【0001】
【発明の属する技術分野】
本発明は、絶縁膜形成用塗布液とそれを用いた半導体デバイスに関する。詳しくは、例えば半導体デバイスや表示デバイスの配線間に設けられる層間絶縁膜や、磁気ディスクヘッドなどの微細部品の絶縁層の形成用途で用いられる塗布液、およびそれを用いた半導体デバイスに関する。近年、半導体集積回路の多層配線における信号の伝播速度を改善させるため、配線を微細化することや配線材料を低抵抗化することのみならず、同一配線層を互いに隣接して伸びる複数配線の配線間容量(キャパシタンス)を低減させるための絶縁材料が使用される。
【0002】
【従来の技術】
高集積化された半導体装置の多層配線層間には絶縁膜(通常、「層間絶縁膜」と呼ばれる)が積層されており、また、この絶縁膜の材料には、半導体装置の信頼性を維持するため優れた耐熱性、膜強度と加工性が求められている。さらに配線間容量を小さくし、配線を伝播する信号の伝播速度を上げるため比誘電率の小さい材料が求められている。比誘電率の小さい材料としては、有機系材料でも無機系材料でも用いることができる。
【0003】
有機系材料としては、ポリイミド系樹脂が耐熱性の点で優れた材料として知られている。しかし、有機系材料に対し、微細で深い溝あるいはホールをエッチング加工する場合、被加工中の溝あるいはホールの側壁が、垂直形状より膨らんだ形となりやすく、垂直加工が難しいという問題がある。
【0004】
無機系材料では、シリコン系の材料が絶縁膜として用いられており、特に、スピンオングラス(SOG)系の材料(比誘電率=3乃至4)が、スピンコート法で容易に成膜できる利点を有し、且つ、加工性にも優れているので、多くの工程で実用化されている。
【0005】
図9は、従来技術を説明する配線構造断面図である。図9は、基板27上に拡散防止層34が被覆された銅埋め込み配線層17を覆うようにスピンオングラス材料からなる絶縁膜12を形成した後、この絶縁膜12の上に、拡散防止層28が被覆された銅埋め込み配線層31を覆うように、スピンオングラス材料からなる絶縁膜30を形成した状態を示す断面図である。図中丸印は、ランダムな大きさのシリカ微粒子を表している。図9に示すように、従来、スピンオングラス系材料に含まれるシリカ微粒子の大きさにばらつきがあった。
【0006】
【発明が解決しようとする課題】
前述のように、スピンオングラス系材料は、塗布液を回転塗布して焼成するだけで平坦な被膜ができあがるという利便から絶縁膜材料として汎用されているが、微細化の進展に伴い、次の二つの問題が見逃せなくなってきた。
【0007】
すなわち、第一には、塗布,焼成してできる被膜の比誘電率が被膜面内でばらつくという問題がある。この問題の原因は、被膜中に含まれる微粒子の粒径に極端なばらつきがあると、偶然に粒径の小さい微粒子が微粒子間の空隙を埋め合わせた部分ができてしまい、当該部分だけは空隙が埋まってしまった分、周囲に比較して比誘電率が高くなってしまうことにある。このように、比誘電率が被膜面内のどこかで高くなるものとすれば、当該部分において配線の信号は遅くなるから、高速動作設計のデバイスの製造プロセスで用いれば歩留りを下げるか性能劣化をきたすと予想され、量産への適用は不可能といえる。
【0008】
また一方、第二には、拡散防止等の目的でこの被膜の上に被着形成される膜の剥がれを生じさせる可能性が高い。被膜の比誘電率を下げようとして設けられる空隙は往々不揃いで、大きな空隙が、被膜表面に露出(オープンポア)してしまう場合がある。再び図9を参照してこの問題を説明すると、最近の高速動作設計のデバイスは、配線それ自体の低抵抗化を狙って銅配線を採用しているが、表面が多孔化した絶縁膜12と銅埋め込み配線層31との間には、銅の熱拡散を防ぐために密度の高い金属とその窒化物を積層した膜からなる拡散防止層28を被着形成することが必須となる。このような状況で、拡散防止層28は下地の絶縁膜12の多孔化がために密着が弱く、工程途中での些細な熱応力等で剥離を引き起こしかねない。また、拡散防止層28を被着形成時に下地の空隙が災いして部分的に薄膜化したり欠陥29が生じかねず、このことも剥離の遠因となる。
【0009】
微粒子間に発生する空隙の大きさを制御する手法としては、超臨界圧力雰囲気にてスピンオングラス材料を多孔質化する方法があるが、製造工程が煩雑になる問題がある。
【0010】
本発明は、以上のような問題を解決するものであり、比誘電率が面内で均一であり、拡散防止層の剥離が生じない膜質が均一な絶縁膜材料を提供することと同時に、また、このような優れた特性を有する絶縁膜材料を使用することによって動作が高速で信頼性の高い半導体装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明では、上記課題を解決するための手段として、下記2つの構成を手段とする。
【0012】
[第1の手段]
平均粒径が1000Å以下であって、その粒径分布を示す標準偏差σにて3σが平均粒径の20%以下である微粒子を用いた絶縁膜形成用塗布液を用いる。この絶縁膜形成用塗布液を半導体基板へ塗布後、乾燥処理を経て被膜形成すると、微粒子が面内に均一に分布するため、形成される空隙もその大きさ、形、分布が均一になる。従って、形成された絶縁膜の比誘電率の面内均一性が向上し、そこに形成される空隙は、異常成長を起こし絶縁被膜表面に露出することがないので、この上に拡散防止層を形成しても剥離を生じることがない。
【0013】
以下図1(a)を参照して、第1の構成に関する発明の原理を説明する。図1は、本発明の原理説明図(配線構造の断面図)である。図1(a)は、基板27上に拡散防止層34が被覆された銅埋め込み配線層17を覆うようにスピンオングラス材料からなる絶縁膜18を形成した後、この絶縁膜18の上に、拡散防止層28が被覆された銅埋め込み配線層31を覆うように、スピンオングラス材料からなる絶縁膜20を形成した状態を示す断面図である。図中丸印は、大きさが均一な微粒子を表している。絶縁膜18、20の微粒子は、大きさが均一で図1(a)のように整列した状態に配置しやすいため微粒子間に発生する空隙も規則正しく形成される。
【0014】
[第2の手段]
互いに種類の異なる、少なくとも第1の微粒子と第2の微粒子からなる絶縁膜形成用塗布液であって、該第1の微粒子の平均粒径が1000Å以下であって、その粒径の3σが該第1の微粒子の平均粒径の20%以下であり、含まれる前記第2の微粒子の平均粒径が前記第1の微粒子の平均粒径の1/3以下で粒径の3σが前記第2の微粒子の平均粒径の20%以下である絶縁膜形成用塗布液を用いる。この第2の手段によれば、比誘電率の面内均一化及び拡散防止膜の剥離防止の作用に加え、絶縁膜の緻密化によって、膜の強度を向上させることができる。
【0015】
以下図1(b)を参照して、第2の構成に関する発明の原理を説明する。図1(b)は、基板27上に拡散防止層34が被覆された銅埋め込み配線層17を覆うようにスピンオングラス材料からなる絶縁膜33を形成した後、この絶縁膜33の上に、拡散防止層28が被覆された銅埋め込み配線層31を覆うように、スピンオングラス材料からなる絶縁膜32を形成した状態を示す断面図である。図中丸印は、大きさが2種類の微粒子を表している。大きさが2種類で、小さい粒子が大きい粒子の間隙へ規則的に侵入できる大きさで構成される絶縁膜32、33は、図1(b)のように整列した状態に微粒子が配置しやすいため膜を緻密化できる結果、膜の強度を向上できる。
【0016】
上記第1の手段及び第2の手段に示した微粒子を無機物で作る場合は、アルコキシシランを加水分解して得られるようなシリカ微粒子が望ましい。この加水分解反応において、目的とする微粒子サイズが生成される収率を向上させるために、180℃以上の温度雰囲気で反応させることが望ましい。この工程における反応温度は、立体的で三次元網目構造を有する1000Å以下の球状シロキサン樹脂を再現性よく得るために設定される。さらに、GPC(ゲルパーミエーションクロマトグラフィ)などを用いて、粒径の分布が近い微粒子を分取することができる。分取された樹脂の分子量は、その樹脂に含まれる球状シロキサンの平均粒径と相関関係を持つので、任意の粒径を本手法によって選び出すことができる。
【0017】
また、平均粒径を1000Å以下にすることで本発明の効果が顕著となる。一般に、微粒子間に発生する空隙が不均一に拡大する現象は、粒径の大きさとともに拡大する傾向がある。従って、本塗布液を用いることが好ましい半導体装置の製造工程において、微細パターンサイズに対応した比誘電率を有する絶縁膜を安定して得るためには、平均粒径を1000Å以下にすることが好ましい。
【0018】
本発明の半導体装置は、半導体基板と、その上に交互に積層して互いに並行して伸びる複数の配線層とこれらに形成された複数の絶縁層とを含み、これらの絶縁層のうちの少なくとも一層が本発明の第1の手段または第2の手段における絶縁膜形成材料から作られた膜となっているものである。この半導体装置は、本発明による絶縁膜を用いることで配線間容量を偏ることなく低減できるので、配線遅延が改善される。中でも多層配線工程において、微細な配線構造を有するバルク近傍では、同一配線層を互いに隣接して伸びる複数配線の配線間容量を低減させる効果は顕著となる。
【0019】
多孔質化した絶縁膜表面を覆う拡散防止膜は、配線材料の抵抗を実質的に増加させるため、薄膜化することが望ましい。本発明の絶縁膜は、微粒子間に発生する空隙が規則正しく配置するので表面が平滑になる。これによって該拡散防止膜には、スパッタ法にて容易に被着可能なチタン、チタンを主体とした合金、タンタル、タンタルを主体とした合金などを薄膜化して用いることが可能となった。
【0020】
【発明の実施の形態】
[実施例1]
本発明の絶縁膜形成用塗布液に用いる無機物微粒子を得るために、以下の工程に従った。
【0021】
メチルイソブチルケトン39.6gに、テトラエトキシシラン20.8g(0.1モル)を溶解させた。濃度400ppmの硝酸水16.2g(0.9モル)を10分間で滴下し、滴下終了後180℃で2時間の熟成反応を行った。テトラエトキシシランが共重合し、球状シロキサン樹脂が生成される。
【0022】
続いてトリメチルエトキシシラン11.8g(0.1モル)を10分間で滴下し、滴下終了後180℃で2時間の熟成反応を行った。本工程を経た後、先に合成した球状シロキサン樹脂の残存エトキシ基、またはシラノール基はシリル化され、化学的に安定な球状シロキサン樹脂となる。
【0023】
次に、硝酸マグネシウム5gを添加し、過剰の水分を除去した。ロータリエバポレータを用い、反応溶液を除去し、さらに1,4−ジオキサンを使用して凍結乾燥を行った。得られた球状シロキサン樹脂をTHF(テトラヒドロフラン)へ分散させ、GPCによる分取を行った。このときのGPCの条件は東ソー製カラム:TSKGEL−G2000HHRを用い、流速:10cc/min、検出UV波長を254nmとした。
【0024】
分子量20,000近辺および2,000近辺を分取し、粒度分布のシャープな球状シロキサン樹脂である微粒子Aと微粒子Bをそれぞれ得た。動的光分散法によって粒子径を求めたところ、微粒子Aの平均粒径は約50Åであって、その粒径分布を示す標準偏差σにて、3σが平均粒径の約15%であり、微粒子Bの平均粒径は約10Å、粒径の3σが平均粒径の約15%であることがわかった。
【0025】
なお、GPCによる分取をしていない球状シロキサン樹脂も、比較のために使用した。この場合の平均粒径は約80Å、その粒径分布を示す標準偏差σにて、3σが平均粒径の約50%であった。
【0026】
上記無機物微粒子の代わりに、耐熱性を有する有機物を本発明の絶縁膜形成用塗付液に用いてもよい。有機物の場合は比誘電率が小さいベンゼン環を有するスターポリマーなどが好ましい。合成にはラジカルアニオンを触媒として単分散ポリマーに近い分子量分布を得ることができるリビング重合を用いれば粒径分布がシャープな微粒子を得ることができる。さらに、GPC(ゲルパーミエーションクロマトグラフィ)を用いて粒径が近似した分子を分取することができる。また、スターポリマーは末端基に複数の構造をもった官能基を有することにより複雑な立体構造となる結果、樹脂の耐熱性も向上する。
【0027】
[実施例2]
実施例1で作成した微粒子を用い、溶媒をイソブチルケトンとする以下の塗布液を調整した。
塗布液Sa:微粒子Aを含む固形分濃度17.5%の溶液。
塗布液Sb:微粒子Aと微粒子Bを含む固形分濃度17.5%の溶液。
塗布液Sc:GPCによる分取をしていない微粒子を含む固形分濃度17.5%の溶液。
【0028】
次に、これらの絶縁膜形成用塗布液を用いて、絶縁膜を形成する方法について説明する。
【0029】
前記溶液を、シリコンウエハ表面にスピンコートする。回転数は3000rpmであり、回転時間は20秒である。スピンコート後、200℃で10分間溶剤を蒸発させる。酸素濃度100ppm以下の窒素雰囲気中で、400℃、30分間の熱処理を行う。この熱処理により微粒子の材質であるシロキサン樹脂が架橋し、絶縁膜として形成される。
【0030】
塗布液Saを用いた被膜の比誘電率は2.4、塗布液Sbを用いた被膜の比誘電率は2.35及び、塗布液Scを用いた被膜の比誘電率は2.4であった。しかし、比誘電率の面内バラツキが塗布液Saを用いた場合では±0.01程度であったのに対して塗布液Scを用いた場合は±0.05と大きかった。また25枚のウェハに塗布して測定したウェハ間バラツキも、塗布液Saを用いた場合では±0.03程度であったのに対して塗布液Scを用いた場合は±0.07と大きかった。
【0031】
これは、塗布液Saに含まれる微粒子Aがシャープな粒径分布を有している故に、膜中の空隙もその大きさ、形、膜中の分布まできわめて均一化しているためと考えられる。一方塗布液Sc中のGPCで分取をしていない微粒子は、種々の粒径サイズを含むため、スピンコート法によって被膜化する過程において、基板が回転中に生じる風紋(ストリエーション)や遠心力による微粒子移動度の差が影響したため、微粒子が平均的に分布しないことや、その後の溶剤乾燥工程と微粒子材料(シロキサン樹脂)の架橋工程で施される熱処理時に発生する膜のストレス変化に伴う微粒子の再配置が無秩序に生じ、安定した誘電率の被膜が得られないものと考える。
【0032】
また、膜強度の比較をナノインデンター法にて評価を行った結果、塗布液Saを用いた被膜は、硬度 0.8GPa、弾性率 6GPaであった。塗布液Sbを用いた被膜は、硬度 1.1GPa、弾性率 6GPaであった。塗布液Scを用いた被膜は、硬度0.4GPa、弾性率 4.5GPaとなり分取操作を行った樹脂の場合より劣っていた。
【0033】
上記のごときシリカ微粒子は負の電荷を帯電しやすいので、実際の塗布液となる場合は、微粒子同士の結合を促すバインダあるいは、微粒子の凝集を防ぐ界面活性剤などが加えられ、目的とする膜厚や膜厚分布を得られるように調製される。
【0034】
本発明の絶縁膜形成材料を用いて絶縁膜を形成する際には、絶縁膜形成材料の樹脂を適当な塗布溶媒に溶解した溶液を使用するのが一般的である。塗布溶媒は、本発明のポリマーが溶解すれば特に限定されない。このような塗布溶媒としては、例えばトルエン、キシレン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンなどが挙げられる。
【0035】
本発明の絶縁膜形成材料を用いた絶縁膜の形成は、上記塗布溶媒に溶解した微粒子溶液を、スピンコート法により基板上に塗布し、120℃乃至350℃で5分乃至10分間程度の熱処理を行い溶媒乾燥した後、不活性雰囲気中(例えば酸素濃度100ppm 以下の不活性ガス中)において350℃乃至450℃で30分又はそれ以上の熱処理を行うことが望ましい。但し、溶媒乾燥の温度が120℃未満では溶媒乾燥が不十分であり、350℃以上では酸化によって性能が変質する恐れがある。さらに、溶媒乾燥後の熱処理は過度の酸化分解を抑制するために不活性ガス中で行うことが望ましい。このとき熱処理温度が350℃未満では膜中の空隙形成が不完全な状態のまま、その後の半導体製造工程内で施される熱処理工程中に、脱ガスを発生する問題がある。また、450℃を超えるとクラックなどが生じる恐れがある。溶媒乾燥後の焼成処理の代りに紫外線、赤外線、電子線、X線、酸素プラズマなどのいずれかの照射によって微粒子の収縮を促進させ、塗布被膜中の空隙形成を行うことができる。
【0036】
各エネルギー線の使い分けは、微粒子内の樹脂に対する重合促進作用の点では同一であるが、膜の表面から反応を生じさせて絶縁膜を形成する場合には紫外線照射が好ましい。この場合、表面のキュアを促進し、オープンポア(巨大空隙の表層露出)を抑制する効果がある。急速昇降温制御を行う場合には赤外線加熱が好ましい。反応速度を精密制御したい場合には、電子線照射が好ましい。この場合、後方散乱電子の影響により、膜内部から架橋反応を進める効果がある。被膜内部の上下方向に対して均一な励起を起こしたい場合は、X線照射が好ましい。表面の疎水化処理を兼ねる場合には、酸素プラズマの照射が好ましい。この場合、表面疎水化による吸湿性を低減させる効果のみならず、表面エネルギーの変化により、ギャップ膜(酸化膜など)との密着性改善の効果もある。
【0037】
前記塗布液Sbにおいては、2種類のシリカ微粒子を用いたが、一方の微粒子を無機物とし、他方の微粒子を有機物とすることもできる。この場合、無機物微粒子の応力変化を有機物微粒子が吸収する効果によって、クラックの発生が抑制される。
【0038】
[実施例3]
以下、本発明の一実施形態に沿った半導体装置の製造工程途中の断面図である図2乃至図8を工程順に沿って順次引用しながら、実施例2で示した塗布液Saまたは塗布液Sbを絶縁膜形成用塗布液として半導体装置に適用した場合の製造工程を説明する。尚、以下の説明において、選択エッチング加工に用いられるレジストマスクの形成に関する詳細記述は省略する。
図2(a)参照
まず、p型シリコン基板1に選択酸化法を用いて素子分離酸化膜2を形成したのち、ゲート絶縁膜3、ゲート電極4、及び、保護膜6からなるゲート構造体を形成し、さらに、SiNをゲート電極積層構造全面に覆うように形成した状態からドライエッチングを使ってエッチバック工程を経たのちに残ったサイドウォール5をマスクとしてAsイオンを注入することによってn型ソース・ドレイン領域7を形成し、図2(a)の構造となる。
図2(b)参照
次いで、全面に、厚さが、例えば、1μmのシリコン酸化膜8を堆積させて層間絶縁膜としたのち、後のCMP(化学機械研磨)工程において研磨ストッパーとなるシリコン窒化膜9を、例えば、100nmの厚さに堆積させ、図2(b)の構造となる。
図3(c)参照
次いで、n型ソース・ドレイン領域7に達するビアホールを形成するため、シリコン窒化膜9及び、シリコン酸化膜8をCF4とCHF3などの混合ガスプラズマによって反応性イオンエッチングを行い、図3(c)の構造となる。
図3(d)参照
その後、スパッタ法を用いて全面に、厚さが、例えば、50nmの窒化タンタル膜(図示せず)を堆積させて、次いで、同じく、スパッタ法によってタングステンを厚く堆積させたのち、CMP法によってシリコン窒化膜9が露出するまで研磨することによって、配線材料拡散防止膜(窒化タンタル膜)10とタングステンビア11を形成し、図3(d)の構造となる。
図4(e)参照
次いで、第2の実施例と同様にして、塗布液Saまたは塗布液Sbをスピンコータによって塗布し、乾燥工程及び空隙生成工程を順次行うことによって厚さが、例えば、450nmの絶縁膜12を形成し、次いでシリコン窒化膜13を、例えば、50nmの厚さに堆積させて図4(e)となる。
なお、このシリコン窒化膜13もCMP工程におけるストッパーとなる。
図4(f)参照
次いで、CF4 とCHF3などの混合ガスプラズマによって反応性イオンエッチングを行うことにより、シリコン窒化膜13をエッチングしたのち、該シリコン窒化膜13をマスクとして必要に応じてC4F8などの炭素源を添加したO2 ガスプラズマを用いた反応性イオンエッチングを行うことによって絶縁膜12をエッチングし、タングステンビア11に達する配線層用溝を形成し、図4(f)となる。
図5(g)参照
次いで、スパッタ法を用いて、全面に、厚さが、例えば、50nmの窒化タンタル膜14及び50nmの銅シード層15を順次堆積させたのち、銅シード層15をメッキベース層として電解メッキを行うことによって銅メッキ層16を600nmの厚さに成膜して配線層形成用溝を埋め込み、図5(g)の構造とする。
【0039】
次いで、銅メッキ層16、銅シード層15、及び、窒化タンタル膜14をCMP法にて研磨して除去し、シリコン窒化膜13を露出させる。
図5(h)参照
銅メッキ層16と銅シード層15とが一体になった銅埋込配線層17を形成し、図5(h)となる。
図6(i)参照
次いで、全面にシリコン窒化膜13を例えば50nm堆積させた後、厚さが例えば、400nmの絶縁膜18、50nmのシリコン窒化膜19、400nmの絶縁膜20、及び、50nmのシリコン窒化膜21を順次成膜し、図6(i)の構造とする。
図6(j)参照
次いで、CF4 とCHF3の混合ガスプラズマ を用いた反応性イオンエッチングと必要に応じてC4F8などの炭素源を添加したO2 ガスプラズマを用いた反応性イオンエッチングを繰り返して、シリコン窒化膜21、絶縁膜20、シリコン窒化膜19、絶縁膜18、シリコン窒化膜13を貫通し、銅埋込配線層17に達するビアホールを形成し、図6(j)の構造とする。
図7(k)参照
次いで、CF4 とCHF3などの混合ガスプラズマによって反応性イオンエッチングを行うことにより、シリコン窒化膜21をエッチングしたのち、シリコン窒化膜21をマスクとして必要に応じてC4F8などの炭素源を添加したO2 ガスプラズマを用いた反応性イオンエッチングを行うことによって絶縁膜20をエッチングし、絶縁膜20に配線層用溝を形成し、図7(k)の構造とする。
図7(l)参照
次いで、スパッタ法を用いて、全面に、厚さが、例えば、50nmの窒化タンタル膜22及び50nmの銅シード層23を順次堆積させ、次いで、厚さが1400nmの銅メッキ層24を成膜して配線層形成用溝及びビアホールを埋め込み、図7(l)の構造とする。
次いで、銅メッキ層24、銅シード層23、及び、窒化タンタル膜22をCMP法にて研磨して除去することによって、シリコン窒化膜21を露出させる。
図8(m)参照
以上により銅メッキ層と銅シード層とが一体になった銅埋込配線層25,26を形成し、図8(m)の構造とする。
【0040】
なお、この場合、銅埋込配線層25においては配線層とビアとが一体に形成される。
【0041】
この様な絶縁膜の形成工程、配線層用溝及びビアホールの形成工程、銅埋込配線層の形成工程を必要回数だけ繰り返すことによって多層配線構造を有する半導体集積回路装置が製作できる。
【0042】
この実施例においては、本発明の絶縁膜の比誘電率は2.4程度であるので隣接する配線層に起因する寄生容量を大幅に低減することができる。さらに比誘電率のバラツキがきわめて小さく、且つ、優れた膜強度(硬度、弾性率)を有するので、デバイス特性及び信頼性を向上させることができる。
【0043】
なお、本実施例では、配線層を形成する金属配線の材料に銅を用いたが、アルミニウム及びアルミニウムを主体とした合金から選ぶことはもちろん、銅を主体とした合金から選ぶこともできる。
【0044】
更に、銅の拡散防止膜となる窒化タンタル膜を50nm堆積させているが、これは、窒化タンタル膜と銅シード層との密着に問題がなければ、さらに薄くできるものである。
【0045】
本実施例では、拡散防止膜の膜厚を実施例1に示された微粒子Aの平均粒径の10倍程度の膜厚としていた。これは、前記拡散防止層が従来の絶縁膜表面の凹凸を満遍なくスパッタ法にて被覆するために、リスパッタ効果を考慮したうえで決定された条件である。実施例2に示された塗布液Saまたは塗布液Sbを用いた絶縁膜形成材料を使うと、絶縁膜表面において、少なくとも前記微粒子Aの平均粒径に相当する凹凸が平滑化されるので、前記拡散防止膜の膜厚を薄膜化できる。さらに、該拡散防止膜の表面も平滑性を増すため、前記銅シード層との密着性も飛躍的に改善される。このように、拡散防止膜の膜厚は、前記微粒子Aに相当する凹凸を被覆することが不要となったので、絶縁膜形成材料中に含まれる微粒子の平均粒径の9倍以下にすることが可能となった。これによって、銅埋込配線層における銅の比率が増えたため、配線抵抗を10%以上抑制することができた。さらに、平滑化された該拡散防止膜と前記銅シード層との界面においては、銅配線の混晶領域が減少することになるので、高抵抗な配線領域から発する熱量が減少することのみならず、該拡散防止膜が薄膜化されたことによる放熱作用によって金属配線のマイグレーション防止にも効果がある。
【0046】
配線パターンの微細化が進む場合は、本発明の絶縁膜に用いる微粒子の粒径を小さくすると、絶縁膜形成工程にて配線溝中の微粒子が収縮する際に生じるストレスが分散され、クラックの発生を防ぐ効果を得る。この際にも、拡散防止膜は、その膜厚を絶縁膜形成材料中に含まれる微粒子の平均粒径の9倍以下に設定することによって、銅の拡散を防止することと銅シード層との密着性を維持しながら配線抵抗を抑制する効果を得る。
【0047】
本実施例の拡散防止膜に用いた窒化タンタルは、絶縁膜上にスッパッタ法で成膜する際、結晶が柱状構造となりやすいため、成膜開始直後に絶縁膜表面のシリコン原子(Si)が該窒化タンタルの結晶粒界に容易に拡散してシリサイド化された層を作る。この場合、窒化タンタル成膜前にタンタル膜を成膜する必要はないので工程を短縮できる。
【0048】
本発明の効果を発揮する半導体装置とは集積回路の微細化に伴い、配線中を伝播する電気信号の遅延が互いに隣接して伸びる複数配線の配線間容量(キャパシタンス)を問題とする構造であれば、メモリデバイス、ロジックデバイス或いは両者の混載デバイスでも対象とする。
【0049】
以下、本発明の諸形態を付記としてまとめて記載する。
【0050】
(付記1) 含まれる微粒子の平均粒径が 1000 Å以下でかつ粒径の3σが平均粒径の20%以下であることを特徴とする絶縁膜形成用塗布液。(1)
(付記2) 互いに種類の異なる、少なくとも第1の微粒子と第2の微粒子からなる絶縁膜形成用塗布液であって、該第1の微粒子の平均粒径が1000Å以下でかつ粒径の3σが該第1の微粒子の平均粒径の20%以下であり、前記第2の微粒子の平均粒径が前記第1の微粒子の平均粒径の1/3以下で粒径の3σが前記第2の微粒子の平均粒径の20%以下であることを特徴とする絶縁膜形成用塗布液。(2)
(付記3) 前記微粒子が、下記一般式(イ)で示されるアルコキシシランを加水分解して得られたシリカ系微粒子であることを特徴とする付記1乃至2記載の絶縁膜形成用塗布液。
XnSi(OR)4−n (イ)
(ここで、Xは水素原子、フッ素原子または炭素数1乃至8個のアルキル基、フッ素置換アルキル基、アリル基またはビニル基を表し、Rは水素原子または炭素数1乃至8個のアルキル基、アリル基またはビニル基を表す。nは0乃至3の整数である。)(3)
(付記4) 前記シリカ微粒子調製時の加水分解温度、または熟成温度が180℃以上であることを特徴とする付記3に記載の絶縁膜形成用塗布液。
【0051】
(付記5) 付記3乃至4のいずれかに記載の塗布液を用いて形成された被膜を焼成あるいは紫外線、赤外線、電子線、X線、酸素プラズマのいずれかを照射することにより酸化分解して多孔質膜にしたことを特徴とする絶縁膜。
【0052】
(付記6) 互いに並行して伸びる複数の配線層に形成された複数の絶縁層を含み、前記複数の絶縁層の少なくとも一層が、付記1乃至4記載の絶縁膜形成用塗布液を用いて形成した絶縁膜であることを特徴とする半導体装置。(4)
(付記7) 互いに並行して伸びる複数の配線層に形成された複数の絶縁層を含み、前記複数の絶縁層の少なくとも一層が、付記5記載の絶縁膜であることを特徴とする半導体装置。
【0053】
(付記8) 前記配線層を形成する材料が、アルミニウム、アルミニウムを主体とした合金、銅、銅を主体とした合金のいずれかである、付記6乃至7に記載の半導体装置。
【0054】
(付記9) 前記配線層の拡散防止材料が、チタン、チタンを主体とした合金、タンタル、タンタルを主体とした合金のいずれかである、付記6乃至8記載の半導体装置。(5)
(付記10) 前記拡散防止材料の膜厚を絶縁膜中に含まれる微粒子の平均粒径の9倍以下とする付記8記載の半導体装置。
【0055】
【発明の効果】
以上説明したように、本発明によれば、信頼性の高い絶縁膜を得ることができる絶縁膜材料の利用が可能となる。また、この材料から形成した絶縁膜を使用する高集積化した半導体装置においては、配線構造における実効的な比誘電率の低下に伴って信号伝播速度の遅延を軽減でき、高速で且つ高信頼性を有する半導体装置の提供が可能となる。
【図面の簡単な説明】
【図1】本発明の原理説明図(配線構造の断面図)
【図2】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程a,b)
【図3】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程c,d)
【図4】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程e,f)
【図5】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程g,h)
【図6】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程i,j)
【図7】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程k,l)
【図8】本発明の一実施形態に沿った半導体装置の製造工程途中の断面図(工程m)
【図9】従来技術を説明する配線構造断面図
【符号の説明】
1 シリコン基板
2 素子分離酸化膜
3 ゲート絶縁膜
4 ゲート電極
5 サイドウォール
6 保護膜
7 ソース・ドレイン領域
8 シリコン酸化膜
9 シリコン窒化膜
10 窒化タンタル膜
11 タングステンプラグ
12、30 絶縁膜
13 シリコン窒化膜
14 窒化タンタル膜
15 銅シード層
16 銅メッキ層
17、31 銅埋め込み配線層
18、20 絶縁膜
19、21 シリコン窒化膜
22 窒化タンタル膜
23 銅シード層
24 銅メッキ層
25、26 銅埋め込み配線層
27 基板
28、34 拡散防止層
29 拡散防止層の欠陥
32,33 絶縁膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coating liquid for forming an insulating film and a semiconductor device using the same. More specifically, the present invention relates to a coating liquid used for forming an interlayer insulating film provided between wirings of a semiconductor device or a display device, an insulating layer of a fine component such as a magnetic disk head, and a semiconductor device using the same. In recent years, in order to improve signal propagation speed in multilayer wiring of a semiconductor integrated circuit, not only miniaturization of wiring and lowering of wiring material, but also wiring of a plurality of wirings extending adjacent to each other in the same wiring layer. An insulating material is used to reduce the capacitance between capacitors.
[0002]
[Prior art]
An insulating film (usually referred to as an "interlayer insulating film") is laminated between the multilayer wiring layers of the highly integrated semiconductor device, and the material of the insulating film maintains the reliability of the semiconductor device. Therefore, excellent heat resistance, film strength and workability are required. Further, a material having a small relative dielectric constant is required to reduce the capacitance between wirings and increase the propagation speed of a signal propagating through the wirings. As the material having a small relative dielectric constant, either an organic material or an inorganic material can be used.
[0003]
As an organic material, a polyimide resin is known as a material excellent in heat resistance. However, when etching a fine and deep groove or hole in an organic material, there is a problem that the side wall of the groove or hole being processed tends to bulge out of the vertical shape, and vertical processing is difficult.
[0004]
Among the inorganic materials, a silicon-based material is used as an insulating film. In particular, a spin-on-glass (SOG) -based material (relative permittivity = 3 to 4) can be easily formed by a spin coating method. Since it has excellent workability, it has been put to practical use in many steps.
[0005]
FIG. 9 is a sectional view of a wiring structure for explaining a conventional technique. FIG. 9 shows that an insulating film 12 made of a spin-on-glass material is formed so as to cover a copper buried wiring layer 17 in which a diffusion preventing layer 34 is coated on a substrate 27, and then a diffusion preventing layer 28 is formed on the insulating film 12. FIG. 4 is a cross-sectional view showing a state in which an insulating film 30 made of a spin-on-glass material is formed so as to cover a copper buried wiring layer 31 covered with. The circles in the figure represent silica fine particles of random size. As shown in FIG. 9, conventionally, the size of the silica fine particles contained in the spin-on-glass-based material varied.
[0006]
[Problems to be solved by the invention]
As described above, spin-on-glass materials are widely used as insulating film materials because of the convenience of forming a flat film simply by spin-coating and baking a coating solution. One problem has become overlooked.
[0007]
That is, firstly, there is a problem that the relative dielectric constant of a film formed by coating and baking varies in the film surface. The cause of this problem is that if there is an extreme variation in the particle size of the fine particles contained in the coating, a part where small particles having a small particle size make up for the voids between the fine particles happens to occur, and the voids are formed only in those parts. That is, the dielectric constant becomes higher than that of the surroundings because of the buried state. As described above, if the relative dielectric constant is increased somewhere in the film surface, the signal of the wiring is slowed down in the relevant portion. Therefore, if it is used in a device manufacturing process of a high-speed operation design, the yield is reduced or the performance is deteriorated. Therefore, it can be said that application to mass production is impossible.
[0008]
On the other hand, secondly, there is a high possibility that a film to be formed on this film is peeled off for the purpose of preventing diffusion or the like. The voids provided to lower the relative dielectric constant of the coating are often irregular, and large voids may be exposed (open pores) on the coating surface. Referring to FIG. 9 again, this problem will be described. In recent devices designed for high-speed operation, copper wiring is used in order to reduce the resistance of the wiring itself. In order to prevent thermal diffusion of copper, it is essential to form a diffusion prevention layer 28 made of a film in which a high-density metal and its nitride are laminated between the copper buried wiring layer 31 and the wiring. In such a situation, the diffusion preventing layer 28 is weakly adhered to the underlying insulating film 12 due to the porosity of the underlying insulating film 12 and may cause peeling due to a slight thermal stress or the like during the process. In addition, when the diffusion preventing layer 28 is formed, the underlying gap may be damaged, resulting in a partial thinning or a defect 29, which is also a distant cause of peeling.
[0009]
As a method of controlling the size of the voids generated between the fine particles, there is a method of making the spin-on-glass material porous in a supercritical pressure atmosphere, but there is a problem that the manufacturing process becomes complicated.
[0010]
The present invention is to solve the above problems, the relative dielectric constant is uniform in the plane, at the same time to provide an insulating film material having a uniform film quality without peeling of the diffusion prevention layer, and It is another object of the present invention to provide a highly reliable semiconductor device which operates at high speed by using an insulating film material having such excellent characteristics.
[0011]
[Means for Solving the Problems]
In the present invention, as means for solving the above-mentioned problems, the following two configurations are used.
[0012]
[First Means]
A coating liquid for forming an insulating film using fine particles having an average particle size of 1000 ° or less and 3σ of 20% or less of the average particle size with a standard deviation σ indicating the particle size distribution is used. When the coating liquid for forming an insulating film is applied to a semiconductor substrate and then subjected to a drying treatment to form a coating film, fine particles are uniformly distributed in a plane, and thus the size, shape, and distribution of formed voids are also uniform. Therefore, the in-plane uniformity of the relative dielectric constant of the formed insulating film is improved, and the voids formed therein do not cause abnormal growth and are not exposed on the surface of the insulating film. Even if formed, no peeling occurs.
[0013]
The principle of the invention relating to the first configuration will be described below with reference to FIG. FIG. 1 is a diagram for explaining the principle of the present invention (a cross-sectional view of a wiring structure). FIG. 1A shows that an insulating film 18 made of a spin-on-glass material is formed so as to cover a copper buried wiring layer 17 in which a diffusion preventing layer 34 is coated on a substrate 27, and then the diffusion film is formed on the insulating film 18. FIG. 4 is a cross-sectional view showing a state in which an insulating film 20 made of a spin-on-glass material is formed so as to cover a copper buried wiring layer 31 covered with a prevention layer 28. The circles in the figure represent fine particles having a uniform size. The fine particles of the insulating films 18 and 20 are uniform in size and are easily arranged in an aligned state as shown in FIG. 1A, so that voids generated between the fine particles are also regularly formed.
[0014]
[Second means]
A coating liquid for forming an insulating film comprising at least a first fine particle and a second fine particle of different types, wherein the first fine particle has an average particle diameter of 1000 ° or less, and the particle diameter is 3σ. The average particle size of the first fine particles is 20% or less, the average particle size of the second fine particles contained is 1/3 or less of the average particle size of the first fine particles, and 3σ of the particle size is 2% or less of the second fine particles. A coating liquid for forming an insulating film having an average particle diameter of 20% or less of the fine particles is used. According to the second means, the strength of the film can be improved by densification of the insulating film, in addition to the effect of making the relative permittivity in-plane uniform and preventing the diffusion preventing film from peeling off.
[0015]
Hereinafter, the principle of the invention relating to the second configuration will be described with reference to FIG. FIG. 1B shows an example in which an insulating film 33 made of a spin-on-glass material is formed so as to cover the copper buried wiring layer 17 in which the diffusion preventing layer 34 is coated on the substrate 27, and then the diffusion film is formed on the insulating film 33. FIG. 4 is a cross-sectional view showing a state in which an insulating film 32 made of a spin-on-glass material is formed so as to cover a copper buried wiring layer 31 covered with a prevention layer 28. The circles in the figure represent fine particles of two types in size. The insulating films 32 and 33, which are of two sizes and have a size such that small particles can regularly penetrate into the gaps between the large particles, allow the fine particles to be easily arranged in an aligned state as shown in FIG. As a result, the film can be densified, so that the strength of the film can be improved.
[0016]
When the fine particles shown in the first means and the second means are made of an inorganic substance, silica fine particles obtained by hydrolyzing alkoxysilane are desirable. In this hydrolysis reaction, it is desirable to carry out the reaction in an atmosphere at a temperature of 180 ° C. or higher in order to improve the yield of producing the desired fine particle size. The reaction temperature in this step is set in order to obtain a spherical siloxane resin having a three-dimensional and three-dimensional network structure of 1000 ° or less with good reproducibility. Further, fine particles having a similar particle size distribution can be collected by using GPC (gel permeation chromatography) or the like. Since the molecular weight of the fractionated resin has a correlation with the average particle diameter of the spherical siloxane contained in the resin, an arbitrary particle diameter can be selected by this method.
[0017]
Further, the effect of the present invention becomes remarkable when the average particle size is 1000 ° or less. Generally, the phenomenon that the voids generated between the fine particles are non-uniformly expanded tends to increase with the size of the particle diameter. Therefore, in the manufacturing process of a semiconductor device in which it is preferable to use the present coating liquid, in order to stably obtain an insulating film having a relative dielectric constant corresponding to a fine pattern size, the average particle size is preferably set to 1000 ° or less. .
[0018]
The semiconductor device of the present invention includes a semiconductor substrate, a plurality of wiring layers alternately stacked thereon, a plurality of wiring layers extending in parallel with each other, and a plurality of insulating layers formed thereon, and at least one of these insulating layers. One layer is a film made of the insulating film forming material in the first means or the second means of the present invention. In this semiconductor device, the use of the insulating film according to the present invention can reduce the capacitance between wirings without bias, thereby improving wiring delay. In particular, in the multilayer wiring process, near the bulk having a fine wiring structure, the effect of reducing the capacitance between wirings of a plurality of wirings extending adjacent to each other in the same wiring layer becomes remarkable.
[0019]
The diffusion prevention film covering the porous insulating film surface is desirably thinned in order to substantially increase the resistance of the wiring material. The surface of the insulating film of the present invention is smooth because the voids generated between the fine particles are regularly arranged. This makes it possible to use titanium, a titanium-based alloy, tantalum, a tantalum-based alloy, or the like, which can be easily applied by a sputtering method, in a thin film.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
In order to obtain inorganic fine particles used in the coating liquid for forming an insulating film of the present invention, the following steps were performed.
[0021]
20.8 g (0.1 mol) of tetraethoxysilane was dissolved in 39.6 g of methyl isobutyl ketone. A nitric acid solution having a concentration of 400 ppm (16.2 g, 0.9 mol) was added dropwise over 10 minutes, and after completion of the addition, an aging reaction was performed at 180 ° C. for 2 hours. Tetraethoxysilane is copolymerized to form a spherical siloxane resin.
[0022]
Subsequently, 11.8 g (0.1 mol) of trimethylethoxysilane was added dropwise over 10 minutes, and after completion of the addition, an aging reaction was performed at 180 ° C. for 2 hours. After this step, the remaining ethoxy groups or silanol groups of the previously synthesized spherical siloxane resin are silylated to form a chemically stable spherical siloxane resin.
[0023]
Next, 5 g of magnesium nitrate was added to remove excess water. The reaction solution was removed using a rotary evaporator, and lyophilization was performed using 1,4-dioxane. The obtained spherical siloxane resin was dispersed in THF (tetrahydrofuran) and fractionated by GPC. The conditions of GPC at this time were using Tosoh column: TSKGEL-G2000HHR, flow rate: 10 cc / min, and detection UV wavelength: 254 nm.
[0024]
Fine particles A and B, which are spherical siloxane resins having a sharp particle size distribution, were obtained by fractionating molecular weights of around 20,000 and 2,000, respectively. When the particle diameter was determined by the dynamic light dispersion method, the average particle diameter of the fine particles A was about 50 °, and the standard deviation σ indicating the particle diameter distribution, 3σ was about 15% of the average particle diameter, It was found that the average particle diameter of the fine particles B was about 10 °, and 3σ of the particle diameter was about 15% of the average particle diameter.
[0025]
In addition, a spherical siloxane resin not fractionated by GPC was also used for comparison. In this case, the average particle size was about 80 °, and 3σ was about 50% of the average particle size with a standard deviation σ indicating the particle size distribution.
[0026]
Instead of the inorganic fine particles, an organic material having heat resistance may be used in the coating solution for forming an insulating film of the present invention. In the case of an organic substance, a star polymer having a benzene ring having a small relative dielectric constant is preferable. For the synthesis, fine particles having a sharp particle size distribution can be obtained by using living polymerization which can obtain a molecular weight distribution close to a monodisperse polymer using a radical anion as a catalyst. Furthermore, molecules having similar particle diameters can be fractionated by using GPC (gel permeation chromatography). Further, the star polymer has a complex three-dimensional structure due to having a functional group having a plurality of structures in the terminal group, so that the heat resistance of the resin is also improved.
[0027]
[Example 2]
Using the fine particles prepared in Example 1, the following coating liquid was prepared using isobutyl ketone as a solvent.
Coating liquid Sa: a solution containing fine particles A and having a solid content of 17.5%.
Coating solution Sb: A solution containing fine particles A and fine particles B and having a solid content of 17.5%.
Coating solution Sc: a solution having a solid content of 17.5% and containing fine particles not separated by GPC.
[0028]
Next, a method of forming an insulating film using these coating liquids for forming an insulating film will be described.
[0029]
The solution is spin-coated on a silicon wafer surface. The rotation speed is 3000 rpm and the rotation time is 20 seconds. After spin coating, the solvent is evaporated at 200 ° C. for 10 minutes. Heat treatment is performed at 400 ° C. for 30 minutes in a nitrogen atmosphere having an oxygen concentration of 100 ppm or less. By this heat treatment, the siloxane resin, which is the material of the fine particles, is crosslinked to form an insulating film.
[0030]
The relative permittivity of the film using the coating solution Sa was 2.4, the relative permittivity of the film using the coating solution Sb was 2.35, and the relative permittivity of the film using the coating solution Sc was 2.4. Was. However, the in-plane variation of the relative dielectric constant was about ± 0.01 when the coating liquid Sa was used, whereas it was as large as ± 0.05 when the coating liquid Sc was used. In addition, the variation between wafers measured by applying to 25 wafers was about ± 0.03 when the coating liquid Sa was used, whereas it was as large as ± 0.07 when the coating liquid Sc was used. Was.
[0031]
This is presumably because the fine particles A contained in the coating liquid Sa have a sharp particle size distribution, so that the voids in the film are extremely uniform in size, shape, and distribution in the film. On the other hand, fine particles in the coating liquid Sc that have not been fractionated by GPC contain various particle sizes, so that in the process of forming a film by the spin coating method, wind ripples (striation) and centrifugal force generated while the substrate is rotating. Of fine particles are not distributed evenly due to the influence of fine particle mobility due to the influence of fine particles due to the change in film stress that occurs during the heat treatment performed in the subsequent solvent drying step and the cross-linking step of the fine particle material (siloxane resin). Are randomly generated, and a film having a stable dielectric constant cannot be obtained.
[0032]
In addition, as a result of evaluating the film strength by the nano indenter method, the film using the coating liquid Sa had a hardness of 0.8 GPa and an elastic modulus of 6 GPa. The coating using the coating liquid Sb had a hardness of 1.1 GPa and an elastic modulus of 6 GPa. The coating using the coating liquid Sc had a hardness of 0.4 GPa and an elastic modulus of 4.5 GPa, which was inferior to the case of the resin subjected to the preparative operation.
[0033]
Since the silica fine particles as described above are likely to be charged with a negative charge, when the actual coating solution is used, a binder for promoting the bonding between the fine particles, or a surfactant for preventing the aggregation of the fine particles is added, and the target film is formed. It is prepared so as to obtain a thickness and a film thickness distribution.
[0034]
When an insulating film is formed using the insulating film forming material of the present invention, a solution obtained by dissolving the resin of the insulating film forming material in an appropriate coating solvent is generally used. The coating solvent is not particularly limited as long as the polymer of the present invention is dissolved. Examples of such a coating solvent include toluene, xylene, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, and cyclopentanone.
[0035]
The insulating film using the insulating film forming material of the present invention is formed by applying a fine particle solution dissolved in the above-mentioned coating solvent onto a substrate by a spin coating method and performing a heat treatment at 120 ° C. to 350 ° C. for about 5 minutes to 10 minutes. After drying the solvent, it is desirable to perform a heat treatment at 350 ° C. to 450 ° C. for 30 minutes or more in an inert atmosphere (for example, in an inert gas having an oxygen concentration of 100 ppm or less). However, if the solvent drying temperature is lower than 120 ° C., the solvent drying is insufficient, and if the solvent drying temperature is higher than 350 ° C., the performance may be deteriorated by oxidation. Further, the heat treatment after drying the solvent is desirably performed in an inert gas in order to suppress excessive oxidative decomposition. At this time, if the heat treatment temperature is lower than 350 ° C., there is a problem that outgassing occurs during a heat treatment step performed in a subsequent semiconductor manufacturing process while the formation of voids in the film is incomplete. If the temperature exceeds 450 ° C., cracks may occur. Irradiation with any of ultraviolet rays, infrared rays, electron beams, X-rays, oxygen plasma or the like can be used instead of the baking treatment after drying the solvent to promote the shrinkage of the fine particles to form voids in the coating film.
[0036]
The use of each energy ray is the same in terms of the action of accelerating the polymerization of the resin in the fine particles. However, in the case where a reaction is caused from the surface of the film to form an insulating film, ultraviolet irradiation is preferable. In this case, there is an effect that the curing of the surface is promoted and the open pores (surface exposure of the huge voids) are suppressed. In the case of performing rapid temperature rise / fall control, infrared heating is preferable. When it is desired to precisely control the reaction rate, electron beam irradiation is preferred. In this case, there is an effect of promoting a crosslinking reaction from the inside of the film due to the influence of the backscattered electrons. When it is desired to cause uniform excitation in the vertical direction inside the coating, X-ray irradiation is preferable. When the surface is also used for hydrophobic treatment, irradiation with oxygen plasma is preferable. In this case, not only the effect of reducing the hygroscopicity due to the surface hydrophobicity, but also the effect of improving the adhesion to the gap film (such as an oxide film) due to the change in the surface energy is obtained.
[0037]
In the coating liquid Sb, two kinds of silica fine particles are used, but one of the fine particles may be made of an inorganic material and the other fine particles may be made of an organic material. In this case, cracks are suppressed by the effect of the organic fine particles absorbing the change in stress of the inorganic fine particles.
[0038]
[Example 3]
Hereinafter, the coating liquid Sa or the coating liquid Sb shown in Example 2 will be described while sequentially referring to FIGS. 2 to 8 which are cross-sectional views of the semiconductor device during the manufacturing process according to an embodiment of the present invention in the order of steps. A manufacturing process in which is applied to a semiconductor device as a coating liquid for forming an insulating film will be described. In the following description, a detailed description regarding formation of a resist mask used for selective etching is omitted.
See FIG. 2 (a)
First, after an element isolation oxide film 2 is formed on a p-type silicon substrate 1 by using a selective oxidation method, a gate structure including a gate insulating film 3, a gate electrode 4, and a protective film 6 is formed. Is formed so as to cover the entire surface of the gate electrode laminated structure, and n-type source / drain regions 7 are formed by implanting As ions using dry etching as a mask with the sidewalls 5 remaining after an etch-back process. Then, the structure shown in FIG.
See FIG. 2 (b)
Next, after a silicon oxide film 8 having a thickness of, for example, 1 μm is deposited on the entire surface to form an interlayer insulating film, a silicon nitride film 9 serving as a polishing stopper in a subsequent CMP (chemical mechanical polishing) step is formed, for example, by: It is deposited to a thickness of 100 nm, resulting in the structure of FIG.
See FIG. 3 (c)
Next, in order to form a via hole reaching the n-type source / drain region 7, the silicon nitride film 9 and the silicon oxide film 8 are subjected to reactive ion etching using a mixed gas plasma such as CF4 and CHF3, and FIG. Structure.
See FIG. 3 (d)
Thereafter, a tantalum nitride film (not shown) having a thickness of, for example, 50 nm is deposited on the entire surface by a sputtering method, and then, similarly, tungsten is deposited thick by a sputtering method, and then silicon is deposited by a CMP method. By polishing until the nitride film 9 is exposed, a wiring material diffusion prevention film (tantalum nitride film) 10 and a tungsten via 11 are formed, and the structure shown in FIG. 3D is obtained.
See FIG. 4 (e)
Next, in the same manner as in the second embodiment, the coating liquid Sa or the coating liquid Sb is applied by a spin coater, and the drying step and the gap generation step are sequentially performed to form the insulating film 12 having a thickness of, for example, 450 nm. Then, a silicon nitride film 13 is deposited to a thickness of, for example, 50 nm, as shown in FIG.
The silicon nitride film 13 also serves as a stopper in the CMP process.
See FIG. 4 (f)
Next, the silicon nitride film 13 is etched by performing reactive ion etching with a mixed gas plasma of CF4 and CHF3 or the like, and then O2 added with a carbon source such as C4F8 as needed using the silicon nitride film 13 as a mask. The insulating film 12 is etched by performing reactive ion etching using gas plasma to form a wiring layer groove reaching the tungsten via 11, as shown in FIG.
See FIG. 5 (g)
Next, a 50 nm-thick tantalum nitride film 14 and a 50 nm-thick copper seed layer 15 are sequentially deposited on the entire surface by sputtering, and then electrolytic plating is performed using the copper seed layer 15 as a plating base layer. As a result, the copper plating layer 16 is formed to a thickness of 600 nm, and the trench for forming the wiring layer is buried, thereby obtaining the structure shown in FIG.
[0039]
Next, the copper plating layer 16, the copper seed layer 15, and the tantalum nitride film 14 are polished and removed by a CMP method to expose the silicon nitride film 13.
See FIG. 5 (h)
A copper embedded wiring layer 17 in which the copper plating layer 16 and the copper seed layer 15 are integrated is formed, as shown in FIG.
See FIG. 6 (i)
Next, after depositing a silicon nitride film 13 on the entire surface, for example, 50 nm, an insulating film 18 having a thickness of, for example, 400 nm, a silicon nitride film 19 having a thickness of 50 nm, an insulating film 20 having a thickness of 400 nm, and a silicon nitride film 21 having a thickness of 50 nm are sequentially formed. A film is formed to have a structure shown in FIG.
See FIG. 6 (j)
Next, reactive ion etching using a mixed gas plasma of CF4 and CHF3 and reactive ion etching using an O2 gas plasma to which a carbon source such as C4F8 is added as necessary are repeated to form the silicon nitride film 21 and the insulating film. 6, a via hole penetrating through the silicon nitride film 19, the insulating film 18, and the silicon nitride film 13 and reaching the copper buried wiring layer 17 is formed to obtain the structure shown in FIG.
See FIG. 7 (k)
Next, the silicon nitride film 21 is etched by performing reactive ion etching with a mixed gas plasma of CF4 and CHF3 or the like, and then an O2 gas to which a carbon source such as C4F8 is added as necessary using the silicon nitride film 21 as a mask. The insulating film 20 is etched by performing reactive ion etching using plasma, and a groove for a wiring layer is formed in the insulating film 20 to obtain a structure shown in FIG.
See FIG. 7 (l)
Next, using a sputtering method, a 50 nm-thick tantalum nitride film 22 and a 50 nm-thick copper seed layer 23 are sequentially deposited on the entire surface, and then a 1400 nm-thick copper plating layer 24 is formed. Then, the wiring layer forming groove and the via hole are buried to obtain the structure shown in FIG.
Next, the silicon plating film 24, the copper seed layer 23, and the tantalum nitride film 22 are polished and removed by a CMP method, thereby exposing the silicon nitride film 21.
See FIG. 8 (m)
As described above, the copper buried wiring layers 25 and 26 in which the copper plating layer and the copper seed layer are integrated are formed, and the structure shown in FIG.
[0040]
In this case, in the copper embedded wiring layer 25, the wiring layer and the via are integrally formed.
[0041]
A semiconductor integrated circuit device having a multilayer wiring structure can be manufactured by repeating the steps of forming the insulating film, forming the wiring layer groove and via hole, and forming the copper buried wiring layer as necessary.
[0042]
In this embodiment, the relative dielectric constant of the insulating film of the present invention is about 2.4, so that the parasitic capacitance caused by the adjacent wiring layer can be greatly reduced. Further, since the dispersion of the relative dielectric constant is extremely small and the film has excellent film strength (hardness and elastic modulus), device characteristics and reliability can be improved.
[0043]
In this embodiment, copper is used as the material of the metal wiring forming the wiring layer. However, it is possible to select not only aluminum and an alloy mainly composed of aluminum but also an alloy mainly composed of copper.
[0044]
Further, a tantalum nitride film serving as a copper diffusion prevention film is deposited to a thickness of 50 nm. However, this can be made thinner if there is no problem in adhesion between the tantalum nitride film and the copper seed layer.
[0045]
In this embodiment, the thickness of the diffusion preventing film is set to be about 10 times the average particle diameter of the fine particles A shown in the first embodiment. This is a condition determined in consideration of the resputtering effect in order for the diffusion preventing layer to uniformly cover the unevenness on the surface of the conventional insulating film by the sputtering method. When an insulating film forming material using the coating liquid Sa or the coating liquid Sb shown in Example 2 is used, at least the unevenness corresponding to the average particle diameter of the fine particles A is smoothed on the insulating film surface. The thickness of the diffusion prevention film can be reduced. Further, since the surface of the diffusion preventing film also increases the smoothness, the adhesiveness with the copper seed layer is dramatically improved. As described above, the thickness of the diffusion prevention film does not need to cover the irregularities corresponding to the fine particles A, so that the average particle diameter of the fine particles contained in the insulating film forming material is 9 times or less. Became possible. As a result, the ratio of copper in the copper embedded wiring layer was increased, so that the wiring resistance could be suppressed by 10% or more. Further, at the interface between the smoothed diffusion barrier film and the copper seed layer, the mixed crystal region of the copper wiring is reduced, so that not only the amount of heat generated from the high-resistance wiring region is reduced, but also Also, the heat dissipation effect due to the thinning of the diffusion prevention film is effective in preventing the migration of the metal wiring.
[0046]
In the case where the fineness of the wiring pattern is advanced, if the particle diameter of the fine particles used for the insulating film of the present invention is reduced, the stress generated when the fine particles in the wiring groove shrinks in the insulating film forming step is dispersed, and cracks are generated. Get the effect of preventing. Also in this case, the diffusion preventing film prevents the diffusion of copper by setting the thickness thereof to 9 times or less of the average particle diameter of the fine particles contained in the insulating film forming material, and makes the diffusion of the copper seed layer possible. The effect of suppressing the wiring resistance while maintaining the adhesion is obtained.
[0047]
When the tantalum nitride used for the diffusion prevention film of this embodiment is formed on the insulating film by the sputtering method, the crystal tends to have a columnar structure, so that silicon atoms (Si) on the surface of the insulating film immediately after the start of the film formation. It easily diffuses into the crystal grain boundaries of tantalum nitride to form a silicided layer. In this case, it is not necessary to form a tantalum film before forming a tantalum nitride film, so that the process can be shortened.
[0048]
A semiconductor device exhibiting the effects of the present invention is a structure in which the delay of an electric signal propagating in a wiring is problematic in terms of the capacitance (capacitance) between a plurality of wirings extending adjacent to each other as the integrated circuit becomes finer. For example, a memory device, a logic device, or a mixed device of both devices is also a target.
[0049]
Hereinafter, various aspects of the present invention are collectively described as supplementary notes.
[0050]
(Supplementary Note 1) A coating liquid for forming an insulating film, wherein the average particle diameter of the fine particles contained is 1000 ° or less and 3σ of the particle diameter is 20% or less of the average particle diameter. (1)
(Supplementary Note 2) A coating liquid for forming an insulating film comprising at least a first fine particle and a second fine particle of different types, wherein the first fine particle has an average particle diameter of 1000 ° or less and a particle diameter of 3σ. The average particle size of the first fine particles is 20% or less, the average particle size of the second fine particles is 1/3 or less of the average particle size of the first fine particles, and 3σ of the particle size is 2% or less. A coating liquid for forming an insulating film, wherein the coating liquid has an average particle diameter of 20% or less. (2)
(Supplementary Note 3) The coating liquid for forming an insulating film according to Supplementary Notes 1 or 2, wherein the fine particles are silica-based fine particles obtained by hydrolyzing an alkoxysilane represented by the following general formula (A).
XnSi (OR) 4-n (A)
(Where X represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an allyl group or a vinyl group, R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, Represents an allyl group or a vinyl group, and n is an integer of 0 to 3.) (3)
(Supplementary Note 4) The coating liquid for forming an insulating film according to Supplementary Note 3, wherein a hydrolysis temperature or an aging temperature at the time of preparing the silica fine particles is 180 ° C or more.
[0051]
(Supplementary Note 5) The film formed using the coating solution according to any one of Supplementary Notes 3 and 4 is oxidized and decomposed by irradiating any one of ultraviolet rays, infrared rays, electron beams, X-rays, and oxygen plasma. An insulating film characterized by being formed into a porous film.
[0052]
(Supplementary Note 6) Including a plurality of insulating layers formed on a plurality of wiring layers extending in parallel with each other, at least one of the plurality of insulating layers is formed using the coating liquid for forming an insulating film according to Supplementary Notes 1 to 4. A semiconductor device characterized in that it is an insulating film formed. (4)
(Supplementary Note 7) A semiconductor device including a plurality of insulating layers formed on a plurality of wiring layers extending in parallel with each other, wherein at least one of the plurality of insulating layers is the insulating film according to Supplementary Note 5.
[0053]
(Supplementary Note 8) The semiconductor device according to supplementary notes 6 or 7, wherein a material forming the wiring layer is any of aluminum, an alloy mainly containing aluminum, copper, and an alloy mainly containing copper.
[0054]
(Supplementary Note 9) The semiconductor device according to Supplementary Notes 6 to 8, wherein the diffusion preventing material of the wiring layer is any of titanium, an alloy mainly containing titanium, tantalum, and an alloy mainly containing tantalum. (5)
(Supplementary Note 10) The semiconductor device according to supplementary note 8, wherein a thickness of the diffusion preventing material is set to be equal to or less than nine times an average particle diameter of the fine particles included in the insulating film.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to use an insulating film material capable of obtaining a highly reliable insulating film. In a highly integrated semiconductor device using an insulating film formed from this material, a delay in signal propagation speed can be reduced with a decrease in an effective relative dielectric constant in a wiring structure, and a high speed and high reliability can be achieved. Can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention (cross-sectional view of a wiring structure).
FIG. 2 is a sectional view (steps a and b) of a semiconductor device during a manufacturing process according to an embodiment of the present invention;
FIG. 3 is a sectional view (steps c and d) of the semiconductor device according to the embodiment of the present invention during the manufacturing process;
FIG. 4 is a sectional view (steps e and f) of the semiconductor device according to the embodiment of the present invention during the manufacturing process thereof;
FIG. 5 is a cross-sectional view of the semiconductor device in the course of the manufacturing process according to the embodiment of the present invention (processes g and h).
FIG. 6 is a cross-sectional view (steps i and j) of the semiconductor device during the manufacturing process according to the embodiment of the present invention;
FIG. 7 is a cross-sectional view of a semiconductor device in the course of a manufacturing process according to an embodiment of the present invention (processes k and l).
FIG. 8 is a cross-sectional view (step m) of a semiconductor device according to an embodiment of the present invention during the manufacturing process thereof;
FIG. 9 is a cross-sectional view of a wiring structure illustrating a conventional technique.
[Explanation of symbols]
1 Silicon substrate
2 Element isolation oxide film
3 Gate insulating film
4 Gate electrode
5 Sidewall
6 Protective film
7 Source / drain region
8 Silicon oxide film
9 Silicon nitride film
10 Tantalum nitride film
11 Tungsten plug
12, 30 insulating film
13 Silicon nitride film
14 Tantalum nitride film
15 Copper seed layer
16 Copper plating layer
17, 31 Copper embedded wiring layer
18, 20 insulating film
19, 21 Silicon nitride film
22 Tantalum nitride film
23 Copper seed layer
24 Copper plating layer
25, 26 copper embedded wiring layer
27 Substrate
28, 34 Diffusion prevention layer
29 Defects in the diffusion prevention layer
32,33 insulating film