JP4534024B2 - Compound separation carrier and compound separation method - Google Patents

Compound separation carrier and compound separation method Download PDF

Info

Publication number
JP4534024B2
JP4534024B2 JP2004197290A JP2004197290A JP4534024B2 JP 4534024 B2 JP4534024 B2 JP 4534024B2 JP 2004197290 A JP2004197290 A JP 2004197290A JP 2004197290 A JP2004197290 A JP 2004197290A JP 4534024 B2 JP4534024 B2 JP 4534024B2
Authority
JP
Japan
Prior art keywords
carrier
separation
solvent
substance
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004197290A
Other languages
Japanese (ja)
Other versions
JP2006015283A (en
Inventor
一裕 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2004197290A priority Critical patent/JP4534024B2/en
Publication of JP2006015283A publication Critical patent/JP2006015283A/en
Application granted granted Critical
Publication of JP4534024B2 publication Critical patent/JP4534024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化合物の分離方法およびそれに用いる分離用担体に関する。さらに詳しくは、特定の担体および溶媒系を用いた化合物の分離方法および分離用担体に関する。   The present invention relates to a method for separating a compound and a separation carrier used therefor. More specifically, the present invention relates to a method for separating a compound using a specific carrier and a solvent system and a separation carrier.

有機合成反応では多様な溶媒が用いられ、それぞれの反応に対して適合する溶媒、試薬、および反応温度などの組合せが、反応の成否または収率を決める重要なファクターになっている。そのため、通常は反応の各段階で反応溶媒から生成物を分離し、次のステップに進む操作を繰り返す。   Various solvents are used in the organic synthesis reaction, and a combination of a solvent, a reagent, a reaction temperature, and the like that are suitable for each reaction is an important factor that determines the success or yield of the reaction. Therefore, usually, the product is separated from the reaction solvent at each stage of the reaction, and the operation of proceeding to the next step is repeated.

しかし、この分離操作は非常に煩雑かつ時間を要するため、生成物を固体(ビーズなど)に結合し、生成物だけを溶液系から取り出す方法の重要性が認識されている。これらの固相法は固体表面で化学反応を実施するため、一般に均一溶液系で反応を行うよりも反応性が低く、またある種の溶媒に対してはビーズが膨潤、溶解するなど、問題もある。   However, since this separation operation is very complicated and time-consuming, the importance of a method in which the product is bound to a solid (such as beads) and only the product is taken out from the solution system is recognized. Since these solid-phase methods perform chemical reactions on solid surfaces, they are generally less reactive than when they are reacted in a homogeneous solution system, and there are problems such as beads swelling and dissolving in certain solvents. is there.

そこで、これまでに均一液相法と固相法のメリットを併せ持つ、フルオラス合成法(非特許文献1および2参照)や相溶性−多相有機溶媒システムなどが提案されている(特許文献1および2参照)。   Thus, a fluorous synthesis method (see Non-Patent Documents 1 and 2), a compatible-multiphase organic solvent system, etc. that have the advantages of the homogeneous liquid phase method and the solid phase method have been proposed (Patent Document 1 and 2).

しかし、これらの方法では、使用できる有機溶媒に限りがあった。例えば、特許文献1または2に記載された方法は、温度変化にともない二相分離または均一化する溶媒系を用いて物質の反応、分離を迅速かつ簡便に行う新概念であり、上層溶媒にはシクロアルカンまたはアルカン系溶媒を用いるものである。しかし、下層溶媒は高極性有機溶媒に限定されており、温度変化にかかわらず常にシクロアルカンまたはアルカンと混和してしまう溶媒、例えば、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフランなどには、これらの方法は、適用できなかった。   However, these methods have limited organic solvents that can be used. For example, the method described in Patent Document 1 or 2 is a new concept for quickly and easily reacting and separating substances using a solvent system that performs two-phase separation or homogenization in accordance with temperature changes. A cycloalkane or an alkane solvent is used. However, the lower layer solvent is limited to highly polar organic solvents, and these methods can be used for solvents that are always miscible with cycloalkane or alkane regardless of temperature change, such as dichloromethane, chloroform, diethyl ether, tetrahydrofuran, etc. Could not be applied.

ところが、これら混和性の高い溶媒は、合成化学においてきわめて広範な用途があるため、従来技術には応用性の面で大きな限界があった。従って、ハロゲン化アルキル、エーテル、アルコール、ニトリル、ニトロ、アミド、スルフォキサイドなど汎用性のある溶媒を逐次変換しながら連続的に反応を進めることは困難であった。
特開2003−62448号公報 特開2003−183298号公報 I.T.Horvath,J.Rabai,Science,1994,266,72 J.A.Gladysz,Science,1994,266,55
However, since these highly miscible solvents have a very wide range of uses in synthetic chemistry, the prior art has a great limitation in terms of applicability. Therefore, it has been difficult to continuously proceed the reaction while sequentially converting a versatile solvent such as alkyl halide, ether, alcohol, nitrile, nitro, amide, sulfoxide.
JP 2003-62448 A JP 2003-183298 A I. T. T. Horvath, J. et al. Rabai, Science, 1994, 266, 72 J. et al. A. Gladysz, Science, 1994, 266, 55

本発明の課題は、不要試薬類や副生成物などと、目的物とを反応終了後に迅速かつ簡便に分離、精製することができるばかりでなく、多段階合成反応を多彩な有機溶媒条件下で繰り返し実行できる方法およびそれに用いる分離用担体を提供することにある。   The object of the present invention is not only to quickly and easily separate and purify unnecessary reagents and by-products from the target product after completion of the reaction, but also to perform a multi-step synthesis reaction under various organic solvent conditions. It is an object of the present invention to provide a method that can be repeatedly performed and a separation carrier used therefor.

本発明者らは、糖類(糖鎖ユニット)に特定の疎水性部分(疎水性ユニット)を付加することにより、優れた分離用担体が得られることを発見し、本発明を完成させた。   The present inventors have found that an excellent separation carrier can be obtained by adding a specific hydrophobic moiety (hydrophobic unit) to a saccharide (sugar chain unit), and completed the present invention.

即ち、本発明は、糖類の少なくとも1つの水酸基に、置換基を有してもよい炭素原子数6〜40の炭化水素鎖がエステル結合またはエーテル結合しており、かつ、少なくとも1つの水酸基を有することを特徴とする、化合物の分離用担体である。   That is, in the present invention, the hydrocarbon chain having 6 to 40 carbon atoms which may have a substituent is ester-bonded or ether-bonded to at least one hydroxyl group of the saccharide, and has at least one hydroxyl group. This is a carrier for separating compounds.

また、本発明は、糖類が、ペントース、ヘキソース、ペントース若しくはヘキソースを還元して得られるポリアルコール、ペントース若しくはヘキソースを酸化して得られるポリヒドロキシケトン、ペントース若しくはヘキソースを酸化して得られるポリヒドロキシアルデヒド、およびペントース若しくはヘキソースを酸化して得られるポリヒドロキシカルボン酸、から成る群より選択される少なくとも1種であることを特徴とする、上記の分離用担体である。   The present invention also relates to a polyalcohol obtained by reducing pentose, hexose, pentose or hexose, a polyhydroxyketone obtained by oxidizing pentose or hexose, a polyhydroxyaldehyde obtained by oxidizing pentose or hexose. And at least one selected from the group consisting of a polyhydroxycarboxylic acid obtained by oxidizing pentose or hexose.

また、本発明は、下記一般式(1)〜(6)で示される、化合物の分離用担体である。   Moreover, this invention is a support | carrier for isolation | separation of a compound shown by following General formula (1)-(6).

Figure 0004534024
(式中、L1〜L6は、それぞれ独立に、置換基を有してもよい炭素原子数6〜40の炭化水素基、置換基を有してもよい炭素原子数6〜40のアシル基またはHを、Xは、S、N、O、CまたはHを、示す。ただし、L1〜L6の少なくとも1つは、Hである。)
Figure 0004534024
(In the formula, L 1 to L 6 are each independently a hydrocarbon group having 6 to 40 carbon atoms which may have a substituent, or an acyl having 6 to 40 carbon atoms which may have a substituent. A group or H, X represents S, N, O, C or H, provided that at least one of L 1 to L 6 is H.)

また、本発明は、下記一般式(7)または(8)で示される、化合物の分離用担体である。   The present invention is also a compound separation carrier represented by the following general formula (7) or (8).

Figure 0004534024
Figure 0004534024

また、本発明は、上記の分離用担体の少なくとも2つを相互に結合させた、化合物の分離用担体である。   The present invention also provides a compound separation carrier in which at least two of the above separation carriers are bonded to each other.

また、本発明は、
(1)上記の分離用担体に、第1の物質を結合させる工程、
(2)第1の物質を結合させた前記分離用担体を、可溶性溶媒に溶解して担体溶液を調製する工程、
(3)第1の物質と第2の物質との反応を容易にする添加溶媒を、前記担体溶液に加えて1液相とする工程、
(4)添加溶媒を加えた前記担体溶液に、第2の物質を添加して、第1の物質との反応を行い、生成した化合物が結合した前記分離用担体を得る工程、
(6)前記担体溶液と前記添加溶媒とを分離させる工程、
(7)前記担体溶液を回収する工程、
を含むことを特徴とする、化合物の分離方法である。
The present invention also provides:
(1) a step of binding a first substance to the separation carrier,
(2) A step of preparing a carrier solution by dissolving the separation carrier combined with the first substance in a soluble solvent,
(3) adding an additive solvent that facilitates the reaction between the first substance and the second substance to the carrier solution to form one liquid phase;
(4) adding the second substance to the carrier solution to which the additive solvent has been added, reacting with the first substance, and obtaining the separation carrier to which the produced compound is bound;
(6) separating the carrier solution and the additive solvent;
(7) recovering the carrier solution;
A method for separating a compound, comprising:

また、本発明は、工程(1)において、分離用担体の水酸基に、第1の物質を結合させることを特徴とする、上記の分離方法である。   In addition, the present invention is the separation method described above, wherein in the step (1), the first substance is bonded to the hydroxyl group of the separation carrier.

また、本発明は、工程(1)において、第1の物質を、リンカーユニットを介して結合させることを特徴とする、上記の分離方法である。   In addition, the present invention is the separation method described above, wherein in the step (1), the first substance is bound via a linker unit.

また、本発明は、工程(2)において、可溶性溶媒が、炭素原子数4〜40の環状炭化水素または鎖状炭化水素であることを特徴とする、上記の分離方法である。   Moreover, this invention is said separation method characterized by the soluble solvent being a C4-C40 cyclic hydrocarbon or chain | strand-shaped hydrocarbon in a process (2).

また、本発明は、工程(2)において、可溶性溶媒が、シクロヘキサン、メチルシクロヘキサンおよびデカリンから成る群より選択される少なくとも1種であることを特徴とする、上記の分離方法である。   The present invention is also the above separation method, wherein in step (2), the soluble solvent is at least one selected from the group consisting of cyclohexane, methylcyclohexane and decalin.

また、本発明は、工程(3)において、添加溶媒が、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、アセトニトリル、ジメチルホルムアミド、ニトロメタンおよびメタノールから成る群より選択される少なくとも1種であることを特徴とする、上記の分離方法である。   In the step (3), the present invention is characterized in that the additive solvent is at least one selected from the group consisting of dichloromethane, chloroform, diethyl ether, tetrahydrofuran, acetonitrile, dimethylformamide, nitromethane, and methanol. , The separation method described above.

また、本発明は、工程(6)において、添加溶媒への親和性の高い溶媒を添加することにより、担体溶液と添加溶媒とを分離させることを特徴とする、上記の分離方法である。   Further, the present invention is the separation method described above, wherein in step (6), the carrier solution and the added solvent are separated by adding a solvent having a high affinity for the added solvent.

また、本発明は、工程(6)において、温度を変化させることにより、担体溶液と添加溶媒とを分離させることを特徴とする、上記の分離方法である。   Further, the present invention is the separation method described above, wherein in step (6), the carrier solution and the added solvent are separated by changing the temperature.

また、本発明は、(5)添加溶媒の一部または全部を留去する工程、
をさらに含むことを特徴とする、上記の分離方法である。
The present invention also includes (5) a step of distilling off part or all of the added solvent,
The separation method as described above, further comprising:

また、本発明は、(8)回収した担体溶液中の担体から生成した化合物を脱離させる工程、
をさらに含むことを特徴とする、上記の分離方法である。
The present invention also includes (8) a step of desorbing the compound produced from the carrier in the recovered carrier solution,
The separation method as described above, further comprising:

また、本発明は、反応がペプチド合成反応、オリゴ糖合成反応、オリゴ糖ペプチド合成反応またはオリゴ糖脂質合成反応であることを特徴とする、上記の分離方法である。   The present invention is also the above separation method, wherein the reaction is a peptide synthesis reaction, an oligosaccharide synthesis reaction, an oligosaccharide peptide synthesis reaction or an oligosaccharide lipid synthesis reaction.

また、本発明は、上記の分離方法を用いることを特徴とする、ペプチド、オリゴ糖、オリゴ糖ペプチドまたはオリゴ糖脂質の製造方法である。   The present invention also provides a method for producing a peptide, oligosaccharide, oligosaccharide peptide or oligoglycolipid, characterized by using the separation method described above.

また、本発明は、
(1)上記の分離用担体を、可溶性溶媒に溶解して担体溶液を調製する工程、
(2)分離用担体と第2の糖類との反応を容易にする添加溶媒を、前記担体溶液に加えて1液相とする工程、
(3)添加溶媒を加えた前記担体溶液に、第2の糖類を添加して、分離用担体との反応を行い、第2の糖類が結合した前記分離用担体を得る工程、
(4)前記担体溶液と前記添加溶媒とを分離させる工程、
(5)前記担体溶液を回収する工程、
を含むことを特徴とする、多糖類の製造方法である。
The present invention also provides:
(1) A step of preparing a carrier solution by dissolving the above-mentioned separation carrier in a soluble solvent,
(2) adding an additional solvent that facilitates the reaction between the separation carrier and the second saccharide to the carrier solution to form one liquid phase;
(3) adding the second saccharide to the carrier solution to which the additive solvent has been added, performing a reaction with the separation carrier, and obtaining the separation carrier to which the second saccharide is bound;
(4) separating the carrier solution and the additive solvent;
(5) recovering the carrier solution;
It is a manufacturing method of the polysaccharide characterized by including this.

本発明によれば、不要試薬類や副生成物などと、目的物とを反応終了後に迅速かつ簡便に分離、精製することができるばかりでなく、多段階合成反応を多彩な有機溶媒条件下で繰り返し実行できる方法およびそれに用いる分離用担体を提供することができる。   According to the present invention, unnecessary reagents and by-products can be separated from the target product with the target product quickly and easily after completion of the reaction, and the multi-step synthesis reaction can be performed under various organic solvent conditions. It is possible to provide a method that can be repeatedly performed and a separation carrier used therefor.

まず、本発明の化合物の分離用担体について説明する。   First, the carrier for separating the compound of the present invention will be described.

本発明の分離用担体は、糖類の少なくとも1つの水酸基に、置換基を有してもよい炭素原子数6〜40の炭化水素鎖がエステル結合またはエーテル結合しており、かつ、少なくとも1つの水酸基を有するものである。   In the separation carrier of the present invention, a hydrocarbon chain having 6 to 40 carbon atoms which may have a substituent is ester-bonded or ether-bonded to at least one hydroxyl group of a saccharide, and at least one hydroxyl group It is what has.

本発明の分離用担体に用いられる糖類としては、特に制限はないが、ペントース、ヘキソース、ペントース若しくはヘキソースを還元して得られるポリアルコール、ペントース若しくはヘキソースを酸化して得られるポリヒドロキシケトン、ペントース若しくはヘキソースを酸化して得られるポリヒドロキシアルデヒド、およびペントース若しくはヘキソースを酸化して得られるポリヒドロキシカルボン酸を好ましい例として挙げることができる。   The saccharide used in the separation carrier of the present invention is not particularly limited, but is a polyalcohol obtained by reducing pentose, hexose, pentose or hexose, polyhydroxyketone obtained by oxidizing pentose or hexose, pentose or Preferable examples include polyhydroxyaldehyde obtained by oxidizing hexose and polyhydroxycarboxylic acid obtained by oxidizing pentose or hexose.

また、本発明の分離用担体としては、下記の式(1)〜(8)で示されるものを挙げることができる。   In addition, examples of the separation carrier of the present invention include those represented by the following formulas (1) to (8).

Figure 0004534024
(式中、L1〜L6は、それぞれ独立に、置換基を有してもよい炭素原子数6〜40の炭化水素基、置換基を有してもよい炭素原子数6〜40のアシル基またはHを、Xは、S、N、O、CまたはHを、示す。ただし、L1〜L6の少なくとも1つは、Hである。)
Figure 0004534024
(In the formula, L 1 to L 6 are each independently a hydrocarbon group having 6 to 40 carbon atoms which may have a substituent, or an acyl having 6 to 40 carbon atoms which may have a substituent. A group or H, X represents S, N, O, C or H, provided that at least one of L 1 to L 6 is H.)

Figure 0004534024
Figure 0004534024

本発明の分離用担体における炭化水素鎖の炭素原子数としては、通常6〜40であり、好ましくは10〜30、より好ましくは14〜24、さらに好ましくは16〜20のものを挙げることができる。   The number of carbon atoms in the hydrocarbon chain in the separation carrier of the present invention is usually 6 to 40, preferably 10 to 30, more preferably 14 to 24, and still more preferably 16 to 20. .

また、本発明の分離用担体は、上記の分離用担体の少なくとも2つを相互に結合させたものでもよい。結合の様式としては、特に制限はないが、例えば2糖や多糖を形成するように糖骨格(糖鎖ユニット)において結合しているものを挙げることができる。   Further, the separation carrier of the present invention may be one in which at least two of the above separation carriers are bonded to each other. The binding mode is not particularly limited, and examples thereof include those linked in a sugar skeleton (sugar chain unit) so as to form a disaccharide or a polysaccharide.

次に、本発明の分離方法について説明する。   Next, the separation method of the present invention will be described.

本発明の分離方法は、以下の工程を含むものである。
(1)本発明の分離用担体に、第1の物質を結合させる工程、
(2)第1の物質を結合させた前記分離用担体を、可溶性溶媒に溶解して担体溶液を調製する工程、
(3)第1の物質と第2の物質との反応を容易にする添加溶媒を、前記担体溶液に加えて1液相とする工程、
(4)添加溶媒を加えた前記担体溶液に、第2の物質を添加して、第1の物質との反応を行い、生成した化合物が結合した前記分離用担体を得る工程
(6)前記担体溶液と前記添加溶媒とを分離させる工程、
(7)前記担体溶液を回収する工程。
The separation method of the present invention includes the following steps.
(1) A step of binding the first substance to the separation carrier of the present invention,
(2) A step of preparing a carrier solution by dissolving the separation carrier combined with the first substance in a soluble solvent,
(3) adding an additive solvent that facilitates the reaction between the first substance and the second substance to the carrier solution to form one liquid phase;
(4) A step of adding the second substance to the carrier solution to which the additive solvent is added and reacting with the first substance to obtain the separation carrier to which the produced compound is bound (6) the carrier Separating the solution and the additive solvent;
(7) A step of recovering the carrier solution.

工程(1)において、本発明の分離用担体と第1の物質とを結合する方法としては、特に制限はないが、分離用担体の水酸基に第1の物質を結合させることが挙げられる。また、このときの結合の様式としては、特に制限はないが、例えば、エステル結合やエーテル結合とすることが挙げられる。   In the step (1), the method for bonding the separation carrier of the present invention and the first substance is not particularly limited, and examples thereof include bonding the first substance to the hydroxyl group of the separation carrier. Moreover, there is no restriction | limiting in particular as a mode of a coupling | bonding at this time, For example, using an ester bond and an ether bond is mentioned.

また、本発明の分離用担体と第1の物質とを結合させる際に、適当なリンカーユニットを介して結合させてもよい。このようなリンカーユニットとしては、本発明の分離用担体と第1の物質とを結合できるのであれば特に制限はないが、例えば、4−ヒドロキシ−ジフェニル−メチル−安息香酸等を挙げることができる。   In addition, when the separation carrier of the present invention and the first substance are bonded, they may be bonded via an appropriate linker unit. The linker unit is not particularly limited as long as it can bind the separation carrier of the present invention and the first substance, and examples thereof include 4-hydroxy-diphenyl-methyl-benzoic acid. .

本発明に用いられる可溶性溶媒としては、本発明の分離用担体を溶解できるのであれば特に制限はないが、例えば、炭素原子数4〜40の環状炭化水素または鎖状炭化水素を挙げることができる。より具体的には、例えば、シクロヘキサン、メチルシクロヘキサン、デカリン等を挙げることができる。これらの溶媒は、1種または2種以上を混合して用いてもよい。   The soluble solvent used in the present invention is not particularly limited as long as it can dissolve the separation carrier of the present invention, and examples thereof include cyclic hydrocarbons or chain hydrocarbons having 4 to 40 carbon atoms. . More specifically, for example, cyclohexane, methylcyclohexane, decalin and the like can be mentioned. These solvents may be used alone or in combination of two or more.

可溶性溶媒に本発明の分離用担体を溶解させるときの濃度は、溶媒、分離用担体、反応に用いる第1の物質および第2の物質等の性質に応じ適宜決定されるが、通常0.01〜0.1g/mlである。   The concentration at which the separation carrier of the present invention is dissolved in the soluble solvent is appropriately determined depending on the properties of the solvent, the separation carrier, the first substance and the second substance used in the reaction, etc. ~ 0.1 g / ml.

本発明に用いられる添加溶媒としては、第1の物質と第2の物質の反応を容易にするものであれば特に制限はなく、溶媒、分離用担体、反応に用いる第1の物質および第2の物質、可溶性溶媒等の性質に応じて適宜決定される。具体的には、例えば、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、アセトニトリル、ジメチルホルムアミド、ニトロメタン、メタノール等を挙げることができる。これらの溶媒は、1種または2種以上を混合して用いてもよい。   The additive solvent used in the present invention is not particularly limited as long as it facilitates the reaction between the first substance and the second substance. The solvent, the carrier for separation, the first substance used in the reaction, and the second substance are used. It is determined appropriately depending on the properties of the substance, soluble solvent and the like. Specific examples include dichloromethane, chloroform, diethyl ether, tetrahydrofuran, acetonitrile, dimethylformamide, nitromethane, methanol, and the like. These solvents may be used alone or in combination of two or more.

加える添加溶媒の量としては、第1の物質と第2の物質の反応を容易にするものであれば特に制限はなく、溶媒、分離用担体、反応に用いる第1の物質および第2の物質、可溶性溶媒等の性質に応じて適宜決定される。   The amount of added solvent is not particularly limited as long as it facilitates the reaction between the first substance and the second substance. The solvent, the carrier for separation, the first substance and the second substance used in the reaction are not limited. It is determined appropriately according to the properties of the soluble solvent and the like.

本発明において、担体溶液と添加溶媒とを分離させる方法としては、特に制限はないが、例えば、温度を変化させることが挙げられる。即ち、アセトニトリル、ジメチルホルムアミド、ニトロメタン、メタノール等は、一定の温度を境に、上記の可溶性溶媒と完全に均一な溶液を形成するか、2相に分離するかのいずれかとなることが知られている。従って、アセトニトリル、ジメチルホルムアミド、ニトロメタン、メタノール等を添加溶媒として用いた場合には、第1の物質と第2の物質との反応を完全な均一相となる温度域にて行った後、系の温度を完全に均一な溶液となる温度から2相に分離する温度に変化させることにより、容易に2相に分離させることができる。   In the present invention, the method for separating the carrier solution and the additive solvent is not particularly limited, and examples thereof include changing the temperature. That is, acetonitrile, dimethylformamide, nitromethane, methanol, etc. are known to either form a completely homogeneous solution with the above-mentioned soluble solvent at a certain temperature or to separate into two phases. Yes. Therefore, when acetonitrile, dimethylformamide, nitromethane, methanol, or the like is used as an additive solvent, the reaction between the first substance and the second substance is performed in a temperature range where a complete homogeneous phase is obtained, and then the system is used. By changing the temperature from a temperature at which a completely uniform solution is obtained to a temperature at which the solution is separated into two phases, the solution can be easily separated into two phases.

この場合、上層に分離用担体を含む可溶性溶媒が、下層に添加溶媒が分離することとなる。そして、下層には、不用な試薬類が溶解するため、第1の物質と第2の物質との反応により生成した化合物を、容易に上層に分離できることとなる。   In this case, the soluble solvent containing the separation carrier in the upper layer is separated from the additive solvent in the lower layer. And since unnecessary reagents dissolve in the lower layer, the compound produced by the reaction between the first substance and the second substance can be easily separated into the upper layer.

また、担体溶液と添加溶媒とを分離させる他の方法としては、添加溶媒への親和性の高い第3の溶媒を添加することが挙げられる。例えば、添加溶媒として、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン等を用いた場合には、第3の溶媒として、アセトニトリル、ジメチルホルムアミド、ニトロメタン、メタノール等を用いることができる。これら第3の溶媒は、上記の添加溶媒に対して親和性が高い一方、上記の可溶性溶媒に対しては親和性が比較的低いため、第3の溶媒を添加することにより、上述のように一定の温度域において2相に分離させることが可能となる。   Another method for separating the carrier solution and the added solvent is to add a third solvent having a high affinity for the added solvent. For example, when dichloromethane, chloroform, diethyl ether, tetrahydrofuran, or the like is used as the additive solvent, acetonitrile, dimethylformamide, nitromethane, methanol, or the like can be used as the third solvent. While these third solvents have a high affinity for the above-mentioned added solvent, they have a relatively low affinity for the above-mentioned soluble solvent. Therefore, by adding the third solvent, as described above, It becomes possible to separate into two phases in a certain temperature range.

この場合、上層に分離用担体を含む可溶性溶媒が、下層に第3の溶媒と添加溶媒との混合相が、分離することとなる。そして、下層には、不用な試薬類が溶解するため、第1の物質と第2の物質との反応により生成した化合物を、容易に上層に分離できることとなる。   In this case, the soluble solvent containing the separation carrier in the upper layer is separated from the mixed phase of the third solvent and the added solvent in the lower layer. And since unnecessary reagents dissolve in the lower layer, the compound produced by the reaction between the first substance and the second substance can be easily separated into the upper layer.

また、この場合、第1の物質と第2の物質との反応終了後に、添加溶媒の全部または一部を留去することにより、効率的に2相分離させることができることとなる。なお、完全に留去することにより、反応容器内に存在する試薬や副生成物などが析出することがあるため、完全に留去する前に、第3の溶媒を添加することが好ましい。   In this case, after completion of the reaction between the first substance and the second substance, two or more phases can be efficiently separated by distilling off all or a part of the added solvent. In addition, since a reagent, a by-product, etc. which exist in reaction container may precipitate by completely distilling off, it is preferable to add a 3rd solvent before distilling off completely.

本発明において、分離した担体溶液を回収することにより、生成した化合物が結合した分離用担体を容易に得ることが可能となる。   In the present invention, by collecting the separated carrier solution, it is possible to easily obtain a separation carrier to which the produced compound is bound.

そして、例えば、ペプチド合成等の逐次多段階反応を行う場合には、回収した担体溶液を工程(3)に戻し、繰り返し反応と分離、回収を行うことにより、効率的に合成反応を行うことができることとなる。   For example, when performing sequential multi-step reactions such as peptide synthesis, the recovered carrier solution can be returned to step (3), and the reaction can be repeated, separated, and recovered to efficiently perform the synthesis reaction. It will be possible.

また、回収した分離用担体から生成した化合物を脱離させることにより、目的とする化合物を分離、製造することが可能となる。   Further, by removing the generated compound from the recovered separation carrier, it becomes possible to separate and produce the target compound.

本発明における第1の物質と第2の物質との反応としては、特に制限はなく、例えば、ペプチド合成反応、オリゴ糖合成反応、オリゴペプチド合成反応、オリゴ糖脂質合成反応等に好ましく用いることができる。従って、第1の物質および第2の物質もこれらの反応に用いられる原料となる物質であれば、いずれのものでもよい。   There is no restriction | limiting in particular as reaction of the 1st substance in this invention, and a 2nd substance, For example, using preferably for peptide synthesis reaction, oligosaccharide synthesis reaction, oligopeptide synthesis reaction, oligoglycolipid synthesis reaction, etc. it can. Accordingly, the first substance and the second substance may be any substance as long as they are materials used for these reactions.

本発明においては、図1に示すように、疎水性ユニット、糖鎖ユニット、リンカーユニット、ペプチドユニットの1箇所または2箇所以上の部分で相互に結合させて、複数の分離用担体を用いることも可能である。   In the present invention, as shown in FIG. 1, it is also possible to use a plurality of separation carriers bonded to each other at one part or two or more parts of a hydrophobic unit, a sugar chain unit, a linker unit and a peptide unit. Is possible.

また、本発明において、分離用担体そのものをオリゴ糖合成の出発物質として用い、これに第2の糖類を結合させることにより、容易に多糖類を製造することが可能となる。   In the present invention, a polysaccharide can be easily produced by using a separation carrier itself as a starting material for oligosaccharide synthesis and binding a second saccharide thereto.

この場合の工程は、以下の通りとなる。
(1)本発明の分離用担体を、可溶性溶媒に溶解して担体溶液を調製する工程、
(2)分離用担体と第2の糖類との反応を容易にする添加溶媒を、前記担体溶液に加えて1液相とする工程、
(3)添加溶媒を加えた前記担体溶液に、第2の糖類を添加して、分離用担体との反応を行い、第2の糖類が結合した前記分離用担体を得る工程、
(4)前記担体溶液と前記添加溶媒とを分離させる工程、
(5)前記担体溶液を回収する工程。
The process in this case is as follows.
(1) a step of preparing a carrier solution by dissolving the separation carrier of the present invention in a soluble solvent;
(2) adding an additional solvent that facilitates the reaction between the separation carrier and the second saccharide to the carrier solution to form one liquid phase;
(3) adding the second saccharide to the carrier solution to which the additive solvent has been added, performing a reaction with the separation carrier, and obtaining the separation carrier to which the second saccharide is bound;
(4) separating the carrier solution and the additive solvent;
(5) A step of collecting the carrier solution.

この場合、可溶性溶媒、添加溶媒またはこれらの溶媒の分離方法等は、上述の本発明の分離方法と同様のものを用いることができる。   In this case, the soluble solvent, the added solvent, or the separation method of these solvents can be the same as the separation method of the present invention described above.

以下実施例を示して、本発明を説明するが、本発明は以下の実施例の記載に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the description of the following examples.

<実施例1:分離用担体の合成>
α−メチルグルコシド(1)(8.064g,0.0412mol)、イミダゾール(5.6625g,0.0824mol)をDMF200mlに溶解させ、TBDPSCl(t−ブチルジフェニルシリルクロライド、16.9983g,0.0618mol)を添加し室温下24時間攪拌した。エーテルを加え、1N塩酸、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し溶媒を留去した。得られた生成物(2)をTHF80mlに溶解し、DMAP(ジメチルアミノピリジン0.4334g,3.547mmol)トリエチルアミン(42.6019g,0.418mol),ステアリルクロリド(63.3g,0.209mol)を室温下順次添加し、50℃で18時間反応させ、再結晶することにより31%で生成物(3)を得た。次に、TBDPS保護糖担体(0.874g,0.710mmol)をテトラヒドロフラン30mlに溶解させた。溶液を0℃に冷却した後、1.0Mテトラブチルアンモニウムフロライド・テトラヒドロフラン溶液(2.17ml)、酢酸(0.2985g, 4.97mmol)を添加した。室温で18時間攪拌後、エーテルを加え、水で洗浄後、硫酸マグネシウムで乾燥し溶媒を留去し、収率72%で本発明の分離用担体(4)を得た。
<Example 1: Synthesis of carrier for separation>
α-methylglucoside (1) (8.064 g, 0.0412 mol) and imidazole (5.6625 g, 0.0824 mol) are dissolved in 200 ml of DMF, and TBDPSCl (t-butyldiphenylsilyl chloride, 16.9983 g, 0.0618 mol) is dissolved. Was added and stirred at room temperature for 24 hours. Ether was added, washed with 1N hydrochloric acid and saturated brine, dried over magnesium sulfate, and the solvent was distilled off. The obtained product (2) was dissolved in 80 ml of THF, and DMAP (dimethylaminopyridine 0.4334 g, 3.547 mmol) triethylamine (42.6019 g, 0.418 mol) and stearyl chloride (63.3 g, 0.209 mol) were added. The product (3) was obtained at 31% by sequentially adding at room temperature, reacting at 50 ° C. for 18 hours, and recrystallization. Next, TBDPS protected sugar carrier (0.874 g, 0.710 mmol) was dissolved in 30 ml of tetrahydrofuran. After the solution was cooled to 0 ° C., 1.0 M tetrabutylammonium fluoride / tetrahydrofuran solution (2.17 ml) and acetic acid (0.2985 g, 4.97 mmol) were added. After stirring at room temperature for 18 hours, ether was added, washed with water, dried over magnesium sulfate and the solvent was distilled off to obtain the separation carrier (4) of the present invention in a yield of 72%.

Figure 0004534024
Figure 0004534024

<参考例1:リンカーユニットおよびアミノ酸誘導体を結合させた分離用担体の合成>
実施例1で得られた分離用担体(4)(0.619g,0.5mmol)、トリチルアルコール(0.456g,1.5mmol[3eq])をジクロロメタン30mlに溶解させ、DMAP(0.01mmol[0.2eq])、DIPCI(ジイソプロピルカルボジイミド0.567g,4.5mmol[9eq])を添加し、4時間反応させ溶媒を留去した。その後、ヘキサンーアセトニトリルで分液しヘキサン層を濃縮乾固し、リンカーユニットとして4−(ヒドロキシ−ジフェニル−メチル)−安息香酸を縮合反応させた分離用担体(5)を得た。
<Reference Example 1: Synthesis of a carrier for separation in which a linker unit and an amino acid derivative are bonded>
The separation carrier (4) obtained in Example 1 (0.619 g, 0.5 mmol) and trityl alcohol (0.456 g, 1.5 mmol [3 eq]) were dissolved in 30 ml of dichloromethane, and DMAP (0.01 mmol [0.01 mmol [ 0.2 eq]) and DIPCI (diisopropylcarbodiimide 0.567 g, 4.5 mmol [9 eq]) were added and reacted for 4 hours to distill off the solvent. Thereafter, liquid separation was performed with hexane-acetonitrile, and the hexane layer was concentrated and dried to obtain a separation carrier (5) in which 4- (hydroxy-diphenyl-methyl) -benzoic acid was subjected to a condensation reaction as a linker unit.

その後トルエンに溶解させ、塩化チオニルを加え20分間還流し溶液を留去した。ジイソプロピルエチルアミン(0.387g,3.0mmol),Fmocフェニルアラニン(0.387g、1.0mmol)を溶解させたジクロロメタン溶液を、クロロ化担体に加えた。収率36%で生成物(6)を得た。   Thereafter, the product was dissolved in toluene, thionyl chloride was added and refluxed for 20 minutes, and the solution was distilled off. A dichloromethane solution in which diisopropylethylamine (0.387 g, 3.0 mmol) and Fmoc phenylalanine (0.387 g, 1.0 mmol) were dissolved was added to the chlorinated carrier. The product (6) was obtained with a yield of 36%.

<実施例2:2糖の合成>
以下に、分離用担体を2糖合成の出発原料として用いた例を示す。
<Example 2: Synthesis of disaccharide>
The following shows an example in which the separation carrier is used as a starting material for disaccharide synthesis.

アルゴン気流下、疎水性の分離用担体A(オクタデカノイックアシッド2−ヒドロキシメチル−6−メトキシ4,5−ビス−オクタデカノイル−テトラヒドロピラン−3−イルエステル)(1.087g,1.094mmol)、チオグリコシド(1.80g,2.19mmol[2eq])、活性化したモレキュラーシーブス4Å(4.52g)をジクロロメタンおよびメチルシクロヘキサン1:1(v/v)混合溶液30mlに溶解させ、10分間攪拌した。溶液を0℃に冷却した後、N−ヨードコハク酸イミド(0.5829g,2.61mmol[2.2eq])、トリフルオロメタンスルホン酸トリメチルシリル(0.1317g,0.593mmol[0.5eq])を順次添加した。糖受容体の消失をTLC(へキサン:酢酸エチル=4:1、反応時間5時間)で確認後、ジメチルホルムアミド30mlを添加後、減圧下ジクロロメタンを留去した。本溶液は20℃で2相に分離した。下層を廃棄した後、上層溶液をジメチルホルムアミド30mlで2回洗浄した。上層(メチルシクロヘキサン層)から収率93%で生成物Bを得た。   Hydrophobic separation carrier A (octadecanoic acid 2-hydroxymethyl-6-methoxy-4,5-bis-octadecanoyl-tetrahydropyran-3-yl ester) (1.087 g, 1. 094 mmol), thioglycoside (1.80 g, 2.19 mmol [2 eq]) and activated molecular sieves 4Å (4.52 g) are dissolved in 30 ml of a mixed solution of dichloromethane and methylcyclohexane 1: 1 (v / v). Stir for minutes. After cooling the solution to 0 ° C., N-iodosuccinimide (0.5829 g, 2.61 mmol [2.2 eq]) and trimethylsilyl trifluoromethanesulfonate (0.1317 g, 0.593 mmol [0.5 eq]) were sequentially added. Added. After confirming disappearance of the sugar receptor by TLC (hexane: ethyl acetate = 4: 1, reaction time 5 hours), 30 ml of dimethylformamide was added, and then dichloromethane was distilled off under reduced pressure. This solution separated into two phases at 20 ° C. After discarding the lower layer, the upper layer solution was washed twice with 30 ml of dimethylformamide. Product B was obtained from the upper layer (methylcyclohexane layer) in a yield of 93%.

Figure 0004534024
Figure 0004534024

続いて、生成物Bのメチルシクロヘキサン溶液15ml(1.212g,0.710mmolの二糖を含む)にテトラヒドロフラン15mlを添加して均一溶液とした。この溶液を0℃に冷却した後、1.0Mテトラブチルアンモニウムフロライド・テトラヒドロフラン溶液(2.17ml[3eq])、酢酸(0.2985g,4.97mmol[7eq])を添加した。室温で18時間攪拌後、ジメチルホルムアミド30mlを添加した後、ロータリーエバポレーターでテトラヒドロフランを留去した。本溶液を20℃まで冷却したところ、2相に分離した。下層溶液を廃棄した後、ジメチルホルムアミド30mlでさらに2回洗浄した。上層のメチルシクロヘキサン溶液から脱保護された生成物を収率72%で得た。   Subsequently, 15 ml of tetrahydrofuran was added to 15 ml of methylcyclohexane solution of product B (1.212 g, containing 0.710 mmol of disaccharide) to obtain a homogeneous solution. The solution was cooled to 0 ° C., and 1.0 M tetrabutylammonium fluoride / tetrahydrofuran solution (2.17 ml [3 eq]) and acetic acid (0.2985 g, 4.97 mmol [7 eq]) were added. After stirring at room temperature for 18 hours, 30 ml of dimethylformamide was added, and then tetrahydrofuran was distilled off using a rotary evaporator. The solution was cooled to 20 ° C. and separated into two phases. After the lower layer solution was discarded, it was further washed twice with 30 ml of dimethylformamide. The deprotected product from the upper layer methylcyclohexane solution was obtained in 72% yield.

分離用担体A(オクタデカノイックアシッド2−ヒドロキシメチル−6−メトキシ4,5−ビス−オクタデカノイル−テトラヒドロピラン−3−イルエステル)
(Octadecanoic acid 2−hydroxymethyl−6−methoxy−4,5−bis−octadecanoyloxy−tetrahydro−pyran−3−yl ester)
1H−NMR(300MHz;CDCl3)) d5.58(1H,t,J=9.90Hz),5.01(1H,t,J=9.90Hz),4.97(1H,d,J=3.67Hz),4.87(1H,dd,J=9.90,3.67Hz),3.76(1H,m),3.68(1H,m),3.57(1H,m),3.40(3H,s),2.41−2.17(6H,m),1.64−1.43(6H,m),1.34−1.14(84H,m),1.01(9H,s)and0.88(9H,t,J=6.60Hz);HRMScaldcd.for C611169Nam/z1015.8517,found1015.85170
Carrier A for separation (octadecanoic acid 2-hydroxymethyl-6-methoxy 4,5-bis-octadecanoyl-tetrahydropyran-3-yl ester)
(Octadecanic acid 2-hydroxymethyl-6-methoxy-4,5-bis-octadecanoyloxy-tetrahydro-pyran-3-yl ester)
1 H-NMR (300 MHz; CDCl 3 )) d5.58 (1H, t, J = 9.90 Hz), 5.01 (1H, t, J = 9.90 Hz), 4.97 (1H, d, J = 3.67 Hz), 4.87 (1H, dd, J = 9.90, 3.67 Hz), 3.76 (1H, m), 3.68 (1H, m), 3.57 (1H, m ), 3.40 (3H, s), 2.41-2.17 (6H, m), 1.64-1.43 (6H, m), 1.34-1.14 (84H, m), 1.01 (9H, s) and 0.88 (9H, t, J = 6.60 Hz); HRMScaldcd. for C 61 H 116 O 9 Nam / z 1015.8517, found 1015.85170

生成物B(6−(3,4,5−トリヒドキシ−6−ヒドロキシメチル−テトラヒドロ−ピラン−2−イルオキシメチル)−テトラヒドロ−ピラン−2,3,4,5−テトラオール誘導体)
(6−(3,4,5−Trihydroxy−6−hydroxymethyl−tetrahydro−pyran−2−yloxymethyl)−tetrahydro−pyran−2,3,4,5−tetraol derivative )
1H−NMR(300MHz;CDCl3))d7.94(2H,dd,J=8.46,1.46Hz),7.85(2H,dd,J=8.46,1.46Hz),7.83(2H,dd,J=8.46,1.46Hz),7.67(1H,dd,J=7.88,1.65Hz),7.57(1H,dd,J=7.88,1.46Hz),7.52−7.47(2H,m),5.83(1H,t,J=9.72Hz),5.63(1H,t,J=9.72Hz),5.50(1H,dd,J=9.72,7.88Hz),5.42(1H,dd,J=9.90,9.35Hz),4.66(1H,d,J=7.88Hz),4.81(1H,dd,J=10.27,9.35Hz),4.69(1H,dd,J=9.90,3.49Hz),4.64(1H,d,J=3.49Hz),3.98−3.90(2H,m),3.87−3.78(3H,m),3.60(1H,dd,J=11.5,8.07Hz),2.97(3H,s),2.54−2.11(6H,m),1.58−1.41(6H,m),1.32−1.17(84H,m),1.02(9H,s)and0.87(9H,t,J=7.15);HRMScaldcd.forC10415617SiNam/z1728.1009,found1728.10094
Product B (6- (3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxymethyl) -tetrahydro-pyran-2,3,4,5-tetraol derivative)
(6- (3,4,5-Trihydroxy-6-hydroxymethyl-tetra-hydroxy-2-ylmethyl) -tetrahydro-pyran-2,3,4,5-tetravalent)
1 H-NMR (300 MHz; CDCl 3 )) d7.94 (2H, dd, J = 8.46, 1.46 Hz), 7.85 (2H, dd, J = 8.46, 1.46 Hz), 7 .83 (2H, dd, J = 8.46, 1.46 Hz), 7.67 (1H, dd, J = 7.88, 1.65 Hz), 7.57 (1H, dd, J = 7.88) , 1.46 Hz), 7.52-7.47 (2H, m), 5.83 (1H, t, J = 9.72 Hz), 5.63 (1H, t, J = 9.72 Hz), 5 .50 (1H, dd, J = 9.72, 7.88 Hz), 5.42 (1H, dd, J = 9.90, 9.35 Hz), 4.66 (1H, d, J = 7.88 Hz) ), 4.81 (1H, dd, J = 10.27, 9.35 Hz), 4.69 (1H, dd, J = 9.90, 3.49 Hz), 4 64 (1H, d, J = 3.49 Hz), 3.98-3.90 (2H, m), 3.87-3.78 (3H, m), 3.60 (1H, dd, J = 11) .5, 8.07 Hz), 2.97 (3H, s), 2.54-2.11 (6H, m), 1.58-1.41 (6H, m), 1.32-1.17. (84H, m), 1.02 (9H, s) and 0.87 (9H, t, J = 7.15); HRMScalcdd. forC 104 H 156 O 17 SiNam / z 1728.1009, found 1728.10094

<参考例2:溶媒の分離による生成物の分離性確認>
ジクロロメタン30ml:メチルシクロヘキサン30mlより成る混合溶液に、アセトニトリル30mlを添加したところ、25℃では均一な溶液を形成した。この、ジクロロメタン、メチルシクロヘキサン、アセトニトリル 1:1:1(v/v/v)より成る、均一溶液を用いて、一定温度、減圧条件下、揮発性溶媒を留去し、残存液の同温度における二相分離を行った。上記溶液100mlをロータリーエバポレーターを用い、0.05Pa、40℃で減圧した。15分後、溶液中のジクロロメタンは31%に減少したが、メチルシクロヘキサンおよびアセトニトリルは各々98%以上残存していた。この溶液を20℃に冷却したところ、二相に分離した。次に、この二相に分離した溶液の下層溶液を捨て、30mlのアセトニトリルを添加、攪拌、下層溶液の廃棄を3回繰り返した。この操作により、上層(メチルシクロヘキサンを主成分とする層)に含まれるジクロロメタン量は0.004%以下まで減少した。この結果から、分離用担体をメチルシクロヘキサン:ジクロロメタン混合均一溶液に溶解し、一定の反応を実施した後、ジクロロメタンを一定量留去して第3の溶媒で洗浄することにより、メチルシクロヘキサンに溶解した分離用担体を分離する一連のプロセスが実現できることが示された。
<Reference Example 2: Confirmation of product separability by solvent separation>
When 30 ml of acetonitrile was added to a mixed solution consisting of 30 ml of dichloromethane and 30 ml of methylcyclohexane, a uniform solution was formed at 25 ° C. Using this homogeneous solution consisting of dichloromethane, methylcyclohexane, acetonitrile 1: 1: 1 (v / v / v), the volatile solvent was distilled off at a constant temperature under reduced pressure, and the remaining liquid was kept at the same temperature. Two-phase separation was performed. 100 ml of the above solution was decompressed at 0.05 Pa and 40 ° C. using a rotary evaporator. After 15 minutes, dichloromethane in the solution decreased to 31%, but methylcyclohexane and acetonitrile each remained above 98%. The solution was cooled to 20 ° C. and separated into two phases. Next, the lower layer solution of the solution separated into two phases was discarded, 30 ml of acetonitrile was added, stirred, and the lower layer solution was discarded three times. By this operation, the amount of dichloromethane contained in the upper layer (layer containing methylcyclohexane as a main component) was reduced to 0.004% or less. From this result, the carrier for separation was dissolved in a mixed solution of methylcyclohexane: dichloromethane, and after carrying out a certain reaction, a certain amount of dichloromethane was distilled off and washed with a third solvent, so that it was dissolved in methylcyclohexane. It has been shown that a series of processes for separating the separation carrier can be realized.

<参考例3:リンカーユニットを結合させた分離用担体の合成>
実施例1で得られた分離用担体(4)(0.619g、0.5mmol)、4−{4−ホルミルフェノキシ}ブチリックアシッド(0.210g,1.0mmol)、DIPCI(3eq)、DMAP(0.1eq)を無水ジクロロメタンに溶解させ、室温で1時間反応させた。反応後溶媒を留去し、ヘキサン40mLを添加してアセトニトリル20mLで2回洗浄した。
<Reference Example 3: Synthesis of separation carrier with linker unit attached>
Carrier for separation (4) obtained in Example 1 (0.619 g, 0.5 mmol), 4- {4-formylphenoxy} butyric acid (0.210 g, 1.0 mmol), DIPCI (3 eq), DMAP (0.1 eq) was dissolved in anhydrous dichloromethane and reacted at room temperature for 1 hour. After the reaction, the solvent was distilled off, 40 mL of hexane was added, and the mixture was washed twice with 20 mL of acetonitrile.

その後メタノールを20mL、水素化ホウ素ナトリウム(0.076g、2mmol)を添加した。反応後水を加えて洗浄し、無水硫酸ナトリウムで乾燥後ろ過濃縮したところ、オクタデカノイックアシッド6−[4−(4−ハイドロキシメチル−フェノキシ)−ブチリロキシメチル]−2−メトキシ−4,5−ビス−オクタデカノイロキシ−テトラハイドロ−ピラン−3−イルエステル(7)を収率78%で得た。   Then 20 mL of methanol and sodium borohydride (0.076 g, 2 mmol) were added. After the reaction, the reaction mixture was washed with water, dried over anhydrous sodium sulfate, and concentrated by filtration. Octadecanoic acid 6- [4- (4-hydroxymethyl-phenoxy) -butyryloxymethyl] -2-methoxy-4, 5-Bis-octadecanoyloxy-tetrahydro-pyran-3-yl ester (7) was obtained with a yield of 78%.

生成物(7)オクタデカノイックアシッド6−[4−(4−ハイドロキシメチル−フェノキシ)−ブチリロキシメチル]−2−メトキシ−4,5−ビス−オクタデカノイロキシ−テトラハイドロ−ピラン−3−イルエステル
Octadecanoic acid 6−(4−{4−hydroxymethyl−phenoxy}−butyryloxymethyl)−2−methoxy−4.5−bis−octadecanoyloxy−tetrahydro−pyran−3−yl ester
Product (7) Octadecanoic acid 6- [4- (4-Hydroxymethyl-phenoxy) -butyryloxymethyl] -2-methoxy-4,5-bis-octadecanoyloxy-tetrahydro-pyran-3 -Yl ester Octadecanoic acid 6- (4- {4-hydroxymethyl-phenoxy} -butyryloxymethyl) -2-methyoxy-4.5-bis-octadecanoyloxy-tetrahydro-pyran-3-ylester

1H−NMR(600MHz;CDCl3)δ7.29(2H,d,J=8.54Hz)、6.883(2H,d,J=8.54Hz)、5.49(1H,t,J=9.77)、5.07(1H,t,J=9.77)、4.932(1H,dd,J=10.3,3.66Hz)4.84((1H,dd,J=10.3,3.66Hz)、4.62(2H,d,J=5.86)、4.24(1H,dd,J=12.2,4.88Hz)、4.15−4.10(1H,m)、4.02(2H,t,J=6.11Hz)、3.99−3.94(1H,m),3.37(3H,s)、2.58(2H,t,J=7.08Hz),2.32−2.09(8H,m)、1.64−1.58(6H,m)、1.26(84H,s),0.89(9H,t,J=7.08Hz) 1 H-NMR (600 MHz; CDCl 3 ) δ 7.29 (2H, d, J = 8.54 Hz), 6.883 (2H, d, J = 8.54 Hz), 5.49 (1H, t, J = 9.77), 5.07 (1H, t, J = 9.77), 4.932 (1H, dd, J = 10.3, 3.66 Hz) 4.84 ((1H, dd, J = 10 .3, 3.66 Hz), 4.62 (2H, d, J = 5.86), 4.24 (1H, dd, J = 12.2, 4.88 Hz), 4.15-4.10 ( 1H, m), 4.02 (2H, t, J = 6.11 Hz), 3.99-3.94 (1H, m), 3.37 (3H, s), 2.58 (2H, t, J = 7.08 Hz), 2.32-2.09 (8H, m), 1.64-1.58 (6H, m), 1.26 (84H, s), 0.89 (9H, t, J = 7.08Hz)

13C−NMR(150MHz;CDCl3)δ172.9,172.69,172.53,172.22,158.37,133.16,128.53,114.5,96.73,70.67,69.54,68.12、67.19,66.56,64.97,61.89,55.32、51.32、42.15,34.10,34.02,33.98,33.94,31.83,30.47,29.61,29.58,29.49,29.43,29.40,29.38,29.27,29.23,29.17,29.1,29.0,28.9,24.8,24.7,24.6,24.5,23.4,22.6,14.0 13 C-NMR (150 MHz; CDCl 3 ) δ 172.9, 172.69, 172.53, 172.22, 158.37, 133.16, 128.53, 114.5, 96.73, 70.67, 69.54, 68.12, 67.19, 66.56, 64.97, 61.89, 55.32, 51.32, 42.15, 34.10, 34.02, 33.98, 33. 94, 31.83, 30.47, 29.61, 29.58, 29.49, 29.43, 29.40, 29.38, 29.27, 29.23, 29.17, 29.1, 29.0, 28.9, 24.8, 24.7, 24.6, 24.5, 23.4, 22.6, 14.0

<参考例4:リンカーユニットおよびアミノ酸誘導体を結合させた分離用担体の合成>
参考例3で得られたオクタデカノイックアシッド6−[4−(4−ハイドロキシメチル−フェノキシ)−ブチリロキシメチル]−2−メトキシ−4,5−ビス−オクタデカノイロキシ−テトラハイドロ−ピラン−3−イルエステル(0.174g,0.3mmol)をジクロロメタン20mLに溶解させ、Fmocフェニルアラニン(0.387g、0.45mmol)、DIPCI(ジイソプロピルカルボジイミド、0.114g、0.9mmol)、DMAP(ジメチルアミノピリジン、0.1eq)添加し室温下1時間攪拌した。濃縮して溶媒を一部留去した後、メチルシクロヘキサン30mL、アセトニトリル30mLを添加したところ、2相に分離した。下層を除去した後上層をアセトニトリルで3回洗浄し、溶媒を留去したところ、オクタデカノイックアシッド6−(4−{4−[2−(9H−フルオレン−9−イルメトキシカルボニルアミノ)−3−フェニル−プロピオニロキシメチル]−フェノキシ}−ブチリロキシメチル)−2−メトキシ−4,5−ビス−オクタデカノイロキシ−テトラハイドロ−ピラン−3−イルエステル(8)を98%の収率で得た。
<Reference Example 4: Synthesis of separation carrier to which linker unit and amino acid derivative are bonded>
Octadecanoic acid 6- [4- (4-hydroxymethyl-phenoxy) -butyryloxymethyl] -2-methoxy-4,5-bis-octadecanoyloxy-tetrahydro-pyran obtained in Reference Example 3 -3-yl ester (0.174 g, 0.3 mmol) was dissolved in 20 mL of dichloromethane and Fmoc phenylalanine (0.387 g, 0.45 mmol), DIPCI (diisopropylcarbodiimide, 0.114 g, 0.9 mmol), DMAP (dimethyl) Aminopyridine, 0.1 eq) was added and stirred at room temperature for 1 hour. After concentrating and partially distilling off the solvent, 30 mL of methylcyclohexane and 30 mL of acetonitrile were added to separate into two phases. After removing the lower layer, the upper layer was washed with acetonitrile three times, and the solvent was distilled off. As a result, octadecanoic acid 6- (4- {4- [2- (9H-fluoren-9-ylmethoxycarbonylamino)- 3-phenyl-propionyloxymethyl] -phenoxy} -butyryloxymethyl) -2-methoxy-4,5-bis-octadecanoyloxy-tetrahydro-pyran-3-yl ester (8) in 98% yield. Obtained at a rate.

生成物(8)オクタデカノイックアシッド6−(4−{4−[2−(9H−フルオレン−9−イルメトキシカルボニルアミノ)−3−フェニル−プロピオニロキシメチル]−フェノキシ}−−ブチリロキシメチル)−2−メトキシ−4,5−ビス−オクタデカノイロキシ−テトラハイドロ−ピラン−3−イルエステル   Product (8) Octadecanoic acid 6- (4- {4- [2- (9H-fluoren-9-ylmethoxycarbonylamino) -3-phenyl-propionyloxymethyl] -phenoxy} -butyryloxy Methyl) -2-methoxy-4,5-bis-octadecanoyloxy-tetrahydro-pyran-3-yl ester

Octadecanoic acid 6−(4−{4−[2−(9H−fluoren−9−ylmethoxycarbonylamino)−3−phenyl−propionyloxymethyl]−phenoxy}−butyryloxymethyl)−2−methoxy−4.5−bis−octadecanoyloxy−tetrahydro−pyran−3−yl ester   Octadecanoic acid 6- (4- {4- [2- (9H-fluoren-9-ylmethoxycarbonylamino) -3-phenyl-propionyloxymethyl] -phenoxy} -butyryloxymethyl) -2-methoxy-4.5-bis-octadecanoyloxy-tetrahydro- pyran-3-yl ester

1H−NMR(400MHz;CDCl3) δ 7.77(2H,d,J=7.3Hz)、7.55(2H,d,J=7.3Hz)、7.40 (2H,t,J=7.3Hz)、7.33−7.27(3H,m)、7.24−7.20(4H,m)、7.02−6.98(2H,m)、6.85(2H,d,J=8.5Hz)、5.51(1H,dd,J=10.0,9.5Hz),5.27−5.10(2H,m)、5.08(1H,dd,J=10.0,9.5Hz)、4.93(1H,d,J=3.7Hz)、4.88(1H,dd,J=10.0,3.7Hz)、4.71−4.65(1H,m)、4.4−4.3(2H,m)、4.25(1H,dd,J=12.2,2.7Hz)、4.21−4.17(1H,m)、4.13(1H,dd,J=12.2,2.7Hz)、4.00(2H,t,J=5.6Hz)、3.97−3.95(1H,m)、3.38(3H,s)、3.10(2H,dd,J=6.8,6.3Hz),2.58 (2H,t,J=6.8Hz)2.34−2.19(6H,m)、2.12(2H,qui,J=6.8Hz)、1.25(90H.brs)、0.88(9H,t,J=7.08Hz) 1 H-NMR (400 MHz; CDCl 3 ) δ 7.77 (2H, d, J = 7.3 Hz), 7.55 (2H, d, J = 7.3 Hz), 7.40 (2H, t, J = 7.3 Hz), 7.33-7.27 (3H, m), 7.24-7.20 (4H, m), 7.02-6.98 (2H, m), 6.85 (2H) , D, J = 8.5 Hz), 5.51 (1H, dd, J = 10.0, 9.5 Hz), 5.27-5.10 (2H, m), 5.08 (1H, dd, J = 10.0, 9.5 Hz), 4.93 (1H, d, J = 3.7 Hz), 4.88 (1H, dd, J = 10.0, 3.7 Hz), 4.71-4 .65 (1H, m), 4.4-4.3 (2H, m), 4.25 (1H, dd, J = 12.2, 2.7 Hz), 4.21-4.17 (1H, m), 4.13 (1H , Dd, J = 12.2, 2.7 Hz), 4.00 (2H, t, J = 5.6 Hz), 3.97-3.95 (1H, m), 3.38 (3H, s) 3.10 (2H, dd, J = 6.8, 6.3 Hz), 2.58 (2H, t, J = 6.8 Hz) 2.34-2.19 (6H, m), 2.12 (2H, qui, J = 6.8 Hz), 1.25 (90H.brs), 0.88 (9H, t, J = 7.08 Hz)

13C−NMR(150MHz;CDCl3)δ 172.9,172.7,172.6,159.1,155.5,143.8,143.5,141.3,135.6,130.5,129.4,128.5,127.7,127.2,127.0,125.1,119.9,114.5,96.9,70.7,69.6,68.1,67.3,67.1,66.966.6,61.9,55.4,54.8,47.1,38.134.1,34.0,340.3,31.9,30.5、29.7,29.6,29.61,29.5,29.4,29.3,29.28,29.23,29.14,29.1,29.0,24.9,24.522.7,14.1 13 C-NMR (150 MHz; CDCl 3 ) δ 172.9, 172.7, 172.6, 159.1, 155.5, 143.8, 143.5, 141.3, 135.6, 130.5 , 129.4, 128.5, 127.7, 127.2, 127.0, 125.1, 119.9, 114.5, 96.9, 70.7, 69.6, 68.1, 67 3,67.1,66.966.6,61.9,55.4,54.8,47.1,38.134.1,34.0,340.3,31.9,30.5 29.7, 29.6, 29.61, 29.5, 29.4, 29.3, 29.28, 29.23, 29.14, 29.1, 29.0, 24.9, 24. .522.7, 14.1

図1は、複数の分離用担体を用いた本発明の例を示す図である。FIG. 1 is a diagram showing an example of the present invention using a plurality of separation carriers.

Claims (18)

糖類の少なくとも1つの水酸基に、置換基を有してもよい炭素原子数6〜40の炭化水素鎖がエステル結合またはエーテル結合しており、かつ、少なくとも1つの水酸基を有することを特徴とする、化合物の分離用担体。 The hydrocarbon chain having 6 to 40 carbon atoms, which may have a substituent, is ester-bonded or ether-bonded to at least one hydroxyl group of the saccharide, and has at least one hydroxyl group, Compound carrier for separation. 糖類が、ペントース、ヘキソース、ペントース若しくはヘキソースを還元して得られるポリアルコール、ペントース若しくはヘキソースを酸化して得られるポリヒドロキシケトン、ペントース若しくはヘキソースを酸化して得られるポリヒドロキシアルデヒド、およびペントース若しくはヘキソースを酸化して得られるポリヒドロキシカルボン酸、から成る群より選択される少なくとも1種であることを特徴とする、請求項1に記載の分離用担体。 Polysaccharide obtained by reducing pentose, hexose, pentose or hexose, polyhydroxy ketone obtained by oxidizing pentose or hexose, polyhydroxy aldehyde obtained by oxidizing pentose or hexose, and pentose or hexose The carrier for separation according to claim 1, wherein the carrier is at least one selected from the group consisting of polyhydroxycarboxylic acids obtained by oxidation. 下記一般式(1)〜(6)で示される、化合物の分離用担体。
Figure 0004534024
(式中、L1〜L6は、それぞれ独立に、置換基を有してもよい炭素原子数6〜40の炭化水素基、置換基を有してもよい炭素原子数6〜40のアシル基またはHを、Xは、S、N、O、CまたはHを、示す。ただし、L1〜L6の少なくとも1つは、Hである。)
A carrier for separating compounds represented by the following general formulas (1) to (6).
Figure 0004534024
(In the formula, L 1 to L 6 are each independently a hydrocarbon group having 6 to 40 carbon atoms which may have a substituent, or an acyl having 6 to 40 carbon atoms which may have a substituent. A group or H, X represents S, N, O, C or H, provided that at least one of L 1 to L 6 is H.)
下記一般式(7)または(8)で示される、化合物の分離用担体。
Figure 0004534024
A carrier for separating a compound represented by the following general formula (7) or (8).
Figure 0004534024
請求項1〜4に記載の分離用担体の少なくとも2つを相互に結合させた、化合物の分離用担体。 A carrier for separating a compound, wherein at least two of the carrier for separation according to claim 1 are bonded to each other. (1)請求項1〜5のいずれかに記載の分離用担体に、第1の物質を結合させる工程、
(2)第1の物質を結合させた前記分離用担体を、可溶性溶媒に溶解して担体溶液を調製する工程、
(3)第1の物質と第2の物質との反応を容易にする添加溶媒を、前記担体溶液に加えて1液相とする工程、
(4)添加溶媒を加えた前記担体溶液に、第2の物質を添加して、第1の物質との反応を行い、生成した化合物が結合した前記分離用担体を得る工程、
(6)前記担体溶液と前記添加溶媒とを分離させる工程、
(7)前記担体溶液を回収する工程、
を含むことを特徴とする、化合物の分離方法。
(1) a step of binding the first substance to the separation carrier according to any one of claims 1 to 5;
(2) A step of preparing a carrier solution by dissolving the separation carrier combined with the first substance in a soluble solvent,
(3) adding an additive solvent that facilitates the reaction between the first substance and the second substance to the carrier solution to form one liquid phase;
(4) adding the second substance to the carrier solution to which the additive solvent has been added, reacting with the first substance, and obtaining the separation carrier to which the produced compound is bound;
(6) separating the carrier solution and the additive solvent;
(7) recovering the carrier solution;
A method for separating a compound, comprising:
工程(1)において、分離用担体の水酸基に、第1の物質を結合させることを特徴とする、請求項6に記載の分離方法。 The separation method according to claim 6, wherein in the step (1), the first substance is bonded to the hydroxyl group of the separation carrier. 工程(1)において、第1の物質を、リンカーユニットを介して結合させることを特徴とする、請求項6または7に記載の分離方法。 The separation method according to claim 6 or 7, wherein in the step (1), the first substance is bound via a linker unit. 工程(2)において、可溶性溶媒が、炭素原子数4〜40の環状炭化水素または鎖状炭化水素であることを特徴とする、請求項6〜8のいずれかに記載の分離方法。 The separation method according to any one of claims 6 to 8, wherein in the step (2), the soluble solvent is a cyclic hydrocarbon or a chain hydrocarbon having 4 to 40 carbon atoms. 工程(2)において、可溶性溶媒が、シクロヘキサン、メチルシクロヘキサンおよびデカリンから成る群より選択される少なくとも1種であることを特徴とする、請求項6〜9のいずれかに記載の分離方法。 The separation method according to any one of claims 6 to 9, wherein in step (2), the soluble solvent is at least one selected from the group consisting of cyclohexane, methylcyclohexane and decalin. 工程(3)において、添加溶媒が、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、アセトニトリル、ジメチルホルムアミド、ニトロメタンおよびメタノールから成る群より選択される少なくとも1種であることを特徴とする、請求項6〜10のいずれかに記載の分離方法。 In the step (3), the additive solvent is at least one selected from the group consisting of dichloromethane, chloroform, diethyl ether, tetrahydrofuran, acetonitrile, dimethylformamide, nitromethane and methanol. The separation method according to any one of the above. 工程(6)において、添加溶媒への親和性の高い溶媒を添加することにより、担体溶液と添加溶媒とを分離させることを特徴とする、請求項6〜11のいずれかに記載の分離方法。 The separation method according to any one of claims 6 to 11, wherein in the step (6), the carrier solution and the added solvent are separated by adding a solvent having a high affinity for the added solvent. 工程(6)において、温度を変化させることにより、担体溶液と添加溶媒とを分離させることを特徴とする、請求項6〜12のいずれかに記載の分離方法。 The separation method according to any one of claims 6 to 12, wherein in step (6), the carrier solution and the added solvent are separated by changing the temperature. (5)添加溶媒の一部または全部を留去する工程、
をさらに含むことを特徴とする、請求項6〜13のいずれかに記載の分離方法。
(5) a step of distilling off part or all of the added solvent;
The separation method according to claim 6, further comprising:
(8)回収した担体溶液中の担体から生成した化合物を脱離させる工程、
をさらに含むことを特徴とする、請求項6〜14のいずれかに記載の分離方法。
(8) a step of desorbing the compound produced from the carrier in the recovered carrier solution;
The separation method according to claim 6, further comprising:
反応がペプチド合成反応、オリゴ糖合成反応、オリゴ糖ペプチド合成反応またはオリゴ糖脂質合成反応であることを特徴とする、請求項6〜15のいずれかに記載の分離方法。 The separation method according to any one of claims 6 to 15, wherein the reaction is a peptide synthesis reaction, an oligosaccharide synthesis reaction, an oligosaccharide peptide synthesis reaction or an oligoglycolipid synthesis reaction. 請求項6〜16の分離方法を用いることを特徴とする、ペプチド、オリゴ糖、オリゴ糖ペプチドまたはオリゴ糖脂質の製造方法。 A method for producing a peptide, oligosaccharide, oligosaccharide peptide or oligoglycolipid, characterized by using the separation method of claims 6 to 16. (1)請求項1〜5のいずれかに記載の分離用担体を、可溶性溶媒に溶解して担体溶液を調製する工程、
(2)分離用担体と第2の糖類との反応を容易にする添加溶媒を、前記担体溶液に加えて1液相とする工程、
(3)添加溶媒を加えた前記担体溶液に、第2の糖類を添加して、分離用担体との反応を行い、第2の糖類が結合した前記分離用担体を得る工程、
(4)前記担体溶液と前記添加溶媒とを分離させる工程、
(5)前記担体溶液を回収する工程、
を含むことを特徴とする、多糖類の製造方法。
(1) A step of preparing a carrier solution by dissolving the separation carrier according to any one of claims 1 to 5 in a soluble solvent,
(2) adding an additional solvent that facilitates the reaction between the separation carrier and the second saccharide to the carrier solution to form one liquid phase;
(3) adding the second saccharide to the carrier solution to which the additive solvent has been added, performing a reaction with the separation carrier, and obtaining the separation carrier to which the second saccharide is bound;
(4) separating the carrier solution and the additive solvent;
(5) recovering the carrier solution;
A method for producing a polysaccharide, comprising:
JP2004197290A 2004-07-02 2004-07-02 Compound separation carrier and compound separation method Expired - Fee Related JP4534024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197290A JP4534024B2 (en) 2004-07-02 2004-07-02 Compound separation carrier and compound separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197290A JP4534024B2 (en) 2004-07-02 2004-07-02 Compound separation carrier and compound separation method

Publications (2)

Publication Number Publication Date
JP2006015283A JP2006015283A (en) 2006-01-19
JP4534024B2 true JP4534024B2 (en) 2010-09-01

Family

ID=35789992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197290A Expired - Fee Related JP4534024B2 (en) 2004-07-02 2004-07-02 Compound separation carrier and compound separation method

Country Status (1)

Country Link
JP (1) JP4534024B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104166A1 (en) * 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology Support for crystallization separation and method of separating compound
WO2007034812A1 (en) * 2005-09-20 2007-03-29 National University Corporation, Tokyo University Of Agriculture And Technology Carrier for separation, method for separation of compound, and method for synthesis of peptide using the carrier
DK2612845T3 (en) * 2010-08-30 2020-11-02 Ajinomoto Kk AROMATIC COMPOUND CONTAINING SPECIFIC BRANCH

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023778A1 (en) * 1995-12-21 1997-07-03 Daicel Chemical Industries, Ltd. Packing material for high-speed liquid chromatography
JP2003062448A (en) * 2001-08-24 2003-03-04 Japan Science & Technology Corp Compatible multiphase organic solvent system
JP2003183298A (en) * 2001-12-19 2003-07-03 Japan Science & Technology Corp Method of liquid phase peptide synthesis by sequentially adding amino acid by compatible-multiphase organic solvent system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040952A (en) * 1983-08-17 1985-03-04 Daicel Chem Ind Ltd Filling agent for optical division
JPH0680081B2 (en) * 1984-04-11 1994-10-12 ダイセル化学工業株式会社 Polysaccharide derivative
JPS62201641A (en) * 1986-02-28 1987-09-05 Asahi Chem Ind Co Ltd Carrier solidified with glucide
WO2006104166A1 (en) * 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology Support for crystallization separation and method of separating compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023778A1 (en) * 1995-12-21 1997-07-03 Daicel Chemical Industries, Ltd. Packing material for high-speed liquid chromatography
JP2003062448A (en) * 2001-08-24 2003-03-04 Japan Science & Technology Corp Compatible multiphase organic solvent system
JP2003183298A (en) * 2001-12-19 2003-07-03 Japan Science & Technology Corp Method of liquid phase peptide synthesis by sequentially adding amino acid by compatible-multiphase organic solvent system

Also Published As

Publication number Publication date
JP2006015283A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2006104166A1 (en) Support for crystallization separation and method of separating compound
WO2019212061A1 (en) Segment for oligonucleotide synthesis, production method for same, and oligonucleotide synthesis method using same
JP4534024B2 (en) Compound separation carrier and compound separation method
JP2007518820A (en) Efficient method for synthesizing benzyl-protected α-pentagalloylglucose (α-PGG) and analogs thereof
CN112778199B (en) Compound containing nitrate functional group and synthetic method thereof
JP4163113B2 (en) Novel compound and production method thereof
JP2652248B2 (en) Process for producing alkoxynitrile compounds
JPH07252190A (en) Hexadienone derivative and its production
JPH06263718A (en) 5-hydroxy-2-oxovaleric acid derivative and its production
JP2904603B2 (en) Method for producing pentadienal derivative
JP5019441B2 (en) Organic antimony compound, method for producing the same, and sensor using the same
JP4440167B2 (en) Highly fluorinated carboxylic acid derivative and method for producing the same
JPH07252189A (en) Hexadienone derivative and its production
JP5118968B2 (en) Method for producing lipid A analog
JP6097405B2 (en) Novel process for producing cabazitaxel in high yield from 10-deacetylbaccatin III
TW202325709A (en) Compound, solid carrier including the same and method for preparing nucleic acid
KR100828032B1 (en) Method of preparing valiolone derivatives
JP2007063262A (en) METHOD FOR PRODUCTION OF 3-FLUOROSIALIC ACID DERIVATIVE HAVING alpha-GLYCOSIDE LINKAGE
JP2008100951A (en) Method for preparing 2-cyclopentadecenone
JPH07252211A (en) Hexadienoic acid derivative and its production
JP2011190183A (en) Fluorous sugar-bonded crown ether derivative
JP2009545586A (en) Naphthalene-2-carboxylate derivative useful for the synthesis of gemcitabine and method for producing the same
JP2010083798A (en) METHOD FOR PRODUCING omega-HYDROXY LONG-CHAIN FATTY ACID DERIVATIVE
JPH0834769A (en) Vitamin d derivative containing substituent group at second position
JPH07252210A (en) 2-hexenoic acid derivative and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees