JP2004022234A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2004022234A
JP2004022234A JP2002172676A JP2002172676A JP2004022234A JP 2004022234 A JP2004022234 A JP 2004022234A JP 2002172676 A JP2002172676 A JP 2002172676A JP 2002172676 A JP2002172676 A JP 2002172676A JP 2004022234 A JP2004022234 A JP 2004022234A
Authority
JP
Japan
Prior art keywords
battery
battery pack
thickness
housing
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172676A
Other languages
Japanese (ja)
Inventor
Takeshi Kawahara
河原  武志
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo GS Soft Energy Co Ltd filed Critical Sanyo GS Soft Energy Co Ltd
Priority to JP2002172676A priority Critical patent/JP2004022234A/en
Publication of JP2004022234A publication Critical patent/JP2004022234A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack which is thin at the initial stage and of which the thickness increases little even after repetition of charge and discharge cycles, and which has high energy density. <P>SOLUTION: In the battery pack which houses square batteries in a box case of thin rectangular parallelepiped, an opening part is provided in the center on two faces having the largest area of the box case, and the opening part is covered by an insulation material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、角型電池を使用し、薄型化に適した電池パックの構造に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化および携帯機器化に伴い、電子機器の電源としての電池パックの需要が増加している。電池パックに使用される電池としては、一般に充放電が可能である二次電池が多用されており、中でも最近では、エネルギー密度の高いリチウムイオン電池等の非水電解質二次電池の使用比率が高まっている。このような状況の中で、特に携帯電話機用等ではさらなる電池パックの薄型化が求められている。
【0003】
従来の電池パックは、一般的に、二つの嵌合する樹脂成形品からなる薄型直方体形状の筐体の中に電池を収納した後に、嵌合部を超音波溶着によって接合し、次いで表面に銘板を貼り付けることで製造している。
【0004】
図1は従来の電池パックの構造を示したもので、図1(a)は電池パックの上面からの透視図、図1(b)は要部断面図である。図1において、1は上ケース、3は電池、4は電池の負極端子、5は絶縁材、6は配線材、7は回路基板、8は両面接着テープ、9は下ケースである。
【0005】
従来の電池パックは、図1(a)に示すように、回路基板7と正極端子を兼ねる電池ケースとを金属製リードからなる配線材6で接続し、つぎに電池3の側面に絶縁材5を貼り付け、負極端子4と回路基板7とが配線材6で接続される。そして、図1(b)に示したように、両面接着テープ8を用いて、電池3を下ケース9に固定し、上ケース1と下ケース9とを超音波接合して筐体とする。
【0006】
なお、ここで回路基板7は、入出力端子・IC、FET、サーミスタ、抵抗、コンデンサーなどからなる保護回路・保護素子等を基板に組み込んだものである。また、保護素子としては、PTC(正温度特性抵抗素子)やバイメタル式のサーマルプロテクターなどが用いられている。
【0007】
保護素子は、このように回路基板に組み込むことができるほか、配線材の経路中に直列に組み込むことも可能である。
【0008】
ここで、電池と、入出力端子と保護回路と保護素子等を備えた回路基板とを、金属製の配線材で接合したもの、すなわち発電要素を「コアパック」とする。また、入出力端子は、回路基板の表面に金メッキ端子として形成する方式と、回路基板からリード線を引き出して、リード線の先端にコネクターを形成する方式とがある。
【0009】
【発明が解決しようとする課題】
従来の角型電池を用いた電池パックは、薄型直方体形状の筐体中に角型電池を収納している。薄型直方体形状の筐体の外面は六つの面からなるが、ここでは、この筐体の向かい合う最大面積をもつ二つの面のうち、筐体の上面を「天面」、筐体の下面を「底面」とし、筐体の残る四面を「側面」とする。筐体が薄型直方体形状の場合には、天面と底面の形状は同一である。
【0010】
このような電池パックのさらなる薄型化を考えた場合、天面や底面の厚さを薄くすることが一つの方策であるが、一般的にはこの面の厚さが0.3〜0.35mmを下回る領域での樹脂成形は、成形金型内で樹脂が十分に流動しないため、成形品の歩留まりが著しく低下する問題があった。したがって、筐体樹脂の天面や底面を薄くすることで電池パックを薄型化することには限界があった。
【0011】
この理由は、電池パック用筐体の樹脂として、一般的に用いられるポリカーボネート樹脂の流動性が低いためである。
【0012】
なお、樹脂成形可能な天面の厚さは、天面や底面の面積が小さいほど薄くすることができる。これは、樹脂の流動距離が短いことによるものであり、反対に天面や底面の面積が大きくなり、樹脂の流動距離が長くなるほど、天面や底面の厚さを大きくすることが必要である。
【0013】
現在の技術では、薄肉成形に有利な高速成形機を使用した場合でも、天面や底面の寸法が約30mm×40mmの場合は、量産性を考慮すると、天面や底面の厚さの最小値は0.3mmが限界であり、天面や底面の寸法が約35mm×55mmの場合は、天面や底面の厚さの最小値は0.35mmが限界である。
【0014】
また、一方で、電池パックの高エネルギー密度化には、角型の電池を用いて電池パックの筐体との間の無駄な空間を小さくすることが望ましい。そこで、最近では、軽量化を目的として電池のケースに従来の鉄よりも強度が弱いアルミニウムが用いられるようになり、このことによって、電池の充放電のサイクル回数が進むほど、内圧の上昇に伴う電池の膨れが従来よりも大きく現れるという問題が生じている。
【0015】
その結果、最近の電池パックでは、高エネルギー密度であるほど、初期状態と比較して、充放電サイクル経過後の厚み増加が大きく、本体機器の電池パックホルダー部分と電池パックとの隙間が不十分な場合には、電池パックが本体機器から抜けなくなる不具合が生じることがある。
【0016】
さらに、図1に示したような、電池パックの筐体として二つ以上の樹脂成型品を使用し、超音波溶着方式で電池パックを製作する場合には、超音波振動が筐体内部の電池などに伝わって損傷するのを防ぐことを目的として、設計的に超音波の発振側の筐体樹脂と電池との間にはクリアランス(遊隙)を設けている。このクリアランスは、上記の電池パックの膨れを緩和する効果がある一方で、電池パックの高エネルギー密度化には反するという問題もあった。
【0017】
本発明の目的は、上記問題点を解決し、初期の厚みが薄く、充放電サイクル経過後も厚み増加が僅かであり、エネルギー密度の高い電池パックを提供することにある。
【0018】
【課題を解決するための手段】
請求項1の発明は、形状が薄型直方体の筐体内に角型電池を収納した電池パックにおいて、前記筐体の最大面積をもつ二つの面の中央部に開口部を設け、前記開口部が絶縁材で被覆されていることを特徴とする。
【0019】
請求項1の発明によれば、きわめて薄型の電池パックを作製することができ、エネルギー密度の高い電池パックを得ることができる。
【0020】
【発明の実施の形態】
本発明は、形状が薄型直方体の筐体中に角型電池を収納した電池パックにおいて、筐体の最大面積をもつ二つの面(天面および底面)の中央部に開口部を設け、この開口部が絶縁材で被覆されていることを特徴とするものである。
【0021】
本発明の電池パックの構造例を、図2〜図4を参照して説明する。図2〜図4において、記号1および3〜9は図1と同じものを示しており、2は被覆用絶縁材、10は上ケースの開口部、11は下ケースの開口部、12はコアパック、13は電池パック、xはケースの開口部の電池の短辺からの距離、yはケースの開口部の電池の長辺からの距離である。
【0022】
図2は、本発明になる電池パックの組立方法を示す模式図である。まず、図2(a)に示したように、電池3に絶縁材5を取り付け、回路基板7と負極端子4とを、金属製リードからなる配線材6で接続し、同時に、回路基板7と正極端子を兼ねる電池ケースとを金属製リードからなる配線材(図示せず)で接続し、コアパック12とする。
【0023】
つぎに、コアパック12を下ケース9に入れ、上ケース1をのせて、上ケース1と下ケース9とを嵌合する。そして、この嵌合体を被覆用絶縁材2で包むことで接合するとともに、上ケースの開口部10および下ケースの開口部11とを被覆用絶縁材2で覆い、図2(b)に示した電池パック13を作製した。なお、この場合、両面接着テープを用いて、電池3を下ケース9または上ケース1に固定してもよい。
【0024】
図3は本発明になる電池パックの一例を示した図で、図3(a)は上面からの透視図、図3(b)は要部断面図である。図3(a)に示すように、上ケース1および下ケース9には、電池の短辺からの距離xおよび電池の長辺からの距離yの部分に、上ケースの開口部10および下ケースの開口部11が設けられている。また、図3(b)に示したように、この電池パックの場合には、電池3を、上ケース1と下ケース9とからなる筐体に収納した後、上ケース1と下ケース9の外側から被覆用絶縁材2で被覆している。
【0025】
図4は本発明になる電池パックの他の例を示した図で、図4(a)は上面からの透視図、図4(b)は要部断面図である。この例では、図4(b)に示したように、電池3を被覆用絶縁材2で被覆した後、これを下ケース9に収納し、さらに上ケース1を嵌合させ、上ケース1と下ケース9とを、両面接着テープ8を用いて電池3に接合させて電池パックとする。
【0026】
本発明において、被覆用絶縁材の形状としては、テープ状またはシート状の絶縁材を用い、被覆用絶縁材の材料としては、ポリオレフィン樹脂、ポリエチレンテレフタル酸樹脂(PET)などを用いることができる。また、被覆用絶縁材の厚さとしては0.03〜0.1mmの範囲が好ましい。
【0027】
本発明の電池パックに使用する電池としては、鉛蓄電池、ニッケル−カドミウム電池、ニッケル−水素電池などの水溶液系二次電池またリチウムイオン電池などの非水電解質二次電池を用いることができる。特に、エネルギー密度の高い電池パックとしては、非水電解質二次電池を用いることが好ましい。また、薄型電池パック用としては、アルミニウム製電池ケースを用いた角形非水電解質二次電池が適している。
【0028】
現在、量産されている薄型直方体形状のアルミニウム製電池ケースを用いた角形非水電解質二次電池の寸法を調べた結果、最も膨れやすい電池の最大面積をもつ二つの面(これを「電池の天面」と「電池の底面」とする。薄型直方体形状の電池ケーの場合には、電池の天面と電池の底面の形状は同じである)の寸法は、長辺が40〜54mm、短辺が30〜34mmである。
【0029】
そして、これらの角形非水電解質二次電池の、充放電サイクル経過後の膨れを計測した結果、最も大きく膨れる電池の天面および電池の底面の、中央部の厚さ増加は、電池の天面(または電池の底面)の寸法が大きいほど大きくなり、0.3〜0.5mmで変化するが、一方で、重要なこととして、電池の天面(または電池の底面)の端辺付近の厚さ増加は、電池の天面(または電池の底面)の寸法に関係なくほぼ同じであることがわかった。
【0030】
この計測結果を図5および図6に示す。図5および図6は、電池の短辺からの距離xまたは電池の長辺からの距離yに対する、500サイクルの充放電経過後の、電池厚さの増加量を示したものであり、図5は電池の天面(=電池の底面)の寸法が40mm×30mmの場合であり、図6は電池の天面(=電池の底面)の寸法が54mm×34mmの場合である。なお、電池厚さの増加量に対する電池厚さの影響は、一般的な電池厚さ3.6〜6.2mmの範囲内では、ほとんど認められなかった。
【0031】
図5から、電池の天面(=電池の底面)の寸法が40mm×30mmの場合、電池の中央部(x=20mmまたはy=15mm)では、500サイクル後は初期に比べて約0.3mm膨れているが、周縁部では、xが6mm以下の範囲およびyが4mm以下の範囲では、電池の膨れは約0.1mm以下となり、この領域では電池の厚みの増加は小さくなっていることが示された。
【0032】
また、図6から、電池の天面(=電池の底面)の寸法が54mm×34mmの場合、電池の中央部(x=27mmまたはy=17mm)では、500サイクル後は初期に比べて約0.5mm膨れているが、周縁部では、xが6mm以下の範囲およびyが4mm以下の範囲では、図5と同じく、電池の膨れは約0.1mm以下となり、この領域では電池の厚みの増加は小さくなっていることが示された。
【0033】
本発明の電池パックは、筐体の天面(または底面)の中央部に開口部を設けるものである。筐体を構成する上ケースや下ケースを金型での樹脂成形で作製する場合、筐体のケースの天面(または底面)の中央部には樹脂が流動しずらいが、本発明の場合、中央部分には樹脂を充填する必要がないため、ケースの天面(または底面)の端辺付近の厚みを従来よりも薄くして成形することができる。
【0034】
具体的には、従来の、天面(または底面)の中央部に開口部を設けないケースの場合には、薄肉での成形は0.3mmが限界であったが、本発明の、天面(または底面)の中央部に開口部を設けたケースの場合には、0.15mmでの成形が可能である。このことによって、初期状態での電池パックの厚みを薄くすることができる。
【0035】
また、天面(または底面)の中央部に開口部を設けたケースの場合には、この開口部が電池が膨れた際の逃げしろの役目を果たし、充放電のサイクルを経過して電池が膨れた場合でも、電池パックの厚みの増加を抑えることができる。
【0036】
さらに、本発明では、電池を外部から絶縁するために、電池表面または筐体表面を被覆用絶縁材で被覆する構造としているが、筐体表面をテープ状絶縁材で被覆する構造は、特に、薄肉の筐体の機械的強度を補強するのに適しており、電池パックの薄型化に有効である。
【0037】
【実施例】
つぎに、実施例として、角型非水電解質二次電池を使用した薄型電池パックについて詳細に説明する。また、本発明は下記実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
【0038】
[非水電解質二次電池の内容]
電池としては、つぎに示す電池Xおよび電池Yの二種類を使用した。電池Xは、正極活物質にリチウムコバルト複合酸化物(LiCoO)を用いた。正極合剤は、活物質であるLiCoO(91wt%)と、導電材のアセチレンブラック(3wt%)と、結着剤であるポリフッ化ビニリデン(6wt%)とを混合したものに、N−メチル−2−ピロリドンを加えて分散させ、ペースト状に調製し、このペーストを厚さ20μmのアルミニウム集電体の両面にドクターブレードで均一に塗布し、乾燥させた後、ロールプレスで圧縮成型して、正極板を作製した。正極板の寸法は厚さ160μm、幅26mm、長さ320mmとした。
【0039】
負極活物質にホスト物質としてのグラファイトを用いた。負極合剤は、活物質であるグラファイト(92wt%)と、結着剤であるポリフッ化ビニリデン(8wt%)とを混合したものに、N−メチル−2−ピロリドンを加えて分散させ、ペースト状に調製し、このペーストを厚さ14μmの銅集電体の両面にドクターブレードで均一に塗布し、乾燥させた後、ロールプレスで圧縮成型して、負極板を作製した。負極板の寸法は厚さ160μm、幅27mm、長さ280mmとした。
【0040】
セパレータには、厚み20μmの微多孔性ポリエチレンフィルムを用いた。非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の容積比50:50の混合液にLiPFを1モル/リットル溶解したものを用いた。
【0041】
そして、正極板と負極板とをセパレータを介して重ね合わせて、ポリエチレン製の巻芯を中心にして、その周囲に長円渦巻状に巻いて、の巻回型極板群とし、この巻回型極板群をアルミニウム製角型電池ケースに収納し、電解液を注液後、注液口を封口することにより、電池Xを得た。電池Xの寸法は、長さ40.5mm、幅30mm、厚み3.6mmであり、公称容量は350mAhとした。なお、電池の天面および底面の寸法は30mm×40mmである。
【0042】
さらに、正極板の寸法を厚さ160μm、幅30mm、長さ700mmとし、負極板の寸法を厚さ160μm、幅31mm、長さ650mmとした以外は、電池Xと同様にして、電池Yを得た。電池Yの寸法は、長さ54.5mm、幅34mm、厚み6.2mmであり、公称容量は1000mAhとした。なお、電池の天面および底面の寸法は34mm×54mmである。
【0043】
[実施例1]
電池Xと、保護回路を含む回路基板、PTC素子および配線材などからなるコアパックを、二つのポリカーボネート製の筐体に収納した後、筐体の外面を片面に粘着層を有するテープ状の絶縁材(ポリエチレンテレフタレート)で被覆することで、外形寸法が長さ45.5mm、幅33mm、厚さ4.15mmである電池パックAを製作した。電池パックAの構造は図3に示したのと同様である。
【0044】
筐体の上ケース1の開口部10および下ケース9の開口部11は、図3に示したように、電池の短辺からの距離(x)は6mm、電池の長辺からの距離(y)は4mmとなっている。なお、上ケース1の天面の厚みおよび下ケース9の底面の厚みは共に0.2mmとし、テープ状の被覆用絶縁材2の厚みは0.05mmとし、さらに、筐体内で電池が移動するのを防ぐために、上ケース1と電池3とを厚み0.05mmの両面粘着テープ8で固定した。
【0045】
[実施例2]
電池Yと、保護回路を含む回路基板、PTC素子および配線材などからなるコアパックを、二つのポリカーボネート製の筐体に収納した後、筐体の外面を片面に粘着層を有するテープ状の絶縁材(ポリエチレンテレフタレート)で被覆することで、外形寸法が長さ59.5mm、幅37mm、厚さ6.85mmである電池パックBを製作した。電池パックBの構造は図3に示したのと同様である。
【0046】
筐体の上ケース1の開口部10および下ケース9の開口部11は、図3に示したように、電池の短辺からの距離(x)は6mm、電池の長辺からの距離(y)は4mmとなっている。なお、上ケース1の天面の厚みおよび下ケース9の底面の厚みは共に0.25mmとし、テープ状の被覆用絶縁材2の厚みは0.05mmとし、さらに、筐体内で電池が移動するのを防ぐために、下ケース9と電池3とを厚み0.05mmの両面粘着テープ8で固定した。
【0047】
[実施例3]
電池Xと、保護回路を含む回路基板、PTC素子および配線材などからなるコアパックを、二つのポリカーボネート製の筐体に収納した後、筐体の外面を片面に粘着層を有するテープ状の絶縁材(ポリエチレンテレフタレート)で被覆することで、外形寸法が長さ45.5mm、幅33mm、厚さ4.2mmである電池パックCを製作した。電池パックCの構造は図4に示したのと同様である。
【0048】
筐体の上ケース1の開口部10および下ケース9の開口部11は、図4に示したように、電池の短辺からの距離(x)は6mm、電池の長辺からの距離(y)は4mmとなっている。なお、上ケース1の天面の厚みおよび下ケース9の底面の厚みは共に0.2mmとし、テープ状の被覆用絶縁材2の厚みは0.05mmとし、さらに、筐体内で電池が移動するのを防ぐために、上ケース1および下ケース9と電池3とを厚み0.05mmの両面粘着テープ8で固定した。
【0049】
[比較例1]
電池Xと、保護回路を含む回路基板、PTC素子および配線材などからなるコアパックを、二つのポリカーボネート製の筐体に収納した後、超音波溶着にて二つの筐体を接合して、外形寸法が長さ45.5mm、幅33mm、厚さ4.3mmである電池パックDを製作した。電池パックDの構造は図1に示したのと同様である。
【0050】
なお、筐体の上ケース1の天面の厚みおよび下ケース9の底面の厚みは共に0.3mmとし、筐体内で電池が移動するのを防ぐために、下ケース9と電池3とを厚み0.05mmの両面粘着テープ8で固定した。
【0051】
また、超音波振動が筐体内部の電池などに伝わって損傷するのを防ぐことを目的として、超音波の発信側の筐体樹脂(この場合は上ケース)と電池との間には0.05mmのクリアランス(遊隙)を設けた。
【0052】
[比較例2]
電池Yと、保護回路を含む回路基板、PTC素子および配線材などからなるコアパックを、二つのポリカーボネート製の筐体に収納した後、超音波溶着にて二つの筐体を接合して、外形寸法が長さ59.5mm、幅37mm、厚さ7mmである電池パックEを製作した。電池パックEの構造は図1に示したのと同様である。
【0053】
なお、筐体の上ケース1の天面の厚みおよび下ケース9の底面の厚みは共に0.35mmとし、筐体内で電池が移動するのを防ぐために、下ケース9と電池3とを厚み0.05mmの両面粘着テープ8で固定した。
【0054】
また、超音波振動が筐体内部の電池などに伝わって損傷するのを防ぐことを目的として、超音波の発信側の筐体樹脂(この場合は上ケース)と電池との間には0.05mmのクリアランス(遊隙)を設けた。
【0055】
次に、充放電サイクル前後の電池パックの厚さを比較した。電池パック各10個について、まず、充放電サイクル前(初期状態)の厚さ(天面と底面間の厚さ)を測定し、つぎに、各電池パックを、25℃において、1CmA(1時間率)定電流で4.2Vまで、さらに4.2V定電圧で、合計3時間充電し、その後、1CmA定電流で2.75Vまで放電するという条件で、充放電サイクルを500サイクル繰り返した。その後、電池パックの厚さを測定した。測定結果を表1に示した。なお、表1では、各電池パックの厚さは、それぞれ10個の電池パックの平均値を示した。また、電池パックの厚さの「比較例との差」は、実施例1および実施例3は比較例1との差、また、実施例2は比較例2との差を示した。
【0056】
【表1】

Figure 2004022234
【0057】
図7に、実施例1の電池パックA、実施例3の電池パックCおよび比較例1の電池パックDの、厚みの変化の比較を示す断面図である。図7における記号1〜9は、図3と同じものを示す。
【0058】
図7(a)は実施例1の電池パックAの、図7(b)は実施例3の電池パックCの、また図7(c)は比較例1の電池パックDの、充放電サイクル前後の、電池パックの厚さの変化の様子を示す。
【0059】
図7(a)と図7(c)の比較および表1から、実施例1の電池パックAは比較例1の電池パックDと比較して、初期状態では厚さを0.15mm低減でき、充放電サイクル後では厚さを0.25mm低減できることがわかった。
【0060】
また、図7(b)と図7(c)の比較および表1から、実施例3の電池パックCは比較例1の電池パックDと比較して、初期状態では厚さを0.1mm低減でき、充放電サイクル後では厚さを0.2mm低減できることがわかった。
【0061】
さらに、表1から、実施例2の電池パックBは比較例2の電池パックEと比較して、初期状態では厚さを0.15mm低減でき、充放電サイクル後では厚さを0.45mm低減できることがわかった。
【0062】
また、表1からもわかるように、実施例の電池パック薄型化の効果は、比較例の電池パックと比較した場合、初期状態よりも充放電サイクル後の方が大きくなっている。この理由は、実施例の電池パックの筐体の、天面や底面に設けた開口部が電池の膨れしろとなり、0.1mm以上の電池の膨れは開口部から逃がすことができるためである。すなわち、電池の膨れ0.3〜0.5mmに対して、電池パックの厚さ増加量を0.1mm以内に押さえることができる。
【0063】
【発明の効果】
本発明の電池パックでは、筐体の最大面積をもつ二つの面の中央部に開口部を設けることにより、充放電サイクル後においても膨れの小さい、薄型の電池パックを得ることができ、その工業的価値は大きい。
【図面の簡単な説明】
【図1】従来の電池パックの構造を示す図。
【図2】本発明になる電池パックの組立方法を示す模式図。
【図3】本発明になる電池パックの一例を示した図。
【図4】本発明に係る電池パックの他の例を示した図。
【図5】天面の寸法が40mm×30mmの場合の、電池の短辺からの距離xまたは電池の長辺からの距離yに対する、500サイクルの充放電経過後の電池の、厚み増加量を示した図。
【図6】天面の寸法が54mm×34mmの場合の、電池の短辺からの距離xまたは電池の長辺からの距離yに対する、500サイクルの充放電経過後の電池の、厚み増加量を示した図。
【図7】電池パックA、電池パックCおよび電池パックDの、厚みの変化の比較を示す断面図。
【符号の説明】
1 上ケース
2 被覆用絶縁材
3 電池
4 電池の負極端子
5 絶縁材
6 配線材
7 回路基板
8 両面接着テープ
9 下ケース
10 上ケースの開口部
11 下ケースの開口部
12 コアパック
13 電池パック
x ケースの開口部の、電池の短辺からの距離
y ケースの開口部の、電池の長辺からの距離[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a battery pack using a rectangular battery and suitable for thinning.
[0002]
[Prior art]
In recent years, as electronic devices have become smaller, lighter, and more portable, demand for battery packs as power sources for electronic devices has increased. As batteries used in battery packs, rechargeable batteries that can be charged and discharged are widely used.In particular, the use of non-aqueous electrolyte secondary batteries such as lithium ion batteries with high energy density has recently increased. ing. Under such circumstances, it is required to further reduce the thickness of the battery pack, especially for mobile phones.
[0003]
In a conventional battery pack, generally, after a battery is housed in a thin rectangular parallelepiped housing made of two fitting resin molded products, the fitting portion is joined by ultrasonic welding, and then a nameplate is attached to the surface. It is manufactured by pasting.
[0004]
FIG. 1 shows the structure of a conventional battery pack. FIG. 1 (a) is a perspective view from the top of the battery pack, and FIG. 1 (b) is a sectional view of a main part. In FIG. 1, 1 is an upper case, 3 is a battery, 4 is a negative electrode terminal of the battery, 5 is an insulating material, 6 is a wiring material, 7 is a circuit board, 8 is a double-sided adhesive tape, and 9 is a lower case.
[0005]
In a conventional battery pack, as shown in FIG. 1A, a circuit board 7 and a battery case also serving as a positive electrode terminal are connected by a wiring member 6 made of a metal lead. And the negative electrode terminal 4 and the circuit board 7 are connected by the wiring member 6. Then, as shown in FIG. 1B, the battery 3 is fixed to the lower case 9 using the double-sided adhesive tape 8, and the upper case 1 and the lower case 9 are ultrasonically bonded to form a housing.
[0006]
Here, the circuit board 7 is one in which a protection circuit and a protection element including input / output terminals / IC, FET, thermistor, resistor, capacitor, and the like are incorporated in the board. Further, as the protection element, a PTC (positive temperature characteristic resistance element), a bimetal thermal protector, or the like is used.
[0007]
The protection element can be incorporated in the circuit board as described above, or can be incorporated in series in the path of the wiring member.
[0008]
Here, a battery and a circuit board provided with an input / output terminal, a protection circuit, a protection element, and the like are joined by a metal wiring material, that is, a power generation element is referred to as a “core pack”. In addition, there are a system in which input / output terminals are formed as gold-plated terminals on the surface of the circuit board, and a system in which a lead wire is drawn out of the circuit board and a connector is formed at the tip of the lead wire.
[0009]
[Problems to be solved by the invention]
In a battery pack using a conventional rectangular battery, the rectangular battery is housed in a thin rectangular parallelepiped casing. The outer surface of the thin rectangular parallelepiped housing is made up of six surfaces.Here, of the two surfaces having the maximum area facing each other, the upper surface of the housing is referred to as the “top surface”, and the lower surface of the housing is referred to as the “top surface”. The bottom surface is referred to as “bottom”, and the remaining four surfaces of the housing are referred to as “sides”. When the housing has a thin rectangular parallelepiped shape, the top surface and the bottom surface have the same shape.
[0010]
In order to further reduce the thickness of such a battery pack, one measure is to reduce the thickness of the top surface and the bottom surface, but in general, the thickness of this surface is 0.3 to 0.35 mm. In the resin molding in a region below the range, since the resin does not flow sufficiently in the molding die, there has been a problem that the yield of molded products is significantly reduced. Therefore, there is a limit in reducing the thickness of the battery pack by reducing the top and bottom surfaces of the housing resin.
[0011]
The reason for this is that the polycarbonate resin generally used as the resin of the battery pack casing has low fluidity.
[0012]
The thickness of the top surface that can be molded with resin can be reduced as the area of the top surface or the bottom surface is smaller. This is due to the short flow distance of the resin. Conversely, the area of the top surface and the bottom surface increases, and the longer the flow distance of the resin, the larger the thickness of the top surface and the bottom surface must be. .
[0013]
With the current technology, even when using a high-speed molding machine that is advantageous for thin-wall molding, if the dimensions of the top and bottom are about 30 mm x 40 mm, the minimum value of the thickness of the top and bottom is considered in consideration of mass productivity. Is 0.3 mm, and when the size of the top and bottom surfaces is about 35 mm × 55 mm, the minimum value of the thickness of the top and bottom surfaces is 0.35 mm.
[0014]
On the other hand, in order to increase the energy density of the battery pack, it is desirable to use a rectangular battery to reduce a useless space between the battery pack and the housing. Therefore, recently, aluminum having a lower strength than conventional iron has been used for the battery case for the purpose of weight reduction, and as a result, as the number of charge / discharge cycles of the battery advances, the internal pressure increases. There is a problem that the swelling of the battery appears larger than before.
[0015]
As a result, in recent battery packs, the higher the energy density, the greater the thickness increase after the charge / discharge cycle compared to the initial state, and the gap between the battery pack holder part of the main unit and the battery pack is insufficient. In such a case, a problem may occur that the battery pack cannot be removed from the main device.
[0016]
Further, as shown in FIG. 1, when two or more resin molded products are used as a battery pack housing and a battery pack is manufactured by an ultrasonic welding method, ultrasonic vibration is applied to the battery inside the housing. For the purpose of preventing damage caused by transmission to the like, a clearance (play space) is provided between the battery and the housing resin on the oscillation side of the ultrasonic wave by design. While this clearance has the effect of alleviating the swelling of the battery pack, there is also a problem that it is against the increase in the energy density of the battery pack.
[0017]
An object of the present invention is to solve the above-mentioned problems and to provide a battery pack having a high initial energy density, a small initial thickness, and a small increase in thickness even after a charge / discharge cycle.
[0018]
[Means for Solving the Problems]
The invention according to claim 1 is a battery pack in which a rectangular battery is housed in a thin rectangular parallelepiped housing, wherein an opening is provided at the center of two surfaces having the maximum area of the housing, and the opening is insulated. It is characterized by being coated with a material.
[0019]
According to the first aspect of the invention, an extremely thin battery pack can be manufactured, and a battery pack having a high energy density can be obtained.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, in a battery pack in which a rectangular battery is housed in a thin rectangular parallelepiped housing, an opening is provided in the center of two surfaces (top and bottom) having the maximum area of the housing, and the opening is provided. The part is covered with an insulating material.
[0021]
An example of the structure of the battery pack of the present invention will be described with reference to FIGS. 2 to 4, reference numerals 1 and 3 to 9 denote the same components as those in FIG. 1, 2 is an insulating material for coating, 10 is an opening in an upper case, 11 is an opening in a lower case, and 12 is a core. The pack 13 is a battery pack, x is the distance of the opening of the case from the short side of the battery, and y is the distance of the opening of the case from the long side of the battery.
[0022]
FIG. 2 is a schematic diagram showing a method for assembling the battery pack according to the present invention. First, as shown in FIG. 2A, the insulating material 5 is attached to the battery 3, and the circuit board 7 and the negative electrode terminal 4 are connected to each other by the wiring material 6 made of a metal lead. The battery case also serving as the positive electrode terminal is connected to the core pack 12 by a wiring member (not shown) made of a metal lead.
[0023]
Next, the core pack 12 is placed in the lower case 9, the upper case 1 is placed, and the upper case 1 and the lower case 9 are fitted. Then, the fitting body is joined by being wrapped with the covering insulating material 2, and the opening 10 of the upper case and the opening 11 of the lower case are covered with the covering insulating material 2, as shown in FIG. 2B. Battery pack 13 was produced. In this case, the battery 3 may be fixed to the lower case 9 or the upper case 1 using a double-sided adhesive tape.
[0024]
FIG. 3 is a view showing an example of the battery pack according to the present invention. FIG. 3 (a) is a perspective view from above, and FIG. 3 (b) is a sectional view of a main part. As shown in FIG. 3A, the upper case 1 and the lower case 9 are provided with an opening 10 of the upper case and a lower case 9 at a distance x from the short side of the battery and a distance y from the long side of the battery. Opening 11 is provided. In addition, as shown in FIG. 3B, in the case of this battery pack, the battery 3 is housed in a housing composed of the upper case 1 and the lower case 9, and then It is covered with a covering insulating material 2 from the outside.
[0025]
FIG. 4 is a view showing another example of the battery pack according to the present invention. FIG. 4 (a) is a perspective view from above, and FIG. 4 (b) is a sectional view of a main part. In this example, as shown in FIG. 4B, after the battery 3 is covered with the insulating material for covering 2, the battery 3 is stored in the lower case 9, and the upper case 1 is fitted to the lower case 9. The lower case 9 is joined to the battery 3 using the double-sided adhesive tape 8 to form a battery pack.
[0026]
In the present invention, a tape-shaped or sheet-shaped insulating material is used as the shape of the insulating material for coating, and a polyolefin resin, a polyethylene terephthalic acid resin (PET), or the like can be used as a material for the insulating material for coating. Further, the thickness of the covering insulating material is preferably in the range of 0.03 to 0.1 mm.
[0027]
As the battery used in the battery pack of the present invention, an aqueous secondary battery such as a lead storage battery, a nickel-cadmium battery, a nickel-hydrogen battery, or a non-aqueous electrolyte secondary battery such as a lithium ion battery can be used. In particular, a non-aqueous electrolyte secondary battery is preferably used as a battery pack having a high energy density. For a thin battery pack, a prismatic nonaqueous electrolyte secondary battery using an aluminum battery case is suitable.
[0028]
The size of a rectangular nonaqueous electrolyte secondary battery using a thin rectangular parallelepiped aluminum battery case that is currently mass-produced was examined. Surface "and" bottom surface of the battery. In the case of a thin rectangular parallelepiped battery case, the shape of the top surface of the battery and the shape of the bottom surface of the battery are the same). Is 30 to 34 mm.
[0029]
Then, as a result of measuring the swelling of these rectangular nonaqueous electrolyte secondary batteries after the lapse of the charge / discharge cycle, the increase in the thickness of the central part of the top surface of the battery and the bottom surface of the battery, which is the largest, is the top surface of the battery. (Or the bottom surface of the battery) increases in size and varies from 0.3 to 0.5 mm, but importantly, the thickness near the edge of the top surface (or bottom surface of the battery) of the battery The increase was found to be about the same regardless of the dimensions of the battery top (or battery bottom).
[0030]
The measurement results are shown in FIGS. 5 and 6 show the increase amount of the battery thickness after 500 cycles of charging and discharging with respect to the distance x from the short side of the battery or the distance y from the long side of the battery. 6 shows a case where the size of the top surface of the battery (= bottom surface of the battery) is 40 mm × 30 mm, and FIG. 6 shows a case where the size of the top surface of the battery (= bottom surface of the battery) is 54 mm × 34 mm. In addition, the influence of the battery thickness on the increase amount of the battery thickness was hardly recognized in the general range of the battery thickness of 3.6 to 6.2 mm.
[0031]
From FIG. 5, when the size of the top surface of the battery (= the bottom surface of the battery) is 40 mm × 30 mm, the center part (x = 20 mm or y = 15 mm) of the battery is approximately 0.3 mm after 500 cycles compared to the initial stage. In the peripheral portion, when x is 6 mm or less and y is 4 mm or less, the battery swells to about 0.1 mm or less. In this region, the increase in battery thickness is small. Indicated.
[0032]
Also, from FIG. 6, when the size of the top surface of the battery (= the bottom surface of the battery) is 54 mm × 34 mm, the center part (x = 27 mm or y = 17 mm) of the battery is approximately 0 after 500 cycles compared to the initial state. In the peripheral portion, when the x is 6 mm or less and the y is 4 mm or less, the swelling of the battery is about 0.1 mm or less, as in FIG. 5, and the thickness of the battery increases in this region. Was shown to be smaller.
[0033]
In the battery pack of the present invention, an opening is provided at the center of the top surface (or bottom surface) of the housing. When the upper case and the lower case constituting the housing are manufactured by resin molding with a mold, the resin hardly flows into the center of the top surface (or the bottom surface) of the case of the housing. Since it is not necessary to fill the central portion with resin, the thickness of the case near the top surface (or the bottom surface) near the side can be made smaller than that of the conventional case.
[0034]
Specifically, in the case of a conventional case in which an opening is not provided at the center of the top surface (or the bottom surface), the molding of a thin wall has a limit of 0.3 mm. In the case where an opening is provided in the center of the (or bottom), molding with 0.15 mm is possible. Thus, the thickness of the battery pack in the initial state can be reduced.
[0035]
In the case of a case where an opening is provided at the center of the top surface (or bottom surface), the opening serves as a clearance when the battery swells, and the battery goes through a charge / discharge cycle. Even when the battery pack swells, an increase in the thickness of the battery pack can be suppressed.
[0036]
Furthermore, in the present invention, in order to insulate the battery from the outside, the battery surface or the housing surface is configured to be covered with a covering insulating material, but the structure in which the housing surface is covered with a tape-shaped insulating material is, in particular, It is suitable for reinforcing the mechanical strength of a thin casing, and is effective for thinning a battery pack.
[0037]
【Example】
Next, as an example, a thin battery pack using a prismatic nonaqueous electrolyte secondary battery will be described in detail. In addition, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications without changing the gist thereof.
[0038]
[Contents of non-aqueous electrolyte secondary battery]
As the batteries, two types of batteries X and Y shown below were used. Battery X used a lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material. The positive electrode mixture was obtained by mixing LiCoO 2 (91 wt%) as an active material, acetylene black (3 wt%) as a conductive material, and polyvinylidene fluoride (6 wt%) as a binder, and N-methyl. -2-Pyrrolidone was added and dispersed to prepare a paste, and the paste was uniformly applied to both sides of a 20 μm-thick aluminum current collector with a doctor blade, dried, and then compression-molded by a roll press. Then, a positive electrode plate was produced. The dimensions of the positive electrode plate were 160 μm in thickness, 26 mm in width, and 320 mm in length.
[0039]
Graphite was used as a host material for the negative electrode active material. The negative electrode mixture is prepared by mixing N-methyl-2-pyrrolidone with a mixture of graphite (92 wt%) as an active material and polyvinylidene fluoride (8 wt%) as a binder, and dispersing the mixture. This paste was uniformly applied to both sides of a copper current collector having a thickness of 14 μm with a doctor blade, dried, and then compression-molded by a roll press to produce a negative electrode plate. The dimensions of the negative electrode plate were 160 μm in thickness, 27 mm in width, and 280 mm in length.
[0040]
A microporous polyethylene film having a thickness of 20 μm was used as the separator. As the non-aqueous electrolyte, one obtained by dissolving 1 mol / liter of LiPF 6 in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 50:50 was used.
[0041]
Then, the positive electrode plate and the negative electrode plate are overlapped with a separator interposed therebetween, and are wound around the polyethylene core in an elliptical spiral around the core, thereby forming a wound electrode plate group. The battery electrode X was obtained by storing the mold electrode group in an aluminum prismatic battery case, injecting the electrolyte, and closing the inlet. The dimensions of the battery X were 40.5 mm in length, 30 mm in width, and 3.6 mm in thickness, and the nominal capacity was 350 mAh. The dimensions of the top and bottom surfaces of the battery are 30 mm × 40 mm.
[0042]
A battery Y was obtained in the same manner as the battery X, except that the dimensions of the positive electrode plate were 160 μm in thickness, 30 mm in width, and 700 mm in length, and the dimensions of the negative electrode plate were 160 μm in thickness, 31 mm in width, and 650 mm in length. Was. The dimensions of the battery Y were 54.5 mm in length, 34 mm in width, and 6.2 mm in thickness, and the nominal capacity was 1000 mAh. The dimensions of the top and bottom surfaces of the battery are 34 mm × 54 mm.
[0043]
[Example 1]
After storing the battery X and the core pack including the circuit board including the protection circuit, the PTC element, and the wiring material in two polycarbonate housings, the tape-like insulation having an adhesive layer on one side of the outer surface of the housing is provided. A battery pack A having outer dimensions of 45.5 mm in length, 33 mm in width, and 4.15 mm in thickness was produced by coating with a material (polyethylene terephthalate). The structure of the battery pack A is the same as that shown in FIG.
[0044]
As shown in FIG. 3, the opening 10 of the upper case 1 and the opening 11 of the lower case 9 of the housing have a distance (x) from the short side of the battery of 6 mm and a distance (y) from the long side of the battery. ) Is 4 mm. The thickness of the top surface of the upper case 1 and the thickness of the bottom surface of the lower case 9 are both 0.2 mm, the thickness of the tape-shaped insulating material 2 is 0.05 mm, and the battery moves within the housing. In order to prevent this, the upper case 1 and the battery 3 were fixed with a double-sided adhesive tape 8 having a thickness of 0.05 mm.
[0045]
[Example 2]
After the battery Y and the core pack including the circuit board including the protection circuit, the PTC element, and the wiring material are housed in two polycarbonate housings, a tape-shaped insulation having an adhesive layer on one side of the outer surface of the housing. A battery pack B having outer dimensions of 59.5 mm in length, 37 mm in width, and 6.85 mm in thickness was manufactured by coating with a material (polyethylene terephthalate). The structure of the battery pack B is the same as that shown in FIG.
[0046]
As shown in FIG. 3, the opening 10 of the upper case 1 and the opening 11 of the lower case 9 of the housing have a distance (x) from the short side of the battery of 6 mm and a distance (y) from the long side of the battery. ) Is 4 mm. The thickness of the top surface of the upper case 1 and the thickness of the bottom surface of the lower case 9 are both 0.25 mm, the thickness of the tape-shaped insulating material 2 is 0.05 mm, and the battery moves within the housing. In order to prevent this, the lower case 9 and the battery 3 were fixed with a double-sided adhesive tape 8 having a thickness of 0.05 mm.
[0047]
[Example 3]
After storing the battery X and the core pack including the circuit board including the protection circuit, the PTC element, and the wiring material in two polycarbonate housings, the tape-like insulation having an adhesive layer on one side of the outer surface of the housing is provided. A battery pack C having outer dimensions of 45.5 mm in length, 33 mm in width, and 4.2 mm in thickness was produced by coating with a material (polyethylene terephthalate). The structure of the battery pack C is the same as that shown in FIG.
[0048]
As shown in FIG. 4, the opening 10 of the upper case 1 and the opening 11 of the lower case 9 of the housing have a distance (x) from the short side of the battery of 6 mm and a distance (y) from the long side of the battery. ) Is 4 mm. The thickness of the top surface of the upper case 1 and the thickness of the bottom surface of the lower case 9 are both 0.2 mm, the thickness of the tape-shaped insulating material 2 is 0.05 mm, and the battery moves within the housing. In order to prevent this, the upper case 1 and the lower case 9 and the battery 3 were fixed with a double-sided adhesive tape 8 having a thickness of 0.05 mm.
[0049]
[Comparative Example 1]
After the battery X and the core pack including the circuit board including the protection circuit, the PTC element, and the wiring material are housed in two polycarbonate housings, the two housings are joined by ultrasonic welding to form an outer shape. A battery pack D having dimensions of 45.5 mm in length, 33 mm in width, and 4.3 mm in thickness was manufactured. The structure of the battery pack D is the same as that shown in FIG.
[0050]
The thickness of the top surface of the upper case 1 and the thickness of the bottom surface of the lower case 9 are both 0.3 mm, and the lower case 9 and the battery 3 have a thickness of 0 mm in order to prevent the battery from moving inside the housing. It was fixed with a 0.05 mm double-sided adhesive tape 8.
[0051]
Further, in order to prevent the ultrasonic vibration from being transmitted to the battery inside the housing and being damaged, there is 0.1 mm between the housing resin (in this case, the upper case) on the ultrasonic wave transmission side and the battery. A clearance (gap) of 05 mm was provided.
[0052]
[Comparative Example 2]
After the battery Y and the core pack including the circuit board including the protection circuit, the PTC element, and the wiring material are housed in two polycarbonate housings, the two housings are joined by ultrasonic welding to form an outer shape. A battery pack E having dimensions of 59.5 mm in length, 37 mm in width, and 7 mm in thickness was manufactured. The structure of the battery pack E is the same as that shown in FIG.
[0053]
Note that the thickness of the top surface of the upper case 1 and the thickness of the bottom surface of the lower case 9 are both 0.35 mm, and the lower case 9 and the battery 3 have a thickness of 0 mm in order to prevent the battery from moving inside the housing. It was fixed with a 0.05 mm double-sided adhesive tape 8.
[0054]
Further, in order to prevent the ultrasonic vibration from being transmitted to the battery inside the housing and being damaged, there is 0.1 mm between the housing resin (in this case, the upper case) on the ultrasonic wave transmission side and the battery. A clearance (gap) of 05 mm was provided.
[0055]
Next, the thickness of the battery pack before and after the charge / discharge cycle was compared. First, the thickness (thickness between the top surface and the bottom surface) of the 10 battery packs before the charge / discharge cycle (initial state) was measured. Next, each battery pack was subjected to 1 CmA (1 hour) at 25 ° C. Rate) A charge / discharge cycle was repeated 500 times under the condition that the battery was charged at a constant current of 4.2 V and further at a constant voltage of 4.2 V for a total of 3 hours, and then discharged at a constant current of 1 CmA to 2.75 V. Thereafter, the thickness of the battery pack was measured. Table 1 shows the measurement results. In Table 1, the thickness of each battery pack is an average value of 10 battery packs. Further, the “difference from the comparative example” of the thickness of the battery pack is the difference between the comparative example 1 in the examples 1 and 3, and the difference from the comparative example 2 in the example 2.
[0056]
[Table 1]
Figure 2004022234
[0057]
FIG. 7 is a cross-sectional view showing a comparison of changes in thickness of the battery pack A of Example 1, the battery pack C of Example 3, and the battery pack D of Comparative Example 1. Symbols 1 to 9 in FIG. 7 indicate the same as those in FIG.
[0058]
7A shows the battery pack A of Example 1, FIG. 7B shows the battery pack C of Example 3, and FIG. 7C shows the battery pack D of Comparative Example 1 before and after the charge / discharge cycle. 5 shows how the thickness of the battery pack changes.
[0059]
7A and FIG. 7C and from Table 1, the battery pack A of Example 1 can be reduced in thickness by 0.15 mm in the initial state as compared with the battery pack D of Comparative Example 1. It was found that the thickness could be reduced by 0.25 mm after the charge / discharge cycle.
[0060]
Also, from the comparison between FIG. 7B and FIG. 7C and Table 1, the thickness of the battery pack C of Example 3 was reduced by 0.1 mm in the initial state as compared with the battery pack D of Comparative Example 1. It was found that the thickness could be reduced by 0.2 mm after the charge / discharge cycle.
[0061]
Furthermore, from Table 1, the thickness of the battery pack B of Example 2 can be reduced by 0.15 mm in the initial state as compared with the battery pack E of Comparative Example 2, and the thickness is reduced by 0.45 mm after the charge / discharge cycle. I knew I could do it.
[0062]
Further, as can be seen from Table 1, the effect of thinning the battery pack of the example is greater after the charge / discharge cycle than in the initial state when compared with the battery pack of the comparative example. The reason for this is that the opening provided on the top surface or the bottom surface of the housing of the battery pack of the embodiment serves as a bulging portion of the battery, and the bulging of the battery of 0.1 mm or more can escape from the opening portion. That is, the amount of increase in the thickness of the battery pack can be suppressed within 0.1 mm with respect to the battery swelling of 0.3 to 0.5 mm.
[0063]
【The invention's effect】
In the battery pack of the present invention, by providing an opening at the center of the two surfaces having the largest area of the housing, a thin battery pack with small swelling even after charge / discharge cycles can be obtained. The target value is great.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of a conventional battery pack.
FIG. 2 is a schematic view showing a method for assembling a battery pack according to the present invention.
FIG. 3 is a diagram showing an example of a battery pack according to the present invention.
FIG. 4 is a view showing another example of the battery pack according to the present invention.
FIG. 5 shows the amount of increase in thickness of the battery after 500 cycles of charging and discharging with respect to the distance x from the short side of the battery or the distance y from the long side of the battery when the size of the top surface is 40 mm × 30 mm. FIG.
FIG. 6 shows the thickness increase of the battery after 500 cycles of charging and discharging with respect to the distance x from the short side of the battery or the distance y from the long side of the battery when the size of the top surface is 54 mm × 34 mm. FIG.
FIG. 7 is a sectional view showing a comparison of changes in thickness of the battery packs A, C and D;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper case 2 Insulating material for covering 3 Battery 4 Negative terminal of battery 5 Insulating material 6 Wiring material 7 Circuit board 8 Double-sided adhesive tape 9 Lower case 10 Opening of upper case 11 Opening of lower case 12 Core pack 13 Battery pack x Distance of the opening of the case from the short side of the battery y Distance of the opening of the case from the long side of the battery

Claims (1)

形状が薄型直方体の筐体内に角型電池を収納した電池パックにおいて、前記筐体の最大面積をもつ二つの面の中央部に開口部を設け、前記開口部が絶縁材で被覆されていることを特徴とする電池パック。In a battery pack in which a rectangular battery is housed in a thin rectangular parallelepiped housing, an opening is provided at the center of two surfaces having the maximum area of the housing, and the opening is covered with an insulating material. A battery pack characterized by the following.
JP2002172676A 2002-06-13 2002-06-13 Battery pack Pending JP2004022234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172676A JP2004022234A (en) 2002-06-13 2002-06-13 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172676A JP2004022234A (en) 2002-06-13 2002-06-13 Battery pack

Publications (1)

Publication Number Publication Date
JP2004022234A true JP2004022234A (en) 2004-01-22

Family

ID=31172173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172676A Pending JP2004022234A (en) 2002-06-13 2002-06-13 Battery pack

Country Status (1)

Country Link
JP (1) JP2004022234A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011816A (en) * 2003-06-19 2005-01-13 Samsung Sdi Co Ltd Battery pack
JP2006093156A (en) * 2004-09-24 2006-04-06 Samsung Sdi Co Ltd Battery pack
CN1315204C (en) * 2004-03-04 2007-05-09 卡西欧计算机株式会社 Battery packs
JP2008192447A (en) * 2007-02-05 2008-08-21 Sanyo Electric Co Ltd Battery pack
JP2008293939A (en) * 2007-05-25 2008-12-04 Samsung Sdi Co Ltd Secondary battery
JP2011222214A (en) * 2010-04-07 2011-11-04 Sony Corp Battery pack and method for manufacturing the same
CN111834563A (en) * 2019-04-18 2020-10-27 新普科技股份有限公司 Battery pack and method for manufacturing battery pack

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011816A (en) * 2003-06-19 2005-01-13 Samsung Sdi Co Ltd Battery pack
CN1315204C (en) * 2004-03-04 2007-05-09 卡西欧计算机株式会社 Battery packs
JP2006093156A (en) * 2004-09-24 2006-04-06 Samsung Sdi Co Ltd Battery pack
JP2008192447A (en) * 2007-02-05 2008-08-21 Sanyo Electric Co Ltd Battery pack
JP2008293939A (en) * 2007-05-25 2008-12-04 Samsung Sdi Co Ltd Secondary battery
US8557435B2 (en) 2007-05-25 2013-10-15 Samsung Sdi Co., Ltd. Secondary battery
JP2011222214A (en) * 2010-04-07 2011-11-04 Sony Corp Battery pack and method for manufacturing the same
CN111834563A (en) * 2019-04-18 2020-10-27 新普科技股份有限公司 Battery pack and method for manufacturing battery pack

Similar Documents

Publication Publication Date Title
JP4926534B2 (en) Winding electrode assembly and lithium secondary battery including the same
JP5186470B2 (en) Pouch-type lithium secondary battery
CN112002868B (en) Electrochemical device and electronic device
KR101243560B1 (en) Pouch type Lithium Rechargeable Battery
JP6961103B2 (en) Batteries and battery packs
CN110249473B (en) Nonaqueous electrolyte secondary battery
JP5061406B2 (en) Battery pack
JP2004006264A (en) Lithium secondary battery
US20080274398A1 (en) Electrode assembly and secondary battery having the same
JP4887634B2 (en) Battery and its sealing method
JP2000277066A (en) Non-aqueous electrolyte secondary battery
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2004022234A (en) Battery pack
KR100731437B1 (en) Pouch type Lithium Secondary Battery
US20230246272A1 (en) Electrochemical apparatus and electronic apparatus
JP2001273930A (en) Manufacturing method of polymer battery
KR20060027281A (en) Pouch type li secondary battery and method of fabricating the same
KR100601555B1 (en) Jelly-roll type electrode assembly and Li Secondary battery with the same
JP5503882B2 (en) Lithium ion battery
WO2022051879A1 (en) Electrochemical device and electronic device
KR100659887B1 (en) Manufacturing method of secondary battery
JP2000123801A (en) Battery with metal resin laminated film case
JP2006202652A (en) Battery pack
JP2001210381A (en) Square type nonaqueous electrolytic solution secondary battery
US11387495B2 (en) Non-aqueous electrolyte secondary battery