JP3888914B2 - Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof - Google Patents

Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof Download PDF

Info

Publication number
JP3888914B2
JP3888914B2 JP2002063985A JP2002063985A JP3888914B2 JP 3888914 B2 JP3888914 B2 JP 3888914B2 JP 2002063985 A JP2002063985 A JP 2002063985A JP 2002063985 A JP2002063985 A JP 2002063985A JP 3888914 B2 JP3888914 B2 JP 3888914B2
Authority
JP
Japan
Prior art keywords
group
formula
carboxylic acid
highly fluorinated
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063985A
Other languages
Japanese (ja)
Other versions
JP2002338534A (en
Inventor
剛 三浦
敏行 稲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Inst
Original Assignee
Noguchi Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Inst filed Critical Noguchi Inst
Priority to JP2002063985A priority Critical patent/JP3888914B2/en
Publication of JP2002338534A publication Critical patent/JP2002338534A/en
Application granted granted Critical
Publication of JP3888914B2 publication Critical patent/JP3888914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高度にフッ素化されたカルボン酸誘導体に関する。医薬や食品添加物、化粧品、液晶、電子材料、高分子材料モノマー、機能性材料、医療材料などのファインケミカルズの製造には有機合成化学の果たす役割が極めて高い。従来の有機合成の概念を越える技術としてフルオラス合成が提案され、その発展が望まれている。これはパーフルオロカーボンが有機溶媒や水に溶解せず、三者が互いに分液できることに着目し、高度にフッ素化した誘導体のみをパーフルオロカーボン層に抽出させ、化合物の精製を容易にかつ安全に行うという方法である。例えば化合物Aと化合物Bを反応させる工程に先立ち、高度にフッ素化されたカルボン酸(高度にフッ素化された基の導入試剤)を化合物Aと反応させ、高度にフッ素化された基を化合物Aの特定の官能基例えばアミノ基へ導入する。そののちに主反応である、当該反応生成物と化合物Bとの反応が行われる。これは化合物Aのもう一つの官能基、例えばカルボキシル基と化合物Bの、例えばアミノ基との反応である。このようにして得られた反応生成物は高度のフッ素含有率を有する為、この反応系にパーフルオロカーボン(溶媒)を加えると、この反応生成物は容易にパーフルオロカーボン層に移行するので、この特性を利用した操作により、分離が極めて容易となる。しかる後、主反応に先立ち付加しておいた高度にフッ素化された基を加水分解等により当該反応生成物からはずし、目的とする反応生成物を、純度高く、効率良く得ることができる。一方、フッ素原子の特性を利用し、材料表面を高度にフッ素化することで撥水性、潤滑性などを付与できることが期待できる。しかし、いずれの場合にも高度にフッ素化する方法として、高度にフッ素化された基を導入する試剤が必要となる。
【0002】
【従来の技術】
医薬や食品添加物等の分野において、この魅力あるフルオラス合成の手法を用いた有機合成の種々の試みが為されてきたが、いまだ成果が得られていない。それは、上記した予め化合物Aに反応させる、高度にフッ素化された基を導入する試剤に、当該フルオラス合成を成功させるものが無いことによる。高度にフッ素化されたカルボン酸として、(Rf)3Si−C64−CO−OH 〔Rf:C1021(CH2)−、 C613(CH2)−〕(Journal of Organic Chemistry誌、62巻、2917頁、1997年参照)等があるが、いずれも、これらを当該フルオラス合成に高度にフッ素化された基を導入する試剤として用いる時、当該試剤と上記した化合物Aに付加する反応が困難であり、加えて当該試剤をもって付加した高度にフッ素化された基を、主反応の後に加水分解等により当該反応生成物からはずす操作が困難であるため、汎用性の高いフルオラス合成に利用できなかった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、かかる従来の問題に対応することである。即ち、フルオラス合成において上記した試剤を、化合物Aに付加する反応が困難であり、加えて付加した高度にフッ素化された基を、当該反応生成物からはずす操作が困難であるため、当該フルオラス合成に利用できなかった問題を解決することである。この課題は、上記した、当該反応生成物の反応系からの高い分離能を実現するものであり、また、有機化学反応でよく利用される、その単位プロセスで反応に係わらない官能基を保護する高度にフッ素化された保護基を実現するものである。また一つの本発明の課題は、高分子材料や天然素材の特異な表面修飾剤を、そして特異なフルオラス有機プロトン酸触媒を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、本発明化合物を創出するとともに、本発明化合物を構成するメチレン基に、フルオラス合成における高度にフッ素化された基の導入と除去という上記した従来の問題を解決する効果があることを見出し、加えて充分なフッ素原子の導入にも成功し、本発明を完成させたのである。すなわち、本発明は、式[I](式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Rは水素、アルキル基、アラルキル基、アリール基のいずれかを、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で表されることを特徴とする高度にフッ素化されたカルボン酸誘導体とその製造法である。
【化8】

Figure 0003888914
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0006】
まず、中間体の製造法を説明する。
【0007】
式[II]
【化9】
Figure 0003888914
(式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Rはアルキル基、アラルキル基、アリール基を、lは1〜3の整数を、mは2または3を表す。)で表される中間体は、有機溶媒中、塩基存在下、アミノ酸エステルと、式[III]
【化10】
Figure 0003888914
(式中、Yはアルキルスルホニルオキシ基、アリールスルホニルオキシ基、またはフッ素を除くハロゲンのいずれかを、Rfはパーフルオロアルキル基を、nは整数を表す。)で表されるパーフルオロアルキル誘導体とを反応させ製造する。
【0008】
原料となるアミノ酸エステルとしては、周知のアミノ酸エステルを用いることができる。アミノ酸としては、グリシン、L−アラニン、D−アラニン、β−アラニン、3−アミノプロピオン酸等のアミノカルボン酸を挙げることができる。エステル部分には、周知のカルボン酸の保護基を用いることができる。たとえば、メチルエステル、エチルエステル、第三ブチルエステルなどのアルキルエステル体、ベンジルエステル、p−メトキシベンジルエステル、p−ニトロベンジルエステルなどのアラルキルエステル体、フェニルエステル、ナフチルエステル、フェナシルエステルなどの芳香族エステルを挙げることができる。
【0009】
もう一方の原料となる式[III](式中、Yはアルキルスルホニルオキシ基、アリールスルホニルオキシ基、またはフッ素を除くハロゲンのいずれかを、Rfはパーフルオロアルキル基を、nは整数を表す。)で表されるパーフルオロアルキル誘導体は周知の誘導体を使用できる。
【0010】
アルキルスルホニルオキシ基、アリールスルホニルオキシ基としては周知のスルホニルオキシ基を使用できる。たとえば、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基などのスルホニルオキシ基を挙げることができる。また、フッ素を除くハロゲンとしては、塩素、臭素、ヨウ素など周知のハロゲンを挙げることができる。
【0011】
パーフルオロアルキル基としては周知のパーフルオロアルキル基を用いることができる。たとえば、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロテトラデシル基などを挙げることができる。さらに、分岐構造や立体異性体の有無などを問わないことは言うまでもない。フッ素原子の導入率を高めるにはパーフルオロアルキル基は長鎖の方が有効である。しかし、通常取り扱いや入手の容易さを考慮し、炭素数3から16の範囲の誘導体を使用する。好ましくは炭素数5〜10の範囲の誘導体である。
【0012】
パーフルオロアルキル基に結合しているメチレン鎖は何ら制限はなく、通常炭素数1〜8のメチレン鎖である。特に、炭素数1〜4のメチレン鎖が好ましい。
【0013】
有機溶媒としては、周知の溶媒を使用できる。ジクロロメタン、クロロホルム、ヘキサン、ベンゼン、トルエン、テトラヒドロフラン、エーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、アセトニトリル、プロピオニトリル、酢酸エチル、ジメチルスルホキシド、メチルエチルケトン、パーフルオロヘキサン、パーフルオロカーボン(たとえば、フロリナートTMFC72)などを挙げることができる。また、これらの混合物や含水物、あるいは、不均一系での反応ができることは言うまでもない。
【0014】
塩基としては、何ら制限はない。たとえば、トリエチルアミン、トリブチルアミン、N,N−ジイソプロピルエチルアミン、ピリジン、DBUなどの有機塩基、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウムなどの無機塩基あるいは、ブチルリチウム、フェニルリチウムなどの有機金属化合物を挙げることができる。
【0015】
用いる両原料、塩基の当量数にも何ら制限はない。いずれか1成分か2成分を過剰に用いることもできる。アミノ酸エステルに1当量〜15当量の範囲の塩基と式[III](式中、Yはアルキルスルホニルオキシ基、アリールスルホニルオキシ基、またはフッ素を除くハロゲンのいずれかを、Rfはパーフルオロアルキル基を、nは整数を表す。)で表されるパーフルオロアルキル誘導体を用いる。通常、直接本発明化合物である高度にフッ素化されたカルボン酸のエステル誘導体と中間体の混合物として得られる。両者は、シリカゲルカラムクロマトグラフィーなどの通常の精製手段で容易に分離することができる。両者の生成比は個々の誘導体によって異なるとともに当量数に依存している。従って、中間体を優先的に製造することも、後述する本発明化合物である高度にフッ素化されたカルボン酸のエステル誘導体を優先的に製造することも可能であることは言うまでもない。
【0016】
反応時間、反応温度にも何ら制限はない。いずれも個々の誘導体によって異なり、また、塩基や溶媒によっても異なるが、通常、室温から溶媒の沸点までの範囲で、1時間から7日間の範囲である。
【0017】
次に中間体から本発明化合物である高度にフッ素化されたカルボン酸およびカルボン酸誘導体の製造法について述べる。
【0018】
有機溶媒中、塩基存在下、上記中間体に前述した式[III](式中、Yはアルキルスルホニルオキシ基、アリールスルホニルオキシ基、またはフッ素を除くハロゲンのいずれかを、Rfはパーフルオロアルキル基を、nは整数を表す。)で示されるパーフルオロアルキル誘導体を反応させるか、もしくは式[IV]
【化11】
Figure 0003888914
(式中、Rfはパーフルオロアルキル基を、nは整数を表す。)で表されるパーフルオロアルキルカルボン酸、または式[V]
【化12】
Figure 0003888914
(式中、Rfはパーフルオロアルキル基を、Xはカルボニル基あるいはメチレン基を、l、m、n、pは整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で示される高度にフッ素化されたカルボン酸を縮合させ、式[VI]
【化13】
Figure 0003888914
(式中、Rfはパーフルオロアルキル基を、Rはアルキル基、アラルキル基、アリール基のいずれかを、Xはカルボニル基あるいはメチレン基を、l、m、n、pは整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で表されるより高度にフッ素化させたカルボン酸誘導体(エステル体)を得たのち、エステル部分を常法に従いカルボン酸に変換し、高度にフッ素化されたカルボン酸を製造する。式[I](式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Rは水素、アルキル基、アラルキル基、アリール基のいずれか、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で示される本発明化合物である高度にフッ素化されたカルボン酸およびカルボン酸誘導体は上記の方法で製造できる。
【0019】
式[III]で示されるパーフルオロアルキル誘導体、式[IV]で示されるパーフルオロアルキルカルボン酸のパーフルオロアルキル基としては、何ら制限はなく、前述のパーフルオロアルキル基を使用できる。
【0020】
メチレン鎖の長さnも何ら制限はなく、通常炭素数1〜8のメチレン鎖である。特に、炭素数1〜4のメチレン鎖が好ましい。
【0021】
アルキルスルホニルオキシ基、アリールスルホニルオキシ基、フッ素を除くハロゲンについても前述と同様、何ら制限はない。
【0022】
式[III]で示されるパーフルオロアルキル誘導体を反応させる際の、有機溶媒、塩基についても、何ら制限はなく、具体的には、中間体の製造について述べた例と同じである。また、一度中間体を単離した後に反応させることも、前述したように二段階の反応を一挙に行うこともできることは言うまでもない。
【0023】
式[IV]あるいは式[V](式中、Rfはパーフルオロアルキル基を、Xはカルボニル基あるいはメチレン基を、l、m、n、pは整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で示されるパーフルオロアルキルカルボン酸を、式[II]で示される中間体と反応させる方法についても何ら制限はない。反応させるパーフルオロカルボン酸を予め、酸ハロゲン化物、混合酸無水物、対称酸無水物、活性エステルに変換させて反応させる方法や、N,N−ジシクロヘキシルカルボジイミド(DCC)などの縮合試薬と直接反応させる方法が挙げられる。いずれの誘導体も周知の誘導体を利用できる。具体的には、酸塩化物、酸臭化物、ピバル酸混合酸無水物、ペンタフルオロフェニルエステル、p−ニトロフェニルエステル、コハク酸イミドエステルなど周知の誘導体を例示できる。また、縮合試薬としては前述のDCC、PyBOPTM(ベンゾトリアゾール−1−イル−オキシ−トリス−ピロリジノ−ホスホニウム ヘキサフルオロホスフェート)、BOP(ベンゾトリアゾール−1−イル−オキシ−トリス(ジメチルアミノ)ホスホニウム ヘキサフルオロホスフェート)等を挙げることができる。上記の工程を繰り返すことにより、より高度にフッ素化されたカルボン酸を製造できる。繰り返し回数にも制限はないが、実質的には式[I]で示したpの値は0〜4までが好ましく、さらに好ましくは0〜2である。
【0024】
以上のようにして得られる本発明化合物である高度にフッ素化されたカルボン酸誘導体(エステル体)は通常の方法でカルボン酸へ変換できる。具体的には、エステルの種類に依存する。たとえば、メチルエステル、エチルエステルなどの場合には、水酸化ナトリウム水溶液を用いる方法などアルカリ加水分解で、第三ブチルエステルの場合にはトリフルオロ酢酸などの酸分解で、ベンジルエステルなどの場合には接触水素化分解で行うことができる。
【0025】
こうして得られた本発明化合物であるカルボン酸誘導体はフルオラス合成に於ける目的化合物あるいは材料表面のアミノ基や官能基に高度にフッ素化されたアシル型保護基として導入できる。その導入は通常のアシル化の方法が適用できることは言うまでもない。本アシル基が導入された化合物はパーフルオロカーボン層へ抽出されやすくなり、精製操作が容易になる。式[I]で示される高度にフッ素化されたカルボン酸誘導体におけるpの値は本発明の大きな特徴であり、この価は、主反応生成物の分離能と、高度にフッ素化されたカルボン酸を産業界に供するその容易性とのバランスから定められる。特に、式[I]で示したpが0の誘導体でパーフルオロカーボン層への抽出効率が低い場合にはpが1または2の誘導体が有効である。また、水酸基に導入した本アシル基は、常法に従いナトリウムメトキシドや水酸化ナトリウムなどの塩基性条件下に容易に除去できる。従って、式[VII]
【化14】
Figure 0003888914
(式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で示される高度にフッ素化されたアシル基を水酸基の保護基として使用する方法により、特にフルオラス合成における新規な保護基として実用性が高い。また、アミノ基に導入した本アシル基は塩酸や硫酸などの酸性条件下除去可能である。しかも、脱保護された後に本発明化合物もしくはその誘導体はパーフルオロカーボン層へ容易に抽出されるため、回収、再利用ができ、環境に優しい製造システムを確立できる。また、種々の材料表面にある水酸基、アミノ基などの官能基と反応させ、アシル型表面修飾基として導入すれば、撥水性、潤滑性の付与など表面特性改善などに応用できるなどその用途は極めて広い。この場合、式[I]で示したpの値が大きい方が有利になることは自明である。加えて、本発明化合物のみをフルオラス有機プロトン酸触媒として利用できることも言うまでもない。
【0026】
以下に実施例を挙げて本発明をさらに具体的に説明するが、その要旨を超えない限り、何ら制限を受けるものではない。
【0027】
【実施例1】
β-アラニン エチルエステル塩酸塩 (0.71 g, 4.64 mmol) と式[III](但し、RfはC817を、Yはp−トルエンスルホニルオキシ基を、nは2を示す。)で表されるパーフルオロ化合物 (6.02 g, 9.74 mmol) のプロピオニトリル (100 mL) 溶液に炭酸カリウム (3.84 g, 27.8 mmol) を加え、4日間加熱還流した。冷後、反応液を水中に加え、酢酸エチルで3回抽出した。酢酸エチル層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (hexane : AcOEt = 8 : 1 〜 AcOEt)にて精製し、式[II](但し、RfはC817を、Rはエチル基、lは2を、mは3を示す。)で表される中間体(無色油状):1H-NMR (CDCl3):δ 1.27 (3H, t, J= 7.3 Hz), 1.77 (2H, m), 2.16 (2H, m), 2.50 (2H, t, J= 6.3 Hz), 2.70 (2H, t, J=6.8 Hz), 2.88 (2H, t, J=6.3 Hz), 4.15 (2H, q, J=7.3 Hz)を1.39 g(52 %)、および 式[I](但し、RfはC817を、Rはエチル基を、Xはメチレン基を、lは2を、mは3を、nは2、pは0を示す。)で表される高度にフッ素化されたカルボン酸のエチルエステル誘導体(無色油状):1H-NMR (CDCl3):δ 1.24 (3H, t, J= 7.1 Hz), 1.73 (4H, m), 2.11 (4H, m), 2.40 (2H, t, J= 6.6 Hz), 2.48 (4H, t, J=6.1 Hz), 2.76 (2H, t, J=6.6 Hz), 4.12 (2H, q, J=7.1 Hz) を1.34 g(28 %)得た。
【0028】
【実施例2】
実施例1で得た高度にフッ素化されたカルボン酸のエチルエステル誘導体(1.34 g, 1.29 mmol) のジオキサン (20 mL) 溶液に1M NaOH (10 mL) を加え、70 ℃で3時間撹拌した。冷後、2M HCl を加え、反応液の pH を3に調整し、酢酸エチルで3回抽出した。酢酸エチル層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、目的とする式[I](但し、RfはC817を、Rは水素を、Xはメチレン基を、lは2を、mは3を、nは2、pは0を示す。)で 表される高度にフッ素化されたカルボン酸(白色粉末):1H-NMR (CDCl3-CD3OD = 1 : 1):δ 2.01 (4H, m), 2.28 (4H, m), 2.70 (2H, t, J= 6.3 Hz), 3.04 (4H, t, J=7.9 Hz), 3.24 (2H, t, J=6.3 Hz)を1.22 g(94 %) 得た。
【0029】
【実施例3】
実施例1で調製した中間体 (0.74g, 1.29mmol) と式[IV](但し、RfはC817を、nは2を示す。)で表されるパーフルオロアルキルカルボン酸誘導体(0.74g, 1.29mmol)の無水ジクロロメタン (20 mL) 溶液にトリエチルアミン (0.54 mL, 3.86 mmol) と PyBOP (0.80g, 1.54 mmol) を順次加え、室温で3時間撹拌した。反応液に5% クエン酸溶液を加え、酢酸エチルで3回抽出した。酢酸エチル層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (hexane : AcOEt = 4 : 1)にて精製し、式[I](但し、RfはC817を、Rはエチル基、Xはカルボニル基を、lは2を、mは3を、nは2、pは0を示す。)で表される高度にフッ素化されたカルボン酸のエチルエステル誘導体(式[VIII]で示されるBfp-OHのエチルエステル)(無色油状):1H-NMR (CDCl3):δ 1.27 (3H, m), 1.87 (2H, m), 2.10 (2H, m), 2.61 (6H, m), 3.45 (2H, m), 3.64 (2H, m), 4.16 (2H, m)、 MALDI-TOF-MS: Calcd for C27H19F34NO3 (M+): 1051.1, Found: 1051. を1.27 g(93 %)得た。この高度にフッ素化されたカルボン酸エチルエステル(式[VIII]で示されるBfp-OHのエチルエステル) (1.26 g, 1.20 mmol) のジオキサン (20 mL) 溶液に1M NaOH (10 mL) を加え、70 ℃ で4時間撹拌した。冷後、2M HCl を加え、反応液の pH を3に調整し、酢酸エチルで3回抽出した。酢酸エチル層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、高度にフッ素化されたカルボン酸(式[VIII]で示されるBfp-OH)(白色粉末):1H-NMR (CDCl3-CD3OD = 5 : 3)δ: 1.92 (2H, m), 2.15 (2H, m), 2.65 (6H, m), 3.49 (2H, m), 3.66 (2H, m). MALDI-TOF-MS: Calcd for C25H15F34NO3 (M+): 1023.1, Found: 1022.6. (1.21 g, 98 %) を得た。
【0030】
【実施例4】
【化15】
Figure 0003888914
化合物1 (1.05 g, 1.03 mmol) と式[I](但し、RfはC817を、Rは水素を、Xはカルボニル基を、lは2を、mは3を、nは2、pは0を示す。)で表される高度にフッ素化されたカルボン酸 (式[VIII]で示されるBfp-OH)(124 mg, 0.29 mmol)の無水ジクロロメタン (10 mL) 溶液に4−ジメチルアミノピリジン (139 mg, 1.14 mmol)とDCC (353 mg, 1.71 mmol)を順次加え、室温で2時間撹拌した。反応液をトルエン (30 mL) と パーフルオロカーボン(フロリナートTMFC-72 )(30 mL) で分配抽出し、FC-72層を減圧濃縮して当該アシル基で水酸基を保護された式[VIII]の化合物2 (836 mg, 85 %) を得た。
【0031】
【実施例5】
化合物3 (43 mg, 12.1 mmol) のエーテル (2 mL) とメタノール (2 mL) 混合溶液に5.2 M NaOMe (20 μL) を加え、室温で1時間撹拌し脱保護した。アンバーライト(IR-120; H+ form) を加えて中和し、ろ過した。ろ液の減圧濃縮残渣をFC-72 (10 mL) と メタノール (10 mL) で分配抽出し、メタノール層を減圧濃縮して式[IX]で示される化合物4 (4.1 mg, 95 %) を得た。一方、FC-72層を減圧濃縮して式[I](但し、RfはC817を、Rはメチル基を、Xはカルボニル基を、lは2を、mは3を、nは2、pは0を示す。)で表される式[IX]の化合物5(Bfp-OMe) (35 mg, 92 %) を得た。
【化16】
Figure 0003888914
【0032】
【実施例6】
式[I](但し、RfはC817を、Rは水素を、Xはカルボニル基を、lは2を,mは3,nは2、pは0を示す。)で示される高度にフッ素化されたカルボン酸 (0.74g, 1.29mmol) と式[II](但し、RfはC817を、lは2を,mは3を示す。)で表される中間体(10.0g, 9.8mmol)の無水ジクロロメタン (300 mL) 溶液にトリエチルアミン (4.1 mL, 29.3 mmol) と PyBOP (6.1g, 11.7 mmol) を順次加え、室温で3時間撹拌した。反応液に5% クエン酸溶液を加え、酢酸エチルで3回抽出した。酢酸エチル層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (hexane : AcOEt = 3 : 2) にて精製し、式[I](但し、RfはC817を、Rはエチル基を、Xはカルボニル基を、lは2を、mは3を、nは2、pは1を示す。)で表される高度にフッ素化されたカルボン酸のエチルエステル(無色油状):1H-NMR (CDCl3):δ 1.26 (3H, t, J = 7.1 Hz), 1.87 (4H, m), 2.08 (4H, m), 2.58 (6H, m), 2.73 (2H, m), 3.45 (4H, m), 3.63 (4H, m), 4.14 (2H, q, J = 7.1 Hz). MALDI-TOF-MS: Calcd for C41H30F51N2O4 (M+H+): 1583.1, Found: 1581.6. を1.21 g(78 %)得た。得られた高度にフッ素化されたカルボン酸エチルエステル (5.20 g, 3.29 mmol) のジオキサン (70 mL) 溶液に1M NaOH (35 mL) を加え、50 ℃ で3時間撹拌した。冷後、2M HCl を加え、反応液の pH を3に調整し、酢酸エチル-EtOC4F9(1:2)の混合溶媒で3回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、式[I](但し、RfはC817を、Rは水素を、Xはカルボニル基を、lは2を、mは3を、nは2、pは1を示す。)で示される高度にフッ素化されたカルボン酸(白色粉末)MALDI-TOF-MS: Calcd for C39H26F51N2O4 (M+H+): 1555.1, Found: 1553.2. (4.94 g, 97 %) を得た。
【0033】
【実施例7】
実施例6で得た式[I](但し、RfはC817を、Rは水素を、Xはカルボニル基を、lは2を、mは3を、nは2、pは1を示す。)で示される高度にフッ素化されたカルボン酸 (0.76 g, 0.49 mmol) と式[II](但し、RfはC817を、lは2を,mは3を示す。)で表される中間体(0.28 g, 0.49 mmol)の無水ジクロロメタン (30 mL) 溶液にトリエチルアミン (0.2 mL, 1.47 mmol) と PyBOP (0.31 g, 0.59 mmol) を順次加え、室温で18時間撹拌した。反応液に5% クエン酸溶液を加え、酢酸エチルで3回抽出した。酢酸エチル層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (hexane : AcOEt = 1 : 1) にて精製し、式[I](但し、RfはC817を、Rはエチル基を、Xはカルボニル基を、lは2を、mは3を、nは2、pは2を示す。)で表される高度にフッ素化されたカルボン酸のエチルエステル(無色油状):1H-NMR (CDCl3):δ 1.26 (3H, m), 1.86 (6H, m), 2.09 (6H, m), 2.59 (6H, m), 2.73 (4H, m), 3.45 (6H, m), 3.65 (6H, m), 4.14 (2H, m). MALDI-TOF-MS: Calcd for C55H40F68N3O5 (M+H+): 2114.2, Found: 2112.2. を 0.52 g(50 %)得た。得られた高度にフッ素化されたカルボン酸エチルエステル(388 mg, 0.16 mmol)のジオキサン(3.5 mL)溶液に1M NaOH (1.8 mL) を加え、70 ℃ で3時間撹拌した。冷後、2M HCl を加え、反応液の pH を3に調整し、EtOC4F9で3回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、式[I](但し、RfはC817を、Rは水素を、Xはカルボニル基を、lは2を、mは3を、nは2、pは2を示す。)で示される高度にフッ素化されたカルボン酸(白色粉末)MALDI-TOF-MS: Calcd for C53H35F68N3NaO5 (M+Na+): 2108.1, Found: 2106.9. (226 mg, 75 %)を得た。
【0034】
【発明の効果】
本発明化合物を用いるフルオラス合成が、医薬や食品添加物、化粧品、液晶、電子材料、高分子材料モノマー、機能性材料、医療材料などのファインケミカルズの製造、ペプチド、糖鎖、核酸などの複雑な天然物やそのアナローグの製造を容易にすることは確実である。また、フルオラスプロトン酸触媒や材料表面の改質剤などとしても利用可能であり、本発明化合物の工業的価値や波及効果は極めて大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to highly fluorinated carboxylic acid derivatives. Synthetic organic chemistry plays an extremely high role in the production of fine chemicals such as pharmaceuticals, food additives, cosmetics, liquid crystals, electronic materials, polymer material monomers, functional materials, and medical materials. Fluorous synthesis has been proposed as a technology that goes beyond the concept of conventional organic synthesis, and its development is desired. This is because perfluorocarbons do not dissolve in organic solvents and water, and the three parties can separate each other, and only highly fluorinated derivatives can be extracted into the perfluorocarbon layer to easily and safely purify compounds. It is a method. For example, prior to the step of reacting Compound A and Compound B, a highly fluorinated carboxylic acid (a reagent for introducing a highly fluorinated group) is reacted with Compound A, and the highly fluorinated group is converted to Compound A Specific functional groups such as amino groups. Thereafter, the reaction between the reaction product and compound B, which is the main reaction, is performed. This is the reaction of another functional group of Compound A, such as a carboxyl group, with Compound B, such as an amino group. Since the reaction product obtained in this way has a high fluorine content, when perfluorocarbon (solvent) is added to this reaction system, this reaction product easily migrates to the perfluorocarbon layer. Separation becomes extremely easy by the operation using. Thereafter, the highly fluorinated group added prior to the main reaction is removed from the reaction product by hydrolysis or the like, and the target reaction product can be obtained with high purity and efficiency. On the other hand, it is expected that water repellency, lubricity, etc. can be imparted by utilizing the characteristics of fluorine atoms and highly fluorinating the material surface. However, in any case, as a method for highly fluorinated, a reagent for introducing a highly fluorinated group is required.
[0002]
[Prior art]
Various attempts have been made to synthesize organic compounds using this attractive method of fluorous synthesis in the fields of medicines and food additives, but no results have been obtained yet. This is because there is no reagent that introduces a highly fluorinated group that is reacted with the compound A in advance to make the fluorous synthesis successful. As a highly fluorinated carboxylic acid, (Rf) 3 Si—C 6 H 4 —CO—OH [Rf: C 10 F 21 (CH 2 ) −, C 6 F 13 (CH 2 ) −] (Journal of Organic Chemistry, 62, 2917, 1997), etc., all of which can be used as a reagent for introducing a highly fluorinated group into the fluorous synthesis. Highly versatile because the reaction to add to is difficult, and in addition, it is difficult to remove the highly fluorinated group added with the reagent from the reaction product by hydrolysis after the main reaction. It could not be used for fluorous synthesis.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to address such conventional problems. That is, since the reaction of adding the above-described reagent to the compound A in the fluorous synthesis is difficult, and the operation of removing the added highly fluorinated group from the reaction product is difficult, the fluorous synthesis It is to solve the problem that was not available to you. This problem is to realize the high separation ability of the reaction product from the reaction system as described above, and to protect the functional group not involved in the reaction in the unit process, which is often used in an organic chemical reaction. It realizes a highly fluorinated protecting group. Another object of the present invention is to provide a specific surface modifier of a polymer material or a natural material and a specific fluorous organic protonic acid catalyst.
[0004]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have created the compound of the present invention and solved the above-mentioned conventional problems of introduction and removal of highly fluorinated groups in fluorous synthesis from the methylene group constituting the compound of the present invention. It was found that there was an effect to solve, and in addition, the introduction of sufficient fluorine atoms was successful and the present invention was completed. That is, the present invention relates to the formula [I] (wherein Rf is a C 5-10 perfluoroalkyl group, R is hydrogen, an alkyl group, an aralkyl group, or an aryl group, and X is a carbonyl group. Alternatively, a methylene group, l is an integer of 1 to 3, m is 2 or 3, n is 1 or 2, p is an integer of 0 to 4, and Rf, X, m, and n are the same in each position. A highly fluorinated carboxylic acid derivative characterized in that it is represented by the following formula:
[Chemical 8]
Figure 0003888914
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0006]
First, a method for producing an intermediate will be described.
[0007]
Formula [II]
[Chemical 9]
Figure 0003888914
(Wherein Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms, R represents an alkyl group, an aralkyl group or an aryl group, l represents an integer of 1 to 3, and m represents 2 or 3). The intermediate represented is an amino acid ester in the presence of a base in an organic solvent and a compound of the formula [III]
[Chemical Formula 10]
Figure 0003888914
(Wherein Y represents an alkylsulfonyloxy group, an arylsulfonyloxy group, or a halogen other than fluorine, Rf represents a perfluoroalkyl group, and n represents an integer) To react.
[0008]
As the amino acid ester used as a raw material, a known amino acid ester can be used. Examples of amino acids include aminocarboxylic acids such as glycine, L-alanine, D-alanine, β-alanine, and 3-aminopropionic acid. A well-known carboxylic acid protecting group can be used for the ester moiety. For example, alkyl esters such as methyl ester, ethyl ester and tert-butyl ester, aralkyl esters such as benzyl ester, p-methoxybenzyl ester and p-nitrobenzyl ester, fragrances such as phenyl ester, naphthyl ester and phenacyl ester Group esters can be mentioned.
[0009]
Formula [III] (wherein Y represents an alkylsulfonyloxy group, an arylsulfonyloxy group, or a halogen other than fluorine, Rf represents a perfluoroalkyl group, and n represents an integer. A well-known derivative can be used for the perfluoroalkyl derivative represented by).
[0010]
As the alkylsulfonyloxy group and arylsulfonyloxy group, known sulfonyloxy groups can be used. Examples thereof include sulfonyloxy groups such as p-toluenesulfonyloxy group, methanesulfonyloxy group, and trifluoromethanesulfonyloxy group. Examples of the halogen other than fluorine include well-known halogens such as chlorine, bromine and iodine.
[0011]
A well-known perfluoroalkyl group can be used as the perfluoroalkyl group. For example, a perfluorohexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorodecyl group, a perfluorotetradecyl group, and the like can be given. Furthermore, it goes without saying that it does not matter whether there is a branched structure or a stereoisomer. Longer chains of perfluoroalkyl groups are more effective for increasing the introduction rate of fluorine atoms. However, in consideration of easy handling and availability, derivatives having 3 to 16 carbon atoms are used. A derivative having 5 to 10 carbon atoms is preferred.
[0012]
There is no restriction | limiting in the methylene chain couple | bonded with the perfluoroalkyl group, and it is a C1-C8 methylene chain normally. In particular, a methylene chain having 1 to 4 carbon atoms is preferable.
[0013]
As the organic solvent, a known solvent can be used. Dichloromethane, chloroform, hexane, benzene, toluene, tetrahydrofuran, ether, N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, propionitrile, ethyl acetate, dimethyl sulfoxide, methyl ethyl ketone, perfluorohexane, perfluorocarbon (e.g. And Fluorinert FC72). Needless to say, the reaction can be carried out in a mixture, hydrated product, or heterogeneous system.
[0014]
There is no limitation on the base. For example, organic bases such as triethylamine, tributylamine, N, N-diisopropylethylamine, pyridine and DBU, inorganic bases such as potassium carbonate, cesium carbonate, sodium hydroxide and potassium hydroxide, or organic metals such as butyllithium and phenyllithium A compound can be mentioned.
[0015]
There are no restrictions on the number of equivalents of both raw materials and base used. Either one component or two components can be used in excess. In the amino acid ester, a base in the range of 1 to 15 equivalents and a formula [III] (wherein Y is an alkylsulfonyloxy group, an arylsulfonyloxy group, or a halogen excluding fluorine, and Rf is a perfluoroalkyl group. , N represents an integer)). Usually, it is obtained directly as a mixture of an ester derivative of a highly fluorinated carboxylic acid which is a compound of the present invention and an intermediate. Both can be easily separated by ordinary purification means such as silica gel column chromatography. The production ratio of the two differs depending on the individual derivatives and depends on the number of equivalents. Therefore, it goes without saying that it is possible to preferentially produce an intermediate or to preferentially produce an ester derivative of a highly fluorinated carboxylic acid which is a compound of the present invention described later.
[0016]
There is no limitation on reaction time and reaction temperature. Each of them varies depending on individual derivatives, and also varies depending on the base and the solvent, but is usually in the range from room temperature to the boiling point of the solvent and in the range of 1 hour to 7 days.
[0017]
Next, a method for producing a highly fluorinated carboxylic acid and carboxylic acid derivative, which is a compound of the present invention, from an intermediate will be described.
[0018]
In the presence of a base in an organic solvent, the above formula [III] (wherein Y represents an alkylsulfonyloxy group, an arylsulfonyloxy group, or a halogen other than fluorine, and Rf represents a perfluoroalkyl group). N represents an integer) or a perfluoroalkyl derivative represented by the formula [IV]
Embedded image
Figure 0003888914
(Wherein Rf represents a perfluoroalkyl group and n represents an integer), or the formula [V]
Embedded image
Figure 0003888914
(In the formula, Rf represents a perfluoroalkyl group, X represents a carbonyl group or a methylene group, l, m, n, and p represent integers, and Rf, X, m, and n need to be the same at each display position. A highly fluorinated carboxylic acid of the formula [VI]
Embedded image
Figure 0003888914
(In the formula, Rf represents a perfluoroalkyl group, R represents an alkyl group, an aralkyl group, or an aryl group, X represents a carbonyl group or a methylene group, l, m, n, and p represent an integer, Rf, X, m and n do not have to be the same at each displayed position.) After obtaining a highly fluorinated carboxylic acid derivative (ester) represented by the following formula, the ester moiety is converted into a carboxylic acid according to a conventional method. Convert to produce highly fluorinated carboxylic acids. Formula [I] (wherein Rf is a C 5-10 perfluoroalkyl group, R is hydrogen, an alkyl group, an aralkyl group, or an aryl group, X is a carbonyl group or a methylene group, and l is An integer of 1 to 3, m is 2 or 3, n is 1 or 2, p is an integer of 0 to 4, and Rf, X, m, and n need not be the same in each display position. The highly fluorinated carboxylic acid and carboxylic acid derivative which is the compound of the present invention represented by the above can be produced by the above-mentioned method.
[0019]
The perfluoroalkyl derivative represented by the formula [III] and the perfluoroalkyl group of the perfluoroalkylcarboxylic acid represented by the formula [IV] are not particularly limited, and the above-mentioned perfluoroalkyl group can be used.
[0020]
The length n of the methylene chain is not limited at all, and is usually a methylene chain having 1 to 8 carbon atoms. In particular, a methylene chain having 1 to 4 carbon atoms is preferable.
[0021]
The alkylsulfonyloxy group, arylsulfonyloxy group, and halogen other than fluorine are not limited as described above.
[0022]
There are no limitations on the organic solvent and base used when the perfluoroalkyl derivative represented by the formula [III] is reacted, and specifically, the same as the example described for the production of the intermediate. Needless to say, the intermediate can be isolated and then reacted, or as described above, the two-step reaction can be performed at once.
[0023]
Formula [IV] or Formula [V] (wherein Rf is a perfluoroalkyl group, X is a carbonyl group or a methylene group, l, m, n, and p are integers, and Rf, X, m, and n are There is no limitation on the method of reacting the perfluoroalkylcarboxylic acid represented by the formula [II] with the intermediate represented by the formula [II]. The perfluorocarboxylic acid to be reacted is converted into an acid halide, mixed acid anhydride, symmetric acid anhydride, active ester in advance, or directly reacted with a condensation reagent such as N, N-dicyclohexylcarbodiimide (DCC). The method of letting it be mentioned. Any derivative may be a known derivative. Specific examples include well-known derivatives such as acid chlorides, acid bromides, pivalic acid mixed acid anhydrides, pentafluorophenyl esters, p-nitrophenyl esters, and succinimide esters. Examples of the condensation reagent include DCC, PyBOP (benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate), BOP (benzotriazol-1-yl-oxy-tris (dimethylamino) phosphonium hexa Fluorophosphate) and the like. By repeating the above steps, a more highly fluorinated carboxylic acid can be produced. The number of repetitions is not limited, but substantially the value of p represented by the formula [I] is preferably 0 to 4, more preferably 0 to 2.
[0024]
The highly fluorinated carboxylic acid derivative (ester) that is the compound of the present invention obtained as described above can be converted to a carboxylic acid by a usual method. Specifically, it depends on the type of ester. For example, in the case of methyl ester, ethyl ester, etc., alkaline hydrolysis such as a method using an aqueous sodium hydroxide solution, in the case of tert-butyl ester, acid decomposition of trifluoroacetic acid, etc., in the case of benzyl ester, etc. It can be carried out by catalytic hydrogenolysis.
[0025]
The carboxylic acid derivative, which is the compound of the present invention thus obtained, can be introduced as an acyl-type protecting group highly fluorinated in the target compound or the amino group or functional group on the surface of the material in the fluorous synthesis. Needless to say, a conventional acylation method can be used for the introduction. The compound having the acyl group introduced is easily extracted into the perfluorocarbon layer, and the purification operation is facilitated. The value of p in the highly fluorinated carboxylic acid derivative represented by the formula [I] is a major feature of the present invention, and this value depends on the separation ability of the main reaction product and the highly fluorinated carboxylic acid. Is determined from the balance with its ease of use for industry. In particular, when the derivative represented by the formula [I] is p of 0 and the extraction efficiency into the perfluorocarbon layer is low, the derivative of p of 1 or 2 is effective. The acyl group introduced into the hydroxyl group can be easily removed under basic conditions such as sodium methoxide and sodium hydroxide according to a conventional method. Therefore, the formula [VII]
Embedded image
Figure 0003888914
(In the formula, Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms, X represents a carbonyl group or a methylene group, l represents an integer of 1 to 3, m represents 2 or 3, n represents 1 or 2, p represents an integer of 0 to 4, and Rf, X, m, and n do not have to be the same in each of the displayed positions.) A method using a highly fluorinated acyl group represented by Therefore, it is highly practical as a novel protecting group in fluorous synthesis. The acyl group introduced into the amino group can be removed under acidic conditions such as hydrochloric acid and sulfuric acid. Moreover, since the compound of the present invention or its derivative is easily extracted into the perfluorocarbon layer after being deprotected, it can be recovered and reused, and an environment-friendly production system can be established. In addition, by reacting with functional groups such as hydroxyl groups and amino groups on the surface of various materials and introducing them as acyl-type surface modifying groups, they can be applied to improve surface properties such as imparting water repellency and lubricity, etc. wide. In this case, it is obvious that the larger value of p shown in the formula [I] is more advantageous. In addition, it goes without saying that only the compound of the present invention can be used as a fluorous organic protonic acid catalyst.
[0026]
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited at all unless it exceeds the gist.
[0027]
[Example 1]
β-alanine ethyl ester hydrochloride (0.71 g, 4.64 mmol) and formula [III] (where Rf represents C 8 F 17 , Y represents a p-toluenesulfonyloxy group, and n represents 2). To a solution of the perfluoro compound (6.02 g, 9.74 mmol) in propionitrile (100 mL) was added potassium carbonate (3.84 g, 27.8 mmol), and the mixture was heated to reflux for 4 days. After cooling, the reaction mixture was added to water and extracted three times with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 8: 1 to AcOEt), and the formula [II] (where Rf is C 8 F 17 , R is an ethyl group, l is 2, m is 3) Intermediate (colorless oil): 1 H-NMR (CDCl 3 ): δ 1.27 (3H, t, J = 7.3 Hz), 1.77 (2H, m), 2.16 (2H, m) , 2.50 (2H, t, J = 6.3 Hz), 2.70 (2H, t, J = 6.8 Hz), 2.88 (2H, t, J = 6.3 Hz), 4.15 (2H, q, J = 7.3 Hz) 1.39 g (52%), and formula [I] (where Rf is C 8 F 17 , R is an ethyl group, X is a methylene group, l is 2, m is 3, n is 2, p is The ethyl ester derivative of a highly fluorinated carboxylic acid (colorless oil) represented by: 1 H-NMR (CDCl 3 ): δ 1.24 (3H, t, J = 7.1 Hz), 1.73 ( 4H, m), 2.11 (4H, m), 2.40 (2H, t, J = 6.6 Hz), 2.48 (4H, t, J = 6.1 Hz), 2.76 (2H, t, J = 6.6 Hz), 4.12 ( 2H, q, J = 7.1 Hz) was obtained 1.34 g (28%).
[0028]
[Example 2]
1M NaOH (10 mL) was added to a dioxane (20 mL) solution of the ethyl ester derivative (1.34 g, 1.29 mmol) of the highly fluorinated carboxylic acid obtained in Example 1, and the mixture was stirred at 70 ° C. for 3 hours. After cooling, 2M HCl was added to adjust the pH of the reaction solution to 3, and extracted three times with ethyl acetate. The ethyl acetate layer is washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure to obtain the desired formula [I] (where Rf is C 8 F 17 , R is hydrogen, X is A highly fluorinated carboxylic acid represented by a methylene group, l is 2, m is 3, n is 2, and p is 0.): 1 H-NMR (CDCl 3 − CD 3 OD = 1: 1): δ 2.01 (4H, m), 2.28 (4H, m), 2.70 (2H, t, J = 6.3 Hz), 3.04 (4H, t, J = 7.9 Hz), 3.24 ( 2H, t, J = 6.3 Hz) was obtained 1.22 g (94%).
[0029]
[Example 3]
A perfluoroalkylcarboxylic acid derivative (0.74 g) represented by the intermediate (0.74 g, 1.29 mmol) prepared in Example 1 and the formula [IV] (where Rf represents C 8 F 17 and n represents 2). g, 1.29 mmol) in anhydrous dichloromethane (20 mL) were added triethylamine (0.54 mL, 3.86 mmol) and PyBOP (0.80 g, 1.54 mmol) sequentially, and the mixture was stirred at room temperature for 3 hours. A 5% citric acid solution was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 4: 1). Formula [I] (where Rf was C 8 F 17 , R was an ethyl group, X was a carbonyl group, and l was 2) , M represents 3, n represents 2, and p represents 0. A highly fluorinated ethyl ester derivative of a carboxylic acid (ethyl ester of Bfp-OH represented by the formula [VIII]) (colorless) Oily): 1 H-NMR (CDCl 3 ): δ 1.27 (3H, m), 1.87 (2H, m), 2.10 (2H, m), 2.61 (6H, m), 3.45 (2H, m), 3.64 ( 2H, m), 4.16 (2H, m), MALDI-TOF-MS: Calcd for C 27 H 19 F 34 NO 3 (M + ): 1051.1, Found: 1051. 1.27 g (93%) were obtained. To this highly fluorinated ethyl carboxylic acid ester (ethyl ester of Bfp-OH represented by the formula [VIII]) (1.26 g, 1.20 mmol) in dioxane (20 mL) was added 1M NaOH (10 mL). The mixture was stirred at 70 ° C. for 4 hours. After cooling, 2M HCl was added to adjust the pH of the reaction solution to 3, and extracted three times with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and a highly fluorinated carboxylic acid (Bfp-OH represented by the formula [VIII]) (white powder): 1H-NMR (CDCl 3 -CD 3 OD = 5: 3) δ: 1.92 (2H, m), 2.15 (2H, m), 2.65 (6H, m), 3.49 (2H, m), 3.66 (2H, m MALDI-TOF-MS: Calcd for C 25 H 15 F 34 NO 3 (M + ): 1023.1, Found: 1022.6. (1.21 g, 98%) was obtained.
[0030]
[Example 4]
Embedded image
Figure 0003888914
Compound 1 (1.05 g, 1.03 mmol) and formula [I] (where Rf is C 8 F 17 , R is hydrogen, X is a carbonyl group, l is 2, m is 3, n is 2, p is 0.) A highly fluorinated carboxylic acid (Bfp-OH represented by the formula [VIII]) (124 mg, 0.29 mmol) in anhydrous dichloromethane (10 mL) was added to 4-dimethyl Aminopyridine (139 mg, 1.14 mmol) and DCC (353 mg, 1.71 mmol) were sequentially added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was partitioned and extracted with toluene (30 mL) and perfluorocarbon (Fluorinert FC-72) (30 mL), and the FC-72 layer was concentrated under reduced pressure to protect the hydroxyl group with the acyl group of formula [VIII]. Compound 2 (836 mg, 85%) was obtained.
[0031]
[Example 5]
5.2 M NaOMe (20 μL) was added to a mixed solution of compound 3 (43 mg, 12.1 mmol) in ether (2 mL) and methanol (2 mL), and the mixture was stirred at room temperature for 1 hour for deprotection. Amberlite (IR-120; H + form) was added to neutralize and filtered. The filtrate concentrated under reduced pressure was partitioned and extracted with FC-72 (10 mL) and methanol (10 mL), and the methanol layer was concentrated under reduced pressure to obtain Compound 4 (4.1 mg, 95%) represented by the formula [IX]. It was. On the other hand, the FC-72 layer was concentrated under reduced pressure to give the formula [I] (where Rf is C 8 F 17 , R is a methyl group, X is a carbonyl group, l is 2, m is 3, n is 2, p represents 0.) Compound 5 (Bfp-OMe) (35 mg, 92%) of the formula [IX] represented by formula (IX) was obtained.
Embedded image
Figure 0003888914
[0032]
[Example 6]
An altitude represented by the formula [I] (where Rf represents C 8 F 17 , R represents hydrogen, X represents a carbonyl group, l represents 2, m represents 3, n represents 2, and p represents 0). Fluorinated carboxylic acid (0.74 g, 1.29 mmol) and an intermediate represented by the formula [II] (wherein Rf represents C 8 F 17 , l represents 2, m represents 3) (10.0 To a solution of g, 9.8 mmol) in anhydrous dichloromethane (300 mL), triethylamine (4.1 mL, 29.3 mmol) and PyBOP (6.1 g, 11.7 mmol) were sequentially added, and the mixture was stirred at room temperature for 3 hours. A 5% citric acid solution was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 3: 2). Formula [I] (where Rf was C 8 F 17 , R was an ethyl group, X was a carbonyl group, and l was 2) , M is 3, n is 2, and p is 1.) A highly fluorinated ethyl ester of a carboxylic acid (colorless oil): 1 H-NMR (CDCl 3 ): δ 1.26 ( 3H, t, J = 7.1 Hz), 1.87 (4H, m), 2.08 (4H, m), 2.58 (6H, m), 2.73 (2H, m), 3.45 (4H, m), 3.63 (4H, m ), 4.14 (2H, q, J = 7.1 Hz). MALDI-TOF-MS: Calcd for C 41 H 30 F 51 N 2 O 4 (M + H + ): 1583.1, Found: 1581.6. %)Obtained. 1 M NaOH (35 mL) was added to a dioxane (70 mL) solution of the obtained highly fluorinated carboxylic acid ethyl ester (5.20 g, 3.29 mmol), and the mixture was stirred at 50 ° C. for 3 hours. After cooling, 2M HCl was added to adjust the pH of the reaction solution to 3, and the mixture was extracted 3 times with a mixed solvent of ethyl acetate-EtOC 4 F 9 (1: 2). The organic layer is washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure to remove the formula [I] (where Rf is C 8 F 17 , R is hydrogen, X is a carbonyl group, 1 represents a highly fluorinated carboxylic acid (white powder) MALDI-TOF-MS: Calcd for C 39 H 26 F 51 N 2 O 4 (M + H + ): 1555.1, Found: 1553.2. (4.94 g, 97%) was obtained.
[0033]
[Example 7]
Formula [I] obtained in Example 6 (where Rf is C 8 F 17 , R is hydrogen, X is a carbonyl group, 1 is 2, m is 3, n is 2, and p is 1) A highly fluorinated carboxylic acid (0.76 g, 0.49 mmol) and the formula [II] (wherein Rf represents C 8 F 17 , l represents 2 and m represents 3). Triethylamine (0.2 mL, 1.47 mmol) and PyBOP (0.31 g, 0.59 mmol) were sequentially added to a solution of the intermediate represented (0.28 g, 0.49 mmol) in anhydrous dichloromethane (30 mL), and the mixture was stirred at room temperature for 18 hours. A 5% citric acid solution was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 1: 1). Formula [I] (where Rf was C 8 F 17 , R was an ethyl group, X was a carbonyl group, and l was 2) , M is 3, n is 2, and p is 2. The ethyl ester of a highly fluorinated carboxylic acid represented by (colorless oil): 1 H-NMR (CDCl 3 ): δ 1.26 ( 3H, m), 1.86 (6H, m), 2.09 (6H, m), 2.59 (6H, m), 2.73 (4H, m), 3.45 (6H, m), 3.65 (6H, m), 4.14 (2H MALDI-TOF-MS: Calcd for C 55 H 40 F 68 N 3 O 5 (M + H + ): 2114.2, Found: 2112.2. 0.52 g (50%) was obtained. 1M NaOH (1.8 mL) was added to a dioxane (3.5 mL) solution of the obtained highly fluorinated carboxylic acid ethyl ester (388 mg, 0.16 mmol), and the mixture was stirred at 70 ° C. for 3 hours. After cooling, 2M HCl was added to adjust the pH of the reaction solution to 3, followed by extraction with EtOC 4 F 9 three times. The organic layer is washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure to remove the formula [I] (where Rf is C 8 F 17 , R is hydrogen, X is a carbonyl group, 1 represents a highly fluorinated carboxylic acid (white powder) MALDI-TOF-MS: Calcd for C 53 H 35 F 68 N 3 NaO 5 (M + Na + ): 2108.1, Found: 2106.9. (226 mg, 75%) was obtained.
[0034]
【The invention's effect】
Fluorous synthesis using the compounds of the present invention is a complex natural product such as pharmaceuticals, food additives, cosmetics, liquid crystals, electronic materials, polymer materials monomers, functional materials, production of fine chemicals such as medical materials, peptides, sugar chains, nucleic acids, etc. It is certain to facilitate the manufacture of objects and their analogs. Further, it can be used as a fluorous protonic acid catalyst or a material surface modifier, and the industrial value and ripple effect of the compound of the present invention are extremely large.

Claims (5)

下記式[I]
Figure 0003888914
(式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Rは水素、アルキル基、アラルキル基、アリール基のいずれかを、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で表されることを特徴とする高度にフッ素化されたカルボン酸誘導体。
The following formula [I]
Figure 0003888914
(In the formula, Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms, R represents hydrogen, an alkyl group, an aralkyl group, or an aryl group, X represents a carbonyl group or a methylene group, and l represents 1 to 3) , M represents 2 or 3, n represents 1 or 2, p represents an integer of 0 to 4, and Rf, X, m, and n need not be the same in each display position. A highly fluorinated carboxylic acid derivative characterized in that
RfがC817、Rが水素、メチル基、エチル基のいずれか、Xがカルボニル基、lが2、mが3、nが2、pが0〜2の整数であることを特徴とする請求項1記載の高度にフッ素化されたカルボン酸誘導体。Rf is C 8 F 17 , R is hydrogen, a methyl group, or an ethyl group, X is a carbonyl group, l is 2, m is 3, n is 2, and p is an integer of 0 to 2, A highly fluorinated carboxylic acid derivative according to claim 1. アミノ酸エステルに、塩基存在下、下記式[III]
Figure 0003888914
(式中、Yはアルキルスルホニルオキシ基、アリールスルホニルオキシ基、またはフッ素を除くハロゲンのいずれかを、Rfは炭素数5〜10のパーフルオロアルキル基を、nは1または2を表す。)で表されるパーフルオロアルキル誘導体を反応させ次いで塩基存在下、再度式[III]で表されるパーフルオロアルキル誘導体と反応させるか、もしくは下記式[IV]
Figure 0003888914
(式中、Rfは炭素数5〜10のパーフルオロアルキル基を、nは1または2を表す。)で表されるパーフルオロアルキルカルボン酸、または式[V]
Figure 0003888914
(式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜3の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で示されるカルボン酸と縮合させる工程からなることを特徴とする式[I]
Figure 0003888914
(式中、Rfは炭素数5〜10のパーフルオロアルキル基を、Rはアルキル基、アラルキル基、アリール基のいずれかを、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で表される高度にフッ素化されたカルボン酸誘導体の製造方法。
In the presence of a base, the following formula [III]
Figure 0003888914
(Wherein Y represents an alkylsulfonyloxy group, an arylsulfonyloxy group, or a halogen other than fluorine, Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms , and n represents 1 or 2 ). reacting the perfluoroalkyl derivative represented, then the presence of a base, is reacted with perfluoroalkyl derivative represented by again formula [III], or formula [IV]
Figure 0003888914
(Wherein Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms , and n represents 1 or 2. ) or a formula [V]
Figure 0003888914
(In the formula, Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms , X represents a carbonyl group or a methylene group, l represents an integer of 1 to 3, m represents 2 or 3, n represents 1 or 2, p represents an integer of 0 to 3, and Rf, X, m, and n do not have to be the same at each display position.) and is condensed with a carboxylic acid represented by the formula [I]
Figure 0003888914
(Wherein Rf is a perfluoroalkyl group having 5 to 10 carbon atoms , R is an alkyl group, aralkyl group or aryl group, X is a carbonyl group or methylene group, and l is an integer of 1 to 3) , M represents 2 or 3, n represents 1 or 2, p represents an integer of 0 to 4 , and Rf, X, m, and n do not have to be the same in each display position. A method for producing a fluorinated carboxylic acid derivative.
請求項3記載の式[I](式中、Rfは炭素数5〜10のパーフルオロアルキル基を、Rはアルキル基、アラルキル基、アリール基のいずれかを、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数を、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で表される、高度にフッ素化されたカルボン酸誘導体からカルボン酸へ誘導する工程からなる、高度にフッ素化されたカルボン酸の製造方法。The formula [I] according to claim 3 , wherein Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms , R represents an alkyl group, an aralkyl group, or an aryl group, and X represents a carbonyl group or a methylene group. , L represents an integer of 1 to 3, m represents 2 or 3, n represents 1 or 2, p represents an integer of 0 to 4 , and Rf, X, m, and n must be the same in each display position And a method for producing a highly fluorinated carboxylic acid, which comprises a step of deriving from a highly fluorinated carboxylic acid derivative to a carboxylic acid. 式[VII]
Figure 0003888914
(式中、Rfは、炭素数5〜10のパーフルオロアルキル基を、Xはカルボニル基あるいはメチレン基を、lは1〜3の整数、mは2または3を、nは1または2、pは0〜4の整数を表し、Rf、X、m、nはその表示各位において同一である必要はない。)で示される高度にフッ素化されたアシル基を水酸基の保護基として使用する方法。
Formula [VII]
Figure 0003888914
(In the formula, Rf represents a perfluoroalkyl group having 5 to 10 carbon atoms, X represents a carbonyl group or a methylene group, l represents an integer of 1 to 3, m represents 2 or 3, n represents 1 or 2, p Represents an integer of 0 to 4, and Rf, X, m, and n do not have to be the same in each position thereof.) A method of using a highly fluorinated acyl group represented by
JP2002063985A 2001-03-14 2002-03-08 Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof Expired - Fee Related JP3888914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063985A JP3888914B2 (en) 2001-03-14 2002-03-08 Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-71420 2001-03-14
JP2001071420 2001-03-14
JP2002063985A JP3888914B2 (en) 2001-03-14 2002-03-08 Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof

Publications (2)

Publication Number Publication Date
JP2002338534A JP2002338534A (en) 2002-11-27
JP3888914B2 true JP3888914B2 (en) 2007-03-07

Family

ID=26611198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063985A Expired - Fee Related JP3888914B2 (en) 2001-03-14 2002-03-08 Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof

Country Status (1)

Country Link
JP (1) JP3888914B2 (en)

Also Published As

Publication number Publication date
JP2002338534A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
KR20200087669A (en) Preparation method of intermediate for L-Glufosinate and L-Glufosinate
CN112358427B (en) Synthetic method of trifluoro-methyl-thionate compound
JP5044965B2 (en) Method for producing α-glycerophosphorylcholine crystals
CN105777544B (en) A kind of preparation method of S- (+)-flurbiprofen axetil
JP2009286731A (en) METHOD FOR PRODUCING HALOGENATED alpha-FLUOROETHERS
WO2008078482A1 (en) Process for producing intermediate of asenapine synthesis
EP2723709B1 (en) Manufacture of a triiodinated contrast agent
WO2018088527A1 (en) Novel trityl protecting agent
JP3888914B2 (en) Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof
JP4736474B2 (en) Process for producing fluorine-containing alkylsulfonylaminoethyl α-substituted acrylates
CN107253968B (en) Universal and stereospecific synthesis of gamma, delta-unsaturated amino acids by Wittig reaction
JP4019125B2 (en) Highly fluorinated carboxylic acids and processes and intermediates therefor
WO2003093221A1 (en) Preparation of d-(-) -1-substituted phenyl-2-dichloro-acetoamino-3fluoro-1-propanol from l type substituted phenyl serine ester
JP5142279B2 (en) Bio-related substance measuring device, surface modification material for artificial organs
JP4440167B2 (en) Highly fluorinated carboxylic acid derivative and method for producing the same
CN105683159A (en) Intermediates and methods for synthesizing calicheamicin derivatives
JP3193597B2 (en) Method for producing glycine derivative
JP4534024B2 (en) Compound separation carrier and compound separation method
CN110117240A (en) Thiamine disulfide class compound and its synthetic method and application
JP2003342234A (en) Method for synthesizing hydroquinone monoester compound
JP2010111661A (en) Method for producing aromatic sulfonyl chloride and aromatic sulfonic acid compound, and aromatic sulfonic acid compound, and production intermediate therefor
JPS6232188B2 (en)
JP4088703B2 (en) Method for producing N-acyl (meth) acrylamide derivative, method for producing intermediate thereof, and intermediate thereof
JP3855323B2 (en) Method for producing 3-amino-2-oxo-1-halogenopropane derivative
JP3011784B2 (en) New pyridinesulfonic acid ester

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3888914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees