JP2004020160A - Vapor compression type refrigerator - Google Patents

Vapor compression type refrigerator Download PDF

Info

Publication number
JP2004020160A
JP2004020160A JP2002180151A JP2002180151A JP2004020160A JP 2004020160 A JP2004020160 A JP 2004020160A JP 2002180151 A JP2002180151 A JP 2002180151A JP 2002180151 A JP2002180151 A JP 2002180151A JP 2004020160 A JP2004020160 A JP 2004020160A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
valve
passage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002180151A
Other languages
Japanese (ja)
Inventor
Toshio Ueno
上野 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002180151A priority Critical patent/JP2004020160A/en
Publication of JP2004020160A publication Critical patent/JP2004020160A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent abnormal noise from being generated from an opening/closing valve provided on an upstream side of a decompressor. <P>SOLUTION: This vapor compression type refrigerator is provided with a second bypass passage 13, and first and second check valves 15 and 12. This constitution allows refrigerant in a low pressure side refrigerant passage 17 to flow to the side of a first bypass passage 14 in defrosting operation. This constitution can prevent the refrigerant pressure in the side of the condenser 3 of the opening/closing valve 6 from lowering quicker than the refrigerant pressure in the low-pressure side refrigerant passage 17 so as to prevent an inverse pressure in the normal operation from applying to the opening/closing valve 6, prevent a movable part of the opening/closing valve 6 from vibrating, and sufficiently reduce the abnormal noise. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機に関するもので、冷凍車のごとく車載冷凍機に適用して有効である。
【0002】
【従来の技術】
冷凍車用の車載冷凍機として、例えば特開2001−280807号公報に記載の発明では、図5に示すように、圧縮機1から吐出した高圧・高温冷媒(ホットガス)を蒸発器9に導くバイパス通路14を開閉するバイパス弁7、及び膨脹弁8の上流側冷媒通路を開閉する開閉弁6を設けるとともに、開閉弁6を閉じた状態でバイパス弁7を開いてホットガスを蒸発器9に導いて蒸発器9の表面に付着した霜を除去(除霜)している。
【0003】
なお、開閉弁6は、バイパス弁7を開いたときに、つまり除霜運転時にホットガスが凝縮器3及び膨脹弁8側に流れることを抑制するためのものである。
【0004】
【発明が解決しようとする課題】
しかし、上記公報に記載の発明では、除霜運転時に、開閉弁に対して通常運転時とは逆向きの圧力が作用するため、この逆向きの圧力により開閉弁の可動部が振動し、異音が発生するおそれが高い。
【0005】
ここで、通常運転時とは、冷媒を圧縮機1→凝縮器3→レシーバ5→開閉弁6→蒸発器9→アキュムレータ11→圧縮機1の順に循環させる運転モードを言う。
【0006】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、膨脹弁等の減圧器の上流側に設けられた開閉弁から異音が発生することを防止することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、冷媒を吸入圧縮する圧縮機(1)と、圧縮機(1)から吐出した高圧冷媒を放冷する高圧側熱交換器(3)と、高圧側熱交換器(3)にて放冷された高圧冷媒を減圧膨脹させる減圧器(8)と、減圧器(8)によって減圧された低圧冷媒を蒸発させる低圧側熱交換器(9)と、減圧器(8)を迂回させて高圧冷媒を低圧側熱交換器(9)に導く第1バイパス通路(14)と、第1バイパス通路(14)に冷媒を流す場合と第1バイパス通路(14)に冷媒が流れることを禁止する場合とを切り換えるバイパス弁(7)と、減圧器(8)の冷媒流れ上流側に設けられ、冷媒通路を開閉する開閉弁(6)と、減圧器(8)と開閉弁(6)とを繋ぐ低圧側冷媒通路(17)と、第1バイパス通路(14)とを繋ぐ第2バイパス通路(13)と、低圧側冷媒通路(17)から第1バイパス通路(14)側にのみ冷媒が流れることを許容する第1逆止弁(15)とを備えることを特徴とする。
【0008】
これにより、低圧側冷媒通路(17)内の冷媒を第1バイパス通路(14)側に流すことができるので、開閉弁(6)より高圧側熱交換器(3)側の冷媒圧力が低圧側冷媒通路(17)内の冷媒圧力より早く低下することを防止できる。
【0009】
したがって、開閉弁(6)に対して逆向きの圧力が作用することを防止できるので、開閉弁(6)の可動部が振動してしうことを防止でき、十分に異音発生を低減することができるとともに、従来と異なる新規な蒸気圧縮式冷凍機を得ることはできる。
【0010】
請求項2に記載の発明では、開閉弁(6)側から減圧器(8)側にのみ冷媒が流れることを許容する第2逆止弁(12)が、低圧側冷媒通路(17)に設けられていることを特徴とするものである。
【0011】
請求項3に記載の発明では、圧縮機(1)が停止した時に、バイパス弁(7)を開き、かつ、開閉弁(6)を閉じる除霜制御手段を有することを特徴とするものである。
【0012】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0013】
【発明の実施の形態】
本実施形態は、本発明に係る蒸気圧縮式冷凍機を冷凍車用の車載冷凍機に適用したものであって、図1は車載冷凍機の模式図である。
【0014】
圧縮機1は、電磁クラッチを介して走行用エンジン又は専用駆動源から動力を得て冷媒を吸入圧縮するものであり、油分離器2は圧縮機1から吐出した冷媒から冷凍機油を分離抽出するオイルセパレータである。
【0015】
凝縮器3は圧縮機1から吐出した高温・高圧の冷媒の熱を外気中に放冷する高圧側熱交換器であり、送風機4は凝縮器3に冷却風を送風するものであり、レシーバ5は凝縮器3から流出した冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を減圧器8に供給する高圧側気液分離器である。
【0016】
減圧器8は蒸発器9から流出する冷媒の過熱度が所定値となるように絞り開度を可変制御する温度式膨脹弁であり、減圧器8より冷媒流れ上流側であって、レシーバ5と減圧器8とを繋ぐ冷媒通路には、この冷媒通路を開閉する開閉弁6が設けられている。
【0017】
蒸発器9は減圧器8にて減圧された冷媒と庫内に吹き出す空気とを熱交換して液相冷媒を蒸発させる低圧側熱交換器であり、送風機10は蒸発器9に庫内の空気を送風するものであり、アキュムレータ11は、蒸発器9から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機1の吸入側に供給する低圧側気液分離器である。
【0018】
第1バイパス通路14は、圧縮機1から吐出したホットガスを凝縮器3及び減圧器8を迂回させて蒸発器9に導く通路であり、この第1バイパス通路14には、第1バイパス通路14を開閉することにより、第1バイパス通路14に冷媒を流す場合と第1バイパス通路14に冷媒が流れることを禁止する場合とを切り換えるバイパス弁7が設けられている。
【0019】
なお、バイパス弁7及び開閉弁6は高圧冷媒の流れを制御するので、本実施形態では、パイロット式の電磁弁を採用しており、両弁6、7は電子制御装置16により電気的に制御されている。
【0020】
第2バイパス通路13は、減圧器8と開閉弁6とを繋ぐ低圧側冷媒通路17と第1バイパス通路14とを繋ぐ冷媒通路であり、この第2バイパス通路13には、低圧側冷媒通路17から第1バイパス通路14側にのみ冷媒が流れることを許容する第1逆止弁15が設けられている。
【0021】
なお、第2バイパス通路13は、低圧側冷媒通路17のうち第2逆止弁12より開閉弁6側に接続されている。ここで、第2逆止弁12は、開閉弁6側から減圧器8側にのみ冷媒が流れることを許容する弁である。
【0022】
次に、本実施形態の特徴的作動を述べる。
【0023】
図2は運転モードと各機器の制御モードを示す図表である。なお、圧縮機1がONとは、電磁クラッチを繋いで圧縮機1を稼動させることを意味し、圧縮機1がOFFとは電磁クラッチを切って圧縮機1を停止させることを意味する。
【0024】
1.冷凍運転モード
このモードは庫内を冷却するモードであり、開閉弁6を開き、かつ、バイパス弁7を閉じた状態で圧縮機1及び送風機4、10を稼動させる。
【0025】
これにより、蒸発器9にて液相冷媒が庫内に吹き出す空気から吸熱して蒸発して庫内を冷却するとともに、蒸発した気相冷媒は圧縮機1にて外気温度以上まで圧縮加熱されて凝縮器3にて吸熱した熱量を外気中に放熱して凝縮する。
【0026】
2.除霜運転モード
このモードは蒸発器9の表面に付着した霜を除去するモードであり、開閉弁6を閉じ、かつ、バイパス弁7を開いた状態で圧縮機1及び送風機4、10を停止させる。
【0027】
これにより、高圧側(吐出側)に残存する高圧冷媒が第1バイパス通路14を経由して蒸発器9内に流れ込むので、蒸発器9が内側から加熱されて蒸発器9の表面に付着した霜が除去される。
【0028】
次に、本実施形態の作用効果を述べる。
【0029】
図3は、本願発明の第2の解決課題である「開閉弁6から異音が発生することを防止する」ために、試作試験した蒸気圧縮式冷凍機の模式図であり、この試作機では、本実施に係る蒸気圧縮式冷凍機から第2バイパス通路13及び第1逆止弁15を廃止したものである。
【0030】
この試作機では、低圧側冷媒通路17に逆止弁12を設けているので、除霜運転時に、第1バイパス通路14から蒸発器9側に設けられた高圧冷媒が開閉弁6側に流れることは防止できるものの、低圧側冷媒通路17内の冷媒が開閉弁6と減圧器8との間に密閉された状態となるのに対して、開閉弁6より凝縮器3側の冷媒圧力がバイパス弁7を開くことにより低下していくため、開閉弁6より凝縮器3側の冷媒圧力が低圧側冷媒通路17内の冷媒圧力より早く低下する。
【0031】
したがって、逆止弁12を設けても、開閉弁6に対して通常運転時とは逆向きの圧力が作用するため、開閉弁6の可動部が振動してしまい、十分に異音発生を低減することができなかった。
【0032】
これに対して、本実施形態では、図1に示すように、第2バイパス通路13を設けているので、除霜運転時に低圧側冷媒通路17内の冷媒を第1バイパス通路14側に流すことができる。
【0033】
したがって、開閉弁6より凝縮器3側の冷媒圧力が低圧側冷媒通路17内の冷媒圧力より早く低下することを防止できるので、開閉弁6に対して通常運転時とは逆向きの圧力が作用することを防止でき、開閉弁6の可動部が振動してしうことを防止でき、十分に異音発生を低減することができる。
【0034】
因みに、図4は開閉弁6前後の圧力及び温度挙動を示す試験結果であり、図4(特に、図4(a)参照)から明らかなように、本実施形態では除霜運転モードになった時(時間0)以降、圧力差の向きが常に通常運転時と同じであるのに対して、従来では、圧力差の向きが常に通常運転時と逆向きとなっていることが判る。
【0035】
なお、上述の説明からも明らかなように、第2逆止弁12を廃止しても、開閉弁6より凝縮器3側の冷媒圧力が低圧側冷媒通路17内の冷媒圧力より早く低下することを防止できるので、開閉弁6の可動部が振動してしうことを防止できる。
【0036】
(その他の実施形態)
上述の実施形態では、減圧器8として温度式膨脹弁を採用したが、本発明はこれに限定されるものではなく、キャピラリーチューブや固定絞りとしてもよい。
【0037】
なお、この場合は、圧縮機1をモータ等の専用駆動源にて駆動することが望ましい。
【0038】
また、上述の実施形態では、圧縮機1を停止させた状態で除霜運転を行ったが、圧縮機1を稼動させたまま除霜運転を行ってもよい。
【0039】
また、上述の実施形態では、冷凍車に本発明を適用したが、本発明の適用はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の実施形態に係る車載冷凍機の模式図である。
【図2】本発明の実施形態に係る車載冷凍機の運転モードと各機器の制御モードを示す図表である。
【図3】試作試験した蒸気圧縮式冷凍機の模式図である。
【図4】開閉弁6前後の圧力及び温度挙動を示すグラフである。
【図5】従来の技術に係る蒸気圧縮式冷凍機の模式図である。
【符号の説明】
1…圧縮機、3…凝縮器、6…開閉弁、7…バイパス弁、8…減圧器、
9…蒸発器、13…第2バイパス通路、14…第1バイパス通路、
15…第1逆止弁、12…第2逆止弁。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor compression refrigerator that transfers heat on a low temperature side to a high temperature side, and is effective when applied to a vehicle-mounted refrigerator such as a refrigerator car.
[0002]
[Prior art]
As an in-vehicle refrigerator for a refrigerating vehicle, for example, in the invention described in Japanese Patent Application Laid-Open No. 2001-280807, a high-pressure / high-temperature refrigerant (hot gas) discharged from a compressor 1 is guided to an evaporator 9 as shown in FIG. A bypass valve 7 for opening and closing the bypass passage 14 and an opening and closing valve 6 for opening and closing the refrigerant passage upstream of the expansion valve 8 are provided. The bypass valve 7 is opened with the opening and closing valve 6 closed, and hot gas is supplied to the evaporator 9. The frost adhering to the surface of the evaporator 9 is removed (defrosted).
[0003]
The on-off valve 6 is for suppressing hot gas from flowing to the condenser 3 and the expansion valve 8 when the bypass valve 7 is opened, that is, during the defrosting operation.
[0004]
[Problems to be solved by the invention]
However, according to the invention described in the above-mentioned publication, during the defrosting operation, a pressure is applied to the on-off valve in a direction opposite to that in the normal operation. There is a high possibility that sound is generated.
[0005]
Here, the normal operation refers to an operation mode in which the refrigerant is circulated in the order of the compressor 1, the condenser 3, the receiver 5, the on-off valve 6, the evaporator 9, the accumulator 11, and the compressor 1.
[0006]
In view of the above points, the present invention firstly provides a novel vapor compression refrigerator different from the conventional one, and secondly, differs from an on-off valve provided upstream of a decompressor such as an expansion valve. It is intended to prevent generation of sound.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in the present invention, there is provided a vapor compression refrigerator for transferring low-temperature heat to a high-temperature side, wherein the compressor sucks and compresses a refrigerant. A high-pressure heat exchanger (3) for cooling the high-pressure refrigerant discharged from the compressor (1); and a decompressor (8) for decompressing and expanding the high-pressure refrigerant cooled in the high-pressure heat exchanger (3). ), A low-pressure heat exchanger (9) for evaporating the low-pressure refrigerant depressurized by the decompressor (8), and a second heat exchanger that guides the high-pressure refrigerant to the low-pressure heat exchanger (9) bypassing the decompressor (8). A first bypass passage (14); a bypass valve (7) for switching between a case where the refrigerant flows through the first bypass passage (14) and a case where the refrigerant is prohibited from flowing through the first bypass passage (14); 8) an on-off valve (6) provided on the upstream side of the refrigerant flow for opening and closing the refrigerant passage; 8) a low pressure side refrigerant passage (17) connecting the on-off valve (6), a second bypass passage (13) connecting the first bypass passage (14), and a first bypass from the low pressure side refrigerant passage (17). A first check valve (15) for allowing the refrigerant to flow only to the passage (14) side.
[0008]
This allows the refrigerant in the low-pressure side refrigerant passage (17) to flow toward the first bypass passage (14), so that the refrigerant pressure on the high-pressure side heat exchanger (3) side from the on-off valve (6) is reduced to the low-pressure side. It is possible to prevent the refrigerant pressure in the refrigerant passage (17) from dropping earlier than the refrigerant pressure.
[0009]
Therefore, it is possible to prevent the reverse pressure from acting on the on-off valve (6), so that it is possible to prevent the movable part of the on-off valve (6) from vibrating, and to sufficiently reduce the generation of abnormal noise. It is possible to obtain a new vapor compression refrigerator different from the conventional one.
[0010]
According to the second aspect of the invention, the second check valve (12) that allows the refrigerant to flow only from the on-off valve (6) side to the decompressor (8) side is provided in the low-pressure side refrigerant passage (17). It is characterized by being carried out.
[0011]
According to a third aspect of the present invention, there is provided a defrost control means for opening the bypass valve (7) and closing the on-off valve (6) when the compressor (1) is stopped. .
[0012]
Incidentally, the reference numerals in parentheses of the respective means are examples showing the correspondence with specific means described in the embodiments described later.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present embodiment, the vapor compression refrigerator according to the present invention is applied to a vehicle-mounted refrigerator for a refrigerator vehicle, and FIG. 1 is a schematic diagram of the vehicle-mounted refrigerator.
[0014]
The compressor 1 receives power from a traveling engine or a dedicated drive source via an electromagnetic clutch to suck and compress refrigerant, and the oil separator 2 separates and extracts refrigeration oil from the refrigerant discharged from the compressor 1. It is an oil separator.
[0015]
The condenser 3 is a high-pressure side heat exchanger that cools the heat of the high-temperature and high-pressure refrigerant discharged from the compressor 1 into the outside air. The blower 4 blows cooling air to the condenser 3, and the receiver 5 Is a high-pressure gas-liquid separator that separates the refrigerant flowing out of the condenser 3 into a gas-phase refrigerant and a liquid-phase refrigerant and supplies the liquid-phase refrigerant to the pressure reducer 8.
[0016]
The decompressor 8 is a temperature-type expansion valve that variably controls the opening degree of the throttle so that the degree of superheat of the refrigerant flowing out of the evaporator 9 becomes a predetermined value. An on-off valve 6 for opening and closing the refrigerant passage is provided in the refrigerant passage connecting to the pressure reducer 8.
[0017]
The evaporator 9 is a low-pressure side heat exchanger that evaporates the liquid-phase refrigerant by exchanging heat between the refrigerant depressurized by the decompressor 8 and the air blown into the storage, and the blower 10 supplies the air in the storage to the evaporator 9. The accumulator 11 separates the refrigerant flowing out of the evaporator 9 into a gas-phase refrigerant and a liquid-phase refrigerant, and supplies the gas-phase refrigerant to the suction side of the compressor 1. It is.
[0018]
The first bypass passage 14 is a passage that guides the hot gas discharged from the compressor 1 to the evaporator 9 while bypassing the condenser 3 and the decompressor 8. The first bypass passage 14 includes a first bypass passage 14. By opening and closing the bypass valve, a bypass valve 7 for switching between a case where the refrigerant flows through the first bypass passage 14 and a case where the refrigerant is prohibited from flowing through the first bypass passage 14 is provided.
[0019]
Since the bypass valve 7 and the on-off valve 6 control the flow of the high-pressure refrigerant, a pilot-type solenoid valve is employed in the present embodiment, and both valves 6 and 7 are electrically controlled by the electronic control unit 16. Have been.
[0020]
The second bypass passage 13 is a refrigerant passage that connects the low-pressure side refrigerant passage 17 that connects the pressure reducing device 8 to the on-off valve 6 and the first bypass passage 14. The second bypass passage 13 has a low-pressure side refrigerant passage 17. A first check valve 15 that allows the refrigerant to flow only to the first bypass passage 14 side is provided.
[0021]
The second bypass passage 13 is connected to the on-off valve 6 side of the low-pressure side refrigerant passage 17 from the second check valve 12. Here, the second check valve 12 is a valve that allows the refrigerant to flow only from the on-off valve 6 side to the decompressor 8 side.
[0022]
Next, the characteristic operation of the present embodiment will be described.
[0023]
FIG. 2 is a chart showing an operation mode and a control mode of each device. The ON state of the compressor 1 means that the compressor 1 is operated by connecting the electromagnetic clutch, and the OFF state of the compressor 1 means that the compressor 1 is stopped by disconnecting the electromagnetic clutch.
[0024]
1. Refrigeration operation mode In this mode, the interior of the refrigerator is cooled, and the compressor 1 and the blowers 4 and 10 are operated with the on-off valve 6 opened and the bypass valve 7 closed.
[0025]
As a result, the liquid-phase refrigerant absorbs heat from the air blown into the storage in the evaporator 9 and evaporates to cool the storage, and the evaporated gas-phase refrigerant is compressed and heated by the compressor 1 to the outside air temperature or higher. The heat absorbed by the condenser 3 is released to the outside air and condensed.
[0026]
2. Defrosting operation mode This mode is a mode for removing frost adhering to the surface of the evaporator 9, and stops the compressor 1 and the blowers 4, 10 with the on-off valve 6 closed and the bypass valve 7 opened. .
[0027]
As a result, the high-pressure refrigerant remaining on the high-pressure side (discharge side) flows into the evaporator 9 via the first bypass passage 14, so that the evaporator 9 is heated from the inside and the frost adhering to the surface of the evaporator 9 is heated. Is removed.
[0028]
Next, the operation and effect of the present embodiment will be described.
[0029]
FIG. 3 is a schematic view of a prototype test of a vapor compression refrigerator in order to prevent the generation of abnormal noise from the on-off valve 6, which is a second problem to be solved by the present invention. The second bypass passage 13 and the first check valve 15 are eliminated from the vapor compression refrigerator according to the present embodiment.
[0030]
In this prototype, since the check valve 12 is provided in the low-pressure side refrigerant passage 17, the high-pressure refrigerant provided on the evaporator 9 side flows from the first bypass passage 14 to the on-off valve 6 side during the defrosting operation. The refrigerant in the low-pressure side refrigerant passage 17 is sealed between the on-off valve 6 and the decompressor 8, whereas the refrigerant pressure on the condenser 3 side from the on-off valve 6 7, the refrigerant pressure on the condenser 3 side from the on-off valve 6 drops earlier than the refrigerant pressure in the low-pressure side refrigerant passage 17.
[0031]
Therefore, even if the check valve 12 is provided, since the pressure in the opposite direction to that in the normal operation acts on the on-off valve 6, the movable portion of the on-off valve 6 vibrates, and the generation of abnormal noise is sufficiently reduced. I couldn't.
[0032]
On the other hand, in the present embodiment, as shown in FIG. 1, the second bypass passage 13 is provided, so that the refrigerant in the low-pressure side refrigerant passage 17 flows to the first bypass passage 14 during the defrosting operation. Can be.
[0033]
Accordingly, it is possible to prevent the refrigerant pressure on the condenser 3 side from the on-off valve 6 from dropping earlier than the refrigerant pressure in the low-pressure side refrigerant passage 17, so that a pressure acting on the on-off valve 6 in a direction opposite to that in the normal operation is applied. Can be prevented, the movable portion of the on-off valve 6 can be prevented from vibrating, and the generation of abnormal noise can be sufficiently reduced.
[0034]
Incidentally, FIG. 4 is a test result showing the pressure and temperature behavior before and after the on-off valve 6. As is clear from FIG. 4 (particularly, see FIG. 4A), in this embodiment, the defrosting operation mode is set. After time (time 0), it can be seen that the direction of the pressure difference is always the same as during normal operation, whereas in the past, the direction of the pressure difference is always opposite to that during normal operation.
[0035]
As is clear from the above description, even if the second check valve 12 is abolished, the refrigerant pressure on the condenser 3 side from the on-off valve 6 drops earlier than the refrigerant pressure in the low-pressure side refrigerant passage 17. Can be prevented, so that the movable portion of the on-off valve 6 can be prevented from vibrating.
[0036]
(Other embodiments)
In the above-described embodiment, a temperature-type expansion valve is employed as the pressure reducing device 8. However, the present invention is not limited to this, and may be a capillary tube or a fixed throttle.
[0037]
In this case, it is desirable that the compressor 1 be driven by a dedicated drive source such as a motor.
[0038]
In the above-described embodiment, the defrosting operation is performed with the compressor 1 stopped. However, the defrosting operation may be performed with the compressor 1 operating.
[0039]
Further, in the above-described embodiment, the present invention is applied to the refrigerator car, but the application of the present invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vehicle-mounted refrigerator according to an embodiment of the present invention.
FIG. 2 is a table showing an operation mode of a vehicle-mounted refrigerator according to an embodiment of the present invention and a control mode of each device.
FIG. 3 is a schematic diagram of a vapor compression refrigerator that has been subjected to a trial production test.
FIG. 4 is a graph showing pressure and temperature behavior before and after the on-off valve 6.
FIG. 5 is a schematic view of a vapor compression refrigerator according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 3 ... Condenser, 6 ... On-off valve, 7 ... Bypass valve, 8 ... Decompressor,
9 evaporator, 13 second bypass passage, 14 first bypass passage
15: first check valve, 12: second check valve.

Claims (3)

低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
冷媒を吸入圧縮する圧縮機(1)と、
前記圧縮機(1)から吐出した高圧冷媒を放冷する高圧側熱交換器(3)と、
前記高圧側熱交換器(3)にて放冷された高圧冷媒を減圧膨脹させる減圧器(8)と、
前記減圧器(8)によって減圧された低圧冷媒を蒸発させる低圧側熱交換器(9)と、
前記減圧器(8)を迂回させて高圧冷媒を前記低圧側熱交換器(9)に導く第1バイパス通路(14)と、
前記第1バイパス通路(14)に冷媒を流す場合と前記第1バイパス通路(14)に冷媒が流れることを禁止する場合とを切り換えるバイパス弁(7)と、
前記減圧器(8)の冷媒流れ上流側に設けられ、冷媒通路を開閉する開閉弁(6)と、
前記減圧器(8)と前記開閉弁(6)とを繋ぐ低圧側冷媒通路(17)と、前記第1バイパス通路(14)とを繋ぐ第2バイパス通路(13)と、
前記低圧側冷媒通路(17)から前記第1バイパス通路(14)側にのみ冷媒が流れることを許容する第1逆止弁(15)とを備えることを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that transfers heat on the low temperature side to the high temperature side,
A compressor (1) for sucking and compressing a refrigerant;
A high-pressure side heat exchanger (3) for cooling the high-pressure refrigerant discharged from the compressor (1),
A decompressor (8) for decompressing and expanding the high-pressure refrigerant cooled in the high-pressure side heat exchanger (3);
A low-pressure side heat exchanger (9) for evaporating the low-pressure refrigerant decompressed by the pressure reducer (8);
A first bypass passage (14) for bypassing the pressure reducer (8) to guide the high-pressure refrigerant to the low-pressure side heat exchanger (9);
A bypass valve (7) for switching between a case where the refrigerant flows through the first bypass passage (14) and a case where the refrigerant is prohibited from flowing through the first bypass passage (14);
An on-off valve (6) provided on the upstream side of the refrigerant flow of the pressure reducer (8), for opening and closing a refrigerant passage;
A low pressure side refrigerant passage (17) connecting the pressure reducer (8) and the on-off valve (6), a second bypass passage (13) connecting the first bypass passage (14),
A vapor compression refrigerator comprising: a first check valve (15) that allows refrigerant to flow only from the low-pressure side refrigerant passage (17) to the first bypass passage (14).
前記開閉弁(6)側から前記減圧器(8)側にのみ冷媒が流れることを許容する第2逆止弁(12)が、前記低圧側冷媒通路(17)に設けられていることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。A second check valve (12) that allows refrigerant to flow only from the on-off valve (6) side to the decompressor (8) side is provided in the low-pressure side refrigerant passage (17). The vapor compression refrigerator according to claim 1, wherein: 前記圧縮機(1)が停止した時に、前記バイパス弁(7)を開き、かつ、前記開閉弁(6)を閉じる除霜制御手段を有することを特徴とする蒸気圧縮式冷凍機。When the compressor (1) is stopped, a decompression control means for opening the bypass valve (7) and closing the on-off valve (6) is provided.
JP2002180151A 2002-06-20 2002-06-20 Vapor compression type refrigerator Withdrawn JP2004020160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180151A JP2004020160A (en) 2002-06-20 2002-06-20 Vapor compression type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180151A JP2004020160A (en) 2002-06-20 2002-06-20 Vapor compression type refrigerator

Publications (1)

Publication Number Publication Date
JP2004020160A true JP2004020160A (en) 2004-01-22

Family

ID=31177366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180151A Withdrawn JP2004020160A (en) 2002-06-20 2002-06-20 Vapor compression type refrigerator

Country Status (1)

Country Link
JP (1) JP2004020160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501927A (en) * 2004-06-02 2008-01-24 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control method and system
CN109692856A (en) * 2019-01-16 2019-04-30 福建省工业设备安装有限公司 A kind of denoising device and noise-reduction method of sweeping steam pipeline
JP2019132571A (en) * 2018-02-02 2019-08-08 株式会社デンソー Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501927A (en) * 2004-06-02 2008-01-24 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control method and system
JP2019132571A (en) * 2018-02-02 2019-08-08 株式会社デンソー Refrigeration cycle device
CN109692856A (en) * 2019-01-16 2019-04-30 福建省工业设备安装有限公司 A kind of denoising device and noise-reduction method of sweeping steam pipeline
CN109692856B (en) * 2019-01-16 2023-11-28 福建省工业设备安装有限公司 Noise reduction device and noise reduction method for steam pipeline purging

Similar Documents

Publication Publication Date Title
JP4463466B2 (en) Ejector cycle
JP3858297B2 (en) Pressure control valve and vapor compression refrigeration cycle
JP3591304B2 (en) Heating element cooling device
JP4006782B2 (en) Air conditioner having a cooler for heat generating equipment
JP2004198002A (en) Vapor compression type refrigerator
JP4042637B2 (en) Ejector cycle
JP4396004B2 (en) Ejector cycle
WO2013145537A1 (en) Air conditioner device for vehicle
JP2003114063A (en) Ejector cycle
JP2021014201A (en) On-vehicle temperature control device
JP2004257694A (en) Vapor compression type refrigerator
JP3303443B2 (en) Air conditioner
JP2004020160A (en) Vapor compression type refrigerator
JP2004163084A (en) Vapor compression type refrigerator
JP6998780B2 (en) Refrigeration cycle device
JPH05106944A (en) Refrigerating device
JPH06174319A (en) Air conditioner for vehicle
JP2021042910A (en) Refrigeration cycle device
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JPH07324849A (en) Refrigerator
JP4239256B2 (en) Heat pump cycle
JPH06185836A (en) Freezer
JPH051868A (en) Refrigerating device
JP2000111175A (en) Refrigerating cycle apparatus
JP3952746B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906