JP2004018612A - Flavor deterioration inhibitor - Google Patents

Flavor deterioration inhibitor Download PDF

Info

Publication number
JP2004018612A
JP2004018612A JP2002173556A JP2002173556A JP2004018612A JP 2004018612 A JP2004018612 A JP 2004018612A JP 2002173556 A JP2002173556 A JP 2002173556A JP 2002173556 A JP2002173556 A JP 2002173556A JP 2004018612 A JP2004018612 A JP 2004018612A
Authority
JP
Japan
Prior art keywords
flavor
flavor deterioration
deterioration inhibitor
weight
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002173556A
Other languages
Japanese (ja)
Inventor
Kenji Adachi
足立 謙次
Shuichi Muranishi
村西 修一
Susumu Kiyohara
清原 進
Hideki Masuda
増田 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ogawa and Co Ltd
Original Assignee
Ogawa and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogawa and Co Ltd filed Critical Ogawa and Co Ltd
Priority to JP2002173556A priority Critical patent/JP2004018612A/en
Priority to CN2006101537705A priority patent/CN1915081B/en
Priority to DE60315061T priority patent/DE60315061T2/en
Priority to CA2489390A priority patent/CA2489390C/en
Priority to PCT/JP2003/004513 priority patent/WO2003105599A1/en
Priority to KR1020047019562A priority patent/KR101087199B1/en
Priority to CN03813833A priority patent/CN100577029C/en
Priority to EP03717547A priority patent/EP1554938B1/en
Priority to CN2006101537692A priority patent/CN1915080B/en
Priority to AT03717547T priority patent/ATE367095T1/en
Priority to CN2009101262848A priority patent/CN101548786B/en
Priority to AU2003227476A priority patent/AU2003227476B8/en
Priority to US10/517,804 priority patent/US20060062813A1/en
Priority to TW092108955A priority patent/TW200402271A/en
Publication of JP2004018612A publication Critical patent/JP2004018612A/en
Priority to US14/139,375 priority patent/US20140113058A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Seasonings (AREA)
  • Cosmetics (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Fats And Perfumes (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flavor deterioration inhibitor which is highly safe and does not affect the inherent flavors of oral compositions such as foods and drinks and oral hygiene agents, namely, to provide a flavor deterioration inhibitor which inhibits the oral compositions from being deteriorated in their flavors by mainly light, heat, oxygen, or the like in each stage of their production, distribution, and storage. <P>SOLUTION: The flavor deterioration inhibitor comprises a solvent extract of psyllium (Plantago asiatica L.). By adding the inhibitor to foods and drinks, oral hygiene agents or perfumes, it is possible to inhibit them from undergoing flavor deterioration, especially flavor deterioration by light. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、香味成分を含む食品、口腔衛生剤または香料に広く適用することができる特定の天然物由来の香味劣化抑制剤および香味劣化抑制方法に関する。
【0002】
【従来の技術】
飲料や食品あるいは歯磨き剤、口臭防止剤のような口腔衛生剤(以下、経口組成物と称する。)は口に入った瞬間にその味と匂いが感じられるので、経口組成物の香味は各種栄養成分と同様に重要な要素である。こうした経口組成物の香味は製造、流通、保存等の各段階で徐々に劣化していくことはよく知られている。劣化に関係する要因として、熱、光、酸素、さらには水等が挙げられる。そこで、従来、特に酸素による香味の劣化対策として、酸素透過性を低くした合成樹脂製の容器や袋の開発、また、脱酸素条件を組み入れた食品製造工程の導入、さらには酸化防止剤の添加等が施されていたが、他の劣化要因、特に光による劣化の対策はあまり考慮されていなかった。しかし、最近、店頭ディスプレイ時の商品イメージアップのため透明ガラス容器入り食品、半透明プラスチック容器入り食品、透明袋入り食品等の製造・販売が増加しつつある。さらに、それらをコンビニエンスストア等で長時間、蛍光灯下に陳列する販売形態が一般的になってきた。従って、食品などの経口組成物は以前よりもさらに光の影響を受けやすくなり、香味劣化などの結果を招くことになった。そこで、光による香味の劣化に対して特に大きな抑制効果をもち、さらに加熱殺菌工程や加熱保存時の熱による劣化抑制効果をも併せもつような手段を開発することが必要となってきた。光による香味劣化は、香味成分が光照射によって分解され芳香・美味が消失し、また更に分解物が悪臭・異味成分に転化することにより生じる。こうした光による劣化を主に抑制するために、ルチン、モリン又はケルセチンを添加して悪臭・異味物質の発生を防止し保存性の向上を図った乳含有酸性飲料(特公平4−21450号公報)やコーヒー生豆抽出物由来のクロロゲン酸、カフェー酸、フェルラ酸と、ビタミンC、ルチン、ケルセチンとを併用して日光によるフレーバー劣化を防止する方法(特開平4−27374号公報)等が提案されている。しかし、従来技術における天然物由来の劣化抑制剤については、一般的に安全性が高く推奨できるが、その一方で、香味の劣化抑制効果を奏するためにはある程度多量に使用する必要があり、その結果、劣化抑制剤自体が有している味や匂いが食品そのものの味や香りに悪影響を与えるなど実用性に欠ける点があった。 なお、光透過性を抑えた容器や袋を用いる経口組成物の包装手段改良による劣化抑制方法も提案されているが、これもコストと香味劣化抑制効果の両面から考えると十分ではなかった。従って、経口組成物に添加した場合に安全性が高く、経口組成物本来の香味に影響を与えることなく少量の使用で十分な効果を奏し、かつ経済性に優れた香味劣化の抑制手段として、新たな天然物由来の劣化抑制剤が要望されていた。
【0003】
【発明が解決しようとする課題】
本発明の目的は、従来技術における問題点を解決し、安全性が高く、しかも経口組成物本来の香味に影響を与えることない香味劣化抑制剤の提供、すなわち、経口組成物の製造、流通、保存等の各段階で主として光、さらに熱や酸素等の影響による香味の劣化を抑制する香味劣化抑制剤、当該抑制剤を所定量添加してなる品質の安定した経口組成物並びに当該抑制剤を所定量添加して香味の劣化を抑制し食品などの品質の安定を図る方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、植物を中心とする多種多様の天然物由来の成分について香味劣化抑制活性を鋭意検討した結果、オオバコの溶媒抽出物を使用することにより、光に対しては顕著に、さらに熱、酸素等による食品などの香味劣化を長期間抑制できることを見い出し、本発明を完成した。すなわち、本発明は、オオバコの溶媒抽出物を含有することを特徴とする香味劣化抑制剤である。この溶媒抽出物は、水、極性有機溶媒又はこれらの混合物で抽出することにより得られる。本発明はさらに、上記の香味劣化抑制剤を1〜500ppm添加してなる経口組成物である。さらに本発明は、上記香味劣化抑制剤を経口組成物に1〜500ppm添加して香味劣化を抑制する方法である。また本発明は上記香味劣化抑制剤を0.005〜5重量%添加されてなる香料である。さらに本発明は、上記香味劣化抑制剤を香料に0.005〜5重量%添加して劣化を抑制する方法である。
【0005】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
(1) 原材料
本発明に使用するオオバコ(Plantago asiatica L.)はオオバコ科の多年草本である。若葉を食用とする他、オオバコ茶として飲用にも供される。また、全草は車前草、種子は車前子と呼ばれ、生薬としても利用される。本発明においては、原材料としてオオバコの根、茎、葉、種子を後述の抽出処理に付することができるが、特に種子又は葉を使用することが好ましい。
【0006】
(2)抽出処理
▲1▼溶媒
抽出処理に使用する溶媒は、水又は極性有機溶媒であり、有機溶媒は含水物であっても良い。
極性有機溶媒としては、アルコール、アセトン、酢酸エチル等が上げられる。中でも人体への安全性と取扱性の観点から水またはエタノール、プロパノール、ブタノールのような炭素数2〜4の脂肪族アルコールが望ましい。特に水又はエタノール又はこれらの混合物が望ましい。
抽出に用いる溶媒の量は任意に選択できるが、一般には前記原材料1重量部に対し溶媒量2〜100重量部を使用する。
なお、抽出の前処理としてヘキサン等の非極性有機溶媒であらかじめ脱脂処理をし、後の抽出処理時に余分な脂質が抽出されるのを防止することもできる。またこの脱脂処理で結果的に脱臭等の精製ができる場合がある。また脱臭の目的で抽出前に水蒸気蒸留処理を施してもよい。
▲2▼抽出処理方法
抽出処理方法としては、溶媒の種類、量等により種々の方法を採用することができる。例えば前記原材料を粉砕したものを溶媒中に入れ、浸漬法又は加熱還流法で抽出することができる。なお浸漬法による場合は加熱条件下、室温又は冷却条件下のいずれであってもよい。
ついで、溶媒に不溶な固形物を除去して抽出液を得るが、固形物除去方法としては遠心分離、濾過、圧搾等の各種の固液分離手段を用いることができる。
得られた抽出液はそのままでも香味劣化抑制剤として使用できるが、例えば水、エタノール、グリセリン、トリエチルシトレート、ジプロピレングリコール、プロピレングリコール等の液体希釈剤で適宜希釈して使用してもよい。またはデキストリン、シュークロース、ペクチン、キチン等を加えることもできる。これらをさらに濃縮してペースト状の抽出エキスとしても、また凍結乾燥又は加熱乾燥などの処理を行い粉末として使用してもよい。
また超臨界抽出による抽出、分画、または脱臭処理したものも使用可能である。
▲3▼精製
上記方法で得られた抽出物は、そのまま経口組成物に配合して香味劣化抑制剤として使用することができるが、さらに、脱色、脱臭等の精製処理をすることができる。精製処理には活性炭や多孔性のスチレン−ジビニルベンゼン共重合体からなる合成樹脂吸着剤などが使用できる。精製用の合成樹脂吸着剤としては例えば三菱化学株式会社製「ダイヤイオンHP−20(商品名)」やオルガノ株式会社製「アンバーライトXAD−2(商品名)」などが使用できる。
【0007】
(3)香味劣化抑制剤の調製
香味劣化抑制剤は、上記のとおり得られた抽出物を原材料として例えば以下のように調製される。
一般的には各種成分を組み合わせて、例えば水、アルコール、グリセリン、プロピレングリコール等の(混合)溶剤に適当な濃度で溶解させて(具体的には、水/エタノール、水/エタノール/グリセリン、水/グリセリン等の混合溶剤)液剤とする。また、各溶液に賦形剤(デキストリン等)を添加し噴霧乾燥によりパウダー状にすることも可能であり、用途に応じて種々の剤形を採用することができる。
【0008】
(4) 用法
本発明の香味劣化抑制剤は経口組成物の加工段階で適宜添加することができる。添加量は、抑制剤の濃度或いは経口組成物に含有されている香味成分の種類や香味閾値によっても多少異なるが、一般的に飲料や食品あるいは歯磨き剤、口臭防止剤のような口腔衛生剤に対して1〜500ppmの添加量(オオバコ抽出物の固形成分として)が適当である。食品及び口腔衛生剤などの本来の香味に影響を及ぼさない閾値の範囲内で添加する観点からは1〜200ppmが好ましく、特に1〜100ppmが好ましい。一方本発明の香味劣化抑制剤を香料に使用する場合は、0.005〜5重量%が適当であり、本来の香味に影響を及ぼさない範囲内で添加する観点からは0.005〜2重量%が好ましく、特に0.01〜1重量%が好ましい。
また他の既知の香味劣化抑制剤を1種類以上併用する場合の混合割合は、特に限定されるものではない。混合した抑制剤の添加量については、使用する抑制剤の成分の純度、あるいは添加対象の製品の種類により異なるが、飲料や食品あるいは歯磨き剤、口臭防止剤のような口腔衛生剤に対して1〜500ppmが適当である。1〜100ppmの範囲が好ましい。一方本発明の香味劣化抑制剤を香料に使用する場合は、0.005〜5重量%が適当であり、本来の香味に影響を及ぼさない範囲内で添加する観点からは0.005〜2重量%が好ましく、特に0.01〜1重量%が好ましい。
また本香味劣化抑制剤と一般に使用されているL−アスコルビン酸、緑茶抽出物、ルチン等の酸化防止剤と併用してもよく、併用する酸化防止剤は特に限定されるものではない。混合した抑制剤の添加量については、使用する抑制剤の成分の純度、あるいは添加対象の製品の種類により異なるが、飲料や食品あるいは歯磨き剤、口臭防止剤のような口腔衛生剤に対しては1〜500ppmが適当である。特に1〜100ppmの範囲が好ましい。一方香料に対しては0.005〜2重量%が適当であり、特に0.01〜1重量%の範囲が好ましい。
【0009】
本発明の香味劣化抑制剤が適用される経口組成物又は香料の例として下記のものが挙げられる。
飲料…コーヒー、紅茶、清涼飲料、乳酸菌飲料、無果汁飲料、果汁入り飲料、栄養ドリンクなど。
菓子類…ゼリー、プリン、ババロア、キャンディー、ビスケット、クッキー、チョコレート、ケーキ類など。
フライ食品…即席(フライ)麺類、とうふの油揚(油揚、生上、がんもどき)、揚かまぼこ、てんぷら、フライ、スナック類(ポテトチップス、揚あられ類、かりんとう、ドーナッツ、調理冷凍食品(冷凍コロッケ、エビフライ等)。
油脂及び油脂加工食品及び油脂を原料とする食品…食用油脂(動物性油脂、植物性油脂)、マーガリン、ショートニング、マヨネーズ、ドレッシング、ハードバター。
乳、乳製品、乳等を主原料とする製品…乳(生乳、牛乳、加工乳等)、乳製品(クリーム、バター、バターオイル、濃縮ホエー、チーズ、アイスクリーム類、ヨーグルト、練乳、粉乳、濃縮乳等)、乳等を主原料とする製品。
口腔衛生剤…歯磨き、うがい薬、口中清涼剤、口臭防止剤など。
香料…香料原料(精油、コンクリート、アブソリュート、エキストラクト、オレオレジン、レジノイド、回収フレーバー、炭酸ガス抽出精油、合成香料)およびそれらを含有する香料組成物。
【0010】
【実施例】
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
抽出例を以下のとおり示す。
【0011】
〔抽出例1〕種子/25重量%エタノール水溶液抽出
オオバコ種子100gを粉砕し、2kgの25重量%エタノール水溶液に入れ、1時間、加熱還流して抽出した。不溶物を濾過により除去した後、減圧濃縮、凍結乾燥し褐色粉末5.9g(以下「種子/25重量%エタノール抽出物」と呼ぶ)を得た。この抽出物の物性は以下の通りであった。
a) 紫外線吸収スペクトルは図1に示すとおりである( 測定濃度:10ppm、希釈溶剤:25重量%エタノール水溶液)。
λmax:330nm、285nm
b) 溶解性:水に可溶、50重量%エタノール水溶液に易溶、エタノールに不溶。
【0012】
〔抽出例2〕葉/50重量%エタノール水溶液抽出
乾燥したオオバコ葉50gに、50重量%エタノール水溶液500gを加え1時間加熱還流して抽出した。
不溶物を濾過により除去した後、濾液を減圧濃縮、凍結乾燥し褐色の粉末(以下「葉/50重量%エタノール抽出物」と呼ぶ)10.2g得た。この抽出物の物性は以下の通りであった。
a) 紫外線吸収スペクトルは図2に示すとおりである( 測定濃度:10ppm、希釈溶剤:50重量%エタノール水溶液)。
λmax: 327nm、287nm
b) 溶解性:水に可溶、50重量%エタノール水溶液に易溶、エタノールに不溶。
【0013】
〔抽出例3〕種子/95重量%エタノール水溶液抽出
オオバコ種子50gを粉砕し、95重量%エタノール水溶液1000gを加え1時間加熱還流して抽出した。
不溶物を濾過により除去した後、濾液を減圧濃縮、凍結乾燥し褐色の液体(以下「種子/95重量%エタノール抽出物」と呼ぶ)2.4g得た。この抽出物の物性は以下の通りであった。
a) 紫外線吸収スペクトルは図3に示すとおりである( 測定濃度:10ppm、希釈溶剤:95重量%エタノール水溶液)。
λmax:230 nm
b) 溶解性:水に不溶、50重量%エタノール水溶液に可溶、エタノールに易溶。
【0014】
〔抽出例4〕葉/HP−20精製品
乾燥したオオバコ葉20gを粉砕し、50重量%エタノール水溶液200gを加え1時間加熱還流して抽出した。不溶物を濾過により除去した後、濾液を20gまで減圧で濃縮した。
この濃縮液20gを多孔性合成吸着剤(ダイヤイオンHP−20)100mlに吸着させた。水400mlを用いて洗浄後、50重量%エタノール水溶液400mlで溶出した。溶出液を減圧濃縮後、凍結乾燥し褐色の粉末0.6g(以下「HP−20精製品」と呼ぶ)を得た。物性は以下の通りであった。
a) 紫外線吸収スペクトルは図4に示すとおりである( 測定濃度:10ppm、希釈溶剤:50重量%エタノール水溶液)。
λmax: 331nm、288nm
b) 溶解性:水に可溶、50重量%エタノール水溶液に易溶、エタノールに不溶。
【0015】
試験例において単品試薬として以下のものを使用した。
1)L−アスコルビン酸:
ナカライテスク(株)製のL(+)−アスコルビン酸を使用した。
【0016】
次に、得られた抽出物の香味劣化に対する抑制活性を評価した。
【0017】
〔試験例1〕
砂糖35g、クエン酸0.35g及特にレモンに特有の香味成分であるシトラール1gを含有する65重量%エタノール水溶液を準備した(全量1000ml)。この溶液を透明ガラス容器に入れ、光安定性試験器(東京理化器械株式会社製「LSR−300型」)にて光照射を行った。照射条件は温度10℃、白色蛍光ランプ40W×12及び360nm近紫外線ランプ40W×3で、4,000ルクスに調整し、近紫外線強度0.3mW/cm(器内中央)で72時間である。高速液体クロマトグラフィー(HPLC)にて光照射後のシトラール含量を測定した。結果を表1に示す。なお、測定条件は次のとおりである。
【0018】
(測定条件)
装 置:日立製作所製「HITACHI D−7000 HPLC システム」
カラム:ナカライテスク社製「コスモシール 5C18、4.6mm×250mm」(カラム温度40℃)
溶離液:A. アセトニトリル、B. 水
グラジエント条件    0分   →   25分
A.アセトニトリル   10%       90%
B.水         90%       10%
流 速:1ml/分間
検出波長:254nm
【0019】
表1におけるシトラール残存率(%)は以下の式にしたがって計算した。
シトラール残存率(%)= C/D×100
ここで、C:光照射後の試料中のシトラール含量
D:光照射前の試料中のシトラール含量
【0020】
 表1
シトラール残存量試験 
香味劣化抑制剤(添加量:200ppm)    シトラール残存率(%
無添加品                       30
L−アスコルビン酸                  32
種子/25重量%エタノール抽出物添加品        71
葉/50重量%エタノール抽出物添加品         68
種子/95重量%エタノール抽出物添加品        59
葉/HP−20精製品添加品              89
【0021】
表1に示されるように無添加およびL−アスコルビン酸添加のものに比べ、香味劣化抑制剤を添加したものは光照射によるシトラールの減少を強く抑制した。
【0022】
次に上記抽出で得られた香味劣化抑制剤を各種食品に添加して評価した。
【0023】
〔試験例2〕(ヨーグルト飲料)
牛乳94g、脱脂粉乳6gを混合後、殺菌(90〜95℃、5分間)した。48℃に冷却した後、スターター(乳酸菌)を接種した。これをガラス容器に入れ、発酵(40℃、4時間、pH4.5)させた。冷却後、5℃にて保存し、これをヨーグルトベースとした。一方、糖液は白糖20g、ペクチン1g、水79gを混合後、90〜95℃、5分間加熱し、ホットパック充填したものを使用した。上記ヨーグルトベース60g、糖液40g、香料0.1gを混合し、これをホモミキサー処理およびホモゲナイザー処理した。これに香味劣化抑制剤を添加しないものと香味劣化抑制剤を10ppm添加したものをそれぞれ半透明プラスティック容器に充填した。それぞれ光安定性試験器に入れ、蛍光灯を照射した後(6,000ルクス、10℃、5時間)、習熟した10名のパネルを選んで官能評価を行った。そして、この場合、香味の変化のない対照としては香味劣化抑制剤を添加していない蛍光灯未照射のヨーグルト飲料を使用し、香味の変化(劣化)度合いを評価した。その結果は表2のとおりである。なお、表2中の評価の点数は、下記の基準で採点した各パネルの平均点である。また、採点基準中の異味、異臭とは特に「金属臭」、「漬物臭」、「油の劣化臭」を指す。
(採点基準)
異味、異臭が強い     :4点
香味が非常に変化した   :3点
香味が変化した      :2点
香味がやや変化した    :1点
香味が変化していない   :0点
【0024】
 表2
ヨーグルト飲料   
香味劣化抑制剤(添加量:10ppm)     官能評価の平均点
無添加品                      3.7
L−アスコルビン酸                 3.5
種子/25重量%エタノール抽出物添加品       1.3
葉/50重量%エタノール抽出物添加品        1.0
種子/95重量%エタノール抽出物添加品       1.5
葉/HP−20精製品添加品             0.7
【0025】
表2に示されるように無添加およびL−アスコルビン酸添加のものに比べ、香味劣化抑制剤を添加したものは香味劣化抑制効果が高いことがわかった。
【0026】
〔試験例3〕(レモン飲料)
グラニュー糖10g、クエン酸0.1g、レモン香料0.1gおよび水にて全量100gに調製した。これに香味劣化抑制剤を添加しないものと各種の香味劣化抑制剤を5ppm添加したものをそれぞれガラス容器に充填し殺菌(70℃、10分間)した。それらを光安定性試験器にて光照射を行った後(15,000ルクス、10℃、3日間)、習熟した10名のパネルを選んで官能評価を行った。そして、この場合、対照としては香味劣化抑制剤を添加していない蛍光灯未照射のレモン飲料を使用し、香味の変化(劣化)度合いを評価した。その結果は表3のとおりである。なお、表3中の評価の点数は、試験例2と同様の基準で採点した各パネルの平均点である。また、採点基準中の異味、異臭とは特に「ビニール臭」、「グリーン臭」を指す。
【0027】
 表3
レモン飲料  
香味劣化抑制剤(添加量:5ppm)      官能評価の平均点
無添加品                     3.7
L−アスコルビン酸                3.4
種子/25重量%エタノール抽出物添加品      1.2
葉/50重量%エタノール抽出物添加品       1.3
種子/95重量%エタノール抽出物添加品      1.6
葉/HP−20精製品添加品            0.5
【0028】
表3に示されるように無添加およびL−アスコルビン酸添加のものに比べ、香味劣化抑制剤を添加したものは香味劣化抑制効果が高いことがわかった。
【0029】
〔試験例4〕(乳酸菌飲料)
発酵乳原液(全固形分54%、無脂乳固形分4%)を蒸留水で重量比5倍に希釈し、殺菌乳酸菌飲料を調整した。この飲料100gに香味劣化抑制剤を添加しないものと香味劣化抑制剤を10ppm添加したものをそれぞれガラス容器に充填し70℃、10分間殺菌した。それらを光安定性試験器にて光照射を行った後(15,000ルクス、10℃、12時間)、習熟した10名のパネルを選んで官能評価を行った。そして、この場合、対照としては香味劣化抑制剤を添加していない蛍光灯未照射の乳酸菌飲料を使用し、香味の変化(劣化)度合いを評価した。その結果は表4のとおりである。なお、表4中の評価の点数は、試験例2と同様の基準で採点した各パネルの平均点である。また、採点基準中の異味、異臭とは特に「漬物臭」、「金属臭」を指す。
【0030】
 表4
乳酸菌飲料 
香味劣化抑制剤(添加量:10ppm)     官能評価の平均点
無添加品                     4.0
L−アスコルビン酸                3.5
種子/25重量%エタノール抽出物添加品      1.2
葉/50重量%エタノール抽出物添加品       0.9
種子/95重量%エタノール抽出物添加品      1.0
葉/HP−20精製品添加品            0.7
【0031】
表4に示されるように無添加およびL−アスコルビン酸添加のものに比べ、香味劣化抑制剤を添加したものは香味劣化抑制効果が高いことがわかった。
【0032】
〔試験例5〕(100%オレンジ飲料)
バレンシアオレンジ5倍濃縮果汁40gに蒸留水160gを添加し混合した。これに香味劣化抑制剤を添加しないものと香味劣化抑制剤を20ppm添加したものをそれぞれ缶に詰め、70℃、10分間殺菌した。それぞれ40℃の恒温槽に入れ2週間保管した。習熟した10名のパネルを選んで官能評価を行った。そして、この場合、香味の変化のない対照としては香味劣化抑制剤を添加していない5℃で2週間保管した100%オレンジ飲料を使用し、香味の変化(劣化)度合いを評価した。その結果は表5のとおりである。なお、表5中の評価の点数は、試験例2と同様の基準で採点した各パネルの平均点である。また、採点基準中の異味、異臭とは特に「イモ臭」、「スパイシー様のにおい」を指す。
【0033】
 表5
100%オレンジ飲料   
香味劣化抑制剤(添加量:20 ppm       官能評価の平均点
無添加品                     3.3
L−アスコルビン酸                3.1
種子/25重量%エタノール抽出物添加品      1.3
葉/50重量%エタノール抽出物添加品       1.1
種子/95重量%エタノール抽出物添加品      1.5
葉/HP−20精製品添加品            1.0
【0034】
表5に示されるように無添加およびL−アスコルビン酸添加のものに比べ、抑制剤を添加したものは香味劣化抑制効果が高いことがわかった。
【0035】
〔実施例1〕(口腔洗浄剤)
下記処方量で配合し口腔洗浄剤を作成した。
エタノール                        15.0g
グリセリン                        10.0g
ポリオキシエチレン                     2.0g
サッカリンナトリウム                   0.15g
安息香酸ナトリウム                    0.05g
香料                            0.3g
リン酸二水素ナトリウム                   0.1g
着色剤                           0.2g
葉/HP−20精製品の1重量%/50重量%エタノール水溶液 0.1g
精製水                          72.1g
【0036】
〔実施例2〕(マーガリン)
ショートニング55g、コーン油15g、30%ベータカロチン液0.1g、レシチン0.2g、乳化剤0.3gを混合し湯せんにて80℃、10分間殺菌した。一方、水27.9g、食塩0.5g、脱脂粉乳1g、オオバコの種子/95重量%エタノール抽出物の1重量%/95重量%エタノール水溶液0.1gを混ぜ湯せんで85℃まで加熱した。かくして得られたコーン油混合物と脱脂粉乳混合物とをそれぞれ50〜60℃まで冷却した後、混合し、氷水にて冷却しながらディスパーを用いて1,500rpmにて5分間撹拌した。水にて冷却しながらゴムベラで全体をよく練った(10℃まで冷却)。容器に移し一晩冷蔵庫で熟成させマーガリンを完成させた。
【0037】
〔実施例3〕(バニラエキストラクト)
バニラビーンズ10gにエタノール35gと蒸留水65gを添加し、室温暗所で4週間静置抽出した。この溶液をろ過することにより、90gのバニラエキストラクトを得た。このエキストラクト90gにオオバコの葉/50重量%エタノール抽出物1重量%/50重量%エタノール水溶液10gを添加し、本発明のバニラエキストラクトを完成した。
【0038】
〔実施例4〕(アップルフレーバー)
以下に示す処方によりアップルフレーバーを作成した。
ギ酸イソアミル      100g
酢酸イソアミル      100g
ヘキサン酸イソアミル    60g
オクタン酸イソアミル    10g
ゲラニオール        10g
エタノール        430g
蒸留水          290g
上記アップルフレーバー100gにオオバコの種子/25重量%エタノール抽出物1重量%/25重量%エタノール水溶液2gを添加し、本発明のアップルフレーバーを完成した。
【0039】
〔実施例5〕(グレープフレーバー)
以下に示す処方によりグレープフレーバーを作成した。
イソ吉草酸イソアミル           10g
シンナミルアルコール            5g
酢酸エチル                60g
酪酸エチル                15g
3−メチル−3−フェニルグリシド酸エチル 10g
ヘプタン酸エチル              8g
アントラニル酸メチル          130g
サリチル酸メチル             15g
エタノール               373g
蒸留水                 374g
上記グレープフレーバー100gにオオバコの葉/HP−20精製品1重量%/50重量%エタノール水溶液1.0gを添加し、本発明のグレープフレーバーを完成した。
【0040】
【発明の効果】
本発明の香味劣化抑制剤を食品等の経口組成物に添加することにより、光、熱、酸素等の影響を受けやすいものについて香味劣化を抑制することができる。特に光に対しては顕著な劣化抑制効果を示し、長期間香味を保持させることができるので、光照射の影響を受け易い透明ガラス容器、半透明プラスチック容器、或いは透明袋等に充填された経口組成物に適用すれば、優れた効果が発揮される。また、本発明の劣化抑制剤自体の味・匂いが経口組成物の本来の香味に影響を及ぼすことがないので幅広く適用することができる。
【図面の簡単な説明】
【図1】抽出例1におけるオオバコの種子/25重量%エタノール抽出物の紫外線吸収スペクトル図である。
【図2】抽出例2におけるオオバコの葉/50重量%エタノール抽出物の紫外線吸収スペクトル図である。
【図3】抽出例3におけるオオバコの種子/95重量%抽出物の紫外線吸収スペクトル図である。
【図4】抽出例4におけるオオバコの葉/HP−20精製品の紫外線吸収スペクトル図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a specific natural-derived flavor deterioration inhibitor and a method for suppressing flavor deterioration that can be widely applied to foods, oral hygiene agents, or flavors containing a flavor component.
[0002]
[Prior art]
Oral hygiene agents (hereinafter, referred to as oral compositions) such as beverages and foods, dentifrices, and breath fresheners can be tasted and smelled as soon as they enter the mouth. As important as the components. It is well known that the flavor of such oral compositions gradually degrades at each stage of production, distribution, storage and the like. Factors related to deterioration include heat, light, oxygen, and water. Therefore, in the past, especially as measures against the deterioration of flavor due to oxygen, the development of containers and bags made of synthetic resin with reduced oxygen permeability, the introduction of a food production process incorporating deoxygenation conditions, and the addition of antioxidants However, measures against other deterioration factors, particularly deterioration due to light, were not considered much. However, recently, the production and sales of foods in transparent glass containers, foods in translucent plastic containers, foods in transparent bags, and the like have been increasing in order to enhance the product image at the time of store display. Further, a sales form of displaying them under a fluorescent lamp for a long time in a convenience store or the like has become common. Therefore, an oral composition such as a food becomes more susceptible to light than before, and results in deterioration of flavor and the like. Therefore, it has become necessary to develop a means that has a particularly great effect of suppressing the deterioration of flavor due to light and also has the effect of suppressing the deterioration due to heat during the heat sterilization step and heat storage. Flavor deterioration due to light is caused by the fact that flavor components are decomposed by light irradiation to lose fragrance and taste, and the decomposed products are further converted to malodorous and off-flavor components. In order to mainly suppress such deterioration due to light, rutin, morin, or quercetin is added to prevent the generation of offensive odors and off-flavor substances and to improve the storage stability of milk-containing acidic beverages (Japanese Patent Publication No. 4-215050). For preventing flavor deterioration due to sunlight by using chlorogenic acid, caffeic acid, and ferulic acid derived from raw coffee beans extract and vitamin C, rutin, and quercetin (Japanese Patent Laid-Open No. 4-27374). ing. However, in the prior art, a natural product-derived deterioration inhibitor is generally highly safe and can be recommended. On the other hand, it is necessary to use a certain amount of the inhibitor in order to exhibit the effect of suppressing the deterioration of flavor. As a result, there is a point that the taste or smell of the deterioration inhibitor itself has a bad effect on the taste or aroma of the food itself, and lacks practicality. In addition, although a method of suppressing deterioration by improving the packaging means of an oral composition using a container or a bag in which light transmittance is suppressed has been proposed, this method was not sufficient in terms of both cost and the effect of suppressing flavor deterioration. Therefore, when added to an oral composition, the safety is high, a sufficient effect is obtained with a small amount of use without affecting the original flavor of the oral composition, and as a means of suppressing flavor deterioration excellent in economic efficiency, There has been a demand for a new natural product-derived deterioration inhibitor.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to solve the problems in the prior art, high safety, and provide a flavor deterioration inhibitor that does not affect the original flavor of the oral composition, that is, production, distribution of the oral composition, Mainly at each stage of storage and the like, a flavor deterioration inhibitor that suppresses the deterioration of flavor due to the influence of heat, oxygen, etc., a stable oral composition and a quality stable oral composition obtained by adding the inhibitor in a predetermined amount. An object of the present invention is to provide a method of adding a predetermined amount to suppress deterioration of flavor and stabilize the quality of foods and the like.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the activity of inhibiting flavor deterioration for components derived from a wide variety of natural products, mainly plants, and as a result, by using a solvent extract of psyllium, remarkably against light, furthermore, The inventors have found that deterioration of flavor of foods and the like due to heat, oxygen and the like can be suppressed for a long time, and completed the present invention. That is, the present invention is a flavor deterioration inhibitor containing a solvent extract of psyllium. This solvent extract is obtained by extraction with water, a polar organic solvent or a mixture thereof. The present invention is an oral composition further comprising 1 to 500 ppm of the above-mentioned flavor deterioration inhibitor. Further, the present invention is a method for suppressing flavor deterioration by adding 1 to 500 ppm of the above-mentioned flavor deterioration inhibitor to an oral composition. The present invention is also a fragrance obtained by adding the above-mentioned flavor deterioration inhibitor in an amount of 0.005 to 5% by weight. Further, the present invention is a method of suppressing the deterioration by adding 0.005 to 5% by weight of the above-mentioned flavor deterioration inhibitor to a flavor.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
(1) Raw material Psyllium (Plantago asiatica L.) used in the present invention is a perennial herb of the psyllid family. In addition to eating young leaves, it is also used for drinking as plantain tea. In addition, the whole plant is called the foreflower and the seed is called foreflower, and is also used as a crude drug. In the present invention, psyllium roots, stems, leaves, and seeds can be subjected to an extraction treatment described below as a raw material, and it is particularly preferable to use seeds or leaves.
[0006]
(2) Extraction treatment (1) The solvent used in the solvent extraction treatment is water or a polar organic solvent, and the organic solvent may be a hydrate.
Examples of the polar organic solvent include alcohol, acetone, and ethyl acetate. Among them, water or aliphatic alcohols having 2 to 4 carbon atoms such as ethanol, propanol and butanol are desirable from the viewpoint of safety to the human body and handling properties. In particular, water or ethanol or a mixture thereof is desirable.
The amount of the solvent used for the extraction can be arbitrarily selected, but generally, 2 to 100 parts by weight of the solvent is used per 1 part by weight of the raw material.
In addition, as a pretreatment for the extraction, a non-polar organic solvent such as hexane may be used to perform a defatting treatment in advance to prevent the extraction of excess lipid during the subsequent extraction treatment. In some cases, this degreasing treatment can result in purification such as deodorization. Further, a steam distillation treatment may be performed before extraction for the purpose of deodorization.
(2) Extraction treatment method Various extraction treatment methods can be adopted depending on the type and amount of the solvent. For example, a pulverized raw material can be put in a solvent and extracted by a dipping method or a heating and refluxing method. In the case of the immersion method, any of heating conditions, room temperature and cooling conditions may be used.
Next, an extract is obtained by removing solids insoluble in the solvent, and various solid-liquid separation means such as centrifugal separation, filtration, and squeezing can be used as the solids removal method.
The obtained extract can be used as it is as a flavor deterioration inhibitor, but may be used after appropriately diluting it with a liquid diluent such as water, ethanol, glycerin, triethyl citrate, dipropylene glycol, propylene glycol and the like. Alternatively, dextrin, sucrose, pectin, chitin and the like can be added. These may be further concentrated to obtain a paste-like extract, or may be used as a powder after subjecting to a treatment such as freeze-drying or heat-drying.
Extracted, fractionated or deodorized by supercritical extraction can also be used.
{Circle around (3)} Purification The extract obtained by the above method can be directly used in an oral composition and used as a flavor deterioration inhibitor, but can be further subjected to purification treatment such as decolorization and deodorization. For the purification treatment, activated carbon or a synthetic resin adsorbent made of a porous styrene-divinylbenzene copolymer can be used. As a synthetic resin adsorbent for purification, for example, "Diaion HP-20 (trade name)" manufactured by Mitsubishi Chemical Corporation and "Amberlite XAD-2 (trade name)" manufactured by Organo Corporation can be used.
[0007]
(3) Preparation of Flavor Deterioration Inhibitor The flavor degradation inhibitor is prepared using the extract obtained as described above as a raw material, for example, as follows.
Generally, various components are combined and dissolved in an appropriate concentration in a (mixed) solvent such as water, alcohol, glycerin, propylene glycol or the like (specifically, water / ethanol, water / ethanol / glycerin, water). / Mixed solvent such as glycerin). In addition, an excipient (dextrin or the like) may be added to each solution to form a powder by spray drying, and various dosage forms may be employed depending on the application.
[0008]
(4) Usage The flavor deterioration inhibitor of the present invention can be appropriately added at the stage of processing an oral composition. The amount added may vary somewhat depending on the concentration of the inhibitor or the type of flavor component contained in the oral composition and the flavor threshold, but is generally used for oral hygiene agents such as beverages and foods, toothpastes, and anti-odor agents. On the other hand, an addition amount of 1 to 500 ppm (as a solid component of the psyllium extract) is appropriate. From the viewpoint of addition within a threshold range that does not affect the original flavor of foods and oral hygiene agents, the content is preferably 1 to 200 ppm, particularly preferably 1 to 100 ppm. On the other hand, when the flavor deterioration inhibitor of the present invention is used in a flavor, 0.005 to 5% by weight is appropriate, and from the viewpoint of adding it within a range that does not affect the original flavor, 0.005 to 2% by weight. %, Particularly preferably 0.01 to 1% by weight.
The mixing ratio when one or more other known flavor deterioration inhibitors are used in combination is not particularly limited. The amount of the mixed inhibitor varies depending on the purity of the component of the inhibitor used or the type of the product to be added. ~ 500 ppm is suitable. A range of 1 to 100 ppm is preferred. On the other hand, when the flavor deterioration inhibitor of the present invention is used in a flavor, 0.005 to 5% by weight is appropriate, and from the viewpoint of adding it within a range that does not affect the original flavor, 0.005 to 2% by weight. %, Particularly preferably 0.01 to 1% by weight.
Further, the present flavor deterioration inhibitor may be used in combination with an antioxidant generally used such as L-ascorbic acid, green tea extract, rutin and the like, and the antioxidant used in combination is not particularly limited. The amount of the added inhibitor depends on the purity of the inhibitor component used or the type of product to be added, but it does not apply to oral hygiene agents such as beverages, foods, dentifrices, and anti-odor agents. 1 to 500 ppm is suitable. Particularly, the range of 1 to 100 ppm is preferable. On the other hand, 0.005 to 2% by weight is suitable for the fragrance, and particularly preferably 0.01 to 1% by weight.
[0009]
Examples of oral compositions or flavors to which the flavor deterioration inhibitor of the present invention is applied include the following.
Beverages: Coffee, tea, soft drinks, lactic acid bacteria drinks, fruitless juice drinks, fruit juice drinks, energy drinks, etc.
Confectionery: jelly, pudding, bavarois, candy, biscuits, cookies, chocolate, cakes, etc.
Fried foods: Instant noodles, fried tofu (oil fried, raw, ganmodoki), fried kamaboko, tempura, fried, snacks (potato chips, fried hail, karinto, donuts, cooked frozen food (frozen croquette) , Shrimp fry, etc.).
Oils and fats and processed foods and foods made from oils and fats: edible oils and fats (animal oils and fats, vegetable oils and fats), margarine, shortening, mayonnaise, dressing, hard butter.
Milk, dairy products, products using milk as the main raw material: milk (raw milk, milk, processed milk, etc.), dairy products (cream, butter, butter oil, concentrated whey, cheese, ice creams, yogurt, condensed milk, powdered milk, Condensed milk, etc.), products made mainly from milk.
Oral hygiene agent: toothpaste, gargle, mouth freshener, bad breath inhibitor, etc.
Perfume: Perfume raw materials (essential oil, concrete, absolute, extract, oleoresin, resinoid, recovered flavor, carbon dioxide-extracted essential oil, synthetic perfume) and perfume compositions containing them.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
An extraction example is shown below.
[0011]
[Extraction Example 1] Extraction of seeds / 25 wt% ethanol aqueous solution Extraction of psyllium seeds was pulverized, placed in 2 kg of 25 wt% ethanol aqueous solution, and extracted by heating under reflux for 1 hour. After removing insolubles by filtration, the filtrate was concentrated under reduced pressure and freeze-dried to obtain 5.9 g of brown powder (hereinafter referred to as "seed / 25% by weight ethanol extract"). The physical properties of this extract were as follows.
a) The ultraviolet absorption spectrum is as shown in FIG. 1 (measurement concentration: 10 ppm, diluent solvent: 25% by weight aqueous ethanol solution).
λmax: 330 nm, 285 nm
b) Solubility: Soluble in water, easily soluble in 50% by weight aqueous ethanol solution, and insoluble in ethanol.
[0012]
[Extraction Example 2] Extraction of leaves / 50% by weight aqueous ethanol solution To 50 g of dried psyllium leaves, 500 g of 50% by weight aqueous ethanol solution was added, and the mixture was heated under reflux for 1 hour and extracted.
After removing insoluble matter by filtration, the filtrate was concentrated under reduced pressure and freeze-dried to obtain 10.2 g of a brown powder (hereinafter referred to as "leaf / 50% by weight ethanol extract"). The physical properties of this extract were as follows.
a) The ultraviolet absorption spectrum is as shown in FIG. 2 (measurement concentration: 10 ppm, diluting solvent: 50% by weight aqueous ethanol solution).
λmax: 327 nm, 287 nm
b) Solubility: Soluble in water, easily soluble in 50% by weight aqueous ethanol solution, and insoluble in ethanol.
[0013]
[Extraction Example 3] Seed / 95 wt% ethanol aqueous solution extraction Psyllium seeds (50 g) were ground, 1000 g of a 95 wt% ethanol aqueous solution was added, and the mixture was heated under reflux for 1 hour and extracted.
After removing insoluble matters by filtration, the filtrate was concentrated under reduced pressure and freeze-dried to obtain 2.4 g of a brown liquid (hereinafter referred to as "seed / 95% by weight ethanol extract"). The physical properties of this extract were as follows.
a) The ultraviolet absorption spectrum is as shown in FIG. 3 (measurement concentration: 10 ppm, diluting solvent: 95% by weight aqueous ethanol solution).
λmax: 230 nm
b) Solubility: Insoluble in water, soluble in 50% by weight aqueous ethanol solution, easily soluble in ethanol.
[0014]
[Extraction Example 4] Leaves / HP-20 purified product 20 g of dried psyllium leaves were pulverized, and 200 g of a 50% by weight aqueous ethanol solution was added thereto. After removing insolubles by filtration, the filtrate was concentrated under reduced pressure to 20 g.
20 g of this concentrated liquid was adsorbed on 100 ml of a porous synthetic adsorbent (Diaion HP-20). After washing with 400 ml of water, elution was carried out with 400 ml of a 50% by weight aqueous ethanol solution. The eluate was concentrated under reduced pressure and freeze-dried to obtain 0.6 g of brown powder (hereinafter referred to as "HP-20 purified product"). Physical properties were as follows.
a) The ultraviolet absorption spectrum is as shown in FIG. 4 (measurement concentration: 10 ppm, diluting solvent: 50% by weight aqueous ethanol solution).
λmax: 331 nm, 288 nm
b) Solubility: Soluble in water, easily soluble in 50% by weight aqueous ethanol solution, and insoluble in ethanol.
[0015]
In the test examples, the following were used as single reagents.
1) L-ascorbic acid:
L (+)-ascorbic acid manufactured by Nacalai Tesque, Inc. was used.
[0016]
Next, the obtained extract was evaluated for its inhibitory activity on deterioration of flavor.
[0017]
[Test Example 1]
A 65% by weight aqueous ethanol solution containing 35 g of sugar, 0.35 g of citric acid and 1 g of citral, which is a flavor component particularly characteristic of lemon, was prepared (total amount: 1000 ml). This solution was placed in a transparent glass container, and irradiated with light using a light stability tester (“LSR-300” manufactured by Tokyo Rika Kikai Co., Ltd.). The irradiation conditions were a temperature of 10 ° C., a white fluorescent lamp of 40 W × 12 and a 360 nm near ultraviolet lamp of 40 W × 3, adjusted to 4,000 lux, and a near ultraviolet intensity of 0.3 mW / cm 2 (center in the vessel) for 72 hours. . The citral content after light irradiation was measured by high performance liquid chromatography (HPLC). Table 1 shows the results. The measurement conditions are as follows.
[0018]
(Measurement condition)
Apparatus: "HITACHI D-7000 HPLC system" manufactured by Hitachi, Ltd.
Column: “Cosmoseal 5C18, 4.6 mm × 250 mm” manufactured by Nacalai Tesque (column temperature 40 ° C.)
Eluent: A. Acetonitrile, B.I. Water gradient condition 0 minutes → 25 minutes Acetonitrile 10% 90%
B. 90% water 10%
Flow rate: 1 ml / min Detection wavelength: 254 nm
[0019]
The citral residual rate (%) in Table 1 was calculated according to the following equation.
Citral residual rate (%) = C / D × 100
Here, C: citral content in the sample after light irradiation D: citral content in the sample before light irradiation
Table 1
Citral residual amount test
Flavor deterioration inhibitor (addition amount: 200 ppm) Citral residual rate (% )
Additive-free product 30
L-ascorbic acid 32
Seed / 25% by weight ethanol extract additive 71
Leaf / 50% by weight ethanol extract additive 68
Seed / 95% by weight ethanol extract additive 59
Leaf / HP-20 purified product additive 89
[0021]
As shown in Table 1, the addition of the flavor deterioration inhibitor significantly suppressed the decrease in citral due to light irradiation, as compared with those without addition and with L-ascorbic acid.
[0022]
Next, the flavor deterioration inhibitor obtained by the above extraction was added to various foods and evaluated.
[0023]
[Test Example 2] (yogurt beverage)
After mixing 94 g of milk and 6 g of skim milk powder, the mixture was sterilized (90 to 95 ° C., 5 minutes). After cooling to 48 ° C., a starter (lactic acid bacteria) was inoculated. This was put in a glass container and fermented (40 ° C., 4 hours, pH 4.5). After cooling, it was stored at 5 ° C. and used as yogurt base. On the other hand, the sugar solution used was prepared by mixing 20 g of sucrose, 1 g of pectin, and 79 g of water, heating at 90 to 95 ° C. for 5 minutes, and filling in a hot pack. 60 g of the above yogurt base, 40 g of sugar solution, and 0.1 g of flavor were mixed, and the mixture was subjected to a homomixer treatment and a homogenizer treatment. A translucent plastic container was filled with each of those without the flavor deterioration inhibitor and those with 10 ppm of the flavor deterioration inhibitor added thereto. Each of the panels was placed in a light stability tester, irradiated with a fluorescent lamp (6,000 lux, 10 ° C., 5 hours), and a panel of 10 trained panelists was selected for sensory evaluation. In this case, as a control having no change in flavor, a yogurt beverage not irradiated with a fluorescent lamp to which no flavor deterioration inhibitor was added was used, and the degree of change (deterioration) in flavor was evaluated. The results are as shown in Table 2. The evaluation score in Table 2 is the average score of each panel scored based on the following criteria. The off-flavors and off-flavors in the scoring standards particularly refer to “metallic odor”, “pickled odor”, and “oil deterioration odor”.
(Scoring criteria)
Strong off-flavor and off-flavor: 4-point flavor changed significantly: 3-point flavor changed: 2-point flavor changed slightly: 1-point flavor did not change: 0 point
Table 2
Yogurt drink  
Average point of sensory evaluation of flavor deterioration inhibitor (addition amount: 10 ppm) Non-added item 3.7
L-ascorbic acid 3.5
Seed / 25% by weight ethanol extract additive 1.3
Leaf / 50% by weight ethanol extract additive 1.0
Seed / 95% by weight ethanol extract additive 1.5
Leaf / HP-20 purified product additive 0.7
[0025]
As shown in Table 2, it was found that the flavor-deterioration inhibitory effect was higher when the flavor-deterioration inhibitor was added than when no flavor was added and L-ascorbic acid was added.
[0026]
[Test Example 3] (Lemon drink)
The total amount was adjusted to 100 g with 10 g of granulated sugar, 0.1 g of citric acid, 0.1 g of lemon flavor and water. The glass container to which no flavor deterioration inhibitor was added and the one to which 5 ppm of various flavor deterioration inhibitors were added were filled in glass containers and sterilized (70 ° C., 10 minutes). After irradiating them with a light stability tester (15,000 lux, 10 ° C., 3 days), a panel of 10 trained persons was selected and subjected to sensory evaluation. In this case, as a control, a lemon beverage not irradiated with a fluorescent lamp to which no flavor deterioration inhibitor was added was used, and the degree of change (deterioration) in flavor was evaluated. Table 3 shows the results. The evaluation score in Table 3 is the average score of each panel scored based on the same standard as in Test Example 2. Further, the off-flavors and off-flavors in the scoring standards particularly refer to “vinyl odor” and “green odor”.
[0027]
Table 3
Lemon drink  
Average point of sensory evaluation of flavor deterioration inhibitor (addition amount: 5 ppm) Non-added item 3.7
L-ascorbic acid 3.4
Seed / 25% by weight ethanol extract additive 1.2
Leaf / 50% by weight ethanol extract additive 1.3
Seed / 95% by weight ethanol extract additive 1.6
Leaf / HP-20 purified product additive 0.5
[0028]
As shown in Table 3, it was found that the addition of the flavor deterioration inhibitor had a higher flavor deterioration suppressing effect as compared with those without addition and L-ascorbic acid.
[0029]
[Test Example 4] (Lactic acid bacteria drink)
The fermented milk stock solution (total solid content: 54%, non-fat milk solid content: 4%) was diluted 5 times in weight ratio with distilled water to prepare a sterilized lactic acid bacteria beverage. 100 g of this beverage, to which no flavor deterioration inhibitor was added and one to which 10 ppm of the flavor deterioration inhibitor had been added, were filled in glass containers and sterilized at 70 ° C. for 10 minutes. After irradiating them with a light stability tester (15,000 lux, 10 ° C., 12 hours), a panel of 10 trained persons was selected and subjected to a sensory evaluation. In this case, as a control, a lactic acid bacteria beverage not irradiated with a fluorescent lamp to which no flavor deterioration inhibitor was added was used, and the degree of change (deterioration) in flavor was evaluated. Table 4 shows the results. The evaluation score in Table 4 is the average score of each panel scored based on the same criteria as in Test Example 2. The off-flavors and off-flavors in the scoring standards particularly refer to “pickled odor” and “metal odor”.
[0030]
Table 4
Lactic acid bacteria drink
Average point of sensory evaluation of flavor deterioration inhibitor (addition amount: 10 ppm) Unadded product 4.0
L-ascorbic acid 3.5
Seed / 25% by weight ethanol extract additive 1.2
Leaf / 50% by weight ethanol extract additive 0.9
Seed / 95% by weight ethanol extract additive 1.0
Leaf / HP-20 purified product additive 0.7
[0031]
As shown in Table 4, it was found that the flavor-deterioration inhibitory effect was higher when the flavor-deterioration inhibitor was added than when no additive was added and L-ascorbic acid was added.
[0032]
[Test Example 5] (100% orange beverage)
160 g of distilled water was added to 40 g of Valencia orange 5 times concentrated fruit juice and mixed. To this, those without the addition of the flavor deterioration inhibitor and those with the addition of 20 ppm of the flavor deterioration inhibitor were respectively packed in cans and sterilized at 70 ° C. for 10 minutes. Each was stored in a thermostat at 40 ° C. for 2 weeks. Sensory evaluation was performed by selecting 10 trained panels. In this case, as a control having no change in flavor, a 100% orange beverage stored at 5 ° C. for 2 weeks without adding a flavor deterioration inhibitor was used, and the degree of change (deterioration) in flavor was evaluated. Table 5 shows the results. The evaluation score in Table 5 is the average score of each panel scored based on the same criteria as in Test Example 2. In addition, the off-flavors and off-flavors in the scoring standards particularly refer to “potato odor” and “spicy smell”.
[0033]
Table 5
100% orange drink  
Flavor deterioration inhibitor (addition amount: 20 ppm ) Average point of sensory evaluation No additive 3.3
L-ascorbic acid 3.1
Seed / 25% by weight ethanol extract additive 1.3
Leaf / 50% by weight ethanol extract additive 1.1
Seed / 95% by weight ethanol extract additive 1.5
Leaf / HP-20 purified product additive 1.0
[0034]
As shown in Table 5, it was found that the addition of the inhibitor had a higher flavor deterioration suppressing effect as compared with those without addition and with L-ascorbic acid.
[0035]
[Example 1] (Mouthwash)
The mouthwash was prepared by blending the following formulation.
15.0 g of ethanol
Glycerin 10.0 g
2.0 g of polyoxyethylene
Saccharin sodium 0.15g
Sodium benzoate 0.05g
Spice 0.3g
Sodium dihydrogen phosphate 0.1g
0.2 g of coloring agent
Leaf / HP-20 purified product 1% by weight / 50% by weight aqueous ethanol solution 0.1g
72.1 g of purified water
[0036]
[Example 2] (Margarine)
55 g of shortening, 15 g of corn oil, 0.1 g of 30% beta-carotene solution, 0.2 g of lecithin, and 0.3 g of emulsifier were mixed and sterilized in a water bath at 80 ° C. for 10 minutes. Separately, 27.9 g of water, 0.5 g of salt, 1 g of skim milk powder, and 0.1 g of a 1 wt% / 95 wt% ethanol aqueous solution of psyllium seeds / 95 wt% ethanol extract were mixed and heated to 85 ° C. in a water bath. The corn oil mixture and the skim milk powder mixture thus obtained were each cooled to 50 to 60 ° C., mixed, and stirred for 5 minutes at 1,500 rpm using a disper while cooling with ice water. While cooling with water, the whole was kneaded with a rubber spatula (cooled to 10 ° C.). It was transferred to a container and aged in a refrigerator overnight to complete margarine.
[0037]
[Example 3] (Vanilla extract)
35 g of ethanol and 65 g of distilled water were added to 10 g of vanilla beans, and the mixture was allowed to stand and extract at room temperature in a dark place for 4 weeks. By filtering this solution, 90 g of vanilla extract was obtained. To 90 g of this extract was added 10 g of a psyllium leaf / 50% by weight ethanol extract 1% by weight / 50% by weight aqueous ethanol solution to complete the vanilla extract of the present invention.
[0038]
[Example 4] (Apple flavor)
Apple flavor was prepared according to the following recipe.
Isoamyl formate 100g
Isoamyl acetate 100g
Isoamyl hexanoate 60g
Isoamyl octoate 10g
Geraniol 10g
430 g of ethanol
290 g of distilled water
To 100 g of the above-mentioned apple flavor, 2 g of a 1 wt% / 25 wt% ethanol aqueous solution of psyllium seed / 25 wt% ethanol extract was added to complete the apple flavor of the present invention.
[0039]
[Example 5] (Grape flavor)
Grape flavor was prepared according to the following recipe.
Isoamyl isovalerate 10g
5 g of cinnamyl alcohol
60 g of ethyl acetate
15 g of ethyl butyrate
Ethyl 3-methyl-3-phenylglycidate 10g
8 g of ethyl heptanoate
130 g of methyl anthranilate
Methyl salicylate 15g
373 g of ethanol
374 g of distilled water
To 100 g of the grape flavor was added 1.0 g of an aqueous solution of psyllium leaf / HP-20 purified product at 1% by weight / 50% by weight to complete the grape flavor of the present invention.
[0040]
【The invention's effect】
By adding the flavor deterioration inhibitor of the present invention to an oral composition such as food, it is possible to suppress the flavor deterioration of those which are easily affected by light, heat, oxygen and the like. In particular, it shows a remarkable deterioration suppressing effect against light and can retain flavor for a long period of time, so it is orally filled in a transparent glass container, translucent plastic container, or transparent bag that is easily affected by light irradiation. When applied to the composition, excellent effects are exhibited. Further, since the taste and odor of the deterioration inhibitor itself of the present invention do not affect the original flavor of the oral composition, it can be widely applied.
[Brief description of the drawings]
FIG. 1 is an ultraviolet absorption spectrum of a psyllium seed / 25% by weight ethanol extract in Extraction Example 1.
FIG. 2 is an ultraviolet absorption spectrum of a psyllium leaf / 50% by weight ethanol extract in Extraction Example 2.
FIG. 3 is an ultraviolet absorption spectrum of a psyllium seed / 95% by weight extract in Extraction Example 3.
FIG. 4 is an ultraviolet absorption spectrum of psyllium leaves / HP-20 purified product in Extraction Example 4.

Claims (6)

オオバコの溶媒抽出物を含有することを特徴とする香味劣化抑制剤。A flavor deterioration inhibitor comprising a solvent extract of psyllium. 前記溶媒抽出物が、水、極性有機溶媒またはこれらの混合物で抽出して得られるものである請求項1に記載の香味劣化抑制剤。The flavor deterioration inhibitor according to claim 1, wherein the solvent extract is obtained by extraction with water, a polar organic solvent, or a mixture thereof. 請求項1又は2に記載の香味劣化抑制剤が1〜500ppm添加されてなる経口組成物。An oral composition comprising the flavor deterioration inhibitor according to claim 1 or 2 in an amount of 1 to 500 ppm. 請求項1又は2に記載の香味劣化抑制剤を食品または口腔衛生剤に1〜500ppm添加することを特徴とする経口組成物の香味劣化を抑制する方法。A method for suppressing flavor deterioration of an oral composition, comprising adding 1 to 500 ppm of the flavor deterioration inhibitor according to claim 1 or 2 to a food or an oral hygiene agent. 請求項1又は2に記載の香味劣化抑制剤が0.005〜5重量%添加されてなる香料。A flavor comprising the flavor deterioration inhibitor according to claim 1 or 2 in an amount of 0.005 to 5% by weight. 請求項1又は2に記載の香味劣化抑制剤を香料に0.005〜5重量%添加することを特徴とする香料の劣化を抑制する方法。A method for suppressing deterioration of a flavor, characterized by adding 0.005 to 5% by weight of the flavor deterioration inhibitor according to claim 1 or 2 to the flavor.
JP2002173556A 2002-06-14 2002-06-14 Flavor deterioration inhibitor Pending JP2004018612A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2002173556A JP2004018612A (en) 2002-06-14 2002-06-14 Flavor deterioration inhibitor
EP03717547A EP1554938B1 (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
CN2006101537692A CN1915080B (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
CA2489390A CA2489390C (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
PCT/JP2003/004513 WO2003105599A1 (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
KR1020047019562A KR101087199B1 (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
CN03813833A CN100577029C (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
CN2006101537705A CN1915081B (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
DE60315061T DE60315061T2 (en) 2002-06-14 2003-04-09 INHIBITOR AGAINST TASTING AND INHIBITOR AGAINST THE PRODUCTION OF ODOR CAUSED BY CITRAL IMMUNITY
AT03717547T ATE367095T1 (en) 2002-06-14 2003-04-09 INHIBITOR AGAINST FLAVOR AND INHIBITOR AGAINST THE PRODUCTION OF AN ODOR CAUSED BY CITRAL IMPAIRMENT
CN2009101262848A CN101548786B (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
AU2003227476A AU2003227476B8 (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
US10/517,804 US20060062813A1 (en) 2002-06-14 2003-04-09 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
TW092108955A TW200402271A (en) 2002-06-14 2003-04-17 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
US14/139,375 US20140113058A1 (en) 2002-06-14 2013-12-23 Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173556A JP2004018612A (en) 2002-06-14 2002-06-14 Flavor deterioration inhibitor

Publications (1)

Publication Number Publication Date
JP2004018612A true JP2004018612A (en) 2004-01-22

Family

ID=31172747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173556A Pending JP2004018612A (en) 2002-06-14 2002-06-14 Flavor deterioration inhibitor

Country Status (1)

Country Link
JP (1) JP2004018612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720175B2 (en) 2009-01-28 2014-05-13 Nv Bekaert Sa Crimped flat wire as core of oval cord
JP2015019598A (en) * 2013-07-16 2015-02-02 サッポロビール株式会社 Non-alcoholic beverage, manufacturing method thereof, and method for imparting alcohol sensation to non-alcoholic beverage
WO2016031742A1 (en) * 2014-08-27 2016-03-03 国立大学法人 富山大学 Ameliorating agent for paresthesia induced by peripheral nerve disorders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720175B2 (en) 2009-01-28 2014-05-13 Nv Bekaert Sa Crimped flat wire as core of oval cord
JP2015019598A (en) * 2013-07-16 2015-02-02 サッポロビール株式会社 Non-alcoholic beverage, manufacturing method thereof, and method for imparting alcohol sensation to non-alcoholic beverage
WO2016031742A1 (en) * 2014-08-27 2016-03-03 国立大学法人 富山大学 Ameliorating agent for paresthesia induced by peripheral nerve disorders

Similar Documents

Publication Publication Date Title
JP5624764B2 (en) Flavor or fragrance degradation inhibitor
US20140113058A1 (en) Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
WO2016043276A1 (en) Flavor deterioration inhibitor
JP5314822B2 (en) Citral degradation odor production inhibitor and degradation odor production inhibition method
JP5091431B2 (en) Flavor or fragrance degradation inhibitor, and flavor or fragrance degradation suppression method
JP4257022B2 (en) Food flavor deterioration inhibitor and method
JP2003079335A (en) Food flavor determination inhibitor and inhibition method
JP4503235B2 (en) Flavor degradation inhibitor
JP4109818B2 (en) Flavor degradation inhibitor
JP2004016056A (en) Flavor deterioration inhibitor
JP4231244B2 (en) Flavor degradation inhibitor
JP2005171116A (en) Deterioration inhibitor for flavor or fragrance
JP4231243B2 (en) Flavor degradation inhibitor
JP4185317B2 (en) Deteriorating odor production inhibitor for citral or citral-containing products
JP6484167B2 (en) Flavor degradation inhibitor
JP2004018612A (en) Flavor deterioration inhibitor
JP2002330741A (en) Deterioration inhibitor for flavor or fragrance of food or cosmetic
JP2006340639A (en) Agent for suppressing decrease of flavor
JP2004016058A (en) Flavor deterioration inhibitor
JP2004016057A (en) Flavor deterioration inhibitor
JP2004018611A (en) Flavor deterioration inhibitor
JP6652690B1 (en) Flavor or flavor deterioration inhibitor containing theanaphthoquinones as active ingredient
JP2009045021A (en) Taste- or flavor-improver
JP2005269908A (en) Flavor deterioration inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826