JP2004019110A - Strength measuring method of ground at the present position - Google Patents

Strength measuring method of ground at the present position Download PDF

Info

Publication number
JP2004019110A
JP2004019110A JP2002171189A JP2002171189A JP2004019110A JP 2004019110 A JP2004019110 A JP 2004019110A JP 2002171189 A JP2002171189 A JP 2002171189A JP 2002171189 A JP2002171189 A JP 2002171189A JP 2004019110 A JP2004019110 A JP 2004019110A
Authority
JP
Japan
Prior art keywords
sst
cpt
ground
tip
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002171189A
Other languages
Japanese (ja)
Other versions
JP3966769B2 (en
Inventor
Takao Kishida
岸田 隆夫
Yoshio Mitarai
御手洗 義夫
Nobuyuki Yamane
山根 信幸
Akinori Nakamura
中村 明教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP2002171189A priority Critical patent/JP3966769B2/en
Publication of JP2004019110A publication Critical patent/JP2004019110A/en
Application granted granted Critical
Publication of JP3966769B2 publication Critical patent/JP3966769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strength measuring method of the ground at the present position, in which the ground strength at the present position can be efficiently measured by SST by grasping the correlation between CPT (cone penetration test) and the SST (Swedish sound test) to improve the work efficiency. <P>SOLUTION: CPT and SST are performed at points near a ground G to be measured, respectively. Data of depth in which a measured value of tip resistance q<SB>t</SB>when a cone 2 passes through in the CPT is abruptly changed are not adopted. In rotary passing through section of SST, a value of tip resistance q<SB>t</SB>when the cone 2 passes through which is obtained by CPT is made to correspond to the number of half rotation N<SB>SW</SB>obtained in SST by obtaining a mean value of upper 25 cm parts from depth of a tip of the cone 2 to obtain its correlation. Converted tip resistance is obtained from data of the performed SST and the correlation with the CPT which is obtained already. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スウェーデン式サウンディング試験を使用した原位置における地盤の強度測定方法に関する。
【0002】
【従来の技術】
従来、原位置における地盤の深度方向に連続した強度の測定には、電気式静的コーン貫入試験(JGS1435−1995、以下本説明ではCPTと略称する)が用いられていた。
【0003】
このCPTは、地盤にコーンを静的に貫入させ、電気的に先端抵抗と間隙水圧を求める試験方法であり、このCPT試験は、地盤にコーンを設置して貫入させるので反力が必要であるので、コーン、ロッド、貫入装置、深さ測定器、測定装置及び固定装置から構成される機具類が大掛かりとなり、その移動や設置に時間がかかる等の問題があった。
【0004】
そこで、上記CPT試験方法に比較し、より簡易な装置を使用してCPTと同様に原位置における連続した地盤強度に関するデータが効率よく、かつ機動性良く得られるスウェーデン式サウンディング試験(JISA1221、以下本説明ではSSTと略称する)があり、この試験方法は、その装置及びその操作が容易で、かつ迅速に測定可能であり、また簡易なサウンディングのなかでは比較的貫入能力に優れているなどの利点を有していることで知られている。
【0005】
上記SSTの試験装置は、主にハンドル、おもり、載荷用クランプ、ロッド及びスクリューポイント等から構成されており、スクリューポイントにロッドを介しておもりで荷重を載荷し、荷重で地盤に貫入停止後に、ロッドをハンドルで回転させた時の、回転数と貫入量との関係を求めるようにしている。
【0006】
このSSTの試験方法における測定値の地盤強度の換算は通常N値との相関関係からN値に換算することが行なわれているが、原位置における地盤の強度は、特に粘性土地盤の場合などでは、N値よりもコーン貫入抵抗の方が正確に評価できることに着目し、本発明者等はSSTの結果からコーン貫入抵抗を換算できる方法の検討を行ない本発明に到達した。
【0007】
【発明が解決しようとする課題】
本発明は、CPTとSSTとの相関関係を把握して、SSTによって原位置における地盤強度を効率良く測定でき、作業効率の向上をはかりうる原位置における地盤の強度測定方法を提供する。
【0008】
【課題を解決するための手段】
本発明は、電気式静的コーン貫入試験CPTと、スウェーデン式サウンディング試験SSTとを、測定地盤の1から2m程度離れた地点でそれぞれ実施し、得られたデータからCPTのコーン貫入時の先端抵抗qt の計測値が急激に変化している深度のデータは採用せず、SSTの回転貫入区間では、CPTで得られるコーン貫入時の先端抵抗qt の値を、コーン先端の深度から上方25cm分の平均値を求め、SSTで得られる半回転数NSWとを対応させて、その相関関係を求め、SSTの自沈区間は、自沈がスクリューポイントの長さ以上連続している部分のデータのみを使用し、各載荷重と自沈した深度区間のコーン貫入時の先端抵抗qt とを対応させて、その相関関係を求めた後、実施したSSTのデータと、既に求めてあるCPTとの相関関係とから換算先端抵抗を求める原位置における地盤の強度測定方法からなり、また本発明は、土被り圧σV0が大きい場合は、SSTで得られる半回転数NSWとCPTにより得られた先端抵抗qt に土被り圧σV0を考慮した先端抵抗qt −σV0との相関関係を求め、各載荷重とCPTにより得られた先端抵抗qt に土被り圧σV0を考慮した先端抵抗qt −σV0との相関関係を求める原位置における地盤の強度測定方法からなる。
【0009】
【発明の実施の形態】
以下図1を参照して本発明の地盤の強度測定方法における一実施形態につき説明する。
【0010】
まず、前記のSSTと、その試験を行なった地盤Gの1から2m程度離れた近傍の地点でCPTを同時に実施し、それぞれの試験結果から得られたデータを整理検討した。
【0011】
ここで実施したSSTの装置は、地盤Gの強度に合わせて、荷重による貫入、即ち自沈時の荷重段階を自動的に0.05,0.15,0.25,0.50,0.75,1.00kNの6段階に調整できるものとし、1.00kN以下の荷重では自沈し、自沈停止後、自動的に回転貫入に切り替わる仕組になっており、その荷重段階の切り替えは、その貫入速度から自動的に変化させることができ、深度、半回転数、荷重段階が自動的に計測され、その装置は分解可能で、その本体には車輪がついており、人力での移動及び設置が可能になっている。
【0012】
図1はSST及びCPTのそれぞれの試験方法による地盤Gの強度の測定深度の相関関係を示す図であり、SSTにおいては、長さL=20cmのスクリューポイント1の先端が25cm進む間の半回転数NSW(層厚1.0mに換算した値)を計測し、地盤Gの強度を推定するものであり、従って計測された半回転数NSWは、スクリューボイント1の先端の深度から上部25cm分の平均地盤強度を示す。
【0013】
これに対し、CPTにおいては、約3cmのコーン2先端部分のコーン貫入時の先端抵抗qt を1.0cmピッチで計測するもので、ほぼその深度における地盤強度を計測するものである。
【0014】
従って、半回転数NSWと先端抵抗qt との相関関係をとるには、コーン2先端の深度から上25cmの分の先端抵抗qt の平均値と半回転数NSWとを対応させている。
【0015】
次に、SSTの自沈区間では、自沈がスクリューポイント1の長さ以上連続している部分のデータのみを使用し、各載荷重と自沈した深度区間のコーン2の貫入時の先端抵抗qt を対応させて、その相関関係を求める。
【0016】
また、CPTのコーン2貫入時の先端抵抗qt の計測値が急激に変化している深度のデータは採用しないこととした。何故ならば、地盤Gの深度が急激に変化する地点では、長さL=20cmのスクリューポイント1がその両方の地盤Gの境界部で回転しており、スクリューポイント1の貫入時の抵抗は硬い層のみによる影響が大きいと考えられるからである。
【0017】
SSTの回転貫入区間では、CPTで得られるコーン2貫入時の先端抵抗qt の値を、コーン2先端の深度から上方25cmの平均値を求め、SSTで得られる半回転数NSWとを対応させて、このqt とNSWとの相関関係を求めるが、その際に、土被り圧σV0が大きい場合は、SSTで得られる半回転数NSWとCPTにより得られた先端抵抗qt に土被り圧σV0を考慮したqt −σV0との相関関係を求める。図2は上記NSWとqt −σV0とで得られた相関関係を示す図表である。
【0018】
この結果により、NSW=30及び300で変曲点があり、NSWが小さいほど1半回転当たりのqt −σV0が増加する割合が大きく、NSW≧300ではNSWが増加してもqt −σV0がほとんど増加しないことが分かる。
【0019】
このことにより、各変曲点間で直線近似を行ない、次の相関関係の式が得られた。
【0020】
t −σV0=50.3NSW+620    ・・・・・ (1)
(0≦NSW<30)
t −σV0=8.9NSW+1860    ・・・・・ (2)
(30<NSW<300)
t −σV0=0.33NSW+4430   ・・・・・ (3)
(300≦NSW
また、SSTの自沈区間では、載荷重WSW=1.0kNで回転から自沈に変わる時のqt −σV0は、平均で620kN/m2 (380〜860kN/m2 )となり、以下、各自沈荷重WSWと換算qt −σV0の関係は以下の表に示すとおりとなった。
【0021】
【表1】

Figure 2004019110
【0022】
上記の相関関係の式から換算した土被り圧σV0を考慮した先端抵抗qt −σV0の実測値を図3に示しており、細い線で示すのがCPT方法による線図で、また太い線で示すのがSSTからの換算の線図であり、多少のバラツキは認められるがほぼ一致した値が得られることを確認した。
【0023】
【発明の効果】
以上に説明した本発明の原位置における地盤の強度測定方法により地盤の強度測定を実施すれば、CPTを使用した場合に比べ、作業効率が3から5倍程度向上する。
【0024】
すなわち、SSTは操作が簡易で、装置が軽量であることから、装置の移動に要する時間が大幅に短縮でき、CPTの3倍以上のデータが取得可能であり、調査にかゝる時間や費用が削減できる。
【図面の簡単な説明】
【図1】本発明の地盤の強度測定方法の一実施形態におけるSST及びCPTを地盤上の近傍の地点で行なった測定深度の関係を示す図である。
【図2】図1の実施形態における半回転数NSWと土被り圧を考慮した先端抵抗qt − σV0との相関関係を示す図表である。
【図3】図1の換算qt −σV0の深度分布を示す図表である。
【符号の説明】
1  スクリューポイント
2  コーン
G  地盤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the strength of ground in situ using a Swedish sounding test.
[0002]
[Prior art]
Conventionally, an electric static cone penetration test (JGS1435-1995, hereinafter abbreviated as CPT in the present description) has been used to measure the strength continuous in the depth direction of the ground at the original position.
[0003]
This CPT is a test method in which a cone is statically penetrated into the ground, and the tip resistance and pore water pressure are electrically determined. This CPT test requires a reaction force because the cone is set in the ground and penetrated. Therefore, the equipment including the cone, the rod, the penetrating device, the depth measuring device, the measuring device, and the fixing device becomes large-scale, and there is a problem that it takes time to move and install the device.
[0004]
Therefore, in comparison with the above CPT test method, a Swedish sounding test (JISA1221; hereinafter referred to as “JISA1221”) in which data on continuous ground strength at the original position can be obtained efficiently and with good mobility using a simpler apparatus as in the case of CPT. This test method has advantages such as easy and quick measurement of the device and its operation, and relatively excellent penetration performance among simple soundings. Is known to have.
[0005]
The SST test apparatus is mainly composed of a handle, a weight, a loading clamp, a rod, a screw point, and the like. The screw point is loaded with a weight via a rod, and after stopping to penetrate the ground with the load, The relationship between the number of revolutions and the amount of penetration when the rod is rotated by the handle is determined.
[0006]
In the SST test method, the ground strength of the measured value is usually converted into an N value based on the correlation with the N value. Then, paying attention to the fact that the cone penetration resistance can be more accurately evaluated than the N value, the present inventors have studied the method of converting the cone penetration resistance from the result of SST and arrived at the present invention.
[0007]
[Problems to be solved by the invention]
The present invention provides a method of measuring the strength of the ground at the original position where the correlation between the CPT and the SST can be grasped and the ground strength at the original position can be efficiently measured by the SST, and the work efficiency can be improved.
[0008]
[Means for Solving the Problems]
In the present invention, an electric static cone penetration test CPT and a Swedish sounding test SST are respectively performed at a point about 1 to 2 m away from the measurement ground, and the tip resistance at the time of cone penetration of the CPT is obtained from the obtained data. data of depth measurement values of q t is changing abruptly without adopting, in rotation penetration section SST, the value of resistor tip q t during cone penetration obtained with CPT, upwardly 25cm from the depth of the cone tip The average value of the minute is obtained, and the half-rotation speed N SW obtained in the SST is associated with the correlation, and the correlation is obtained. using, in correspondence with the tip resistance q t during cone penetration depth interval was scuttled each mounting load, after determining the correlation, the SST data were performed, it has already been determined C The method comprises a method of measuring the strength of the ground at the original position to obtain the converted tip resistance from the correlation with PT, and the present invention uses the half rotation number N SW obtained by SST and CPT when the overburden pressure σ V0 is large. the resulting calculated the correlation between the distal tip considering resistance q t soil overburden pressure sigma V0 resistance q tV0, a pressure sigma V0 overburden the resulting tip resistance q t by the mounting load and CPT It consists strength measuring method of the ground in situ using the relationship between the tip resistance q t - [sigma] V0 in consideration.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the method for measuring the strength of the ground according to the present invention will be described below with reference to FIG.
[0010]
First, the above-mentioned SST and CPT were simultaneously performed at a point about 2 m away from the ground G where the test was performed, and data obtained from the respective test results were arranged and examined.
[0011]
The SST apparatus implemented here automatically adjusts the load stage at the time of self-sinking by 0.05, 0.15, 0.25, 0.50, 0.75 in accordance with the strength of the ground G, that is, the load stage at the time of self-subsidence. , 1.00 kN can be adjusted in six stages, and it is self-sinking under a load of 1.00 kN or less, and after the self-sinking stops, it automatically switches to rotary intrusion. Can be changed automatically, the depth, half-turn, load stage are automatically measured, the device can be disassembled, its body is equipped with wheels, it can be moved and installed manually Has become.
[0012]
FIG. 1 is a diagram showing the correlation between the measured depths of the strength of the ground G by the respective test methods of SST and CPT. In the SST, a half rotation while the tip of the screw point 1 having a length L = 20 cm advances 25 cm. The number N SW (value converted to a layer thickness of 1.0 m) is measured to estimate the strength of the ground G. Therefore, the measured half rotation number N SW is 25 cm above the depth of the tip of the screw point 1. Indicates the average ground strength per minute.
[0013]
In contrast, in CPT it is intended to measure the tip resistance q t during cone penetration of the cone 2 tip of about 3cm in 1.0cm pitch, and measures the ground intensity at approximately its depth.
[0014]
Therefore, the take a correlation between the half rotational speed N SW and tip resistance q t, in correspondence with an average value and half the rotational speed N SW of minute tip resistance q t top 25cm from the depth of the cone 2 tip I have.
[0015]
Next, in the scuttled section SST, scuttled can use only the data portion is continuous over the length of the screw point 1, the tip resistance q t during penetration of the cone 2 of depth interval was scuttled each mounting load Correspondingly, the correlation is obtained.
[0016]
Also, data of the depth measurements of the tip resistance q t during CPT cone 2 penetration is changing rapidly was not adopted. This is because at the point where the depth of the ground G changes rapidly, the screw point 1 having a length of L = 20 cm is rotating at the boundary between both the grounds G, and the resistance when the screw point 1 penetrates is hard. This is because the effect of only the layer is considered to be large.
[0017]
The SST rotation penetration section, the value of resistor tip q t when the cone 2 penetration obtained with CPT, the average value of the upper 25cm from the depth of the cone 2 tip, corresponding to the half rotational speed N SW obtained by SST Then, the correlation between q t and N SW is obtained. At this time, if the overburden pressure σ V0 is large, the half-speed N SW obtained by SST and the tip resistance q t obtained by CPT are obtained. using the relationship between the q t - [sigma] V0 in consideration of the pressure sigma V0 overburden on. FIG. 2 is a chart showing a correlation obtained by the above N SW and q t −σ V 0 .
[0018]
This result, there is an inflection point in N SW = 30 and 300, a large proportion of q t - [sigma] V0 per one half rotation as N SW is small increases, and increases N SW ≧ 300 In N SW It can also be seen that q tV0 hardly increases.
[0019]
As a result, linear approximation was performed between each inflection point, and the following correlation equation was obtained.
[0020]
q t -σ V0 = 50.3N SW +620 ····· (1)
(0 ≦ N SW <30)
q t -σ V0 = 8.9N SW +1860 ····· (2)
(30 <N SW <300)
q t -σ V0 = 0.33N SW +4430 ····· (3)
(300 ≦ N SW )
Further, in the scuttled section SST, q t - [sigma] V0 when changing to scuttled from rotating in mounting load W SW = 1.0 kN is on average at 620kN / m 2 (380~860kN / m 2) , and the following, each The relationship between the sinking load W SW and the converted q t −σ V 0 is as shown in the following table.
[0021]
[Table 1]
Figure 2004019110
[0022]
Shows the measured values of resistor tip q t - [sigma] V0 in consideration of the pressure sigma V0 overburden converted from the above equation correlation in Figure 3, a line diagram by CPT method show a thin line, also thick The line is a conversion diagram from the SST, and it was confirmed that although there was some variation, a substantially consistent value was obtained.
[0023]
【The invention's effect】
If the strength of the ground is measured by the above-described method of measuring the strength of the ground at the original position of the present invention, the working efficiency is improved about 3 to 5 times as compared with the case where CPT is used.
[0024]
That is, since the SST is easy to operate and the device is lightweight, the time required to move the device can be significantly reduced, data more than three times as large as the CPT can be obtained, and the time and cost required for the survey can be improved. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a relationship between measured depths obtained by performing SST and CPT at a nearby point on the ground in one embodiment of the ground strength measuring method of the present invention.
FIG. 2 is a table showing a correlation between a half rotation speed N SW and a tip resistance q t −σ V0 in consideration of an overburden pressure in the embodiment of FIG. 1;
FIG. 3 is a chart showing a depth distribution of a converted q t −σ V0 of FIG. 1;
[Explanation of symbols]
1 screw point 2 cone G ground

Claims (2)

電気式静的コーン貫入試験CPTと、スウェーデン式サウンディング試験SSTとを、測定地盤の1から2m程度離れた地点でそれぞれ実施し、得られたデータから、CPTのコーン貫入時の先端抵抗qt の計測値が急激に変化している深度のデータは採用せず、SSTの回転貫入区間では、CPTで得られるコーン貫入時の先端抵抗qt の値を、コーン先端の深度から上方25cm分の平均値を求め、SSTで得られる半回転数NSWとを対応させて、その相関関係を求め、SSTの自沈区間は、自沈がスクリューポイントの長さ以上連続している部分のデータのみ使用し、各載荷重と自沈した深度区間のコーン貫入時の先端抵抗qt とを対応させて、その相関関係を求めた後、実施したSSTのデータと、既に求めてあるCPTとの相関関係とから換算先端抵抗を求める原位置における地盤の強度測定方法。And electrical static cone penetrometer CPT, a Swedish sounding test SST, performed respectively at a distance of about 2m from the first measurement ground, from the obtained data, when CPT cone penetration tip resistance q t data of depth measurement values change abruptly without adopting, in rotation penetration section SST, the value of resistor tip q t during cone penetration obtained with CPT, the average from the depth of the cone tip of the upper 25cm min A value is obtained, and a correlation is obtained by associating the half-rotation speed N SW obtained in SST, and a self-sinking section of SST uses only data of a part where auto-sinking is continuous for more than the length of the screw point, a tip resistance q t during cone penetration depth interval was scuttled each mounting load in correspondence, phase after determining the correlation, the SST data was conducted, and CPT that is already determined A method of measuring the strength of the ground at the original position where the converted tip resistance is determined from the relationship. 土被り圧σV0が大きい場合は、SSTで得られる半回転数NSWとCPTにより得られた先端抵抗qt に土被り圧σV0を考慮した先端抵抗qt −σV0との相関関係を求め、各載荷重とCPTにより得られた先端抵抗qt に土被り圧σV0を考慮した先端抵抗qt −σV0との相関関係を求める請求項1記載の原位置における地盤の強度測定方法。If Overburden pressure sigma V0 is large, the correlation between the tip resistance q t - [sigma] V0 in consideration of the pressure sigma V0 overburden the tip resistance q t obtained by half rotation speed N SW and CPT obtained by SST determined, the strength measuring method of the ground in situ according to claim 1, wherein using the relationship between the tip resistance q t - [sigma] V0 in consideration of the pressure sigma V0 overburden the resulting tip resistance q t by the mounting load and CPT .
JP2002171189A 2002-06-12 2002-06-12 In-situ strength measurement method of ground Expired - Fee Related JP3966769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171189A JP3966769B2 (en) 2002-06-12 2002-06-12 In-situ strength measurement method of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171189A JP3966769B2 (en) 2002-06-12 2002-06-12 In-situ strength measurement method of ground

Publications (2)

Publication Number Publication Date
JP2004019110A true JP2004019110A (en) 2004-01-22
JP3966769B2 JP3966769B2 (en) 2007-08-29

Family

ID=31171111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171189A Expired - Fee Related JP3966769B2 (en) 2002-06-12 2002-06-12 In-situ strength measurement method of ground

Country Status (1)

Country Link
JP (1) JP3966769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126754B (en) * 2007-09-25 2010-12-15 铁道第三勘察设计院集团有限公司 Geotechnical engineering original position rotation contact-surveying vehicle
CN102061687A (en) * 2010-12-09 2011-05-18 东南大学 Analytical method for determining soil body intensity parameter by in-situ static penetration test

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587427B (en) * 2012-04-05 2014-09-03 铁道第三勘察设计院集团有限公司 Analysis method for estimating settlement of pile foundation on basis of penetration technology
CN104018482B (en) * 2013-03-02 2015-11-18 王昌益 The measuring method of ultimate bearing capacity of foundation soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126754B (en) * 2007-09-25 2010-12-15 铁道第三勘察设计院集团有限公司 Geotechnical engineering original position rotation contact-surveying vehicle
CN102061687A (en) * 2010-12-09 2011-05-18 东南大学 Analytical method for determining soil body intensity parameter by in-situ static penetration test

Also Published As

Publication number Publication date
JP3966769B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
CN106484997B (en) Method for calculating thickness of water bank silt and drawing based on Krigin interpolation
CN110411923B (en) In-situ real-time monitoring device and method for submarine boundary layer based on natural potential measurement
RU2014122120A (en) ADVANCED DEVICE, METHOD AND SYSTEM FOR MEASURING SPECIFIC RESISTANCE
JP2004019110A (en) Strength measuring method of ground at the present position
RU2013107540A (en) USE OF EDCLE CURRENTS FOR ANALYSIS OF POLYCRYSTALLINE DIAMOND
CN110118516A (en) Subsidence Area surface cracks measurement method
JP3831181B2 (en) Construction management system and construction management method for rotary press-fit piles
JP4885325B1 (en) Construction management system for ground improvement method
CN104407389B (en) Method for removing electromagnetic coupling in phase position induced polarization exploration
CN211401722U (en) Soil sampling device is used in geology reconnaissance
JP2003227786A (en) Method and apparatus for measuring shear strength in soil
CN208043462U (en) A kind of excavating gear for detecting sand-gravel cushion compactness
CN116519112A (en) Ultrasonic tool bit vibration energy efficiency evaluation method based on laser vibration measurement
JP3952138B2 (en) Evaluation method of static earth pressure coefficient of pile or sand compaction pile placement ground and evaluation method of static earth pressure coefficient of sand compaction pile itself of sand compaction pile placement ground
CN106052957A (en) Wind generating set blade imbalance monitoring method and device
JP2896859B2 (en) Evaluation method of stratum using ground drilling data
JP3207435U (en) Ground exploration system
Kuka et al. A new method for the extraction of undisturbed soil samples for X-ray computed tomography
JP2004028795A5 (en)
CN212932464U (en) One-dimensional soil body hydrothermal migration testing arrangement
Gorzelanczyk et al. Nondestructive tests aimed at determining the thickness of the concrete shell of a heat pipe carrying tunnel
CN111550233A (en) Method for detecting formation boundaries
JP2013023900A (en) Method and device for measuring shear strength of ground
CN207231904U (en) A kind of test device for vane shear test
JP4091819B2 (en) Penetration testing machine and automatic calculation method of converted N value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3966769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees