
Further, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material. The hole injecting layer and the hole transporting layer are formed by thinning the hole injecting material and the hole transporting material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method. Can be formed. The thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm. The hole injecting layer and the hole transporting layer may have a single-layer structure composed of one or more of the above materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
[0073]
Further, the electron transporting layer used as needed may have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material may be selected from conventionally known compounds. Can be used.
[0074]
Examples of materials used for the electron transporting layer (hereinafter, referred to as electron transporting materials) include heterocyclic tetracarboxylic anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthalene perylene; carbodiimides; Examples include fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives. Further, in the oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaphosphorus derivative having a quinoxaphosphorus ring known as an electron-withdrawing group may also be used as the electron transport material. it can.
[0075]
Further, a polymer material in which these materials are introduced into a polymer chain, or a polymer material in which these materials are used as a polymer main chain, can also be used.
[0076]
Also, metal complexes of 8-quinolinol derivatives, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like, can also be preferably used as the electron transport material. Also, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can be used as the electron transporting material, and similarly to the hole injection layer and the hole transporting layer, inorganic materials such as n-type Si and n-type SiC can be used. Semiconductors can also be used as electron transport materials.
[0077]
The electron transport layer can be formed by forming the above compound by a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually selected in the range of 5 nm to 5 μm. The electron transport layer may have a single-layer structure composed of one or more of these electron transport materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
[0078]
Further, in the present invention, the fluorescent compound is not limited to the light emitting layer alone, and is the same as the fluorescent compound serving as the host compound of the phosphorescent compound in the hole transport layer adjacent to the light emitting layer or the electron transport layer. At least one kind of fluorescent compound having a maximum fluorescence wavelength may be contained in the region, whereby the luminous efficiency of the EL element can be further increased. As the fluorescent compound contained in the hole transport layer or the electron transport layer, the fluorescent compound having a fluorescence maximum wavelength in the range of 350 to 440 nm, more preferably 390 to 410 nm, as in the light emitting layer. Compounds are used.
[0079]
In the present invention, it is preferable that the compound represented by the general formula (1) or the general formula (2) is contained in the electron transport layer from the viewpoint of luminous efficiency and durability.
[0080]
The substrate preferably used for the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and is not particularly limited as long as it is transparent. Examples of the substrate preferably used for the organic EL device of the present invention include glass, quartz, and a light-transmitting plastic film.
[0081]
Examples of the light-transmitting plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
[0082]
Next, a preferred example of manufacturing the organic EL device will be described. As an example, a method for manufacturing an EL device including the above-described anode / hole injection layer / hole transport layer / emission layer / electron transport layer / electron injection layer / cathode will be described.
[0083]
First, on an appropriate substrate, a thin film made of a desired electrode material, for example, a material for an anode is formed by a method such as evaporation or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. Make the anode. Next, a thin film composed of a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer, which are element materials, is formed thereon.
[0084]
Further, a buffer layer (electrode interface layer) may be present between the anode and the light emitting layer or the hole injection layer, and between the cathode and the light emitting layer or the electron injection layer.
[0085]
The buffer layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminous efficiency. The “organic EL device and the forefront of its industrialization (published by NTT Corporation on November 30, 1998) )), Vol. 2, Chapter 2, "Electrode Materials" (pages 123 to 166), and includes an anode buffer layer and a cathode buffer layer.
[0086]
The details of the anode buffer layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. Specific examples thereof include a phthalocyanine buffer layer represented by copper phthalocyanine, and vanadium oxide. And a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
[0087]
The details of the cathode buffer layer are also described in JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586. Specifically, a metal buffer layer represented by strontium, aluminum, and the like; Examples thereof include an alkali metal compound buffer layer represented by lithium fluoride, an alkaline earth metal compound buffer layer represented by magnesium fluoride, an oxide buffer layer represented by aluminum oxide and lithium oxide.
[0088]
The buffer layer is desirably an extremely thin film, and the thickness is preferably in the range of 0.1 to 100 nm, depending on the material.
[0089]
Further, other layers having other functions may be laminated in addition to the above-mentioned basic constituent layers, if necessary. For example, JP-A-11-204258, JP-A-11-204359, and "Organic EL devices and the forefront of industrialization ( (November 30, 1998, published by NTTS Corporation) ”, page 237, etc., and may have a functional layer such as a hole blocking (hole block) layer.
[0090]
The buffer layer may function as a light emitting layer when at least one compound represented by the general formula (1) or (2) is present in at least one of the cathode buffer layer and the anode buffer layer. Good.
[0091]
Next, the electrodes of the organic EL element will be described. The electrodes of the organic EL element are composed of a cathode and an anode.
[0092]
As the anode in this organic EL element, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) is preferably used as an electrode material. Specific examples of such an electrode material include metals such as Au, CuI, indium tin oxide (ITO), and SnO.2And a transparent conductive material such as ZnO.
[0093]
The anode may be formed into a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when a pattern precision is not required much (about 100 μm or more). In the above, a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. When light is extracted from the anode, the transmittance is desirably greater than 10%, and the sheet resistance of the anode is preferably several hundred Ω / □ or less. Further, although the thickness depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
[0094]
On the other hand, as the cathode, those having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material are preferably used. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al2O3) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among them, a mixture of an electron injecting metal and a second metal which is a metal having a large work function and a stable work function, such as a magnesium / silver mixture, magnesium, / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al2O3) Mixtures, lithium / aluminum mixtures and the like are preferred. The cathode can be produced by forming a thin film from these electrode substances by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 1 μm, preferably 50 to 200 nm. In order to transmit light, if one of the anode and the cathode of the organic EL element is transparent or translucent, the luminous efficiency is advantageously improved.
[0095]
Next, a method for manufacturing an organic EL element will be described.
Examples of the method for thinning include the spin coating method, the casting method, and the vapor deposition method as described above, but the vacuum vapor deposition method is preferable because a uniform film is easily obtained and pinholes are hardly generated. When a vacuum deposition method is used for thinning, the deposition conditions vary depending on the type of compound used, the target crystal structure of the molecular deposition film, the association structure, and the like. 10-6-10-3It is desirable to appropriately select Pa, a deposition rate of 0.01 to 50 nm / sec, a substrate temperature of −50 to 300 ° C., and a film thickness of 5 nm to 5 μm.
[0096]
As described above, a thin film made of a desired electrode material, for example, an anode material, is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. After forming an anode, a layer thin film including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer is formed on the anode as described above, and then a cathode is formed thereon. A cathode is provided by forming a thin film made of a substance so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, for example, by vapor deposition or sputtering, and a desired organic EL element is obtained. In the production of this organic EL device, it is preferable to consistently produce the hole injection layer to the cathode in this manner by one evacuation, but the production order is reversed, and the cathode, the electron injection layer, the light emitting layer, A hole injection layer and an anode can be formed in this order. When a DC voltage is applied to the organic EL element obtained in this manner, light emission can be observed by applying a voltage of about 5 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Even if a voltage is applied in the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The waveform of the applied alternating current may be arbitrary.
[0097]
The organic EL element of the present invention may be used as a kind of lamp for illumination or an exposure light source, a projection device of a type for projecting an image, or a display device of a type for directly viewing a still image or a moving image. (Display). When used as a display device for reproducing moving images, the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Further, a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
[0098]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but embodiments of the present invention are not limited thereto.
[0099]
Example 1
<Preparation of organic EL element>
Organic EL elements OLED1-1 to 1-12 were produced as follows.
[0100]
After patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which 150 nm of ITO (indium tin oxide) was formed on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, the ITO transparent electrode was provided. The transparent support substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0101]
This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of α-NPD was put in a molybdenum resistance heating boat, and 200 mg of carbazole derivative (CBP) was put in another molybdenum resistance heating boat. 200 mg of bathocuproine (BCP) in a molybdenum resistance heating boat, 100 mg of a phosphorescent compound (Ir-1) in another molybdenum resistance heating boat, and Alq in another molybdenum resistance heating boat3Was placed in a vacuum evaporation apparatus.
[0102]
Then, the vacuum chamber was 4 × 10-4After the pressure was reduced to Pa, the heating boat containing α-NPD was energized and heated, and was vapor-deposited on a transparent support substrate at a vapor deposition rate of 0.1 nm / sec to provide a hole transport layer having a thickness of 45 nm. Further, the heating boat containing CBP and Ir-1 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.1 nm / sec and 0.01 nm / sec, respectively, to form a 20 nm-thick film. A light emitting layer was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature. Further, an electric current is applied to the heating boat containing the BCP, and the heating boat is heated to be deposited on the light emitting layer at a deposition rate of 0.1 nm / sec to provide a 10 nm-thick electron transport layer also serving as a hole blocking layer. Was. On top of that, Alq3The heating boat containing the gas was heated by applying an electric current, and was vapor-deposited on the electron transport layer at a vapor deposition rate of 0.1 nm / sec to further provide an electron injection layer having a thickness of 40 nm. In addition, the substrate temperature at the time of vapor deposition was room temperature.
[0103]
Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to form a cathode, thereby producing an organic EL device OLED1-1.
[0104]
Organic EL devices OLED1-2 to 1-12 were produced in exactly the same manner except that the CBP of the light emitting layer was replaced by the compounds shown in Table 1.
[0105]
The structure of the compound used above is shown below.
[0106]
Embedded image
Figure 2004022334
[0107]
<Evaluation of organic EL element>
The organic EL device obtained as described below was evaluated, and the results are shown in Table 1.
(Emission luminance, luminous efficiency)
In the organic EL element OLED1-1, a current began to flow at an initial driving voltage of 3 V, and emitted green light from a phosphorescent compound that was a dopant of the light emitting layer. Emission luminance (cd / m) of the organic EL element OLED1-1 when a DC voltage of 10 V was applied in a dry nitrogen gas atmosphere at 23 ° C.2) And luminous efficiency (lm / W) were measured.
[0108]
The light emission luminance and the light emission efficiency were represented by relative values when the organic EL element OLED1-1 was set to 100. The emission luminance was measured using CS-1000 (manufactured by Minolta).
(durability)
10mA / cm2The half-life time, which is the time required for the initial luminance to drop to half of the original brightness when driven at a constant current, is shown as an index. The half life time was represented by a relative value when the organic EL element OLED1-1 was set to 100.
[0109]
[Table 1]
Figure 2004022334
[0110]
As is clear from Table 1, an organic EL device using a triazine derivative compound represented by the general formula (1) or (2) as a host compound has high emission luminance and emission efficiency and a long half-life time. It is found that the organic EL device is very useful as an organic EL device.
[0111]
The same effect can be obtained in an organic EL device manufactured in the same manner as the organic EL devices OLED1-1 to 1-12 except that the phosphorescent compound (Ir-1) is changed to Ir-12 or Ir-9. Was. In addition, the device using Ir-12 emitted blue light, and the device using Ir-9 emitted red light.
[0112]
Example 2
Organic EL devices OLED2-1 to 2-9 were produced in exactly the same manner except that the BCP in the electron transport layer of the organic EL device OLED1-1 of Example 1 was replaced with the compound shown in Table 2.
[0113]
Next, the light emission luminance, light emission efficiency, and half-life time (durability) were measured in the same manner as in Example 1. Table 2 shows the obtained results.
[0114]
[Table 2]
Figure 2004022334
[0115]
As is clear from Table 2, the organic EL device using the triazine derivative compound represented by the general formula (1) or (2) for the electron transport layer has improved light emission luminance, light emission efficiency and durability. I understand. In particular, it can be seen that in the durability, the half life time is remarkably improved.
[0116]
Example 3
The red, green, and blue light-emitting organic EL elements manufactured in Example 1 were juxtaposed on the same substrate, and an active matrix type full-color display device shown in FIG. 1 was manufactured. FIG. 1 shows only a schematic view of the display section A of the manufactured full-color display device. That is, on the same substrate, a wiring portion including a plurality of scanning lines 2 and data lines 3 and a plurality of pixels 1 (pixels in a red region, pixels in a green region, pixels in a blue region, and the like) are arranged side by side. The scanning lines 2 and the plurality of data lines 3 of the wiring portion are each made of a conductive material, and the scanning lines 2 and the data lines 3 are orthogonal to each other in a grid and are connected to the pixel 1 at orthogonal positions (details). Is not shown). The plurality of pixels 1 are driven by an active matrix method provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 2. Receives an image data signal from the data line 3 and emits light in accordance with the received image data. By arranging the red, green, and blue pixels appropriately as described above, a full-color display can be achieved.
[0117]
By driving the full-color display device, a clear full-color moving image display with high luminance and good durability was obtained.
[0118]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is excellent in light emission brightness, and it has a remarkably excellent effect that a long-life organic EL element and a display device having the organic EL element can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a display unit of a full-color display device.
[Explanation of symbols]
A Display section
1 pixel
2 scanning line
3 Data line

Claims (11)

ホスト化合物及び燐光性化合物を含有する発光層を有する有機エレクトロルミネッセンス素子であって、該素子を構成する何れかの層に下記一般式(1)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2004022334
式中、Ar、Ar及びArは6員芳香族基を表し、Ar11、Ar12及びAr13は6員芳香族基又は5員単環芳香族基を表す。
An organic electroluminescence device having a light emitting layer containing a host compound and a phosphorescent compound, wherein any one of the layers constituting the device contains a compound represented by the following general formula (1). Organic electroluminescent element.
Figure 2004022334
In the formula, Ar 1 , Ar 2 and Ar 3 represent a 6-membered aromatic group, and Ar 11 , Ar 12 and Ar 13 represent a 6-membered aromatic group or a 5-membered monocyclic aromatic group.
一般式(1)において、Ar、Ar、Ar、Ar11、Ar12及びAr13が全て単環芳香族基を表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。In the general formula (1), Ar 1, Ar 2, Ar 3, Ar 11, an organic electroluminescent device according to claim 1, Ar 12 and Ar 13 is characterized in that all represents a monocyclic aromatic group. 一般式(1)において、Ar、Ar及びArが炭化水素芳香族基であり、Ar11、Ar12及びAr13が6員複素芳香族基であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。In the general formula (1), Ar 1 , Ar 2 and Ar 3 are a hydrocarbon aromatic group, and Ar 11 , Ar 12 and Ar 13 are a 6-membered heteroaromatic group. 3. The organic electroluminescent device according to 2. 下記一般式(2)で表される化合物を含有することを特徴とする請求項1〜3の何れか1項に記載の有機エレクトロルミネッセンス素子。
Figure 2004022334
式中、Ar21、Ar22及びAr23は、6員芳香族基又は5員単環芳香族基を表し、R、R及びRは一価の置換基を表す。l、m及びnはそれぞれ1〜4の整数を表す。
The organic electroluminescence device according to any one of claims 1 to 3, further comprising a compound represented by the following general formula (2).
Figure 2004022334
In the formula, Ar 21 , Ar 22 and Ar 23 represent a 6-membered aromatic group or a 5-membered monocyclic aromatic group, and R 1 , R 2 and R 3 represent a monovalent substituent. 1, m and n each represent an integer of 1 to 4.
一般式(2)において、R、R及びRがアルキル基であり、l、m及びnが2〜4であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。5. The organic electroluminescence device according to claim 4, wherein, in the general formula (2), R 1 , R 2, and R 3 are an alkyl group, and l, m, and n are 2 to 4. 5. 一般式(2)において、Ar21、Ar22又はAr23のうち少なくとも1つがチエニル基であることを特徴とする請求項4又は5に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 4, wherein in formula (2), at least one of Ar 21 , Ar 22, and Ar 23 is a thienyl group. 一般式(1)又は一般式(2)で表される化合物を電子輸送層に含有することを特徴とする請求項1〜6の何れか1項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent device according to any one of claims 1 to 6, wherein the compound represented by the general formula (1) or (2) is contained in the electron transport layer. 一般式(1)又は一般式(2)で表される化合物をホスト化合物として発光層に含有することを特徴とする請求項1〜7の何れか1項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent device according to any one of claims 1 to 7, wherein the compound represented by the general formula (1) or (2) is contained in the light emitting layer as a host compound. 燐光性化合物がイリジウム化合物、オスミウム化合物又は白金化合物であることを特徴とする請求項1〜8の何れか1項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to any one of claims 1 to 8, wherein the phosphorescent compound is an iridium compound, an osmium compound, or a platinum compound. 燐光性化合物がイリジウム化合物であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 9, wherein the phosphorescent compound is an iridium compound. 請求項1〜10の何れか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。A display device comprising the organic electroluminescence device according to claim 1.
JP2002175598A 2002-06-17 2002-06-17 Organic electroluminescence element and display device Expired - Fee Related JP4106974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175598A JP4106974B2 (en) 2002-06-17 2002-06-17 Organic electroluminescence element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175598A JP4106974B2 (en) 2002-06-17 2002-06-17 Organic electroluminescence element and display device

Publications (2)

Publication Number Publication Date
JP2004022334A true JP2004022334A (en) 2004-01-22
JP4106974B2 JP4106974B2 (en) 2008-06-25

Family

ID=31174205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175598A Expired - Fee Related JP4106974B2 (en) 2002-06-17 2002-06-17 Organic electroluminescence element and display device

Country Status (1)

Country Link
JP (1) JP4106974B2 (en)

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022962A1 (en) * 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation Compound, charge transport material and organic electroluminescent device
WO2005085387A1 (en) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
JP2005255986A (en) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp Material for forming emitter layer and organic electroluminescence element
JP2005268022A (en) * 2004-03-18 2005-09-29 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2005268199A (en) * 2003-07-31 2005-09-29 Mitsubishi Chemicals Corp Compound, charge carrying material and organic electroluminescent element
JP2006024898A (en) * 2004-06-09 2006-01-26 Mitsubishi Chemicals Corp Hole-blocking material and organic electroluminescence element
WO2007023840A1 (en) 2005-08-26 2007-03-01 Tosoh Corporation 1,3,5-triazine derivative, method for producing same, and organic electroluminescent device containing same as component
JP2007137829A (en) * 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd New triazine derivative and organic electroluminescence element using the same
JP2007314503A (en) * 2005-08-26 2007-12-06 Tosoh Corp 1, 3, 5-triazine derivative, method for producing the same and organic electroluminescent device comprising the same as constituent
WO2008023628A1 (en) * 2006-08-21 2008-02-28 Hodogaya Chemical Co., Ltd. Compound having triazine ring structure substituted with pyridyl group and organic electroluminescent device
JP2008195617A (en) * 2007-02-08 2008-08-28 Tosoh Corp 1,3-bis(1,3,5-triazinyl)benzene derivative, its production method, and organic electroluminescent element comprising the derivative
WO2008129912A1 (en) 2007-04-12 2008-10-30 Tosoh Corporation Phenyl-substituted 1,3,5-triazine compound, process for producing the same, and organic electroluminescent device containing the same as component
WO2009031855A1 (en) * 2007-09-05 2009-03-12 Cheil Industries Inc. Material for organic photoelectric device, and organic photoelectric device including the same
EP2057249A1 (en) 2006-08-31 2009-05-13 Cdt Oxford Limited Compounds for use in opto-electrical devices
US7560730B2 (en) 2002-08-22 2009-07-14 Fujifilm Corporation Light emitting element having an organic layer including a light-emitting layer
WO2009107651A1 (en) * 2008-02-26 2009-09-03 保土谷化学工業株式会社 Substituted bipyridyl compound and organic electroluminescent element
JP2009224512A (en) * 2008-03-14 2009-10-01 Tosoh Corp Phosphorescent organic field light emitting element
WO2009131254A1 (en) * 2008-04-25 2009-10-29 住友化学株式会社 Composition containing nitrogenous heterocyclic compounds
JP2010021561A (en) * 2004-02-09 2010-01-28 Lg Display Co Ltd New blue illuminator used for organic electroluminescent element
WO2010038854A1 (en) * 2008-10-03 2010-04-08 東ソー株式会社 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same as constituent component
WO2010064627A1 (en) 2008-12-01 2010-06-10 東ソー株式会社 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same
WO2011021689A1 (en) 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP2011084553A (en) * 2009-09-15 2011-04-28 Tosoh Corp Pyrimidine derivative, production method therefor, and organic electroluminescent element including the same as constituent
JP2011121934A (en) * 2009-11-12 2011-06-23 Tosoh Corp Triazine derivative, method for producing the same and organic electroluminescent element containing the same as component
JP2012082136A (en) * 2010-10-06 2012-04-26 Tosoh Corp Triazine derivative, method for producing the same, and organic semi-conductor element containing the same as constituent
WO2012091026A1 (en) * 2010-12-27 2012-07-05 東ソー株式会社 1,3,5-triazine compound, method for preparing same, and organic electroluminescent element comprising same
WO2012137958A1 (en) 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
US8427046B2 (en) 2005-05-17 2013-04-23 Mitsubishi Chemical Corporation Monoamine compound, charge-transporting material, and organic electroluminescent device
WO2013069762A1 (en) 2011-11-11 2013-05-16 東ソー株式会社 Cyclic azine compound having nitrogen-containing fused aromatic group, method for producing same, and organic electroluminescent element using same as constituent component
US20130153863A1 (en) * 2011-12-19 2013-06-20 Au Optronics Corporation Electron transport material and organic light emitting device
US20130264560A1 (en) * 2010-12-20 2013-10-10 E I Du Pont De Nemours And Company Triazine derivatives for electronic applications
US20130264561A1 (en) * 2010-12-20 2013-10-10 E I Du Pont De Nemours And Company Electroactive compositions for electronic applications
US8765270B2 (en) 2008-12-12 2014-07-01 Canon Kabushiki Kaisha Triazine compound and organic light emitting device using the same
KR20140092826A (en) * 2011-11-11 2014-07-24 미쓰비시 가가꾸 가부시키가이샤 Organic electroluminescent element and organic electroluminescent device
WO2014171541A1 (en) * 2013-04-18 2014-10-23 東ソー株式会社 Heterocyclic compound for organic electroluminescence element and application therefor
EP2849243A1 (en) 2008-12-22 2015-03-18 Merck Patent GmbH Organic electroluminescent device
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
US20160043325A1 (en) * 2011-01-11 2016-02-11 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display and lighting
EP2966706A3 (en) * 2014-07-09 2016-03-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
CN106883215A (en) * 2017-01-24 2017-06-23 瑞声科技(南京)有限公司 Triaizine compounds and luminescent device
US20170186970A1 (en) * 2015-12-29 2017-06-29 Universal Display Corporation Organic Electroluminescent Materials and Devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
JP2017216454A (en) * 2017-06-15 2017-12-07 コニカミノルタ株式会社 Organic electroluminescent element, illumination device, and display device
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
US20180375028A1 (en) * 2017-06-21 2018-12-27 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
CN110423235A (en) * 2018-08-03 2019-11-08 广东聚华印刷显示技术有限公司 Electron transport material and its application
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
CN111377908A (en) * 2018-12-27 2020-07-07 北京鼎材科技有限公司 Thermally activated delayed fluorescence compound and application thereof
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
US11588111B2 (en) 2017-08-04 2023-02-21 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device including the same
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
WO2023112915A1 (en) * 2021-12-14 2023-06-22 出光興産株式会社 Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829745B1 (en) 2014-01-24 2018-02-19 삼성에스디아이 주식회사 Organic compound and composition and organic optoelectric device and display device
KR101773363B1 (en) 2014-04-09 2017-08-31 제일모직 주식회사 Organic compound and composition and organic optoelectric device and display device
CN107592860B (en) 2015-04-24 2020-11-03 三星Sdi株式会社 Organic compound, composition and organic photodiode

Cited By (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560730B2 (en) 2002-08-22 2009-07-14 Fujifilm Corporation Light emitting element having an organic layer including a light-emitting layer
US7777043B2 (en) 2003-07-31 2010-08-17 Mitsubishi Chemical Corporation Compound, charge transporting material and organic electroluminescent element
WO2005022962A1 (en) * 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation Compound, charge transport material and organic electroluminescent device
JP2005268199A (en) * 2003-07-31 2005-09-29 Mitsubishi Chemicals Corp Compound, charge carrying material and organic electroluminescent element
JP4561221B2 (en) * 2003-07-31 2010-10-13 三菱化学株式会社 Compound, charge transport material and organic electroluminescence device
JP2010021561A (en) * 2004-02-09 2010-01-28 Lg Display Co Ltd New blue illuminator used for organic electroluminescent element
JP2005255986A (en) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp Material for forming emitter layer and organic electroluminescence element
WO2005085387A1 (en) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
JP2005268022A (en) * 2004-03-18 2005-09-29 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2006024898A (en) * 2004-06-09 2006-01-26 Mitsubishi Chemicals Corp Hole-blocking material and organic electroluminescence element
US8427046B2 (en) 2005-05-17 2013-04-23 Mitsubishi Chemical Corporation Monoamine compound, charge-transporting material, and organic electroluminescent device
US8877355B2 (en) 2005-05-17 2014-11-04 Mitsubishi Chemical Corporation Monoamine compound, charge-transporting material, and organic electroluminescent device
US7994316B2 (en) 2005-08-26 2011-08-09 Tosoh Corporation 1,3,5-triazine derivative, production method thereof and organic electroluminescence device comprising this as a composing component
WO2007023840A1 (en) 2005-08-26 2007-03-01 Tosoh Corporation 1,3,5-triazine derivative, method for producing same, and organic electroluminescent device containing same as component
JP2007314503A (en) * 2005-08-26 2007-12-06 Tosoh Corp 1, 3, 5-triazine derivative, method for producing the same and organic electroluminescent device comprising the same as constituent
JP2007137829A (en) * 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd New triazine derivative and organic electroluminescence element using the same
JPWO2008023628A1 (en) * 2006-08-21 2010-01-07 保土谷化学工業株式会社 Compound having triazine ring structure substituted with pyridyl group and organic electroluminescence device
CN101506197A (en) * 2006-08-21 2009-08-12 保土谷化学工业株式会社 Compound having triazine ring structure substituted with pyridyl group and organic electroluminescent device
US20100090588A1 (en) * 2006-08-21 2010-04-15 Hodogaya Chemical Co., Ltd. Compound having triazine ring structure substituted with pyridyl group and organic electroluminescent device
WO2008023628A1 (en) * 2006-08-21 2008-02-28 Hodogaya Chemical Co., Ltd. Compound having triazine ring structure substituted with pyridyl group and organic electroluminescent device
EP2057249B1 (en) * 2006-08-31 2017-11-08 CDT Oxford Limited Compounds for use in opto-electrical devices
EP3211056B1 (en) * 2006-08-31 2020-07-22 CDT Oxford Limited Compounds for use in opto-electrical devices
JP2015167230A (en) * 2006-08-31 2015-09-24 シーディーティー オックスフォード リミテッド Compound used for opto-electrical element
JP2010503193A (en) * 2006-08-31 2010-01-28 シーディーティー オックスフォード リミテッド Compounds used in photoelectric devices
EP2057249A1 (en) 2006-08-31 2009-05-13 Cdt Oxford Limited Compounds for use in opto-electrical devices
CN103325962A (en) * 2006-08-31 2013-09-25 Cdt牛津有限公司 Compounds for use in opto-electrical devices
US9680110B2 (en) 2006-08-31 2017-06-13 Cdt Oxford Limited Compounds for use in opto-electrical devices
EP3211056A1 (en) * 2006-08-31 2017-08-30 CDT Oxford Limited Compounds for use in opto-electrical devices
JP2008195617A (en) * 2007-02-08 2008-08-28 Tosoh Corp 1,3-bis(1,3,5-triazinyl)benzene derivative, its production method, and organic electroluminescent element comprising the derivative
KR101554354B1 (en) 2007-04-12 2015-09-18 토소가부시키가이샤 Phenyl-substituted 1,3,5-triazine compound
US8569485B2 (en) 2007-04-12 2013-10-29 Tosoh Corporation Phenyl-substituted 1,3,5-triazine compound, process for producing the same, and organic electroluminescent device containing the same as component
JP2008280330A (en) * 2007-04-12 2008-11-20 Tosoh Corp Phenyl-substituted 1,3,5-triazine compound, method for producing the same, and organic electroluminescent device containing the same as component
TWI447109B (en) * 2007-04-12 2014-08-01 Tosoh Corp Phenyl-substituted 1,3,5-triazine compound, process for preparing same, and organic electroluminescent device
WO2008129912A1 (en) 2007-04-12 2008-10-30 Tosoh Corporation Phenyl-substituted 1,3,5-triazine compound, process for producing the same, and organic electroluminescent device containing the same as component
US8268997B2 (en) 2007-04-12 2012-09-18 Tosoh Corporation Phenyl-substituted 1,3,5-triazine compound, process for producing the same, and organic electroluminescent device containing the same as component
KR101482772B1 (en) 2007-04-12 2015-01-15 토소가부시키가이샤 Phenyl-substituted 1,3,5-triazine compound, process for producing the same, and organic electroluminescent device containing the same as component
EP2746271A1 (en) 2007-04-12 2014-06-25 Tosoh Corporation Phenyl-substituted 1, 3, 5-triazine compounds as intermediates for electroluminescent molecules
WO2009031855A1 (en) * 2007-09-05 2009-03-12 Cheil Industries Inc. Material for organic photoelectric device, and organic photoelectric device including the same
US9595677B2 (en) 2007-09-05 2017-03-14 Cheil Industries, Inc. Material for organic photoelectric device, and organic photoelectric device including the same
US8343640B2 (en) 2007-09-05 2013-01-01 Cheil Industries, Inc. Material for organic photoelectric device, and organic photoelectric device including the same
US8642189B2 (en) 2008-02-26 2014-02-04 Hodogaya Chemical Co., Ltd. Substituted bipyridyl compound and organic electroluminescent device
WO2009107651A1 (en) * 2008-02-26 2009-09-03 保土谷化学工業株式会社 Substituted bipyridyl compound and organic electroluminescent element
JPWO2009107651A1 (en) * 2008-02-26 2011-07-07 保土谷化学工業株式会社 Substituted bipyridyl compounds and organic electroluminescent devices
JP2009224512A (en) * 2008-03-14 2009-10-01 Tosoh Corp Phosphorescent organic field light emitting element
WO2009131254A1 (en) * 2008-04-25 2009-10-29 住友化学株式会社 Composition containing nitrogenous heterocyclic compounds
JP2010132853A (en) * 2008-04-25 2010-06-17 Sumitomo Chemical Co Ltd Composition containing nitrogen-containing heterocyclic compound
TWI486344B (en) * 2008-10-03 2015-06-01 Tosoh Corp 1,3,5-triazabenzene derivative, a process for producing the same, and an organic electroluminescence device using the same as a constituent thereof
WO2010038854A1 (en) * 2008-10-03 2010-04-08 東ソー株式会社 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same as constituent component
JP2010106018A (en) * 2008-10-03 2010-05-13 Tosoh Corp 1, 3, 5-triazine derivative, method for producing the same, and organic electroluminescent device containing the same as constituent component
KR101604866B1 (en) 2008-10-03 2016-03-18 토소가부시키가이샤 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same as constituent component
US8735577B2 (en) 2008-10-03 2014-05-27 Tosoh Corporation 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same as constituent component
WO2010064627A1 (en) 2008-12-01 2010-06-10 東ソー株式会社 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same
US8674091B2 (en) 2008-12-01 2014-03-18 Tosoh Corporation 1,3,5-triazine derivative, process for producing same, and organic electroluminescent element comprising same as constituent
JP2010155826A (en) * 2008-12-01 2010-07-15 Tosoh Corp 1,3,5-triazine derivative, method for producing the same and organic electroluminescent element comprising the same
US8765270B2 (en) 2008-12-12 2014-07-01 Canon Kabushiki Kaisha Triazine compound and organic light emitting device using the same
EP2849243B1 (en) 2008-12-22 2018-10-03 Merck Patent GmbH Organic electroluminescent device
EP2849243A1 (en) 2008-12-22 2015-03-18 Merck Patent GmbH Organic electroluminescent device
EP2468731A1 (en) * 2009-08-21 2012-06-27 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
US9624193B2 (en) 2009-08-21 2017-04-18 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
WO2011021689A1 (en) 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
EP2818462A1 (en) * 2009-08-21 2014-12-31 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electrolumiscent element containing these as component
US9120773B2 (en) 2009-08-21 2015-09-01 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
EP2468731A4 (en) * 2009-08-21 2013-01-16 Tosoh Corp Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP2011084553A (en) * 2009-09-15 2011-04-28 Tosoh Corp Pyrimidine derivative, production method therefor, and organic electroluminescent element including the same as constituent
JP2011121934A (en) * 2009-11-12 2011-06-23 Tosoh Corp Triazine derivative, method for producing the same and organic electroluminescent element containing the same as component
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
JP2012082136A (en) * 2010-10-06 2012-04-26 Tosoh Corp Triazine derivative, method for producing the same, and organic semi-conductor element containing the same as constituent
JP2014509068A (en) * 2010-12-20 2014-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroactive compositions for electronic technology applications
EP2655347A1 (en) * 2010-12-20 2013-10-30 E.I. Du Pont De Nemours And Company Triazine derivatives for electronic applications
US20130264560A1 (en) * 2010-12-20 2013-10-10 E I Du Pont De Nemours And Company Triazine derivatives for electronic applications
US20130264561A1 (en) * 2010-12-20 2013-10-10 E I Du Pont De Nemours And Company Electroactive compositions for electronic applications
WO2012091026A1 (en) * 2010-12-27 2012-07-05 東ソー株式会社 1,3,5-triazine compound, method for preparing same, and organic electroluminescent element comprising same
JP2012149059A (en) * 2010-12-27 2012-08-09 Tosoh Corp 1,3,5-triazine compound, method for preparing the same, and organic electroluminescent element including the compound as constituent componnt
US9899606B2 (en) * 2011-01-11 2018-02-20 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display and lighting
US20160043325A1 (en) * 2011-01-11 2016-02-11 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display and lighting
US8945728B2 (en) 2011-04-07 2015-02-03 Mitsubishi Chemical Corporation Organic compound, charge-transporting material, composition containing the compound, organic electroluminescent element, display device, and lighting device
WO2012137958A1 (en) 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
US9564602B2 (en) 2011-04-07 2017-02-07 Mitsubishi Chemical Corporation Organic compound, charge-transporting material, composition containing the compound, organic electroluminescent element, display device, and lighting device
KR20140092826A (en) * 2011-11-11 2014-07-24 미쓰비시 가가꾸 가부시키가이샤 Organic electroluminescent element and organic electroluminescent device
US9252368B2 (en) 2011-11-11 2016-02-02 Tosoh Corporation Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component
KR20140091049A (en) 2011-11-11 2014-07-18 토소가부시키가이샤 Cyclic azine compound having nitrogen-containing fused aromatic group, method for producing same, and organic electroluminescent element using same as constituent component
KR102122188B1 (en) * 2011-11-11 2020-06-12 미쯔비시 케미컬 주식회사 Organic electroluminescent element and organic electroluminescent device
WO2013069762A1 (en) 2011-11-11 2013-05-16 東ソー株式会社 Cyclic azine compound having nitrogen-containing fused aromatic group, method for producing same, and organic electroluminescent element using same as constituent component
US20130153863A1 (en) * 2011-12-19 2013-06-20 Au Optronics Corporation Electron transport material and organic light emitting device
US9115119B2 (en) * 2011-12-19 2015-08-25 Au Optronics Corporation Electron transport material and organic light emitting device
CN105340100A (en) * 2013-04-18 2016-02-17 东曹株式会社 Heterocyclic compound for organic electroluminescence element and application therefor
JP2015027986A (en) * 2013-04-18 2015-02-12 東ソー株式会社 Heterocyclic compound for organic electroluminescence element and application of the same
US9780310B2 (en) 2013-04-18 2017-10-03 Tosoh Corporation Heterocyclic compound for organic electroluminescent device and its application
WO2014171541A1 (en) * 2013-04-18 2014-10-23 東ソー株式会社 Heterocyclic compound for organic electroluminescence element and application therefor
US11957047B2 (en) 2014-07-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11024811B2 (en) 2014-07-09 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
EP2966706A3 (en) * 2014-07-09 2016-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US11456423B2 (en) 2014-07-09 2022-09-27 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US11641774B2 (en) 2014-09-29 2023-05-02 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US11342510B2 (en) 2014-10-06 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
US11818948B2 (en) 2015-12-29 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US20170186970A1 (en) * 2015-12-29 2017-06-29 Universal Display Corporation Organic Electroluminescent Materials and Devices
US11024808B2 (en) * 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
CN106883215A (en) * 2017-01-24 2017-06-23 瑞声科技(南京)有限公司 Triaizine compounds and luminescent device
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
JP2017216454A (en) * 2017-06-15 2017-12-07 コニカミノルタ株式会社 Organic electroluminescent element, illumination device, and display device
US11844273B2 (en) 2017-06-21 2023-12-12 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
JP7304682B2 (en) 2017-06-21 2023-07-07 三星ディスプレイ株式會社 HETEROCYCLIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE CONTAINING THE SAME
US11563183B2 (en) * 2017-06-21 2023-01-24 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
JP2019006767A (en) * 2017-06-21 2019-01-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Heterocyclic compound, and organic light emitting element containing the same
US20180375028A1 (en) * 2017-06-21 2018-12-27 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11588111B2 (en) 2017-08-04 2023-02-21 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device including the same
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
WO2020024557A1 (en) * 2018-08-03 2020-02-06 广东聚华印刷显示技术有限公司 Electron transport material and application thereof
US11778906B2 (en) 2018-08-03 2023-10-03 Guangdong Juhua Printed Display Technology Co. Ltd Electron transport material and application thereof
KR20210044238A (en) * 2018-08-03 2021-04-22 광동 주후아 프린티드 디스플레이 테크놀로지 컴퍼니 리미티드 Electron transport material and its application
JP7116258B2 (en) 2018-08-03 2022-08-09 ▲広▼▲東▼聚▲華▼印刷▲顯▼示技▲術▼有限公司 Electron transport material and its use
KR102566823B1 (en) 2018-08-03 2023-08-16 광동 주후아 프린티드 디스플레이 테크놀로지 컴퍼니 리미티드 Electron transport materials and their applications
CN110423235A (en) * 2018-08-03 2019-11-08 广东聚华印刷显示技术有限公司 Electron transport material and its application
JP2021533580A (en) * 2018-08-03 2021-12-02 ▲広▼▲東▼聚▲華▼印刷▲顯▼示技▲術▼有限公司 Electronic transport materials and their use
US20210328151A1 (en) * 2018-08-03 2021-10-21 Guangdong Juhua Printed Display Technology Co., Ltd Electron transport material and application thereof
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
CN111377908A (en) * 2018-12-27 2020-07-07 北京鼎材科技有限公司 Thermally activated delayed fluorescence compound and application thereof
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
WO2023112915A1 (en) * 2021-12-14 2023-06-22 出光興産株式会社 Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP4106974B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4106974B2 (en) Organic electroluminescence element and display device
JP4036041B2 (en) Organic electroluminescence element and display device
JP4103491B2 (en) Organic electroluminescence element and display device
JP4103492B2 (en) Organic electroluminescence element and display device
JP4483167B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE HAVING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2004214050A (en) Organic electroluminescent element and display device
JP2004079265A (en) Organic electroluminescent element and display device
JP4052024B2 (en) Organic electroluminescence element and display device
JP4048792B2 (en) Organic electroluminescence element and display device
JP2004178896A (en) Organic electroluminescent element and display device
JP3994799B2 (en) Organic electroluminescence element and display device
JP4103442B2 (en) Organic electroluminescence element and display device
JP2004047442A (en) Organic electroluminescent element and display device
JP4265216B2 (en) Organic electroluminescence element and display device
JP4085776B2 (en) Organic electroluminescence element and display device
JP2003208988A (en) Organic electroluminescent device and display equipment
JP4798128B2 (en) Organic electroluminescence element and display device
JP4726384B2 (en) Organic electroluminescence element and display device
JP4265215B2 (en) Organic electroluminescence element and display device
JP2004047329A (en) Organic electroluminescent element and display device
JP4656111B2 (en) Organic electroluminescence device
JP4129599B2 (en) Organic electroluminescence element and display device
JP4183016B2 (en) Organic electroluminescence element and display device
JP5040671B2 (en) Organic electroluminescence element and display device
JP2004288379A (en) Organic electroluminescent element, display device, and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4106974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees