JP2004018394A - Fluorine-containing amphiphilic compound - Google Patents
Fluorine-containing amphiphilic compound Download PDFInfo
- Publication number
- JP2004018394A JP2004018394A JP2002171609A JP2002171609A JP2004018394A JP 2004018394 A JP2004018394 A JP 2004018394A JP 2002171609 A JP2002171609 A JP 2002171609A JP 2002171609 A JP2002171609 A JP 2002171609A JP 2004018394 A JP2004018394 A JP 2004018394A
- Authority
- JP
- Japan
- Prior art keywords
- group
- compound
- solvent
- reaction
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PPQKCTIHZUQZAL-UHFFFAOYSA-N C=NC(CO)(CO)CO Chemical compound C=NC(CO)(CO)CO PPQKCTIHZUQZAL-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N O=C(C=C1)OC1=O Chemical compound O=C(C=C1)OC1=O FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Inks, Pencil-Leads, Or Crayons (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Paints Or Removers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は新規な界面活性剤に関し、さらに詳細には、分子中へのフッ素原子の導入により耐薬品性、耐熱性の要求される技術分野、ないしは二酸化炭素を溶媒として用いる技術分野に利用される、フッ素系界面活性剤に関する。具体的用途としては、ベシクル剤、医療材料、酸素富化膜、各種潤滑剤の添加剤、塗料、インキのレベリング剤、レジスト剥離剤、洗浄用気泡剤、ドライクリーニング用洗浄剤、樹脂表面改質剤、高分子合成用分散剤、乳化剤、二酸化炭素への溶質溶解補助剤などが挙げられる。
【0002】
【従来の技術とその課題】
フッ素系界面活性剤はフッ素原子の導入により、通常の界面活性剤に比較して耐薬品性、耐熱性を有しながら、さらには低表面張力を達成できることが可能で、多くの分野で利用されている。このなかで近年、環境問題への配慮から、毒性が懸念される有機溶媒代替として二酸化炭素が注目されている。このような技術開発において、二酸化炭素に溶解度の低い金属イオン、生体成分などの溶解度を向上させる目的で、フッ素系界面活性剤が期待されている。しかしながら、このような新規な用途にまで有効な界面活性剤はこれまで非常に限られており、新規な界面活性剤開発が強く望まれている(J. Supercrit. Fluids 1990, 3, 51.)。
【0003】
【課題を解決するための手段】
本発明者は、以下の含フッ素両親媒性化合物その組成物及びその用途に関する。
項1. 下記の一般式(I)〜(VI)のいずれかで表されるペルフルオロポリエーテル基を含む両親媒性化合物:
【0004】
【化3】
【0005】
〔式中、PFPEはペルフルオロポリエーテル基を示す。
【0006】
Rは、水素原子、アルキル基、アリール基またはアラルキル基を示す。
【0007】
RfはFまたはCF3を示す。
【0008】
Y1及びY2は、同一または異なって、連結基を表す。
【0009】
Mは、アルカリ金属、アルカリ土類金属などの金属またはN(R)4(Rは前記に定義されたとおりである)を示す。
【0010】
XはSO3 −M+(Mは前記に定義されたとおりである)または
【0011】
【化4】
【0012】
(R’は、CH2CH2N(Ra)3 +(Raは、同一または異なって、水素原子またはアルキル、アリール、アラルキル基である。)を示す。
【0013】
A,Bの一方或いは両方はペルフルオロポリエーテル基を示し、一方のみがペルフルオロポリエーテル基の場合、他方はアルキル基、ペルフルオロアルキル基、またはシロキサン単位を含む基を示す。
【0014】
X1及びX2は、一方がX(前記に定義されたとおりである)であり、他方がCO(PFPE)(PFPEは、前記に定義されたとおりである)である。〕。
項2. アニオン系、カチオン系及びノニオン系界面活性剤からなる群から選ばれる少なくとも1種を項1に記載の両親媒性化合物と組合せて含む界面活性剤組成物。
項3. 項1の化合物を含む塗料またはインキのリベリング剤。
項4. 項1の化合物を含むレジスト剥離剤。
項5. 項1の化合物と液体、亜臨界または超臨界二酸化炭素を含む組成物。
項6. 項1の化合物と助溶媒を含む組成物の塗料、インキのリベリング剤またはレジスト剥離剤としての使用。
項7. 項1の化合物と助溶媒と液体、亜臨界または超臨界二酸化炭素を含む組成物の洗浄、乾燥、抽出、化学反応、高分子合成、電気化学反応、化学分析、染色、ナノクラスターなどの微粒子製造または触媒調製における使用。
項8. 助溶媒がメタノール、エタノール、アセトン、アセトニトリルなどの水溶性の極性溶媒である項6または7に記載の使用。
【0015】
【発明の実施の形態】
本発明の界面活性剤を使用したことによる、二酸化炭素を溶媒として用いる既存技術に対する優位な技術分野としては以下のものが挙げられる。
1)二酸化炭素中での置換反応(ハロゲン化、スルフィド化、スルホン化)、付加反応(アルドール反応、ジールスアルダー反応)、還元反応、酵素反応(酸化、還元、加水分解)、高分子合成(分散重合、乳化重合、ラジカル重合、カチオン重合)、電気化学反応。
2)二酸化炭素による抽出(蛋白質、リン脂質、色素、無機塩)
3)二酸化炭素を溶媒とした、微粒子合成、無機材料合成、触媒調製
4)二酸化炭素を溶媒とした化学分析
本発明の両親媒性化合物において:
ペルフルオロポリエーテル(PFPE)基としては、
F〔(CF2CF2O)n(CF(CF3)CF2O)m〕−(CpHqFr)
〔式中、nは0〜10の整数、mは0〜10の整数、1≦m+n≦20;p=1〜5、q+r=2p+1,1≦r≦2p+1、0≦q≦2nである。〕
で表される基が例示される。
【0016】
アルキル基としては、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル基等の炭素数1〜6の直鎖状又は分枝状のアルキル基が挙げられる。
【0017】
ペルフルオロアルキル基は、前記アルキル基の全ての水素原子がフッ素原子で置換された基である。
【0018】
アリール基としては、フェニル基、ナフチル基、トルイル基、キシリル基などの炭素数6〜14のアリール基が挙げられる。
【0019】
アラルキル基としては、ベンジル基、フェネチル基などの炭素数7〜15のアラルキル基が挙げられる。
【0020】
連結基としては、カルボニル基(CO)、アミド基(CONH)、エステル基(COO)、チオエステル基(COS)、−OCH2CH(OH)CH2−が例示される。
【0021】
アルカリ金属としては、リチウム、ナトリウム、カリウム、セシウムなどが例示される。
【0022】
シロキサン単位を含む基としては、以下が例示される:
【0023】
【化5】
【0024】
ここでn=1〜200、m=1〜10であり、R, R1, R2, R3及びR4は同一ないしそれぞれ異なり、アルキル、アリールまたはアラルキル基である(先に例示されたとおりである)。
【0025】
本発明の一般式(I)〜(VI)のいずれかに記載の化合物は、単独で、或いは他の界面活性剤または助溶媒と併用して使用することができる。併用される他の界面活性剤としては、フッ素系アニオン界面活性剤、フッ素系ノニオン界面活性剤、フッ素系カチオン界面活性剤、フッ素系ベタイン界面活性剤等のフッ素系界面活性剤、炭化水素系ノニオン界面活性剤、炭化水素系アニオン界面活性剤、炭化水素系カチオン界面活性剤、炭化水素系ベタイン界面活性剤等の炭化水素系界面活性剤を挙げることができる。助溶媒としてはメタノール、エタノール、アセトン、アセトニトリル、トルエン、ヘキサン、プロパノール、ブタノール、エーテル、THF、ジクロロメタンなどが挙げられるが、メタノール、エタノール、アセトン、アセトニトリルなどの水溶性の極性溶媒が望ましい。
【0026】
一般式(I)〜(VI)の界面活性剤の使用量は、好ましくは10〜100重量%、より好ましくは50重量%以上であり、他の界面活性剤の使用量は、各々好ましくは0〜90重量%、より好ましくは50重量%以下である。
【0027】
本発明の式(I)の化合物の製造法を以下に例示する。
【0028】
【化6】
【0029】
これまでペルフルオロアルキルカルボン酸アミドで親水性の高いものではジアミン(US3555089)、ヒドロキシアミン(US3274244、3472894)を原料としたものが知られている。これに対して、最近沢田らは、含フッ素トリス(ヒドロキシメチル)メチルアミドオリゴマーが水中でゲル化することを報告しており、トリス(ヒドロキシメチル)メチルアミド基が親水性付与の点で優れていることを示している(Bull. Chem. Soc. 1997, 70, 2839)。トリス(ヒドロキシメチル)メチルアミノ基を有するフッ素系化合物としては、以下に示すような防雲防霧剤が特開平4−72340号公報に報告されている。
【0030】
【化7】
【0031】
しかしこの化合物は、疎水性基が剛直な構造のペルフルオロアルキル基であるため、使用にあたり溶解度に難点が有る。そこで本発明者は親水性が高く、二酸化炭素や有機溶媒にも充分な溶解度の期待できる両親媒性物質として、疎水性基としてペルフルオロポリエーテル基を有し、親水性基としてトリス(ヒドロキシメチル)メチルアミノ基を有するフッ素化合物を開発した。
【0032】
本化合物は共に入手容易な含フッ素カルボン酸や含フッ素アルコール類とトリス(ヒドロキシメチル)メチルアミンから簡便に合成できる。具体的には以下の反応式に示した様に、カルボン酸エステルとトリス(ヒドロキシメチル)メチルアミンを、無溶媒ないしは適当な溶媒中でエステル−アミド交換させることによりアミドが合成できる:
【0033】
【化8】
【0034】
(式中、PFPE,Rは前記に定義されるとおりである。)
ここで溶媒はDMF、DMAなどのアミド、DMSO、エタノール、メタノールなどのアルコール、ジオキサン、THF、ジエチルエーテル、ジブチルエーテルなどのエーテルが使用できるが、ジオキサン、THFなどのエーテルないしDMF、DMSOが望ましい。反応時間は、1〜24時間、反応温度としては室温から溶媒の還流温度で高収率で反応が進行する。PFPECOOR1モルに対し、トリス(ヒドロキシメチル)メチルアミンを1モルから過剰量使用する。
【0035】
【化9】
【0036】
またアルコールとエピクロロヒドリンから、公知の手法(特開昭52−25087)に準じて合成できる含フッ素エポキシ化合物への、アミンの求核付加反応によるヒドロキシアミド類の合成は、以下に示すように、適当な溶媒中で過熱することにより行なうことが出来る。ここでの溶媒はメタノール、エタノール、プロパノールのようなアルコール類、DMF、DMA、DMSOのような極性の高い溶媒が好ましい。反応温度は室温から溶媒の還流する温度、反応時間は1〜24時間、含フッ素エポキシ化合物1モルに対し、トリス(ヒドロキシメチル)メチルアミンを1モル程度使用することにより反応は有利に進行する。
【0037】
一般式(II)の化合物の合成法を以下に示す。
【0038】
【化10】
【0039】
(式中、Rf及びnは前記に定義されるとおりである。)
トリス(ヒドロキシメチル)メチルアミンとジエステルまたはジエポキシ化合物との反応は、上記式(I)と同様の溶媒、反応温度、反応時間などの条件下に、ジエステルまたはジエポキシ化合物1モルに対しトリス(ヒドロキシメチル)メチルアミン2モルないし過剰量を使用して行うことができる。
【0040】
一般式(III)の化合物の製造法を以下に示す。
【0041】
【化11】
【0042】
(式中、PFPE、Rは前記に定義されるとおりである。)
反応は、酒石酸1モルに対し、PFPECOFを2モルから過剰量使用し、次いで過剰量のアンモニアを加えてジメトキシエタン、ジグライム、THFなどのエーテル系溶媒中、0℃から室温程度の温度下に1〜24時間反応させることにより有利に進行する。
【0043】
一般式(IV)の化合物の製造法を以下に示す。
【0044】
【化12】
【0045】
(式中、PFPE、Mは前記に同じ。Cl−X’は、Cl−SO3HまたはCl−PO3R‘を示す。)
フマル酸のジPFPEエステルを当量〜過剰量のKMnO4を用い、テトラブチルアンモニウムブロミドなどの相間移動触媒の存在下、水−CH3CFCl2などの有機溶媒との2層系で攪拌しながら反応させジオールを得る。次いで、該ジオール1モルに対しを2モル〜過剰量のClSO3HなどのCl−X‘と反応させ、必要に応じてMOHで中和することにより、目的の式(IV)の化合物を得ることができる。反応は室温程度で1〜24時間行う。
【0046】
一般式(V)の化合物は、以下のように合成することができる。
【0047】
【化13】
【0048】
(式中、PFPE、Mは前記に定義されたとおりである。Cl−X’は、Cl−SO3HまたはCl−PO3R’(R’は前記に定義されたとおりである。)を示す。)
反応は、一般式(IV)の化合物の合成法と同様にして行うことができる。
【0049】
次に、一般式(VI)の化合物及びその合成法について以下に説明する。
【0050】
最近二酸化炭素中に水を溶解させる能力の高い界面活性剤が報告された(化学工学会第66年会講演番号H123;Langmuir 2001, 17, 274)。具体的には以下に示される、いわゆるスルフォコハク酸エステル塩(以下AOT)のペルフルオロアルキルアナローグである。
【0051】
【化14】
【0052】
一方、二酸化炭素用界面活性剤として有効な化合物に必要なフルオロアルキル基としては、ペルフルオロポリエーテル基が知られている。以下に示すようなペルフルオロポリエーテルカルボン酸アンモニウム塩
F−(CF(CF3)CF2O)nCF(CF3)COO−NH4 +(式中、nは1以上の整数)が最も良く研究されている(Sience 1996, 271, 624.: J. Org. Chem. 1999, 64, 1201.)。
【0053】
本発明者も含フッ素カルボン酸アンモニウムの二酸化炭素中での界面活性機能の検討過程で、ペルフルオロアルキル基よりもペルフルオロポリエーテル基を有する化合物の方が、二酸化炭素への溶解性並びに界面活性機能が優れていることを見出した(参考例1B参照)。
【0054】
以上の知見を元に、これまで有効なフッ素系界面活性剤として知られたAOTフルオロアルキルアナローグの機能をより高めるために、今回本発明者はAOTのアルキル基にペルフルオロポリエーテル基を有する界面活性剤を発明した。
【0055】
具体的には一般式(VI)に示す通りである。
【0056】
【化15】
【0057】
(式中、A,Bは前記に定義されるとおりである。)
本発明の化合物はフマル酸クロリドに含フッ素アルコールのアルコラートを反応させることにより、フマル酸ジエステルを合成し、さらにこれにNaHSO3を付加することにより容易に合成することが出来る。すなわち以下に示すように、先にアルコールと塩基から誘導されるアルコラートにフマル酸クロリドを滴下してフマル酸ジエステルを合成する。さらにこれを適当な溶媒中、NaHSO3の水溶液と反応させる。ここでアルコラートを形成する金属としてはリチウム、ナトリウム、カリウムなどの金属が挙げられ、これらはブチルリチウム、金属水素化物、メタノールなどの金属アルコラート、あるいはナトリウムアミドなどの金属アミドなどを塩基として、これらとアルコールとを適当な溶媒中で反応させることにより調製できる。ここで用いられる溶媒としてはエーテル、THF、トルエン、メタノール、エタノール、DMF、DMSOが挙げられる。ここでの反応温度としては−100℃〜120℃くらいであるが、−78℃〜40℃が望ましい。
【0058】
【化16】
【0059】
従来知られていた含フッ素AOTアナローグの合成法は(Bull. Chem. Soc. 1991, 64, 3262)フルオロアルコールとマレイン酸無水物をアルキルスルホン酸触媒下に、トルエンないしベンゼン中、脱水エステル化を行なうことにより、中間体であるフマル酸シ゛エステルを合成している。
【0060】
【化17】
【0061】
この方法は反応条件、使用する試薬のコストなどに利点が有るが、フルオロアルコールは一般にフッ素原子由来の電子効果と、立体効果によりエステル化への反応性が低く、従来法による報告例でも収率が30%程度の例が多い。また本件の化合物合成では参考例2B以降に示すように、1工程目を従来法に従うと目的物であるマレイン酸エステルが得られない。さらにより収率の改善を狙って、フマル酸クロリドとアルコールをアミンの存在下に検討したが、目的物の収率が低いか、原料であるアルコールの反応性が低いものでは目的物が得られない。さらにアルコールとカルボン酸を縮合剤(DCC, DPPA)存在下に検討したが、目的物を実用的な収率で得ることは出来なかった。
【0062】
【実施例】
本発明の化合物を以下に示す合成例により具体的に説明するが、本発明はここに挙げた化合物だけに限定されるものではない。
【0063】
なお、実施例1A〜4Aは、一般式(I)または(II)の化合物に関するものである。
実施例1A
【0064】
【化18】
【0065】
ペルフルオロポリエーテルカルボン酸メチルエステル(MW=676、なお本発明の実施例で用いたペルフルオロカルボン酸エステル類は、常法によりカルボン酸とアルコールより脱水エステル化により容易に得られる)(1.66g, 2.46mmol)とトリス(ヒドロキシルメチル)メチルアミン(297.8mg, 2.46mmol)をDMF(10ml)中、60℃で48時間過熱した。冷後、減圧下に溶媒を留去すると目的物が定量的に得られた。無色粘稠性物質:1H−NMR(CD3OD):δ3.75−3.90 (m). 19F−NMR(CD3OD): ppm −144.0〜−145.0(m), −129.6〜−130.6 (m), 129.35 (s), −83.8〜−84.6 (m), −77.5〜−83.0 (m). IR (neat, cm−1): 3386, 1719, 1526, 1306, 1239, 1202, 1153. MS(FAB)m/z 766 (M++1). HRMS Found: m/z 766.019. Calcd for C16H11O7NF23 : M+1, 766.017.
実施例2A
【0066】
【化19】
【0067】
ペルフルオロポリエーテルジカルボン酸ジメチルエステル(MW=466)(466mg, 1mmol)とトリス(ヒドロキシルメチル)メチルアミン(243mg, 2mmol)を、ジオキサン(10ml)中で24時間過熱還流した。冷後、減圧下に溶媒を留去すると、目的物が定量的に得られた。無色粘稠性物質:1H−NMR(CD3OD):δ3.82 (bs). 19F−NMR(CD3OD): ppm −76.6〜−77.8 (m, 4F), −87.6〜−88.5 (m, 8F). IR (neat, cm−1): 3389, 1716, 1521, 1356, 1206, 1140.
実施例3A
【0068】
【化20】
【0069】
ペルフルオロポリエーテルジカルボン酸ジメチルエステル(MW=350)(350mg, 1mmol)とトリス(ヒドロキシルメチル)メチルアミン(243mg, 2mmol)を、ジオキサン(10ml)中で24時間過熱還流した。冷後、減圧下に溶媒を留去すると、目的物が定量的に得られた。無色粘稠性物質:1H−NMR(CD3OD):δ3.80 (bs). 19F−NMR(CD3OD): ppm −77.92 (t、J=11.4Hz, 4F), −88.83 (t、J=11.4Hz, 4F). IR (neat, cm−1): 3390, 1718, 1523, 1356, 1210, 1139.
実施例4A
【0070】
【化21】
【0071】
ペルフルオロポリエーテルアルコール(MW=482)(4.82 g, 10mmol)とエピクロロヒドリン(1.85g, 20mmol)の混合物に、水酸化ナトリウム(400mg、10mmol)の水溶液(450ml)を100℃で、30分間かけゆっくりと滴下した。冷後、反応物を酢酸エチルで抽出し、溶媒留去後、カラムクロマト(SiO2, n−hexane−EtOAC = 10:1)で精製して、含フッ素エポキシ化合物を得た(3.09g、58%)。無色油状物質:1H−NMR(CDCl3):δ2.62 (d−d, J=4.8, 2.6 Hz, 1H), 2.82 (d−d, J= 4.8, 4.8 Hz, 1H), 3.12〜3.20 (m, 1H), 3.42〜3.55 (m, 1H), 3.90〜4.05 (m, 1H), 4.10〜4.25 (m, 2H). IR (neat, cm−1): 1307, 1236, 1202, 1159, 1121, 994.
【0072】
【化22】
【0073】
先に得られたエポキシ化合物(82mg, 0.15mmol)とトリス(ヒドロキシメチル)メチルアミン(18.5mg, 0.15mmol)を、ジオキサン(2ml)中で24時間加熱還流した。冷後、溶媒を留去して目的物を得た。無色粘稠性物質:1H−NMR(CD3OD):δ3.42〜3.80 (m, 8H), 3.90〜4.02 (m, 1H), 404〜4.26 (m, 2H). IR (neat, cm−1): 3448, 1338, 1307, 1260, 1156, 1085.
実施例1B
Bis(1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonanyl)sulfosuccinate sodiu m saltの合成
【0074】
【化23】
【0075】
Bis(1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonanyl)fumarateの合成
【0076】
【化24】
【0077】
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−ol(9.64g, 20mmol)のTHF溶液(50ml)に−78℃で1.5M n−BuLiヘキサン溶液(13ml, 20mmol)を滴下し、0℃でこの溶液を30分間攪拌し、リチウムアルコラートを調製した。この溶液に−78℃でフマル酸クロリド(1.53g, 10mmol)のTHF溶液(10ml)を滴下し、室温で15時間攪拌した。氷水中に反応液を開けエーテルで抽出した。有機相を硫酸マグネシウムで脱水以後、溶媒を留去した。残渣を減圧下に蒸留し(bp. 130℃/1mmHg)、化合物2を得た(14.89g, 71%)。
1H−NMR (CD3COCD3):δ5.06 (d, J=11.8Hz, 4H), 6.94 (s, 2H). IR (KBr, cm−1): 1753, 1306, 1237, 1202, 1156. MS(EI)m/z 1044 (M+), 1025 (M+−F), 975 (M+−CF3), 859 (M+−CF3CF2CF2OF), 563 (M+−F(CF2CF2CF2O)2CF(CF3)CH2O). HRMSFound: m/z 1043.9510. Calcd for C22H6O8F34 : M, 1043.9520.
化合物1の合成
【0078】
【化25】
【0079】
化合物2(650.4mg, 0.62mmol)とNaHSO3(200mg)をDioxane−H2O(5:1)混合溶液中48時間加熱還流した。溶媒留去後、反応物をソックスレー抽出し(溶媒アセトン)、化合物1を得た(379mg, 54%)。
1H−NMR (CF3COOD):δ3.43−3.57 (m, 2H), 4.65−5.05 (m, 5H). IR (KBr, cm−1):1761, 1310, 1240, 1158. MS(FAB)m/z 1149 (M++1). HRMS Found: m/z 1148.913. Calcd for C22H7O11SF34Na : M+1, 1148.914.
実施例2B
Bis(1H,1H−perfluoro−3,6,9−trioxatridecanyl)sulfosuccinate sodium salt(化合物3)の合成
【0080】
【化26】
【0081】
Bis(1H,1H−perfluoro−3,6,9−trioxatridecanyl)fumarate(化合物4)の合成
【0082】
【化27】
【0083】
1H,1H−perfluoro−3,6,9−trioxatridecan−1−ol(1.10g, 2mmol)のTHF溶液(2ml)に−78℃で1.5M n−BuLiヘキサン溶液(1.33ml, 2mmol)を滴下し、0℃でこの溶液を30分間攪拌し、リチウムアルコラートを調製した。この溶液に−78℃でフマル酸クロリド(153mg, 1mmol)のTHF溶液(2ml)を滴下し、室温で15時間攪拌した。氷水中に反応液を開けエーテルで抽出した。有機相を硫酸マグネシウムで脱水以後、溶媒を留去した。残渣をカラムクロマト(SiO2, n−hexane−EtOAc=10:1)に付し、化合物4を得た(714mg, 61%)。
1H−NMR (CD3COCD3):δ4.89 (t, J=9.2Hz, 4H), 6.97 (s, 2H). IR (KBr, cm−1):1752, 1308, 1215, 1145, 1120. MS(EI)m/z 1176 (M+), 1158 (M++H−F), 1058 (M++H−CF2−CF3), 942 (M++H −OCF2CF2CF2CF3), 826 (M++H −(OCF2CF2)2CF2CF3), 710 (M++H −(OCF2CF2)3CF2CF3). HRMS Found: m/z 1175.9354. Calcd for C24H6O10F38 : M, 1175.9348.
化合物3の合成
【0084】
【化28】
【0085】
化合物4(700mg, 0.6mmol)とNaHSO3(200mg)をDioxane−H2O(5:1)混合溶液中24時間加熱還流した。溶媒留去後、反応物をソックスレー抽出し(溶媒アセトン)、目的物を得た(512mg, 65%)。
1H−NMR (CF3COOD):δ3.41−3.62 (m, 2H), 4.56−4.80 (m, 5H). IR (KBr, cm−1):1760, 1309, 1220, 1146. MS(FAB)m/z 1281 (M++1). HRMS Found: m/z 1280.895. Calcd for C24H8O13SF38Na : M+1, 1280.898.
実施例3B
Bis(1H,1H−perfluoro−2−methyl−3−oxahexyl)sulfosuccinate sodium salt(化 合物5)の合成
【0086】
【化29】
【0087】
Bis(1H,1H−perfluoro−2−methyl−3−oxahexyl)fumarateの合成
【0088】
【化30】
【0089】
1H,1H−perfluoro−2−methyl−3−oxahexan−1−ol(6.32g, 20mmol)のTHF溶液(20ml)に−78℃で1.5M n−BuLiヘキサン溶液(13ml, 20mmol)を滴下し、0℃でこの溶液を30分間攪拌し、リチウムアルコラートを調製した。この溶液に−78℃でフマル酸クロリド(1.53g, 10mmol)のTHF溶液(10ml)を滴下し、室温で15時間攪拌した。氷水中に反応液を開けエーテルで抽出した。有機相を硫酸マグネシウムで脱水以後、溶媒を留去した。残渣を減圧下に蒸留し(bp. 140℃/20mmHg)、化合物6を得た(4.69g, 70%)。
1H−NMR (CD3COCD3):δ4.96−5.20 (m, 4H), 6.96 (s, 2H). IR (KBr, cm−1): 1752, 1335, 1233, 1202, 1149, 999. MS(FAB)m/z 713 (M+1). HRMS Found: m/z 642.984. Calcd for C15H6O6F19 : M−CF3, 642.986.
化合物5の合成
【0090】
【化31】
【0091】
化合物6(4.96g, 7mmol)とNaHSO3(1.21g)をDioxane−H2O(5:1)混合溶液中48時間加熱還流した。溶媒留去後、反応物をソックスレー抽出し(溶媒アセトン)、化合物5を得た(3.31g, 58%)。
1H−NMR (CD3OD):δ3.08−3.35 (m, 2H), 4.12−4.23 (m, 1H), 4.60−5.05 (m, 4H). IR (KBr, cm−1): 1761, 1310, 1240, 1158. MS(FAB)m/z 817 (M++1). HRMSFound: m/z 816.942. Calcd for C16H8O9SF22 Na: M+1, 816.944.
参考例1B
ペルフルオロポリエーテルカルボン酸アンモニウムとペルフルオロアルキルカルボン酸アンモニウムの界面活性効果
C13F27COO−NH4 +を容量38mlの窓付き耐圧装置に454mg(1.4wt%)封じ、これに二酸化炭素を導入して、これの二酸化炭素への溶解性を検討した。50℃、250atmでも解け残りが見られた。
C10F21COO−NH4 +を容量38mlの窓付き耐圧装置に358mg(1.4wt%)封じ、これに二酸化炭素を導入して、これの二酸化炭素への溶解性を検討した。50℃、250atmで溶解した。これにさらに水をW0値が10となる計算量を導入し、同様な二酸化炭素密度で溶解性を検討したが、均一なマイクロエマルジョンを形成できなかった。
【0092】
これに対してペルフルオロポリエーテルカルボン酸アンモニウムでは、上記の密度の二酸化炭素に1.4wt%の量まで非常に容易に溶解し、さらにこの系に水を導入した検討で以下のW0値を示した。この結果から、ペルフルオロアルキル鎖の化合物に比較してペルフルオロポリエーテル鎖の化合物は二酸化炭素への溶解性に優れ、さらに界面活性剤として優れた性質を与えることが示唆された。
ペルフルオロポリエーテルカルボン酸アンモニウムの構造とW0値
F−(CF(CF3)CF2O)2−CF(CF3)COO−NH4 + W0=14
F−(CF(CF3)CF2O)3−CF(CF3)COO−NH4 + W0=21
参考例2B
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−olとマレイン酸無水物の反応
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−ol(2g, 4.1mmol)マレイン酸無水物(196mg, 2mmol)をp−トルエンスルホン酸(100mg)の共存下にトルエン中で15時間加熱還流した。溶媒留去後、NMR, GLC, TLCにより生成物を分析したところ、原料回収であり、目的物を検出することが出来なかった。
参考例3B
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−olとマレイン酸の反応
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−ol(482mg, 1mmol)とマレイン酸(58mg, 0.5mmol)をDCC(1等量)、DMAP(0.1等量)存在下、塩化メチレン中、室温下に24時間反応させた。溶媒留去後、反応物をNMRにより生成物を分析したところ、原料回収以外のヒ゜ークも存在するが、原料に比較して少量であり、また多くの生成物の混合物であって、目的物を単離することが出来なかった。
参考例4B
ヘ゜ルフルオロホ゜リエーテルアルコールとマレイン酸の反応
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−ol(482mg, 1mmol)とマレイン酸(58mg, 0.5mmol)をDPPA(1等量)、トリエチルアミン(2等量)存在下、DMF中、室温下に24時間反応させた。溶媒留去後、反応物をNMRにより生成物を分析したところ、原料回収以外のヒ゜ークも存在するが、原料に比較して少量であり、また多くの生成物の混合物であって、目的物を単離することが出来なかった。
参考例5B
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−olとフマル酸クロリト゛の反応
1H,1H−perfluoro−2,5−dimethyl−3,6−dioxanonan−1−ol(482mg, 1mmol)とフマル酸クロリト゛(76mg, 0.5mmol)をDMAP(0.1等量)、ヒ゜リシ゛ン中、室温下に15時間反応させた。溶媒留去後、反応物をNMRにより生成物を分析したところ、原料回収以外のヒ゜ークも存在するが、目的物を検出することは出来なかった。
参考例6B
1H,1H−perfluoro−3,6,9−trioxatridecan−1−olとフマル酸クロリト゛の反応
1H,1H−perfluoro−3,6,9−trioxatridecan−1−ol(1.10g, 2mmol)とフマル酸クロリト゛(153mg, 1mmol)をDMAP(0.1等量)、ヒ゜リシ゛ン中、室温下に15時間反応させた。溶媒留去後、残渣をカラムクロマト(SiO2, n−hexane−EtOAc=10:1)に付し、化合物4を得た(294mg, 25%)。
実施例1C
【0093】
【化32】
【0094】
の合成
【0095】
【化33】
【0096】
ペルフルオロポリエーテルアルコール(MW=482; 9.64g, 20mmol)とエピクロロヒドリン(925mg, 10mmol)の混合物に100℃でNaOH水溶液(NaOH 800mgとH20 800mgから調製した)を滴下し、この温度で15時間撹拌した。冷後、反応物を水で希釈し、エーテル抽出した。溶媒を留去した後、生成物をカラムクロマト(SiO2, n−hexane−EtOAc=10:1)で精製し、アルコール体(6.63g, 65%)を得た。アルコール体; 無色油状物質:1H−NMR(CDCl3):δ2.16 (s, 1H), 3.58−3.70 (m, 4H), 3.88−4.00 (m, 1H), 4.00−4.12 (m, 4H). IR (neat, cm−1): 3448, 1236, 1202, 1159, 1121, 994. MS(FAB)m/z 1021 (M+1). HRMS Found: m/z 1020.995. Calcd for C21H11O7F34 (M+1): 1020.996.
【0097】
【化34】
【0098】
先に合成したアルコール体(72mg, 0.07mmol)をPOCl3(10.8mg, 0.07mmol)のエーテル溶液に0℃で滴下し、さらにこれにトリエチルアミン(10μl, 0.07mmol)を加えた。この溶液を室温で一時間撹拌した後、溶媒を減圧下に留去した。残渣に0℃でコリントシレート(19.6mg, 0.07mmol), ピリジン(0.5ml), クロロホルム(2ml)を加え、さらに室温で15時間撹拌した。反応液に水を加えて酸クロリドを加水分解した後、溶媒を留去した。無色粘稠性物質:1H−NMR(CD3OD):δ3.08−3.20 (m, 2H), 3.20−3.54 (m, 4H), 3.55−3.65 (m, 2H), 3.76−4.24 (m, 5H). MS(FAB)m/z 1186 (M+1). HRMS Found: m/z 1186.049. Calcd for
C26H22O10NPF34 (M+1): 1186.052.
実施例2C
【0099】
【化35】
【0100】
の合成
【0101】
【化36】
【0102】
アルコール体(133mg, 0.13mmol)の塩化メチレン(2ml)溶液中にClSO3H (15mg, 0.13mmol)を0℃で滴下し、室温で15時間撹拌した。減圧下に溶媒を留去した後、残渣を水(2ml)に懸濁させ、これに1N水酸化ナトリウム(0.1ml)を加えて室温で15時間撹拌した。減圧下に溶媒を留去した後、残渣をメタノールで溶解させ、無機塩を除去した。1H−NMR(CD3OD):δ 3.56−3.72 (m, 2H), 3.76−3.96 (m, 3H), 4.12−4.32 (m, 4H). IR (neat, cm−1): 1306, 1237, 1203, 1157,
1121, 994.
実施例3C
【0103】
【化37】
【0104】
の合成
【0105】
【化38】
【0106】
ペルフルオロポリエーテルフマル酸エステル(208mg, 0.2mmol)KMnO4(47mg,0.3mmol)をテトラブチルアンモニウムブロミド(5mg)存在下に、水−CH3CFCl2(1−5ml)中で室温下に15時間撹拌した。生成物をCH3CFCl2で抽出し、溶媒留去後の残渣をカラムクロマト(SiO2, n−hexane−EtOAC = 10:1)で精製して、ジオール体を156mg得た(72.3%)。無色油状物質. 1H−NMR(CD3COCD3):δ4.30 (bs, 2H), 4.85−5.18 (m, 4H), 5.38−5.50 (m, 2H). IR (neat, cm−1): 3448, 1236, 1202, 1158, 994. MS(FAB)m/z 1079 (M+1). HRMS Found: m/z 1078.967.Calcd for C22H9O10F34 (M+):1078.965.
【0107】
【化39】
【0108】
ジオール体(255mg, 0.21mmol)の塩化メチレン(2ml)溶液中にClSO3H (49mg, 0.42mmol)を0℃で滴下し、室温で15時間撹拌した。減圧下に溶媒を留去した後、残渣を水(2ml)に懸濁させ、これに1N NaHCO3(0.1ml)を加えて室温で15時間撹拌した。減圧下に溶媒を留去した後、残渣をメタノールで溶解させ、無機塩を除去した。1H−NMR(CD3OD):δ 4.85−5.25 (m, 4H), 5.40−5.63 (m, 2H).MS(FAB)m/z 1239 (M+1). HRMS Found: m/z 1238.878. Calcd for C22H9O16S2F34 (M+1): 1238.879.
実施例4C
【0109】
【化40】
【0110】
の合成
【0111】
【化41】
【0112】
D−酒石酸(151mg, 1mmol)のジメトキシエタン溶液(5ml)にペルフルオロポリエーテルカルボン酸(1.33g, 2mmol)を0℃で加え、さらにこれに過剰量のアンモニアを通じた。この反応液を室温で15時間撹拌した後、減圧下で溶媒を留去し、目的物を得た(定量的)。無色粘稠物質。1H−NMR(CD3OD):δ5.05 (bs, 2H). IR (neat, cm−1): 3212, 1728, 1635, 1303, 1240, 1202, 1148. MS(FAB)m/z 1473 (M+1). HRMS Found: m/z 1472.944.Calcd for C28H11N2O14F46 (M+):1472.946.
ミセル形成能検討1
窓付き耐圧装置(内容量38ml)に実施例1Aで得られたペルフルオロポリエーテルカルボン酸トリスヒドロキシメチルメチルアミド(MW=765)440 mgと一定量の水を入れ、これに二酸化炭素を充てんし、50℃、250気圧の条件で、W/C型ミセルが均一になるかどうかを目視により判定した。なおこの時点の水の量から、同条件下に界面活性剤無しで二酸化炭素に溶解する水の量を差し引いてW0値を算出した。W0値=15。
ミセル形成能検討2
窓付き耐圧装置(内容量38ml)にAOT−Fluoroanalog(化合物5) 500 mgと一定量の水を入れ、これに二酸化炭素を充てんし、50℃、250気圧の条件で、W/C型ミセルが均一になるかどうかを目視により判定した。なおこの時点の水の量から、同条件下に界面活性剤無しで二酸化炭素に溶解する水の量を差し引いてW0値を算出した。W0値=45。既存のフルオロアルキル基を有するAOT−Fluoroanalogが、試験前に二酸化炭素へ溶解させるために一晩のエージング時間を必要とするのに対して、化合物5は非常に早い溶解速度を示した。
反応例1
超臨界二酸化炭素中での臭素化反応
容量38mlの耐圧装置に塩化ベンジル126mg (1mmol), AOT−Fluoroanalog(MW=816) 400mg、これにKBr 119mg (1mmol)、水 176mg (W=20) を封じた。これに二酸化炭素を導入して、50℃、250atmで20時間撹拌させた。冷後、二酸化炭素をパージし、反応物をエーテルで抽出した。溶媒留去後、ガスクロマトグラフで生成物を分析した(臭化ベンジル収率40%)。
反応例2
超臨界二酸化炭素中での還元反応1
容量50mlの耐圧装置に実施例1Aで得られたペルフルオロポリエーテルカルボン酸トリスヒドロキシメチルメチルアミド(MW=765)76.5mg (0.1mmol), Wilkinson触媒9.25mg (0.01mol), カルボン1g (6.6mmol) を封じた。これに二酸化炭素を導入して、34℃、74atmで超臨界にした後、水素を分圧10atmまで詰めて室温で一時間反応させた。二酸化炭素をパージし、反応物をエーテルで抽出した。溶媒留去後、ガスクロマトグラフで生成物を分析した(ジヒドロカルボン収率90%)。
反応例3
超臨界二酸化炭素中での還元反応2
容量50mlの耐圧装置に実施例1Aで得られたペルフルオロポリエーテルカルボン酸トリスヒドロキシメチルメチルアミド(MW=765)76.5mg (0.1mmol), (R)−BINAP 16mg (0.02mol), ゲラニオール3.8g (20mmol) を封じた。これに二酸化炭素を導入して、34℃、74atmで超臨界にした後、水素を分圧30atmまで詰めて室温で15時間反応させた。二酸化炭素をパージし、反応物をエーテルで抽出した。溶媒留去後、ガスクロマトグラフで生成物を分析した(S−シトロネオール収率75%、85%ee)。
反応例4
超臨界二酸化炭素中での酵素エステル化反応
容量38mlの耐圧装置にAOT−Fluoroanalog(MW=816) 200mg、これにリパーゼ(Pseudomonas sp.)10mg、リン酸緩衝液(pH 6.8) 88mg (W=20)、ベンジルアルコール1.08g (10mmol) オレイン酸 2.82g (10mmol) を封じた。これに二酸化炭素を導入して、40℃、250atmで20時間撹拌させた。冷後、二酸化炭素をパージし、反応物をエーテルで抽出した。溶媒留去後、ガスクロマトグラフで生成物を分析した(エステル体収率65%)。
反応例5
超臨界二酸化炭素中での酵素酸化反応
容量38mlの耐圧装置にAOT−Fluoroanalog(MW=816) 200mg、これにcholesterol oxidease(Pseudomonas)10mg、リン酸緩衝液(pH 7.0) 88mg (W=20)、cholesterol 0.39g (1mmol) を封じた。これに二酸化炭素を導入して34℃、74atmで超臨界にした後、酸素を分圧10atmまで詰めて40℃、250atmで20時間撹拌させた。冷後、二酸化炭素をパージし、反応物をエーテルで抽出した。溶媒留去後、ガスクロマトグラフで生成物を分析した(cholest−4−en−3−one収率35%)。
反応例6
超臨界二酸化炭素中での高分子合成(PMMA)
容量50mlの耐圧装置にAOT−Fluoroanalog(MW=816) 100mg、これにMMA 1g、AIBN 20 mgを封じた。これに二酸化炭素を導入して60℃、100 atmで20時間撹拌させた。冷後、二酸化炭素をパージし、反応物をTHFで抽出した。溶媒留去後、GPCで生成物を分析した(Mn=18000、収率65%)。
抽出例1
タンパク質の抽出
容量38mlの耐圧装置(窓付き)にAOT−Fluoroanalog(MW=816) 400mg、これにアルブミン(Bovine serum)10mg、水 176mg (W=20) を封じた。これに二酸化炭素を導入して35℃、250atmで20時間撹拌させた。窓からの目視により均一な溶液を確認した。
抽出例2
リン脂質の抽出
容量38mlの耐圧装置(窓付き)にAOT−Fluoroanalog(MW=816) 400mg、これにフォスファチジルコリン(黄卵由来)30mg、水 176mg (W=20) を封じた。これに二酸化炭素を導入して40℃、250atmで20時間撹拌させた。窓からの目視により均一な溶液を確認した。
抽出例3
無機塩の抽出(AgClO4)
容量38mlの耐圧装置(窓付き)にAOT−Fluoroanalog(MW=816) 400mg、これにAgClO4 36mg、水 176mg (W=20) を封じた。これに二酸化炭素を導入して40℃、350 atmで20時間撹拌させた。窓からの目視により均一な溶液を確認した。
抽出例4
無機塩の抽出(NaCl)
容量38mlの耐圧装置(窓付き)にAOT−Fluoroanalog(MW=816) 400mg、これにNaCl 10mg、水 176mg (W=20) を封じた。これに二酸化炭素を導入して40℃、250 atmで20時間撹拌させた。窓からの目視により均一な溶液を確認した。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel surfactant, and more particularly, to a technical field in which chemical resistance and heat resistance are required by introducing a fluorine atom into a molecule, or a technical field using carbon dioxide as a solvent. , A fluorine-based surfactant. Specific applications include vesicles, medical materials, oxygen-enriched films, additives for various lubricants, paints, ink leveling agents, resist strippers, cleaning bubbles, dry cleaning detergents, and resin surface modification. Agents, dispersants for polymer synthesis, emulsifiers, solute solubilizers in carbon dioxide, and the like.
[0002]
[Prior art and its problems]
By introducing fluorine atoms, fluorine-based surfactants can achieve low surface tension while having chemical resistance and heat resistance compared to ordinary surfactants, and are used in many fields. ing. Among them, in recent years, carbon dioxide has been attracting attention as an alternative to organic solvents that are toxic, in view of environmental issues. In such technical development, fluorine-based surfactants have been expected for the purpose of improving the solubility of metal ions and biological components having low solubility in carbon dioxide. However, surfactants effective for such new uses have been very limited so far, and development of new surfactants has been strongly desired (J. Supercrit. Fluids 1990, 3, 51.). .
[0003]
[Means for Solving the Problems]
The present inventor relates to the following fluorine-containing amphiphilic compound, its composition and use.
Item 1.両 親 Amphiphilic compound containing a perfluoropolyether group represented by any of the following formulas (I) to (VI):
[0004]
Embedded image
[0005]
[Wherein, PFPE represents a perfluoropolyether group.
[0006]
R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
[0007]
Rf is F or CF3Is shown.
[0008]
Y1And Y2Represents the same or different and represents a linking group.
[0009]
M is a metal such as an alkali metal or an alkaline earth metal or N (R)4(R is as defined above).
[0010]
X is SO3 −M+(M is as defined above) or
[0011]
Embedded image
[0012]
(R 'is CH2CH2N (Ra)3 +(Ra is the same or different and is a hydrogen atom or an alkyl, aryl, or aralkyl group).
[0013]
One or both of A and B represent a perfluoropolyether group, and when only one is a perfluoropolyether group, the other represents an alkyl group, a perfluoroalkyl group, or a group containing a siloxane unit.
[0014]
X1And X2Is one with X (as defined above) and the other with CO (PFPE) (PFPE is as defined above). ].
Item 2.界面 A surfactant composition comprising at least one selected from the group consisting of anionic, cationic and nonionic surfactants in combination with the amphiphilic compound according to item 1.
Item 3.塗料 A coating or ink leveling agent containing the compound of item 1.
Item 4.レ ジ ス ト A resist stripping agent containing the compound of item 1.
Item 5.組成 A composition comprising the compound of item 1 and liquid, subcritical or supercritical carbon dioxide.
Item 6.使用 Use of the composition containing the compound of Item 1 and a cosolvent as a paint, ink leveling agent or resist stripping agent.
Item 7. Washing, drying, extraction, chemical reaction, polymer synthesis, electrochemical reaction, chemical analysis, staining, production of fine particles such as nanoclusters for a composition containing the compound of Item 1, a co-solvent and a liquid, subcritical or supercritical carbon dioxide Or use in catalyst preparation.
Item 8. Item 8. The use according to item 6 or 7, wherein the co-solvent is a water-soluble polar solvent such as methanol, ethanol, acetone and acetonitrile.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The following are examples of technical fields that are superior to existing techniques using carbon dioxide as a solvent by using the surfactant of the present invention.
1) Substitution reaction (halogenation, sulfidation, sulfonation) in carbon dioxide, addition reaction (aldol reaction, Diels-Alder reaction), reduction reaction, enzymatic reaction (oxidation, reduction, hydrolysis), polymer synthesis ( Dispersion polymerization, emulsion polymerization, radical polymerization, cationic polymerization), and electrochemical reaction.
2) Extraction with carbon dioxide (proteins, phospholipids, pigments, inorganic salts)
3) Fine particle synthesis, inorganic material synthesis, catalyst preparation using carbon dioxide as a solvent
4) Chemical analysis using carbon dioxide as a solvent
In the amphiphilic compounds of the invention:
As perfluoropolyether (PFPE) groups,
F [(CF2CF2O)n(CF (CF3) CF2O)m]-(CpHqFr)
[In the formula, n is an integer of 0 to 10, m is an integer of 0 to 10, 1 ≦ m + n ≦ 20; p = 1 to 5, q + r = 2p + 1, 1 ≦ r ≦ 2p + 1, and 0 ≦ q ≦ 2n. ]
A group represented by is exemplified.
[0016]
Examples of the alkyl group include a linear or branched alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and hexyl. And an alkyl group.
[0017]
The perfluoroalkyl group is a group in which all the hydrogen atoms of the above-mentioned alkyl group have been substituted with fluorine atoms.
[0018]
Examples of the aryl group include an aryl group having 6 to 14 carbon atoms such as a phenyl group, a naphthyl group, a toluyl group, and a xylyl group.
[0019]
Examples of the aralkyl group include aralkyl groups having 7 to 15 carbon atoms such as a benzyl group and a phenethyl group.
[0020]
Examples of the linking group include a carbonyl group (CO), an amide group (CONH), an ester group (COO), a thioester group (COS), and —OCH2CH (OH) CH2-Is exemplified.
[0021]
Examples of the alkali metal include lithium, sodium, potassium, cesium and the like.
[0022]
Examples of groups containing siloxane units include:
[0023]
Embedded image
[0024]
Here, n = 1 to 200 and m = 1 to 10, and R, R1, R2, R3 and R4 are the same or different and are alkyl, aryl or aralkyl groups (as exemplified above).
[0025]
The compounds according to any one of formulas (I) to (VI) of the present invention can be used alone or in combination with other surfactants or cosolvents. Other surfactants used in combination include fluorine-based anionic surfactants, fluorine-based nonionic surfactants, fluorine-based cationic surfactants, fluorine-based surfactants such as fluorine-based betaine surfactants, and hydrocarbon-based nonions. Examples of the surfactant include a surfactant such as a surfactant, a hydrocarbon-based anionic surfactant, a hydrocarbon-based cationic surfactant, and a hydrocarbon-based betaine surfactant. Examples of the co-solvent include methanol, ethanol, acetone, acetonitrile, toluene, hexane, propanol, butanol, ether, THF, dichloromethane and the like, and water-soluble polar solvents such as methanol, ethanol, acetone and acetonitrile are preferred.
[0026]
The use amount of the surfactants of the general formulas (I) to (VI) is preferably 10 to 100% by weight, more preferably 50% by weight or more, and the use amount of the other surfactants is preferably 0% each. To 90% by weight, more preferably 50% by weight or less.
[0027]
The method for producing the compound of the formula (I) of the present invention is illustrated below.
[0028]
Embedded image
[0029]
Heretofore, perfluoroalkylcarboxylic acid amides having a high hydrophilicity have been known to use diamine (US Pat. No. 3,550,089) and hydroxyamine (US Pat. No. 3,274,244, 347894) as raw materials. On the other hand, recently, Sawada et al. Reported that a fluorinated tris (hydroxymethyl) methylamide oligomer gelled in water, and the tris (hydroxymethyl) methylamide group was superior in imparting hydrophilicity. (Bull. Chem. Soc. 1997, 70, 2839). As a fluorine-based compound having a tris (hydroxymethyl) methylamino group, the following cloud-preventing antifog is reported in JP-A-4-72340.
[0030]
Embedded image
[0031]
However, this compound has a problem in solubility when used because the hydrophobic group is a perfluoroalkyl group having a rigid structure. Therefore, the present inventor has a perfluoropolyether group as a hydrophobic group as an amphiphilic substance which is expected to have high hydrophilicity and sufficient solubility in carbon dioxide and an organic solvent, and tris (hydroxymethyl) as a hydrophilic group. A fluorine compound having a methylamino group has been developed.
[0032]
This compound can be easily synthesized from fluorinated carboxylic acids or fluorinated alcohols, which are easily available, and tris (hydroxymethyl) methylamine. Specifically, an amide can be synthesized by ester-amide exchange between a carboxylic acid ester and tris (hydroxymethyl) methylamine in a solvent-free or suitable solvent, as shown in the following reaction formula:
[0033]
Embedded image
[0034]
(Wherein PFPE, R are as defined above)
As the solvent, amides such as DMF and DMA, alcohols such as DMSO, ethanol and methanol, ethers such as dioxane, THF, diethyl ether and dibutyl ether can be used, and ethers such as dioxane and THF or DMF and DMSO are preferable. The reaction time is from 1 to 24 hours, and the reaction proceeds at a high yield from room temperature to the reflux temperature of the solvent. Tris (hydroxymethyl) methylamine is used in an amount of 1 mol to an excess amount per 1 mol of PFPECOOR.
[0035]
Embedded image
[0036]
The synthesis of hydroxyamides by a nucleophilic addition reaction of an amine to a fluorine-containing epoxy compound which can be synthesized from an alcohol and epichlorohydrin according to a known method (JP-A-52-25087) is described below. And by heating in a suitable solvent. Here, the solvent is preferably an alcohol such as methanol, ethanol or propanol, or a highly polar solvent such as DMF, DMA or DMSO. The reaction proceeds from room temperature to the reflux temperature of the solvent, the reaction time is 1 to 24 hours, and the reaction proceeds advantageously by using about 1 mol of tris (hydroxymethyl) methylamine per 1 mol of the fluorinated epoxy compound.
[0037]
The synthesis method of the compound of the general formula (II) is shown below.
[0038]
Embedded image
[0039]
(In the formula, Rf and n are as defined above.)
The reaction of tris (hydroxymethyl) methylamine with a diester or a diepoxy compound is carried out under the same conditions as in the above formula (I), such as a solvent, a reaction temperature, and a reaction time, with respect to 1 mole of a diester or a diepoxy compound. ) The reaction can be carried out using from 2 mol to an excess of methylamine.
[0040]
The production method of the compound of the general formula (III) is shown below.
[0041]
Embedded image
[0042]
(Wherein, PFPE and R are as defined above.)
The reaction is carried out using an excess amount of PFPECOF from 2 moles per mole of tartaric acid, and then adding an excess amount of ammonia to an ether solvent such as dimethoxyethane, diglyme, and THF at a temperature of about 0 ° C. to about room temperature. The reaction proceeds advantageously for up to 24 hours.
[0043]
The production method of the compound of the general formula (IV) is shown below.
[0044]
Embedded image
[0045]
(Wherein PFPE and M are the same as above. Cl-X ′ is Cl-SO3H or Cl-PO3R ‘. )
Di-PFPE ester of fumaric acid in equivalent to excess amount of KMnO4Using water-CH in the presence of a phase transfer catalyst such as tetrabutylammonium bromide3CFCl2The reaction is carried out while stirring in a two-layer system with an organic solvent such as the above to obtain a diol. Then, 2 moles to an excess of ClSO are added to 1 mole of the diol.3The desired compound of formula (IV) can be obtained by reacting with Cl—X ‘such as H and neutralizing with MOH if necessary. The reaction is carried out at about room temperature for 1 to 24 hours.
[0046]
The compound of the general formula (V) can be synthesized as follows.
[0047]
Embedded image
[0048]
(Wherein PFPE and M are as defined above. Cl-X 'is Cl-SO3H or Cl-PO3R '(R' is as defined above). )
The reaction can be carried out in the same manner as in the synthesis of the compound of the general formula (IV).
[0049]
Next, the compound of the general formula (VI) and a synthesis method thereof will be described below.
[0050]
Recently, a surfactant having a high ability to dissolve water in carbon dioxide was reported (Lecture No. H123 of the 66th Annual Meeting of the Chemical Engineering Society; Langmuir # 2001, # 17, # 274). Specifically, it is a perfluoroalkyl analog of a so-called sulfosuccinate salt (hereinafter, AOT) shown below.
[0051]
Embedded image
[0052]
On the other hand, as a fluoroalkyl group necessary for a compound effective as a surfactant for carbon dioxide, a perfluoropolyether group is known. Ammonium perfluoropolyether carboxylate as shown below
F- (CF (CF3) CF2O)nCF (CF3) COO−NH4 +(Where n is an integer of 1 or more) has been best studied (Science 1996, 271, 624 .: J. Org. Chem. 1999, 64, 1201.).
[0053]
In the process of studying the surface active function of the fluorine-containing ammonium carboxylate in carbon dioxide, the present inventor also found that a compound having a perfluoropolyether group rather than a perfluoroalkyl group had higher solubility in carbon dioxide and a higher surface active function. It was found to be excellent (see Reference Example 1B).
[0054]
Based on the above findings, in order to further enhance the function of AOT fluoroalkyl analog, which has been known as an effective fluorosurfactant, the present inventors have developed a surfactant having a perfluoropolyether group in the alkyl group of AOT. Agent was invented.
[0055]
Specifically, it is as shown in general formula (VI).
[0056]
Embedded image
[0057]
(Where A and B are as defined above)
The compound of the present invention is obtained by reacting fumaric acid chloride with an alcoholate of a fluorinated alcohol to synthesize a fumaric acid diester.3Can be easily synthesized by adding That is, as shown below, fumaric acid chloride is first added dropwise to an alcoholate derived from an alcohol and a base to synthesize a fumaric acid diester. Further, this is mixed with NaHSO in a suitable solvent.3With an aqueous solution of Examples of the metal forming the alcoholate include metals such as lithium, sodium, and potassium.These include metals such as butyllithium, metal hydrides, metal alcoholates such as methanol, and metal amides such as sodium amide as bases. It can be prepared by reacting an alcohol with an appropriate solvent. Examples of the solvent used here include ether, THF, toluene, methanol, ethanol, DMF, and DMSO. The reaction temperature here is about -100 ° C to 120 ° C, but preferably -78 ° C to 40 ° C.
[0058]
Embedded image
[0059]
A conventionally known method for synthesizing a fluorine-containing AOT analog (Bull. Chem. Soc. 1991, 64, 3262) involves the dehydration and esterification of a fluoroalcohol and maleic anhydride in toluene or benzene in the presence of an alkylsulfonic acid catalyst. As a result, an intermediate, fumaric acid diester, is synthesized.
[0060]
Embedded image
[0061]
Although this method has advantages in reaction conditions, cost of reagents to be used, and the like, fluoroalcohols generally have low reactivity to esterification due to electron effects derived from fluorine atoms and steric effects. Is about 30% in many cases. In addition, in the compound synthesis of the present invention, as shown in Reference Example 2B and thereafter, if the first step is carried out according to the conventional method, the target maleic ester cannot be obtained. In order to further improve the yield, fumaric acid chloride and alcohol were examined in the presence of an amine, but if the yield of the target product was low or the reactivity of the raw material alcohol was low, the target product could be obtained. Absent. Further, alcohol and carboxylic acid were examined in the presence of a condensing agent (DCC, ΔDPPA), but the target product could not be obtained in a practical yield.
[0062]
【Example】
The compounds of the present invention will be specifically described with reference to the following synthesis examples, but the present invention is not limited to the compounds listed here.
[0063]
Examples 1A to 4A relate to the compound of the general formula (I) or (II).
Example 1A
[0064]
Embedded image
[0065]
Perfluoropolyether carboxylic acid methyl ester (MW = 676, and the perfluorocarboxylic acid esters used in Examples of the present invention are easily obtained by dehydration esterification of carboxylic acid and alcohol by a conventional method) (1.66 g, 2.46 mmol) and tris (hydroxylmethyl) methylamine (297.8 mg, 2.46 mmol) were heated in DMF (10 ml) at 60 ° C. for 48 hours. After cooling, the solvent was distilled off under reduced pressure to obtain the desired product quantitatively. Colorless viscous substance:1H-NMR (CD3OD): δ 3.75-3.90 ° (m).19F-NMR (CD3OD): {ppm} -144.0 to -145.0 (m), {-129.6 to -130.6} (m), {129.35} (s), {-83.8 to -84.6} (m), −77.5 to −83.0 ° (m). IR (neat, cm-1): $ 3386, $ 1719, $ 1526, $ 1306, $ 1239, $ 1202, $ 1153. {MS (FAB) m / z {766} (M++1). HRMS Found: m / z 766.019. Calcd for C16H11O7NF23: M + 1, 7.66.017.
Example 2A
[0066]
Embedded image
[0067]
Perfluoropolyetherdicarboxylic acid dimethyl ester (MW = 466) (466 mg, 1 mmol) and tris (hydroxylmethyl) methylamine (243 mg, 2 mmol) were heated to reflux in dioxane (10 ml) for 24 hours. After cooling, the solvent was distilled off under reduced pressure to obtain the desired product quantitatively. Colorless viscous substance:1H-NMR (CD3OD): δ 3.82 (bs).19F-NMR (CD3OD): {ppm} -76.6 to -77.8} (m, {4F), {-87.6 to -88.5} (m, {8F). IR (neat, cm-1): $ 3389, $ 1716, $ 1521, $ 1356, $ 1206, $ 1140.
Example 3A
[0068]
Embedded image
[0069]
Perfluoropolyether dicarboxylic acid dimethyl ester (MW = 350) (350 mg, 1 mmol) and tris (hydroxylmethyl) methylamine (243 mg, 2 mmol) were heated to reflux in dioxane (10 ml) for 24 hours. After cooling, the solvent was distilled off under reduced pressure to obtain the desired product quantitatively. Colorless viscous substance:1H-NMR (CD3OD): δ3.80 (bs).19F-NMR (CD3OD): {ppm} -77.92} (t, J = 11.4 Hz, {4F), {-88.83} (t, J = 11.4 Hz, {4F). IR (neat, cm-1): $ 3390, $ 1718, $ 1523, $ 1356, $ 1210, $ 1139.
Example 4A
[0070]
Embedded image
[0071]
An aqueous solution (450 ml) of sodium hydroxide (400 mg, 10 mmol) was added to a mixture of perfluoropolyether alcohol (MW = 482) (4.82 g, @ 10 mmol) and epichlorohydrin (1.85 g, @ 20 mmol) at 100 ° C. Over 30 minutes. After cooling, the reaction product was extracted with ethyl acetate, the solvent was distilled off, and the residue was purified by column chromatography (SiO2, {n-hexane-EtOAC} = {10: 1) to obtain a fluorinated epoxy compound (3.09 g, 58). %). Colorless oil:1H-NMR (CDCl3): Δ2.62 (dd, = J = 4.8, 2.6 Hz, 1H), 2.82 (dd, J = 4.8, 4.8 Hz, 1H), 3.12 ~ 3.20 {(m, 1H), {3.42 to 3.55} (m, 1H), 3.90 to 4.05 (m, 1H), {4.10 to 4.25} (m, 2H). IR (neat, cm-1): $ 1307, $ 1236, $ 1202, $ 1159, $ 1121, $ 994.
[0072]
Embedded image
[0073]
The previously obtained epoxy compound (82 mg, @ 0.15 mmol) and tris (hydroxymethyl) methylamine (18.5 mg, @ 0.15 mmol) were heated under reflux in dioxane (2 ml) for 24 hours. After cooling, the solvent was distilled off to obtain the desired product. Colorless viscous substance:1H-NMR (CD3OD):? IR (neat, cm-1): $ 3448, $ 1338, $ 1307, $ 1260, $ 1156, $ 1085.
Example 1B
Synthesis of Bis (1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxananyyl) sulfosuccinate \ sodiu \ m \ salt
[0074]
Embedded image
[0075]
Synthesis of Bis (1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxananyyl) fumarate
[0076]
Embedded image
[0077]
To a solution of 1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanon-1-ol (9.64 g, @ 20 mmol) in THF (50 ml) at -78 ° C at 1.5 M @ n-BuLi hexane solution (13 ml, 20 mmol) was added dropwise, and the solution was stirred at 0 ° C. for 30 minutes to prepare a lithium alcoholate. To this solution was added dropwise a solution of fumaric chloride (1.53 g, 10 mmol) in THF (10 ml) at −78 ° C., and the mixture was stirred at room temperature for 15 hours. The reaction solution was opened in ice water and extracted with ether. After dehydration of the organic phase with magnesium sulfate, the solvent was distilled off. The residue was distilled under reduced pressure (bp. 130 ° C./1 mmHg) to obtain Compound 2 (14.89 g, 71%).
1H-NMR (CD3COCD3): Δ 5.06 (d, J = 11.8 Hz, 4H), 6.94 (s, 2H). IR (KBr, cm-1): $ 1753, $ 1306, $ 1237, $ 1202, $ 1156. {MS (EI) m / z {1044} (M+), {1025} (M+−F), {975} (M+-CF3), {859} (M+-CF3CF2CF2OF), {563} (M+−F (CF2CF2CF2O)2CF (CF3) CH2O). HRMSFound: m / z 1043.9510. Calcd for C22H6O8F34: $ M, $ 1043.9520.
Synthesis of Compound 1
[0078]
Embedded image
[0079]
Compound 2 (650.4 mg, 0.62 mmol) and NaHSO3(200 mg) in Dioxane-H2The mixture was heated under reflux in a mixed solution of O (5: 1) for 48 hours. After evaporating the solvent, the reaction product was subjected to Soxhlet extraction (solvent acetone) to obtain Compound 1 (379 mg, 54%).
1H-NMR (CF3COOD): δ 3.43-3.57} (m, {2H), {4.65-5.05} (m, $ 5H). IR (KBr, cm-1): 1761, $ 1310, $ 1240, $ 1158. {MS (FAB) m / z {1149} (M++1). HRMS Found: m / z 1148.9913. Calcd for C22H7O11SF34Na : M + 1, 148.914.
Example 2B
Synthesis of Bis (1H, 1H-perfluoro-3,6,9-trioxatridecanyl) sulfosuccinate @ sodium @ salt (compound 3)
[0080]
Embedded image
[0081]
Synthesis of Bis (1H, 1H-perfluoro-3,6,9-trioxatridecanyl) fumarate (compound 4)
[0082]
Embedded image
[0083]
1.5 M @ n-BuLi hexane solution (1.33 ml, @ 2 mmol) in THF solution (2 ml) of 1H, 1H-perfluoro-3,6,9-trioxatridecan-1-ol (1.10 g, @ 2 mmol) at -78 DEG C. Was added dropwise, and the solution was stirred at 0 ° C. for 30 minutes to prepare a lithium alcoholate. To this solution was added dropwise a THF solution (2 ml) of fumaric acid chloride (153 mg, に 1 mmol) at −78 ° C., and the mixture was stirred at room temperature for 15 hours. The reaction solution was opened in ice water and extracted with ether. After dehydration of the organic phase with magnesium sulfate, the solvent was distilled off. The residue was subjected to column chromatography (SiO2, Δn-hexane-EtOAc = 10: 1) to obtain compound 4 (714 mg, Δ61%).
1H-NMR (CD3COCD3): Δ 4.89 (t, J = 9.2 Hz, 4H), 6.97 (s, 2H). IR (KBr, cm-1): 1752, $ 1308, $ 1215, $ 1145, $ 1120. {MS (EI) m / z {1176} (M+), {1158} (M++ HF), {1058} (M++ H-CF2-CF3), {942} (M++ H -OCF2CF2CF2CF3), {826} (M++ H-(OCF2CF2)2CF2CF3), {710} (M++ H-(OCF2CF2)3CF2CF3). HRMS Found: m / z 1175.9354. Calcd for C24H6O10F38: M, 1175.9348.
Synthesis of Compound 3
[0084]
Embedded image
[0085]
Compound 4 (700 mg, 0.6 mmol) and NaHSO3(200 mg) in Dioxane-H2The mixture was heated under reflux in a mixed solution of O (5: 1) for 24 hours. After evaporating the solvent, the reaction product was subjected to Soxhlet extraction (solvent acetone) to obtain the desired product (512 mg, 65%).
1H-NMR (CF3COOD): [delta] 3.41-3.62 {(m, $ 2H), {4.56-4.40} (m, $ 5H). IR (KBr, cm-1): 1760, $ 1309, $ 1220, $ 1146. {MS (FAB) m / z {1281} (M++1). HRMS Found: m / z 1280.895. Calcd for C24H8O13SF38Na : M + 1, 1280.898.
Example 3B
Synthesis of Bis (1H, 1H-perfluoro-2-methyl-3-oxahexyl) sulfosuccinate \ sodium \ salt (compound 5)
[0086]
Embedded image
[0087]
Synthesis of Bis (1H, 1H-perfluoro-2-methyl-3-oxahexyl) fumarate
[0088]
Embedded image
[0089]
A 1.5 M n-BuLi hexane solution (13 ml, 20 mmol) was added dropwise to a THF solution (20 ml) of 1H, 1H-perfluoro-2-methyl-3-oxahexan-1-ol (6.32 g, 20 mmol) at -78 ° C. The solution was stirred at 0 ° C. for 30 minutes to prepare a lithium alcoholate. To this solution was added dropwise a solution of fumaric chloride (1.53 g, 10 mmol) in THF (10 ml) at −78 ° C., and the mixture was stirred at room temperature for 15 hours. The reaction solution was opened in ice water and extracted with ether. After dehydration of the organic phase with magnesium sulfate, the solvent was distilled off. The residue was distilled under reduced pressure (bp. 140 ° C./20 mmHg) to obtain compound 6 (4.69 g, 70%).
1H-NMR (CD3COCD3): Δ 4.96-5.20} (m, {4H), {6.96} (s, {2H). IR (KBr, cm-1): $ 1752, $ 1335, $ 1233, $ 1202, $ 1149, $ 999. {MS (FAB) m / z {713} (M + 1). HRMS Found: m / z 642.984. Calcd for CFifteenH6O6F19: M-CF3, {642.986.
Synthesis of Compound 5
[0090]
Embedded image
[0091]
Compound 6 (4.96 g, 7 mmol) and NaHSO3(1.21 g) in Dioxane-H2The mixture was heated under reflux in a mixed solution of O (5: 1) for 48 hours. After evaporating the solvent, the reaction product was subjected to Soxhlet extraction (solvent acetone) to obtain Compound 5 (3.31 g, 58%).
1H-NMR (CD3OD): δ 3.08-3.35 (m, 2H), {4.12-4.23} (m, 1H), {4.60-5.05} (m, 4H). IR (KBr, cm-1): $ 1761, $ 1310, $ 1240, $ 1158. {MS (FAB) m / z {817} (M++1). HRMSFound: m / z 816.942. Calcd for C16H8O9SF22Na: M + 1, 816.944.
Reference Example 1B
Surfactant effect of ammonium perfluoropolyethercarboxylate and ammonium perfluoroalkylcarboxylate
C13F27COO−NH4 +Was sealed in a pressure-resistant device with a window having a capacity of 38 ml, and 454 mg (1.4 wt%) was sealed therein. Even at 50 ° C. and 250 atm, unmelting was observed.
C10F21COO−NH4 +Was sealed in a pressure-resistant device with a window having a capacity of 38 ml, and 358 mg (1.4 wt%) was sealed therein. It melt | dissolved at 50 degreeC and 250 atm. Add more water to this0A calculated amount at which the value was 10 was introduced, and the solubility was examined at the same carbon dioxide density, but a uniform microemulsion could not be formed.
[0092]
In contrast, ammonium perfluoropolyethercarboxylate is very easily dissolved in carbon dioxide having the above density up to the amount of 1.4 wt%, and the following W was examined in a study in which water was introduced into this system.0The values are shown. From these results, it was suggested that the compound having a perfluoropolyether chain had better solubility in carbon dioxide than the compound having a perfluoroalkyl chain, and further gave excellent properties as a surfactant.
Structure and W of ammonium perfluoropolyethercarboxylate0value
F- (CF (CF3) CF2O)2−CF (CF3) COO−NH4 +W0= 14
F- (CF (CF3) CF2O)3−CF (CF3) COO−NH4 +W0= 21
Reference Example 2B
Reaction of 1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanonan-1-ol with maleic anhydride
1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanon-1-ol (2 g, @ 4.1 mmol) maleic anhydride (196 mg, @ 2 mmol) was added in the presence of p-toluenesulfonic acid (100 mg). The mixture was heated under reflux in toluene for 15 hours. After the solvent was distilled off, the product was analyzed by NMR, GLC, and TLC.
Reference Example 3B
Reaction of 1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanon-1-ol with maleic acid
1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanonan-1-ol (482 mg, 1 mmol) and maleic acid (58 mg, 0.5 mmol) were converted into DCC (1 equivalent), DMAP (0.1 equivalent) The reaction was carried out in methylene chloride at room temperature for 24 hours. After distilling off the solvent, the reaction product was analyzed for the product by NMR, and although there was a peak other than the raw material recovery, the peak was smaller than the raw material, and it was a mixture of many products. It could not be isolated.
Reference Example 4B
Reaction of perfluoropolyether alcohol with maleic acid
1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanon-1-ol (482 mg, 1 mmol) and maleic acid (58 mg, 0.5 mmol) are DPPA (1 equivalent) and triethylamine (2 equivalent). The reaction was carried out in the presence of DMF at room temperature for 24 hours. After distilling off the solvent, the reaction product was analyzed for the product by NMR, and although there was a peak other than the raw material recovery, the peak was smaller than the raw material, and it was a mixture of many products. It could not be isolated.
Reference Example 5B
Reaction of 1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanon-1-ol with fumaric acid chloride
1H, 1H-perfluoro-2,5-dimethyl-3,6-dioxanonan-1-ol (482 mg, {1 mmol) and chlorofumarate (76 mg, 0.5 mmol) were added to DMAP (0.1 equivalent) in hydridic acid. The reaction was performed at room temperature for 15 hours. After distilling off the solvent, the reaction product was analyzed for its product by NMR. As a result, peaks other than raw material recovery were present, but the target product could not be detected.
Reference Example 6B
Reaction of 1H, 1H-perfluoro-3,6,9-trioxatridecan-1-ol with fumaric acid chloride
1H, 1H-perfluoro-3,6,9-trioxatridecan-1-ol (1.10 g, 2 mmol) and chlorofumarate (153 mg, 1 mmol) were dissolved in DMAP (0.1 equivalent) in drip for 15 minutes at room temperature. Allowed to react for hours. After evaporating the solvent, the residue was subjected to column chromatography (SiO 2, Δn-hexane-EtOAc = 10: 1) to obtain compound 4 (294 mg, Δ25%).
Example 1C
[0093]
Embedded image
[0094]
Synthesis of
[0095]
Embedded image
[0096]
A mixture of perfluoropolyether alcohol (MW = 482; 9.64 g, 20 mmol) and epichlorohydrin (925 mg, 10 mmol) was added at 100 ° C. to an aqueous NaOH solution (NaOH 800 mg and H2(Prepared from 0 to 800 mg) was added dropwise and stirred at this temperature for 15 hours. After cooling, the reaction was diluted with water and extracted with ether. After distilling off the solvent, the product is separated by column chromatography (SiO 2).2, N-hexane-EtOAc = 10: 1) to give the alcohol (6.63 g, 65%). Alcohol, colorless oily substance:1H-NMR (CDCl3): Δ 2.16} (s, {1H), {3.58-3.70} (m, 4H), {3.88-4.00} (m, 1H), {4.00-4.12} (m, 4H). IR (neat, cm-1): $ 3448, $ 1236, $ 1202, $ 1159, $ 1121, $ 994. {MS (FAB) m / z {1021} (M+1). HRMS Found: m / z 1020.995. Calcd for C21H11O7F34(M + 1): {1020.996.
[0097]
Embedded image
[0098]
The previously synthesized alcohol compound (72 mg, 0.07 mmol) was added to POCl3(10.8 mg, 0.07 mmol) was added dropwise to an ether solution at 0 ° C., and triethylamine (10 μl, 0.07 mmol) was further added thereto. After stirring this solution at room temperature for 1 hour, the solvent was distilled off under reduced pressure. To the residue was added choline tosylate (19.6 mg, 0.07 mmol), pyridine (0.5 ml), chloroform (2 ml) at 0 ° C., and the mixture was further stirred at room temperature for 15 hours. After water was added to the reaction solution to hydrolyze the acid chloride, the solvent was distilled off. Colorless viscous substance:1H-NMR (CD3OD): δ 3.08-3.20} (m, {2H), {3.20-3.54} (m, {4H), {3.55-3.56} (m, {2H), {3.76-4.24} ( m, @ 5H). {MS (FAB) m / z {1186} (M+1). HRMS Found: m / z 1186.049. Calcd for
C26H22O10NPF34(M+1): {1186.052.
Example 2C
[0099]
Embedded image
[0100]
Synthesis of
[0101]
Embedded image
[0102]
Alcohol (133 mg, 0.13 mmol) in methylene chloride (2 ml)3H (15 mg, 0.13 mmol) was added dropwise at 0 ° C., and the mixture was stirred at room temperature for 15 hours. After evaporating the solvent under reduced pressure, the residue was suspended in water (2 ml), 1N sodium hydroxide (0.1 ml) was added thereto, and the mixture was stirred at room temperature for 15 hours. After evaporating the solvent under reduced pressure, the residue was dissolved in methanol to remove inorganic salts.1H-NMR (CD3OD): δ {3.56-3.72} (m, {2H), {3.76-3.96} (m, $ 3H), {4.12-4.32} (m, $ 4H). IR (neat, cm-1): $ 1306, $ 1237, $ 1203, $ 1157,
1121, $ 994.
Example 3C
[0103]
Embedded image
[0104]
Synthesis of
[0105]
Embedded image
[0106]
Perfluoropolyether fumarate (208 mg, 0.2 mmol) KMnO4(47 mg, 0.3 mmol) in the presence of tetrabutylammonium bromide (5 mg) in water-CH3CFCl2(1-5 ml) at room temperature for 15 hours. CH to product3CFCl2And the residue after evaporation of the solvent was purified by column chromatography (SiO2, {n-hexane-EtOAC} = {10: 1) to obtain 156 mg of the diol (72.3%). Colorless oil.1H-NMR (CD3COCD3): Δ 4.30 (bs, 2H), 4.85-5.18 (m, 4H), 5.38-5.50 (m, 2H). IR (neat, cm-1): $ 3448, $ 1236, $ 1202, $ 1158, $ 994. {MS (FAB) m / z {1079} (M + 1). HRMS Found: m / z 1078.967. Calcd for C22H9O10F34(M+): 1078.965.
[0107]
Embedded image
[0108]
The diol (255 mg, 0.21 mmol) in methylene chloride (2 ml) was treated with ClSO3H (49 mg, 0.42 mmol) was added dropwise at 0 ° C., and the mixture was stirred at room temperature for 15 hours. After evaporating the solvent under reduced pressure, the residue was suspended in water (2 ml), and 1N NaHCO 3 was added thereto.3(0.1 ml) and the mixture was stirred at room temperature for 15 hours. After evaporating the solvent under reduced pressure, the residue was dissolved in methanol to remove inorganic salts.1H-NMR (CD3OD): δ {4.85-5.25} (m, $ 4H), {5.40-5.63} (m, $ 2H). MS (FAB) m / z {1239} (M + 1). HRMS Found: m / z 1238.878. Calcd for C22H9O16S2F34(M + 1): {1238.887.
Example 4C
[0109]
Embedded image
[0110]
Synthesis of
[0111]
Embedded image
[0112]
To a solution of D-tartaric acid (151 mg, 1 mmol) in dimethoxyethane (5 ml) was added perfluoropolyethercarboxylic acid (1.33 g, 2 mmol) at 0 ° C., and excess ammonia was passed through this. After stirring the reaction solution at room temperature for 15 hours, the solvent was distilled off under reduced pressure to obtain the desired product (quantitative). Colorless viscous substance.1H-NMR (CD3OD): δ 5.05} (bs, {2H). IR (neat, cm-1): $ 3212, $ 1728, $ 1635, $ 1303, $ 1240, $ 1202, $ 1148. {MS (FAB) m / z {1473} (M + 1). HRMS Found: m / z 1472.744. Calcd for C28H11N2O14F46(M+): 1472.946.
Examination of micelle formation ability 1
A pressure-resistant device with a window (38 ml in content) was charged with 440 mg of the perfluoropolyethercarboxylic acid trishydroxymethylmethylamide (MW = 765) obtained in Example 1A and a certain amount of water, and charged with carbon dioxide. Under the conditions of 50 ° C. and 250 atm, it was visually determined whether or not the W / C micelles were uniform. The W0 value was calculated by subtracting the amount of water dissolved in carbon dioxide without a surfactant under the same conditions from the amount of water at this time. W0 value = 15.
Examination of micelle formation ability 2
AOT-Fluoranalog (compound 5) {500} mg and a fixed amount of water were put into a pressure-resistant device with a window (contents 38 ml), filled with carbon dioxide, and at 50 ° C. and 250 atm. It was visually determined whether or not it was uniform. The W0 value was calculated by subtracting the amount of water dissolved in carbon dioxide without a surfactant under the same conditions from the amount of water at this time. W0 value = 45. Compound 5 showed a very fast dissolution rate, whereas AOT-Fluoranalog with existing fluoroalkyl groups required an overnight aging time to dissolve in carbon dioxide before testing.
Reaction example 1
Bromination reaction in supercritical carbon dioxide
A benzyl chloride 126 mg {(1 mmol), {AOT-Fluoranalog (MW = 816)} 400 mg, and KBr {119 mg} (1 mmol) and water {176 mg} (W = 20) were sealed in a pressure-resistant device having a capacity of 38 ml. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 50 ° C. and 250 atm for 20 hours. After cooling, carbon dioxide was purged and the reaction was extracted with ether. After distilling off the solvent, the product was analyzed by gas chromatography (benzyl bromide yield: 40%).
Reaction example 2
Reduction reaction in supercritical carbon dioxide 1
76.5 mg of perfluoropolyethercarboxylic acid trishydroxymethylmethylamide (MW = 765) obtained in Example 1A (0.1 mmol) in a pressure-resistant device having a capacity of 50 ml, 9.25 mg of Wilkinson's catalyst (0.01 mol), and 1 g of carvone (6.6 mmol) was sealed. After introducing carbon dioxide into the mixture and making it supercritical at 34 ° C. and 74 atm, hydrogen was packed to a partial pressure of 10 atm and reacted at room temperature for 1 hour. The carbon dioxide was purged and the reaction was extracted with ether. After distilling off the solvent, the product was analyzed by gas chromatography (90% yield of dihydrocarbon).
Reaction example 3
Reduction reaction in supercritical carbon dioxide 2
Trishydroxymethylmethylamide perfluoropolyethercarboxylate (MW = 765) obtained in Example 1A in a pressure-resistant apparatus having a capacity of 50 ml (MW = 765) 76.5 mg (0.1 mmol), {(R) -BINAP {16 mg} (0.02 mol), geraniol 3.8 g (20 mmol) was sealed. After introducing carbon dioxide into the mixture and making it supercritical at 34 ° C. and 74 atm, hydrogen was packed to a partial pressure of 30 atm and reacted at room temperature for 15 hours. The carbon dioxide was purged and the reaction was extracted with ether. After evaporating the solvent, the product was analyzed by gas chromatography (S-citroneol yield: 75%, 85% ee).
Reaction example 4
Enzymatic esterification in supercritical carbon dioxide
AOT-Fluoranalog (MW = 816) 200 mg, lipase (Pseudomonas sp.) 10 mg, phosphate buffer (pH 6.8) 88 mg (W = 20), benzyl alcohol 1.08 g (10 mmol) in a pressure-resistant device having a capacity of 38 ml ) {Oleic acid {2.82 g} (10 mmol)} was sealed. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 40 ° C. and 250 atm for 20 hours. After cooling, carbon dioxide was purged and the reaction was extracted with ether. After distilling off the solvent, the product was analyzed by gas chromatography (ester product yield: 65%).
Reaction example 5
Enzymatic oxidation reaction in supercritical carbon dioxide
AOT-Fluoranalog (MW = 816) {200 mg, cholesterol oxide (Pseudomonas) 10 mg, phosphate buffer (pH 7.0) {88 mg} (W = 20), cholesterol {0.39 g} (1 mmol) in a pressure-resistant device having a capacity of 38 ml. Sealed. After introducing carbon dioxide into the mixture to make it supercritical at 34 ° C. and 74 atm, oxygen was packed to a partial pressure of 10 atm and stirred at 40 ° C. and 250 atm for 20 hours. After cooling, carbon dioxide was purged and the reaction was extracted with ether. After evaporating the solvent, the product was analyzed by gas chromatography (cholest-4-en-3-one yield 35%).
Reaction example 6
Polymer synthesis in supercritical carbon dioxide (PMMA)
AOT-Fluoranalog (MW = 816) (100 mg), MMA (1 g), and AIBN (20) mg were sealed in a pressure-resistant device having a capacity of 50 ml. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 60 ° C. and 100 atm for 20 hours. After cooling, carbon dioxide was purged and the reaction was extracted with THF. After distilling off the solvent, the product was analyzed by GPC (Mn = 18000, yield 65%).
Extraction example 1
Protein extraction
AOT-Fluoranalog (MW = 816) {400 mg, albumin (Bovine @ serum) 10 mg, and water {176 mg} (W = 20)} were sealed in a pressure-resistant device (with a window) having a capacity of 38 ml. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 35 ° C. and 250 atm for 20 hours. A homogeneous solution was confirmed by visual observation from the window.
Extraction example 2
Phospholipid extraction
AOT-Fluoranalog (MW = 816) {400 mg, 30 mg of phosphatidylcholine (derived from a yellow egg), and water {176 mg} (W = 20)} were sealed in a pressure-resistant device (with a window) having a capacity of 38 ml. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 40 ° C. and 250 atm for 20 hours. A homogeneous solution was confirmed by visual observation from the window.
Extraction example 3
Extraction of inorganic salts (AgClO4)
AOT-Fluoranalog (MW = 816) @ 400 mg in a pressure-resistant device (with window) with a capacity of 38 ml, and AgClO4{36 mg, water {176 mg} (W = 20)} were sealed. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 40 ° C. and 350 atm for 20 hours. A homogeneous solution was confirmed by visual observation from the window.
Extraction example 4
Extraction of inorganic salts (NaCl)
AOT-Fluoranalog (MW = 816) (400 mg), NaCl (10 mg), and water (176 mg) (W = 20) were sealed in a pressure-resistant device (with a window) having a capacity of 38 ml. Carbon dioxide was introduced into the mixture, and the mixture was stirred at 40 ° C. and 250 atm for 20 hours. A homogeneous solution was confirmed by visual observation from the window.
Claims (8)
Rは、水素原子、アルキル基、アリール基またはアラルキル基を示す。
RfはFまたはCF3を示す。
Y1及びY2は、同一または異なって、連結基を表す。
Mは、アルカリ金属、アルカリ土類金属などの金属またはN(R)4(Rは前記に定義されたとおりである)を示す。
XはSO3 −M+(Mは前記に定義されたとおりである)または
A,Bの一方或いは両方はペルフルオロポリエーテル基を示し、一方のみがペルフルオロポリエーテル基の場合、他方はアルキル基、ペルフルオロアルキル基、またはシロキサン単位を含む基を示す。
X1及びX2は、一方がX(前記に定義されたとおりである)であり、他方がCO(PFPE)(PFPEは、前記に定義されたとおりである)である。〕。Amphiphilic compound containing a perfluoropolyether group represented by any of the following general formulas (I) to (VI):
R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
Rf represents F or CF 3.
Y 1 and Y 2 are the same or different and represent a linking group.
M represents a metal such as an alkali metal or an alkaline earth metal or N (R) 4 (R is as defined above).
X is SO 3 - M + (M is as defined above) or
One or both of A and B represent a perfluoropolyether group, and when only one is a perfluoropolyether group, the other represents an alkyl group, a perfluoroalkyl group, or a group containing a siloxane unit.
One of X 1 and X 2 is X (as defined above) and the other is CO (PFPE) (PFPE is as defined above). ].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171609A JP2004018394A (en) | 2002-06-12 | 2002-06-12 | Fluorine-containing amphiphilic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171609A JP2004018394A (en) | 2002-06-12 | 2002-06-12 | Fluorine-containing amphiphilic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004018394A true JP2004018394A (en) | 2004-01-22 |
Family
ID=31171420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002171609A Pending JP2004018394A (en) | 2002-06-12 | 2002-06-12 | Fluorine-containing amphiphilic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004018394A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759042A (en) * | 1993-08-13 | 1995-03-03 | Toshiba Corp | Picture storage device |
US7811473B2 (en) * | 2004-05-20 | 2010-10-12 | Daikin Industries, Ltd. | Branched surfactant having fluoroalkyl group and hydrocarbon group |
WO2011030737A1 (en) * | 2009-09-11 | 2011-03-17 | Jsr株式会社 | Radiation-sensitive composition and novel compound |
WO2011115157A1 (en) * | 2010-03-18 | 2011-09-22 | 東京エレクトロン株式会社 | Resist removal device and resist removal method |
US8338517B2 (en) | 2007-05-23 | 2012-12-25 | 3M Innovative Properties Company | Aqueous compositions of fluorinated surfactants and methods of using the same |
US8476385B2 (en) | 2007-06-06 | 2013-07-02 | 3M Innovative Properties Company | Fluorinated ether compositions and methods of using the same |
US8629089B2 (en) | 2008-12-18 | 2014-01-14 | 3M Innovative Properties Company | Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions |
US8633288B2 (en) | 2008-07-18 | 2014-01-21 | 3M Innovative Properties Company | Fluorinated ether compounds and methods of using the same |
WO2014012661A1 (en) | 2012-07-18 | 2014-01-23 | Merck Patent Gmbh | Fluorosurfactants |
EP2736983A1 (en) * | 2011-07-28 | 2014-06-04 | Hewlett-Packard Development Company, L.P. | Perfluoropolyethers as ink additives |
WO2014194984A1 (en) * | 2013-06-04 | 2014-12-11 | Merck Patent Gmbh | Fluorinated surfactants in pesticides |
US9090772B2 (en) | 2011-08-04 | 2015-07-28 | Solvay Specialty Polymers Italy S.P.A. | Compositions of ionisable fluoropolymers |
JP2017061420A (en) * | 2015-09-24 | 2017-03-30 | 株式会社ネオス | Fluorine-containing carboxylic acid compound |
CN107577120A (en) * | 2016-07-04 | 2018-01-12 | 东友精细化工有限公司 | Anticorrosive additive stripping liquid controlling composition, display base plate and its manufacture method |
WO2018052037A1 (en) * | 2016-09-14 | 2018-03-22 | ダイキン工業株式会社 | Branched fluorine-containing compound |
US10315989B2 (en) | 2014-02-21 | 2019-06-11 | Merck Patent Gmbh | Fluorinated tensides |
US10464874B2 (en) | 2014-02-21 | 2019-11-05 | Merck Patent Gmbh | Fluorinated tensides |
CN115448945A (en) * | 2021-06-08 | 2022-12-09 | 恒大新能源技术(深圳)有限公司 | Halogenated phosphate and preparation method and application thereof |
CN115448947A (en) * | 2021-06-08 | 2022-12-09 | 恒大新能源技术(深圳)有限公司 | Halogenated phosphate containing branched chain, preparation method and application thereof |
-
2002
- 2002-06-12 JP JP2002171609A patent/JP2004018394A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759042A (en) * | 1993-08-13 | 1995-03-03 | Toshiba Corp | Picture storage device |
US7811473B2 (en) * | 2004-05-20 | 2010-10-12 | Daikin Industries, Ltd. | Branched surfactant having fluoroalkyl group and hydrocarbon group |
US7906042B2 (en) | 2004-05-20 | 2011-03-15 | Daikin Industries, Ltd. | Branched surfactant having fluoroalkyl group and hydrocarbon group |
US8338517B2 (en) | 2007-05-23 | 2012-12-25 | 3M Innovative Properties Company | Aqueous compositions of fluorinated surfactants and methods of using the same |
US8476385B2 (en) | 2007-06-06 | 2013-07-02 | 3M Innovative Properties Company | Fluorinated ether compositions and methods of using the same |
US8633288B2 (en) | 2008-07-18 | 2014-01-21 | 3M Innovative Properties Company | Fluorinated ether compounds and methods of using the same |
US8629089B2 (en) | 2008-12-18 | 2014-01-14 | 3M Innovative Properties Company | Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions |
WO2011030737A1 (en) * | 2009-09-11 | 2011-03-17 | Jsr株式会社 | Radiation-sensitive composition and novel compound |
JPWO2011030737A1 (en) * | 2009-09-11 | 2013-02-07 | Jsr株式会社 | Radiation sensitive composition and novel compound |
US9200098B2 (en) | 2009-09-11 | 2015-12-01 | Jsr Corporation | Radiation-sensitive composition and compound |
JP5655786B2 (en) * | 2009-09-11 | 2015-01-21 | Jsr株式会社 | Radiation sensitive composition |
CN102906858A (en) * | 2010-03-18 | 2013-01-30 | 东京毅力科创株式会社 | Resist removal device and resist removal method |
WO2011115157A1 (en) * | 2010-03-18 | 2011-09-22 | 東京エレクトロン株式会社 | Resist removal device and resist removal method |
EP2736983A4 (en) * | 2011-07-28 | 2014-10-01 | Hewlett Packard Development Co | Perfluoropolyethers as ink additives |
JP2014522903A (en) * | 2011-07-28 | 2014-09-08 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Perfluoropolyethers as ink additives |
EP2736983A1 (en) * | 2011-07-28 | 2014-06-04 | Hewlett-Packard Development Company, L.P. | Perfluoropolyethers as ink additives |
US9068096B2 (en) | 2011-07-28 | 2015-06-30 | Hewlett-Packard Development Company, L.P. | Perfluoropolyethers as ink additives |
US9090772B2 (en) | 2011-08-04 | 2015-07-28 | Solvay Specialty Polymers Italy S.P.A. | Compositions of ionisable fluoropolymers |
JP2015522593A (en) * | 2012-07-18 | 2015-08-06 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | Fluorinated surfactant |
WO2014012661A1 (en) | 2012-07-18 | 2014-01-23 | Merck Patent Gmbh | Fluorosurfactants |
US9481643B2 (en) * | 2012-07-18 | 2016-11-01 | Merck Patent Gmbh | Fluorosurfactants |
WO2014194984A1 (en) * | 2013-06-04 | 2014-12-11 | Merck Patent Gmbh | Fluorinated surfactants in pesticides |
US10315989B2 (en) | 2014-02-21 | 2019-06-11 | Merck Patent Gmbh | Fluorinated tensides |
US10464874B2 (en) | 2014-02-21 | 2019-11-05 | Merck Patent Gmbh | Fluorinated tensides |
JP2017061420A (en) * | 2015-09-24 | 2017-03-30 | 株式会社ネオス | Fluorine-containing carboxylic acid compound |
CN107577120A (en) * | 2016-07-04 | 2018-01-12 | 东友精细化工有限公司 | Anticorrosive additive stripping liquid controlling composition, display base plate and its manufacture method |
CN107577120B (en) * | 2016-07-04 | 2022-03-25 | 东友精细化工有限公司 | Resist stripping liquid composition, display substrate and manufacturing method thereof |
WO2018052037A1 (en) * | 2016-09-14 | 2018-03-22 | ダイキン工業株式会社 | Branched fluorine-containing compound |
CN109715597A (en) * | 2016-09-14 | 2019-05-03 | 大金工业株式会社 | Fluorochemical containing branch |
CN115448945A (en) * | 2021-06-08 | 2022-12-09 | 恒大新能源技术(深圳)有限公司 | Halogenated phosphate and preparation method and application thereof |
CN115448947A (en) * | 2021-06-08 | 2022-12-09 | 恒大新能源技术(深圳)有限公司 | Halogenated phosphate containing branched chain, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004018394A (en) | Fluorine-containing amphiphilic compound | |
EP1527079B1 (en) | Alkoxyamines originating from beta-phosphorylated nitroxides and use thereof in radical polymerisation | |
US7385077B1 (en) | Fluoroalkyl surfactants | |
EP2337804B1 (en) | Fluorinated polyoxyalkylene glycol diester surfactants | |
JP5646322B2 (en) | Mixed fluoroalkyl-alkyl surfactants | |
JP2011526905A (en) | Fluorinated ester | |
JP2011526905A5 (en) | ||
FR2853317A1 (en) | ALCOXYAMINES FROM NITROXIDES B-PHOSPHORES, THEIR USE FOR THE PREPARATION OF MONO OR POLYALCOXYAMINES, POLYMERIZED OR NOT | |
JP3310434B2 (en) | Fluorinated carboxylic esters of phosphonocarboxylic acids and phosphinocarboxylic acids | |
JP5864381B2 (en) | Novel fluorocarbon chain-containing compound, its production method and use | |
EP2346923B1 (en) | Fluorinated polyoxyalkylene glycol diamide surfactants | |
JPH0725778B2 (en) | Phosphate ester, method for producing the same and detergent composition containing the same | |
EP0311473A1 (en) | Fluorinated derivate of amino acids, useful as tensioactive or cotensioactive agents, and preparations for biomedical use containing these derivatives | |
US7687652B2 (en) | Sphingomyelin, intermediates thereof and methods for preparation of same | |
JPH04124165A (en) | Compound having two or three chains and two hydrophilic groups | |
FR3000959A1 (en) | NOVEL SYNTHETIC INTERMEDIATES FOR ACCEDING WITH GOOD YIELDS TO SPHINGOSINE, CERAMIDE AND SPHINGOMYELIN DERIVATIVES | |
CN116057044A (en) | Branched amino acid surfactants | |
JPH03271265A (en) | New aspartic acid derivative, production thereof and producing intermediate of same derivative | |
JPH0692424B2 (en) | Method for producing phosphate ester | |
JP2010065202A (en) | Amphiphilic itaconic acid ester and polymer thereof | |
JP3526369B2 (en) | Fluoroalkyl group-containing phosphate triester and method for producing the same | |
JP6727643B2 (en) | Compound, surface treatment agent, and surface treatment method | |
Müller et al. | Tethering of long‐chain amino acids to a rigid aromatic core—A new type of preorganized surfactants acting as flotative agents | |
JPH01272547A (en) | Production of carboxylic acids | |
JP3888914B2 (en) | Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081210 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090204 |