JP2004020927A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2004020927A
JP2004020927A JP2002175768A JP2002175768A JP2004020927A JP 2004020927 A JP2004020927 A JP 2004020927A JP 2002175768 A JP2002175768 A JP 2002175768A JP 2002175768 A JP2002175768 A JP 2002175768A JP 2004020927 A JP2004020927 A JP 2004020927A
Authority
JP
Japan
Prior art keywords
liquid crystal
terminals
conductive particles
crystal display
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002175768A
Other languages
Japanese (ja)
Inventor
Yasuhiro Miki
三木 康弘
Manabu Kusano
草野 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002175768A priority Critical patent/JP2004020927A/en
Priority to KR10-2003-0035365A priority patent/KR100531591B1/en
Priority to CNA03140930XA priority patent/CN1467552A/en
Priority to TW092116251A priority patent/TW200411256A/en
Priority to US10/463,147 priority patent/US20030231276A1/en
Publication of JP2004020927A publication Critical patent/JP2004020927A/en
Priority to US11/270,238 priority patent/US20060103802A1/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a miniature high-definition liquid crystal display, with a lowered rejection rate during manufacture, in which groups of opposite terminals are connected to each other by way of an anisotropic electrically conductive layer containing electrically conductive particles dispersed in a resin, stable electric conductivity is ensured between the opposite terminals, a resistance change, a capacitance change and a short circuit are suppressed between the adjacent terminals even when the interval between the terminals is narrowed, and actuation is stabilized. <P>SOLUTION: The particle diameter D of the electrically conductive particles 1 is adjusted to 1 μm to 1/3 of the interval Ws between adjacent ones of groups 18B, 18C of terminals. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示装置に係り、特に対向する端子間の接続に異方性導電材を用い、安定した電気特性が得られる液晶表示装置に関する。
【0002】
【従来の技術】
映像機器、パーソナルコンピュータ、携帯用情報端末機などの表示部には液晶表示装置が多く用いられている。これらの液晶表示装置において、液晶基板の周辺部に微細な間隔で隣接配置された多数の液晶側端子と、これらに対向する駆動側端子とを1対1で接続する手段として、従来は導電ゴムコネクタやフィルムコネクタなどが多く用いられていたが、近年になって液晶表示部の一層の精細化、大画面化と装置自体の小型化薄型化という相反する要求、あるいは製造作業の一層の効率化やコストダウンなどの要求を満たすため、前記の端子間の接続手段としてCOG(Chip on glass)や、テープキャリアに液晶駆動用ICが実装されたFPC(Flexible Print Circuit)を前記の端子群に接続するTCP(Tape Carrier Package)などの技術が急速に普及してきた。一方、液晶表示部の構成においても、機器の小型化、空間効率の向上、駆動用ICの個数削減、実装作業の合理化、コストダウンなどの要求から、液晶層を挟んで上下に重ねられた2枚の液晶基板の一方のみに双方の基板の回路端子を集中する方式が採用され始めている。この場合には液晶シールが形成する所定のギャップを隔てた双方の基板に対向して設けられた端子群を、前記ギャップを保持したまま直接接続する技術が求められる。このように微細な間隔で隣接配置された多数の端子を上下方向に一括して接続ししかも隣接する端子どうしは高い信頼度で絶縁性を維持する手段として、異方性導電材が多く用いられている。
【0003】
図8に従来の異方性導電材を用いた端子接続部の構成を模式的に示す。図8において、重ね合わされた2枚の基板101,102にはそれぞれ内側の対向する位置に端子群103…,104…が設けられている。各基板上の隣接する端子どうしは互いに接触しないように端子間隔Wsを隔てて配列されている。この端子間隔Wsは通常、端子ピッチPの約1/2とされている。2枚の基板101,102の間には異方性導電層105が介在している。この異方性導電層105は接着性の樹脂基材106の中に導電性粒子107…が適度な割合で分散されている。この異方性導電層105を2枚の基板101,102に挟んだ状態で上下から押圧すると、導電性粒子107…のうち対向する端子103,104の間に挟まれた導電性粒子107a…は上下の端子に圧着され、対向する端子103,104を電気的に接続する。このとき導電性粒子107a…は図8に示すように上下の端子に圧縮されてやや偏平に変形するか、又は導電性粒子が端子の接触面を押して一部が端子面に圧入するか、又はその双方により端子との接触面積を増大して実質的な導通が達成される。一方、端子間隔Wsの部分に分散した導電性粒子107b…は粒子相互に非接触であると共に端子にも接触しないので電気的に隔離されている。すなわちこの異方性導電層105は、導体に挟まれて圧縮されたとき対向する端子の方向(上下方向)には導電性となるが、隣接する端子の方向(水平方向)には非導通である。この技術は細密間隔で多数配列された端子群どうしを一括して直接に接続する手段として簡便かつ信頼性が高く、液晶表示装置の各種端子群の接続に広く適用されている。
【0004】
例えば特開平1−237520号公報は、液晶基板の給電用端子群と駆動用ICが実装されたFPCとの接続に異方性導電層を用いている。特開平5−249483号公報は、導電性粒子の粒径のバラツキや圧着時の条件のバラツキによって端子間に接続不良などの不具合が生じるのを防止するために、また、上下に重ねられた液晶基板の一方から他方へ電極配線を移行させる、いわゆるコモン転移を行う際に、導電性粒子と非導電性のスペーサとを混合した異方性導電材を用いることを提案している。更に国際公開WO99/52011号公報は、前記のコモン転移を行う際、液晶層の周囲に設けられる液晶シールの一部として導電性粒子を含む異方性導電材の使用を提案している。
【0005】
【発明が解決しようとする課題】
しかし、液晶表示画面のカラー化や高精細化や大画面化が更に進み、限られたスペースに極めて多数の回路端子を配置しなければならなくなると、必然的に端子列のファインピッチ化が求められ、図8の符号Wtで示す端子の幅や符号Wsで示す隣接端子の間隔が従来より大幅に短縮され、これに伴って従来の異方性導電材ではさまざまな問題が発生するようになった。すなわち最近の高精細カラー液晶表示装置に見られるように図8の符号Pで示す端子ピッチが10μm〜50μm程度まで縮小されると、異方性導電層105中で導電性粒子107の分散状態が僅かに偏っているだけで、図9の状態Aで模擬的に示すように上下端子に挟まれて導通に寄与する導電性粒子107の数が隣接する端子間で大きく変化し、上下端子103,104間の導通抵抗にバラツキが生じ、ときには状態Bで示すように上下端子間に導電性粒子が実質的に分配されず非導通又は高抵抗となる場合があった。また状態Cで示すように、端子側端からはみ出した導電性粒子が実質的に端子間隔Wsを符号Wrで示すように狭め、隣接する端子間の電気抵抗や静電容量を変化させ、ときには状態Dで示すように導電性粒子が鎖状に連結して隣接する端子間に短絡を引き起こす場合もあった。特に多諧調のカラーマトリクス液晶表示部においては各画素電極に極めて高い周波数成分が入った駆動波形が印加されるため、上下端子間の導通や隣接端子間の絶縁抵抗、静電容量などの僅かな変化が液晶表示装置の作動を不安定にし、不良品となって製造歩留りを低下させる一原因になっていた。更にこの異方性導電層105を液晶シールとして用いるときは、環境温度の変化によって例えば図9の状態Eで示すように、液晶シールのスペーサを兼ねる導電性粒子107cが温度変化に対応して膨張又は収縮すると液晶層108のギャップGが拡大又は縮小し、何れの場合も液晶表示部の作動を不安定にした。
本発明は前記の課題を解決するためになされたものであり、従ってその目的は、異方性導電材を用いる端子群の接続に関して、端子群の配列が細密化しても安定な接続が得られる液晶表示装置を提供することにある。
【0006】
【課題を解決するための手段】
前記の課題を解決するために本発明は、樹脂中に導電性粒子が分散されてなる異方性導電層を介して対向する端子群が互いに接続された液晶表示装置であって、前記導電性粒子の粒径が隣接する端子の間隔の1/3以下でありかつ1μm以上である液晶表示装置を提供する。
【0007】
導電性粒子の粒径が隣接する端子の間隔の1/3以下とされていれば、導電性粒子の分散状態がある程度偏っていても、対向する端子に挟まれて導通に寄与する導電性粒子の数が大きな比率では変化せず、従って対向端子間における導通抵抗のバラツキが少なくなる。また導電性粒子が端子からはみ出すことにより隣接する端子間の間隙を実質的に狭め電気抵抗や静電容量を変化させたり、連鎖して隣接する端子を短絡させる可能性が大幅に低下する。更に、異方性導電層を液晶表示部のスペーサとして用いるとき温度変動などによりギャップが変動し液晶表示部の作動を不安定にする可能性も最少化される。ただし導電性粒子の粒径が1μm未満となると、端子表面の粗さに起因する凹部や、導電性粒子に押されて端子表面が陥没するなどにより導電性粒子が端子の面内に埋没し接続機能を失い、また粒子自体の製造も困難になるなど、異方性導電層としての実質的な効果が失われる。
【0008】
前記異方性導電層中に分散された導電性粒子の配合割合は、0.5重量%〜3.5重量%の範囲内であることが好ましい。
配合割合が前記範囲内であれば対向端子間に十分量の導電性粒子が分配され実用的な導通が達成される。特に対向端子間に導電性粒子が分配されず非導通となる可能性はなくなる。導電性粒子が0.5重量%未満では対向端子間に分配される平均的な粒子数が少なくなり、導通抵抗が増大しまた導通抵抗のムラも大きくなるので好ましくない。3.5重量%を越えると面方向に粒子の連鎖が起こりやすくなり隣接端子間の絶縁抵抗を低下させ、静電容量を増加させ、ときには短絡を起こす可能性が生じるので好ましくない。
【0009】
前記異方性導電層は非導電性のスペーサを含有していてもよい。この場合、前記導電性粒子の粒径は前記スペーサの粒径より0.02μm〜0.5μmの範囲内で大きいことが好ましい。
異方性導電層が非導電性のスペーサを含有していれば、当該異方性導電材を対向する端子間に挟んで押圧するとき、端子間にスペーサの粒径に対応する一定の厚みが確保され、各端子間の電気的特性及び温度的特性が安定する。特に液晶表示部でコモン転移を行う際に、液晶層を囲んで対向する2枚の液晶基板の間に設けられる液晶シールの少なくとも一部としてこの異方性導電層を用いると、前記のスペーサが2枚の液晶基板のギャップを規定することになる。このときスペーサとして温度変化による膨張収縮が少ない素材が選択できるので、温度が変化してもギャップ変動が少ない作動の安定した液晶表示部が得られる。また導電性粒子の粒径をスペーサの粒径より0.02μm〜0.5μmの範囲内で大きくしておけば、スペーサが規定したギャップの幅内で導電性粒子が扁平に押圧されるか又は導電性粒子が端子の面内に圧入するか又はその双方により端子との接触面積を増大し良好な導通を確保することができる。導電性粒子とスペーサとの粒径の差が0.02μm未満では、端子と導電性粒子との接触面積が十分確保できない場合があり、0.5μmを越えると押圧されてもスペーサの粒径より大きく、導電性粒子がギャップ幅を規定しスペーサがギャップ幅を規定できなくなる可能性がある。
【0010】
本発明の液晶表示装置において、前記の対向する端子群は、一方が液晶基板に形成され他方が外部基板に形成されたものであってよい。また、前記の対向する端子群はそれぞれ、液晶層を挟んで対向する液晶基板の内側面に形成されたものであってもよい。
すなわち、対向する端子群のうちの一方は液晶表示部の液晶基板上に形成された画素電極から延びる端子群であり、他方は例えば液晶駆動用ICを実装したFPCに形成された端子群などであってよい。また、液晶表示部内でコモン転移を行う際などには、液晶層を挟んで対向する液晶基板の内側面にそれぞれ対向する端子群を形成し、これらの端子群間に、好ましくはスペーサを含有した前記異方性導電層を介在させることで、対向端子群間の導通を確保しながらこの異方性導電層が液晶シールを兼ねるようになる。
【0011】
【発明の実施の形態】
次に本発明の実施の形態を具体例によって説明するがこれらの具体例は本発明を何ら制限するものではない。また添付の図面は本発明の思想を説明するためのものであって、本発明の説明に不要な要素は省略し、また図示した各要素の形状・寸法比・数なども実際のものと必ずしも一致するものではない。
【0012】
(実施形態1)
図1は本実施形態における液晶表示部を示す平面図であり、図2は図1のP部分を拡大して示す平面図であり、図3は図2の線B−Bで切った断面図である。本実施形態の液晶表示装置は、液晶表示部の配線がコモン転移により一方の液晶基板に集中配置されている。この液晶表示部10は、2枚の透明な液晶基板すなわちコモン基板11とセグメント基板12との間に液晶層14が形成され、この液晶層14の周囲に、液晶が漏出しないように、またコモン基板11とセグメント基板12との間隙すなわちギャップを一定に保つように所定厚Gの液晶シール13が形成されている。セグメント基板12は一辺部が延長され、棚状の端子部17を形成している。
【0013】
コモン基板11及びセグメント基板12の対向する内側面にはそれぞれ、液晶を駆動するための画素電極群18…及び19…がマトリクス状に配列され、それぞれの画素電極18,19の一方の端末からは配線18A,19Aが延び、液晶シール13の内側かつ液晶層14の周辺を互いに非接触に引き回され、液晶シール13の一辺部に集中して配列されている。コモン基板11に形成された配線18A…はその端末がコモン基板11と液晶シール13との接触面に互いに平行となるように挿入され、コモン端子18B…を形成している。一方、液晶シール13を挟んでこれらコモン端子18B…のそれぞれと対向するセグメント基板12上の位置にコモンリード端子18C…が形成され、その端末はセグメント基板の端子部17に延びている。また、セグメント基板12上に形成された配線19A…の端末は液晶シール13を通過してセグメント基板の端子部17に延び、セグメント端子19B…を形成している。コモン端子群18B…の端子幅Wtは20μmであり、隣接する端子の間隔Wsは25μmであり、端子の厚みは0.2μmである。
【0014】
本実施形態において液晶シール13は異方性導電材からなっている。この液晶シール13は接着性の樹脂3中に導電性粒子1…が均一に分散されてなっている。液晶シール13中に分散された導電性粒子1…の配合割合は2.5重量%である。樹脂3はエポキシ系樹脂からなり、導電性粒子1は金メッキされた樹脂からなっている。導電性粒子1の粒径Dは7μmであり、前記コモン端子群18B…における端子間隔Ws(25μm)の約1/3.5倍となっている。
【0015】
図3に示すように、対向するコモン端子18Bとコモンリード端子18Cとの間に介在する液晶シール13の部分では、導電性粒子1…が、製造時にコモン端子18Bとコモンリード端子18Cとの間で挟圧を受けることによって圧迫され、扁平に変形するか又は実施形態1で説明したように導電性粒子1が上下の端子18B,18Cを押圧して一部圧入することにより端子18B,18Cと導電性粒子1との接触面積が増大し、導電性粒子1…を介しての上下端子間の導通が確保されている。
【0016】
一方、隣接する端子の間隙Wsに存在する導電性粒子は何れの端子とも接触せず、樹脂3の中で電気的に隔離されて存在している。これによって、本実施形態における液晶シール13は対向する端子の間のみを導通する異方性を実現している。同時にこの液晶シール13における導電性粒子1…は、コモン基板11とセグメント基板12とのギャップGを規定するスペーサとしての役割も担っている。液晶シール13中の導電性粒子1…のうち、上下の端子に挟まれた粒子は前記のように圧迫されて扁平に変形するが、図1に示すように液晶シール13の辺部の大部分には端子がないので、端子が形成されていない部分に分布している導電性粒子1…の粒径が実質的にコモン基板11とセグメント基板12とのギャップGを形成する。
【0017】
これによって本実施形態の液晶表示装置は、液晶層14に安定したギャップが確保されると共にコモン転移によって全ての画素電極の端子が端子部17の面上に整列される。これらの端子群と例えば液晶駆動用FPCの端子群との接続には異方性導電層を用いる構成が適用できる。
【0018】
(試験例1)
本実施形態の液晶シール13について、導電性粒子1の粒径Dと端子間隔Wsとの比(D/Ws)、及び液晶シール13中に分散した導電性粒子1の配合割合(重量%)を種々に変化させ、それぞれの場合におけるギャップムラの発生率を測定した。結果を図4に示す。
図4に示すように、、粒径Dと端子間隔Wsとの比(D/Ws)を1/3(0.33)以下にすれば、導電性粒子の実用的な配合割合すなわち対向する上下端子間に十分な導通が得られる範囲内(0.5重量%〜3.5重量%)でギャップムラの発生率を0.5%以下の許容範囲内に抑えることができる。
【0019】
(実施形態2)
図5は本実施形態における液晶表示部の部分を示す平面図であり、図6は図5の線C−Cで切った断面図である。本実施形態の液晶表示部は、液晶シール13の構成が異なる以外は実質的に実施形態1のものと同様である。よってここでは本実施形態における液晶シール13の構成についてのみ詳しく説明する。
【0020】
本実施形態の液晶シール13は、接着性の樹脂3中に導電性粒子1…及びスペーサ2…が均一に分散されてなっている。導電性粒子1は金メッキされた樹脂からなり、液晶シール13中に分散された導電性粒子1…の配合割合は2.5重量%である。この導電性粒子1の粒径Dは7μmであり、コモン端子群18B…における端子間隔Ws(25μm)の約1/3.5倍となっている。
【0021】
本実施形態のスペーサ2は図5に拡大斜視図を示すように、断面の直径が規定されたガラスファイバの切断片あるいは無機系ビーズからなり、液晶シール13がコモン基板11とセグメント基板12の間に形成されたときこのスペーサ2の断面直径が液晶層14のギャップGを規定するようになっている。そして本実施形態の液晶シール13では、導電性粒子1の粒径Dがスペーサ2の断面直径より0.35μmだけ大きくなっている。従ってこの液晶シール13がコモン端子18Bとコモンリード端子18Cとに挟まれた部分では導電性粒子1がその粒径とスペーサ2の断面直径との差分だけ偏平に押しつぶされ、上下端子との接触面積を拡大し十分な導通性を確保している。スペーサ2は硬質で熱膨張係数が小さいガラスファイバからなるので、コモン基板11とセグメント基板12とに挟まれて押圧されても、また温度変化によっても実質的に断面直径が変化することはなく、液晶層14のギャップGは一定に保たれる。なお、コモン端子18B及びコモンリード端子18Cの厚みは何れも0.2μmで液晶層14のギャップGに比べて極めて薄いので、液晶シールの端子部分と非端子部分の厚みの差は実際上無視することができる。
【0022】
(試験例2)
実施形態2の液晶シール13について、導電性粒子の粒径D、スペーサの断面直径、及び導電性粒子とスペーサとの配合割合は変化させず、隣接端子の端子間隔Wsのみを種々に変化させ、隣接端子の短絡発生率を測定した。結果を図7に示す。図7において横軸は導電性粒子の粒径Dに対する端子間隔Wsの倍率(Ws/D、すなわちD/Wsの逆数)を示している。
図7からわかるように、粒径Dに対する端子間隔Wsの倍率が3倍以上(すなわちD/Ws≦1/3)であれば、上下の端子間に十分な導通が得られる配合割合において隣接端子の短絡発生率を0.1%以下の許容範囲内に抑えることができる。
【0023】
本実施形態の液晶シールを用いることによって、コモン転移における上下端子間に十分な導通性が確保できると共に、隣接端子間における抵抗変化、静電容量変化並びに短絡が効果的に抑制でき、しかも温度変化などに対しても液晶層のギャップが安定した液晶表示装置が得られる。
【0024】
【発明の効果】
本発明の液晶表示装置は、対向して配列された端子群に挟まれた異方性導電層中の導電性粒子の粒径が、隣接する端子の間隔の1/3以下とされているので、対向する端子間では安定した導通性を確保しながら、隣接する端子間では抵抗変化、静電容量変化並びに短絡が効果的に抑制され、しかもコモン転移に際して温度変化などによる液晶層のギャップの変動も効果的に抑制され、製造時の不良発生率が低下すると共に作動が安定した小型高精細の液晶表示装置が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態における液晶表示部を示す平面図である。
【図2】図1のP部分を拡大して示す平面図である。
【図3】図2の線B−Bで切った断面図である。
【図4】導電性粒子の粒径とギャップムラの発生率との関係を示すグラフである。
【図5】本発明の他の一実施形態における液晶表示部の部分を示す平面図である。
【図6】図5の線C−Cで切った断面図である。
【図7】導電性粒子の粒径と隣接端子の短絡発生率との関係を示すグラフである。
【図8】従来の異方性導電材を用いた端子接続部の構成を示す断面図である。
【図9】従来の異方性導電層中における導電性粒子のさまざまな状態を示す断面図である。
【符号の説明】
1…導電性粒子
2…スペーサ
3…樹脂
10…液晶表示部
11…コモン基板
12…セグメント基板
13…液晶シール
14…液晶層
17…端子部
18…画素電極、18A…配線、18B…コモン端子、18C…コモンリード端子
19…画素電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device, and more particularly, to a liquid crystal display device using an anisotropic conductive material for connection between opposing terminals and capable of obtaining stable electric characteristics.
[0002]
[Prior art]
2. Description of the Related Art A liquid crystal display device is often used for a display unit of a video device, a personal computer, a portable information terminal, or the like. Conventionally, in these liquid crystal display devices, a conductive rubber is used as a means for connecting a large number of liquid crystal terminals arranged adjacently to the periphery of a liquid crystal substrate at a fine interval and a driving terminal facing the liquid crystal terminals on a one-to-one basis. Many connectors and film connectors have been used, but in recent years conflicting demands have been made for further refinement of the liquid crystal display, a larger screen and a smaller and thinner device, or more efficient manufacturing operations. In order to satisfy demands such as cost reduction and cost reduction, a COG (Chip on glass) or an FPC (Flexible Print Circuit) in which a liquid crystal driving IC is mounted on a tape carrier is connected to the terminal group as a connection means between the terminals. Technologies such as TCP (Tape Carrier Package) have rapidly spread. On the other hand, in the configuration of the liquid crystal display unit, the size of the liquid crystal layer is increased and reduced due to demands such as miniaturization of equipment, improvement of space efficiency, reduction of the number of driving ICs, rationalization of mounting work, and cost reduction. A system in which circuit terminals of both substrates are concentrated on only one of the liquid crystal substrates has begun to be adopted. In this case, there is a need for a technique for directly connecting terminal groups provided opposite to both substrates separated by a predetermined gap formed by a liquid crystal seal while maintaining the gap. Anisotropic conductive materials are often used as a means for connecting a large number of terminals arranged adjacent to one another at a fine interval in a vertical direction and maintaining the insulation with high reliability between adjacent terminals. ing.
[0003]
FIG. 8 schematically shows a configuration of a terminal connecting portion using a conventional anisotropic conductive material. In FIG. 8, terminal groups 103,..., 104. Adjacent terminals on each substrate are arranged at a terminal interval Ws so as not to contact each other. This terminal interval Ws is usually set to about 1/2 of the terminal pitch P. An anisotropic conductive layer 105 is interposed between the two substrates 101 and 102. In the anisotropic conductive layer 105, conductive particles 107 are dispersed in an adhesive resin base material 106 at an appropriate ratio. When the anisotropic conductive layer 105 is pressed from above and below while being sandwiched between the two substrates 101 and 102, the conductive particles 107a sandwiched between the opposing terminals 103 and 104 among the conductive particles 107. The terminals 103 and 104 are crimped to the upper and lower terminals to electrically connect the terminals 103 and 104 facing each other. At this time, the conductive particles 107a are compressed by the upper and lower terminals and slightly deformed as shown in FIG. 8, or the conductive particles press the contact surface of the terminal to partially press-fit the terminal surface, or By both, the contact area with the terminal is increased, and substantial conduction is achieved. On the other hand, the conductive particles 107b dispersed in the portion of the terminal interval Ws are electrically isolated because they are not in contact with each other and do not contact the terminals. In other words, when the anisotropic conductive layer 105 is compressed by being sandwiched between conductors, it becomes conductive in the direction of the terminal (vertical direction) facing the terminal, but becomes non-conductive in the direction of the adjacent terminal (horizontal direction). is there. This technique is simple and highly reliable as a means for directly connecting a large number of terminal groups arranged at close intervals directly and collectively, and is widely applied to connection of various terminal groups of a liquid crystal display device.
[0004]
For example, Japanese Patent Application Laid-Open No. Hei 1-237520 uses an anisotropic conductive layer for connection between a power supply terminal group of a liquid crystal substrate and an FPC on which a driving IC is mounted. Japanese Patent Application Laid-Open No. Hei 5-249483 discloses a method for preventing a problem such as poor connection between terminals from being caused by a variation in the particle size of conductive particles or a variation in conditions at the time of pressure bonding. It has been proposed to use an anisotropic conductive material in which conductive particles and non-conductive spacers are mixed when performing a so-called common transition in which the electrode wiring is transferred from one side of the substrate to the other side. Further, International Publication WO99 / 52011 proposes the use of an anisotropic conductive material containing conductive particles as a part of a liquid crystal seal provided around a liquid crystal layer when performing the common transition.
[0005]
[Problems to be solved by the invention]
However, as the liquid crystal display screen becomes more color, higher definition, and larger screen, and it becomes necessary to arrange a large number of circuit terminals in a limited space, a fine pitch of the terminal row is inevitably required. As a result, the width of the terminal indicated by the symbol Wt in FIG. 8 and the distance between adjacent terminals indicated by the symbol Ws are greatly reduced as compared with the conventional art, and accordingly, various problems occur in the conventional anisotropic conductive material. Was. That is, as seen in recent high-definition color liquid crystal display devices, when the terminal pitch indicated by reference symbol P in FIG. 8 is reduced to about 10 μm to about 50 μm, the dispersed state of the conductive particles 107 in the anisotropic conductive layer 105 is changed. Even if it is slightly deviated, the number of conductive particles 107 sandwiched between the upper and lower terminals and contributing to conduction greatly changes between adjacent terminals, as schematically shown in state A of FIG. In some cases, the conductive resistance varies between the 104 terminals, and as shown in the state B, the conductive particles are not substantially distributed between the upper and lower terminals, and the conductive particles become nonconductive or have high resistance. Further, as shown in the state C, the conductive particles protruding from the terminal side end substantially narrow the terminal interval Ws as shown by the symbol Wr, and change the electric resistance and the capacitance between the adjacent terminals. In some cases, as shown by D, the conductive particles were connected in a chain and caused a short circuit between adjacent terminals. In particular, in a multi-tone color matrix liquid crystal display, since a drive waveform containing an extremely high frequency component is applied to each pixel electrode, there is a small amount of continuity between upper and lower terminals, insulation resistance between adjacent terminals, capacitance, and the like. The change has made the operation of the liquid crystal display device unstable, resulting in a defective product, which has been a cause of lowering the production yield. Further, when this anisotropic conductive layer 105 is used as a liquid crystal seal, the conductive particles 107c also serving as spacers of the liquid crystal seal expand in response to a change in temperature due to a change in environmental temperature, for example, as shown in a state E of FIG. Or, when the contraction occurs, the gap G of the liquid crystal layer 108 expands or contracts, and in any case, the operation of the liquid crystal display unit becomes unstable.
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and accordingly, it is an object of the present invention to obtain a stable connection even when the arrangement of the terminal groups is reduced, with respect to the connection of the terminal groups using an anisotropic conductive material. It is to provide a liquid crystal display device.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention is a liquid crystal display device in which opposing terminal groups are connected to each other via an anisotropic conductive layer in which conductive particles are dispersed in a resin, Provided is a liquid crystal display device in which a particle diameter is 1/3 or less of an interval between adjacent terminals and 1 μm or more.
[0007]
If the particle size of the conductive particles is set to be 1/3 or less of the distance between adjacent terminals, even if the dispersed state of the conductive particles is biased to some extent, the conductive particles are sandwiched between the opposing terminals and contribute to conduction. Does not change at a large ratio, so that the variation of the conduction resistance between the opposite terminals is reduced. In addition, since the conductive particles protrude from the terminals, the gap between the adjacent terminals is substantially narrowed, so that the possibility of changing the electric resistance or capacitance or the possibility of short-circuiting the adjacent terminals in a chain is greatly reduced. Further, when the anisotropic conductive layer is used as a spacer of the liquid crystal display, the possibility that the gap fluctuates due to temperature fluctuation or the like and the operation of the liquid crystal display becomes unstable is minimized. However, when the particle size of the conductive particles is less than 1 μm, the conductive particles are buried in the terminal surface due to the concave portions caused by the roughness of the terminal surface or the terminal surface being depressed by the conductive particles, thereby making connection. Substantial effects as an anisotropic conductive layer are lost, such as loss of function and difficulty in producing the particles themselves.
[0008]
It is preferable that the compounding ratio of the conductive particles dispersed in the anisotropic conductive layer is in the range of 0.5% by weight to 3.5% by weight.
When the mixing ratio is within the above range, a sufficient amount of the conductive particles is distributed between the opposed terminals, and practical conduction is achieved. In particular, there is no possibility that the conductive particles are not distributed between the opposing terminals and become non-conductive. If the conductive particles are less than 0.5% by weight, the average number of particles distributed between the opposed terminals decreases, and the conduction resistance increases and the irregularity of the conduction resistance increases. If the content exceeds 3.5% by weight, chains of particles are likely to occur in the plane direction, lowering the insulation resistance between adjacent terminals, increasing the capacitance, and sometimes causing a short circuit, which is not preferable.
[0009]
The anisotropic conductive layer may contain a non-conductive spacer. In this case, the particle size of the conductive particles is preferably larger than the particle size of the spacer in the range of 0.02 μm to 0.5 μm.
If the anisotropic conductive layer contains a non-conductive spacer, when the anisotropic conductive material is sandwiched between the opposing terminals and pressed, a certain thickness corresponding to the particle size of the spacer is applied between the terminals. As a result, the electrical characteristics and the temperature characteristics between the terminals are stabilized. In particular, when performing a common transition in a liquid crystal display portion, when the anisotropic conductive layer is used as at least a part of a liquid crystal seal provided between two opposing liquid crystal substrates surrounding the liquid crystal layer, the spacer becomes This defines the gap between the two liquid crystal substrates. At this time, since a material having a small expansion and contraction due to a temperature change can be selected as the spacer, a stable liquid crystal display unit with a small gap fluctuation even when the temperature changes can be obtained. If the particle size of the conductive particles is set to be larger than the particle size of the spacer in the range of 0.02 μm to 0.5 μm, the conductive particles are pressed flat within the width of the gap defined by the spacer, or The conductive particles are pressed into the surface of the terminal or both of them, so that the contact area with the terminal can be increased and good conduction can be secured. If the difference in particle size between the conductive particles and the spacer is less than 0.02 μm, the contact area between the terminal and the conductive particles may not be sufficiently secured. Large, the conductive particles may define the gap width, and the spacer may not be able to define the gap width.
[0010]
In the liquid crystal display device of the present invention, one of the opposed terminal groups may be formed on a liquid crystal substrate and the other may be formed on an external substrate. Further, each of the opposing terminal groups may be formed on an inner surface of a liquid crystal substrate opposing the liquid crystal layer.
That is, one of the opposing terminal groups is a terminal group extending from a pixel electrode formed on the liquid crystal substrate of the liquid crystal display portion, and the other is, for example, a terminal group formed on an FPC mounted with a liquid crystal driving IC. May be. Also, for example, when performing a common transition in the liquid crystal display portion, opposing terminal groups are formed on the inner surface of the liquid crystal substrate that opposes the liquid crystal layer, and a spacer is preferably included between these terminal groups. By interposing the anisotropic conductive layer, the anisotropic conductive layer also serves as a liquid crystal seal while ensuring conduction between the opposing terminal groups.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to specific examples, but these specific examples do not limit the present invention at all. Also, the accompanying drawings are for explaining the idea of the present invention, and elements unnecessary for the description of the present invention are omitted, and the shapes, dimensional ratios, numbers, etc. of the illustrated elements are not necessarily the actual ones. Not a match.
[0012]
(Embodiment 1)
1 is a plan view showing a liquid crystal display unit according to the present embodiment, FIG. 2 is a plan view showing an enlarged view of a portion P in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG. It is. In the liquid crystal display device of the present embodiment, the wiring of the liquid crystal display portion is concentratedly arranged on one liquid crystal substrate by common transition. In the liquid crystal display section 10, a liquid crystal layer 14 is formed between two transparent liquid crystal substrates, that is, a common substrate 11 and a segment substrate 12, and a liquid crystal layer 14 is provided around the liquid crystal layer 14 so that liquid crystal does not leak. A liquid crystal seal 13 having a predetermined thickness G is formed so as to keep the gap, that is, the gap between the substrate 11 and the segment substrate 12 constant. One side of the segment substrate 12 is extended to form a shelf-shaped terminal portion 17.
[0013]
Pixel electrodes 18 and 19 for driving the liquid crystal are arranged in a matrix on opposing inner surfaces of the common substrate 11 and the segment substrate 12, respectively. The wirings 18A and 19A extend around the inside of the liquid crystal seal 13 and the periphery of the liquid crystal layer 14 in a non-contact manner, and are arranged intensively on one side of the liquid crystal seal 13. The wires 18A formed on the common substrate 11 are inserted so that their terminals are parallel to the contact surface between the common substrate 11 and the liquid crystal seal 13 to form common terminals 18B. On the other hand, common lead terminals 18C are formed at positions on the segment substrate 12 opposite to the common terminals 18B with the liquid crystal seal 13 interposed therebetween, and the terminals extend to the terminal portions 17 of the segment substrate. The terminals of the wirings 19A formed on the segment substrate 12 pass through the liquid crystal seal 13 and extend to the terminal portions 17 of the segment substrate to form segment terminals 19B. The common terminal group 18B has a terminal width Wt of 20 μm, an interval Ws between adjacent terminals of 25 μm, and a terminal thickness of 0.2 μm.
[0014]
In the present embodiment, the liquid crystal seal 13 is made of an anisotropic conductive material. The liquid crystal seal 13 is formed by uniformly dispersing the conductive particles 1 in the adhesive resin 3. The mixing ratio of the conductive particles 1 dispersed in the liquid crystal seal 13 is 2.5% by weight. The resin 3 is made of an epoxy resin, and the conductive particles 1 are made of a gold-plated resin. The particle diameter D of the conductive particles 1 is 7 μm, which is about 1 / 3.5 times the terminal interval Ws (25 μm) in the common terminal group 18B.
[0015]
As shown in FIG. 3, in the portion of the liquid crystal seal 13 interposed between the opposed common terminal 18B and the common lead terminal 18C, the conductive particles 1 are formed between the common terminal 18B and the common lead terminal 18C during manufacturing. The terminal 18B, 18C is pressed by receiving the pinching pressure and deforms flat, or as described in the first embodiment, the conductive particles 1 press the upper and lower terminals 18B, 18C and partially press-fit the terminals 18B, 18C. The contact area with the conductive particles 1 is increased, and conduction between the upper and lower terminals via the conductive particles 1 is ensured.
[0016]
On the other hand, the conductive particles existing in the gap Ws between the adjacent terminals do not come into contact with any of the terminals, and are electrically isolated in the resin 3. As a result, the liquid crystal seal 13 in the present embodiment realizes anisotropy that conducts only between the opposing terminals. At the same time, the conductive particles 1 in the liquid crystal seal 13 also play a role as a spacer for defining a gap G between the common substrate 11 and the segment substrate 12. Among the conductive particles 1 in the liquid crystal seal 13, the particles sandwiched between the upper and lower terminals are pressed as described above and deform flat, but as shown in FIG. Has no terminals, the particle size of the conductive particles 1... Distributed in portions where no terminals are formed substantially forms a gap G between the common substrate 11 and the segment substrate 12.
[0017]
Thus, in the liquid crystal display device of the present embodiment, a stable gap is secured in the liquid crystal layer 14 and the terminals of all the pixel electrodes are aligned on the surface of the terminal portion 17 by the common transition. A configuration using an anisotropic conductive layer can be applied to connection between these terminal groups and, for example, the terminal group of a liquid crystal driving FPC.
[0018]
(Test Example 1)
Regarding the liquid crystal seal 13 of the present embodiment, the ratio (D / Ws) between the particle diameter D of the conductive particles 1 and the terminal interval Ws, and the mixing ratio (% by weight) of the conductive particles 1 dispersed in the liquid crystal seal 13 are shown. With various changes, the rate of occurrence of gap unevenness in each case was measured. FIG. 4 shows the results.
As shown in FIG. 4, when the ratio (D / Ws) between the particle diameter D and the terminal interval Ws is set to 1/3 (0.33) or less, the practical mixing ratio of the conductive particles, that is, the upper and lower opposed particles The occurrence rate of gap unevenness can be suppressed within an allowable range of 0.5% or less within a range (0.5% by weight to 3.5% by weight) within which sufficient conduction between terminals can be obtained.
[0019]
(Embodiment 2)
FIG. 5 is a plan view showing a liquid crystal display unit according to the present embodiment, and FIG. 6 is a cross-sectional view taken along line CC of FIG. The liquid crystal display of this embodiment is substantially the same as that of the first embodiment except that the configuration of the liquid crystal seal 13 is different. Therefore, here, only the configuration of the liquid crystal seal 13 in the present embodiment will be described in detail.
[0020]
In the liquid crystal seal 13 of this embodiment, the conductive particles 1 and the spacers 2 are uniformly dispersed in the adhesive resin 3. The conductive particles 1 are made of gold-plated resin, and the compounding ratio of the conductive particles 1 dispersed in the liquid crystal seal 13 is 2.5% by weight. The particle diameter D of the conductive particles 1 is 7 μm, which is about 1 / 3.5 times the terminal interval Ws (25 μm) in the common terminal group 18B.
[0021]
As shown in an enlarged perspective view of FIG. 5, the spacer 2 of the present embodiment is made of a cut piece of glass fiber or an inorganic bead having a defined cross-sectional diameter, and a liquid crystal seal 13 is provided between the common substrate 11 and the segment substrate 12. When formed, the cross-sectional diameter of the spacer 2 defines the gap G of the liquid crystal layer 14. In the liquid crystal seal 13 of the present embodiment, the particle diameter D of the conductive particles 1 is larger than the cross-sectional diameter of the spacer 2 by 0.35 μm. Therefore, in the portion where the liquid crystal seal 13 is sandwiched between the common terminal 18B and the common lead terminal 18C, the conductive particles 1 are flattened by the difference between the particle size and the cross-sectional diameter of the spacer 2, and the contact area with the upper and lower terminals is reduced. To ensure sufficient conductivity. Since the spacer 2 is made of a glass fiber which is hard and has a small coefficient of thermal expansion, even if the spacer 2 is pressed between the common substrate 11 and the segment substrate 12, the cross-sectional diameter does not substantially change due to a temperature change. The gap G of the liquid crystal layer 14 is kept constant. The thickness of each of the common terminal 18B and the common lead terminal 18C is 0.2 μm, which is extremely smaller than the gap G of the liquid crystal layer 14, so that the difference in thickness between the terminal portion and the non-terminal portion of the liquid crystal seal is practically ignored. be able to.
[0022]
(Test Example 2)
Regarding the liquid crystal seal 13 of Embodiment 2, the particle diameter D of the conductive particles, the cross-sectional diameter of the spacer, and the mixing ratio of the conductive particles and the spacer are not changed, and only the terminal interval Ws of the adjacent terminal is variously changed. The short-circuit occurrence rate of the adjacent terminal was measured. FIG. 7 shows the results. In FIG. 7, the horizontal axis represents the magnification of the terminal interval Ws with respect to the particle diameter D of the conductive particles (Ws / D, that is, the reciprocal of D / Ws).
As can be seen from FIG. 7, if the magnification of the terminal interval Ws with respect to the particle diameter D is 3 times or more (that is, D / Ws ≦)), the adjacent terminals at the mixing ratio at which sufficient conduction can be obtained between the upper and lower terminals. Can be suppressed within the allowable range of 0.1% or less.
[0023]
By using the liquid crystal seal of the present embodiment, sufficient conductivity between the upper and lower terminals in the common transition can be ensured, and resistance change, capacitance change and short circuit between adjacent terminals can be effectively suppressed, and temperature change Thus, a liquid crystal display device in which the gap of the liquid crystal layer is stable can be obtained.
[0024]
【The invention's effect】
In the liquid crystal display device of the present invention, since the particle size of the conductive particles in the anisotropic conductive layer sandwiched between the terminal groups arranged to face each other is set to 1/3 or less of the distance between adjacent terminals. In addition, while ensuring stable conductivity between opposing terminals, resistance change, capacitance change, and short-circuit between adjacent terminals are effectively suppressed, and at the time of common transition, fluctuation of the gap of the liquid crystal layer due to temperature change, etc. Is effectively suppressed, and a small and high-definition liquid crystal display device with a stable operation and a reduced defect occurrence rate during manufacturing can be obtained.
[Brief description of the drawings]
FIG. 1 is a plan view showing a liquid crystal display unit according to an embodiment of the present invention.
FIG. 2 is an enlarged plan view showing a portion P in FIG. 1;
FIG. 3 is a sectional view taken along line BB of FIG. 2;
FIG. 4 is a graph showing the relationship between the particle size of conductive particles and the rate of occurrence of gap unevenness.
FIG. 5 is a plan view showing a liquid crystal display section according to another embodiment of the present invention.
FIG. 6 is a sectional view taken along line CC of FIG. 5;
FIG. 7 is a graph showing the relationship between the particle size of conductive particles and the short-circuit occurrence rate of adjacent terminals.
FIG. 8 is a cross-sectional view illustrating a configuration of a terminal connecting portion using a conventional anisotropic conductive material.
FIG. 9 is a cross-sectional view showing various states of conductive particles in a conventional anisotropic conductive layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Conductive particle 2 ... Spacer 3 ... Resin 10 ... Liquid crystal display part 11 ... Common substrate 12 ... Segment substrate 13 ... Liquid crystal seal 14 ... Liquid crystal layer 17 ... Terminal part 18 ... Pixel electrode, 18A ... Wiring, 18B ... Common terminal 18C: Common lead terminal 19: Pixel electrode

Claims (5)

樹脂中に導電性粒子が分散されてなる異方性導電層を介して対向する端子群が互いに接続された液晶表示装置であって、
前記導電性粒子の粒径が、隣接する端子の間隔の1/3以下でありかつ1μm以上であることを特徴とする液晶表示装置。
A liquid crystal display device in which terminal groups facing each other are connected to each other via an anisotropic conductive layer in which conductive particles are dispersed in a resin,
A liquid crystal display device, wherein the particle size of the conductive particles is 1/3 or less of the distance between adjacent terminals and 1 μm or more.
前記異方性導電層中に分散された前記導電性粒子の配合割合が、0.5重量%〜3.5重量%の範囲内であることを特徴とする請求項1に記載の液晶表示装置。The liquid crystal display device according to claim 1, wherein the compounding ratio of the conductive particles dispersed in the anisotropic conductive layer is in a range of 0.5% by weight to 3.5% by weight. . 前記異方性導電層が非導電性のスペーサを含有し、かつ前記導電性粒子の粒径が前記スペーサの粒径より0.02μm〜0.5μmの範囲内で大きいことを特徴とする請求項1又は請求項2に記載の液晶表示装置。The said anisotropic conductive layer contains a non-conductive spacer, and the particle diameter of the said conductive particle is larger than the particle diameter of the said spacer in the range of 0.02 micrometer-0.5 micrometer, The Claims characterized by the above-mentioned. The liquid crystal display device according to claim 1. 前記対向する端子群の一方が液晶基板に形成され、他方が外部基板に形成されたものであることを特徴とする請求項1〜請求項3の何れかに記載の液晶表示装置。4. The liquid crystal display device according to claim 1, wherein one of the opposed terminal groups is formed on a liquid crystal substrate, and the other is formed on an external substrate. 5. 前記対向する端子群がそれぞれ、液晶層を挟んで対向する液晶基板の内側面に形成されたものであることを特徴とする請求項1〜請求項3の何れかに記載の液晶表示装置。4. The liquid crystal display device according to claim 1, wherein each of the terminal groups facing each other is formed on an inner surface of a liquid crystal substrate facing each other with a liquid crystal layer interposed therebetween. 5.
JP2002175768A 2002-06-17 2002-06-17 Liquid crystal display Withdrawn JP2004020927A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002175768A JP2004020927A (en) 2002-06-17 2002-06-17 Liquid crystal display
KR10-2003-0035365A KR100531591B1 (en) 2002-06-17 2003-06-02 Liquid crystal display
CNA03140930XA CN1467552A (en) 2002-06-17 2003-06-04 Liquid crystal display device
TW092116251A TW200411256A (en) 2002-06-17 2003-06-16 Liquid crystal display
US10/463,147 US20030231276A1 (en) 2002-06-17 2003-06-16 Liquid crystal display device
US11/270,238 US20060103802A1 (en) 2002-06-17 2005-11-08 Liquid crystal display device sealed with liquid crystal seal composed of anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175768A JP2004020927A (en) 2002-06-17 2002-06-17 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2004020927A true JP2004020927A (en) 2004-01-22

Family

ID=31174330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175768A Withdrawn JP2004020927A (en) 2002-06-17 2002-06-17 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2004020927A (en)

Similar Documents

Publication Publication Date Title
KR100531591B1 (en) Liquid crystal display
US7208835B2 (en) Integrated circuit package and assembly thereof
JP4782410B2 (en) Driving chip and display device having the same
US8211788B2 (en) Method of fabricating bonding structure
US7486284B2 (en) Driver chip and display apparatus having the same
CN102460668B (en) Structure for mounting semiconductor chip
WO2020249009A1 (en) Display panel and display device
KR20190104277A (en) Display device using micro led and manufacturing method thereof
WO2012121113A1 (en) Electronic circuit substrate, display device, and wiring substrate
CN101136388A (en) Chip film package and display panel assembly having the same
KR20040108612A (en) Anisotropic conductive material body, display apparatus, method for producing the display apparatus, and conductive member
KR20020075951A (en) packaging method of liquid crystal displays and the structure thereof
CN100479139C (en) Driver chip and display apparatus
KR900004987B1 (en) Liquid crystal apparatus
KR100907576B1 (en) Semiconductor device for prevention short circuit between electrode and semiconductor package using the same
JP2004020927A (en) Liquid crystal display
JP2005209767A (en) Electronic module, electronic device equipped therewith, and method for checking pressure bonding connection in electronic module
JP2004020930A (en) Liquid crystal display
JPH0529386A (en) Connection structure of connecting terminal part of element to be adhered
Adachi Packaging technology for liquid crystal displays
CN100480786C (en) Composite crystal structure of glass, and LCD of using the composite crystal structure of glass
US11880110B2 (en) Array substrate and display panel
JP2000165022A (en) Electrode terminal connecting structure
KR100696214B1 (en) One layered multiple release sheet for outer lead bonding and tape automated bonding process
JP3617495B2 (en) Semiconductor element connection structure, liquid crystal display device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A761 Written withdrawal of application

Effective date: 20070228

Free format text: JAPANESE INTERMEDIATE CODE: A761