JP2004018298A - Cement composition for carbonated/hardened body, cement concrete composition for carbonated/hardened body and method for manufacturing carbonated/hardened body - Google Patents

Cement composition for carbonated/hardened body, cement concrete composition for carbonated/hardened body and method for manufacturing carbonated/hardened body Download PDF

Info

Publication number
JP2004018298A
JP2004018298A JP2002173698A JP2002173698A JP2004018298A JP 2004018298 A JP2004018298 A JP 2004018298A JP 2002173698 A JP2002173698 A JP 2002173698A JP 2002173698 A JP2002173698 A JP 2002173698A JP 2004018298 A JP2004018298 A JP 2004018298A
Authority
JP
Japan
Prior art keywords
cement
carbonated
acid
hardened body
belite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173698A
Other languages
Japanese (ja)
Other versions
JP4115756B2 (en
Inventor
Kentaro Shirai
白井 健太郎
Minoru Morioka
盛岡 実
Takayuki Higuchi
樋口 隆行
Yasuhiro Nakajima
中島 康宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002173698A priority Critical patent/JP4115756B2/en
Publication of JP2004018298A publication Critical patent/JP2004018298A/en
Application granted granted Critical
Publication of JP4115756B2 publication Critical patent/JP4115756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonated/hardened body which is based on cement concrete and has high bending strength. <P>SOLUTION: This cement composition for the carbonated/hardened body contains a vinyl polymer having as a repeating unit one, two or more compounds selected from the group consisting of an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid and fumaric acid, salts, acid halides and acid anhydrides of these unsaturated carboxylic acids, ≥40% dicalcium silicate and cement. The carbonated/hardened body is hardly cracked when hydrated/hardened and has excellent balance between initial bending strength and compressive strength. Since the edge or corner part of the carbonated/hardened body is hardly broken by a shock during the transportation and construction, the carbonated/hardened body is suitable as a curtain wall, a panel material, a concrete-made embedding frame or the like mainly in civil engineering and building fields. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として土木材料・建築材料分野において、比較的大型の建築物に使用される大型の板材、例えばカーテンウォール、パネル材、及びコンクリート製埋設型枠等の建材用に用いられる、炭酸化硬化体用セメント組成物、炭酸化硬化体用セメントコンクリート、及び炭酸化硬化体の製造方法に関する。なお、本発明でいうセメントコンクリートとは、セメントペースト、モルタル、及びコンクリ−トの総称であり、本発明における部及び%は特に規定しない限り質量基準で示す。
【0002】
【従来の技術とその課題】
セメントに水を添加して得られる従来のセメント硬化体は、大型の板材、例えばカーテンウォール、パネル材、及びコンクリート製埋設型枠等の用途に用いるためには、曲げ強度が約5N/mm程度と小さく、取扱時に欠けやすいという課題があった。
【0003】
大型の建築物にパネル材として使用される板材、例えばALC(Autoclaved Lightweight Concrete)等では、横持ちという観点から十分な抗折強度を必要とし、運搬や施工中での端部又は角部の破損に対しても強度を必要とする。
【0004】
これまで曲げ強度を必要とする用途に用いるセメント硬化体を製造するためには、蒸気養生又はオートクレーブ養生等の高温高圧養生を行う方法(高橋、蟻塚、セメント技術年報、pp299〜309、1960参照)、減水剤等を用いて水/セメント比を低下させる方法(特公昭61−025670号公報)等が有効とされてきた。
【0005】
しかし、通常のコンクリートを蒸気養生又は高温高圧下で養生すると、セメント硬化体に幅1mm以下の微小なひび(以下、マイクロクラックという)が入りやすかった。また、マイクロクラックがなく、高い圧縮強度が得られるセメント硬化体であっても、曲げ強度が低いという課題があった。また、水/セメント比を低くする方法であっても、セメント硬化体の曲げ強度が4〜7N/mm程度と低いため、製造時や取扱い時に板材のカドが欠けやすい等、作業性が悪く、セメント硬化体の運搬等で慎重に取扱う必要があった。
【0006】
通常のセメント硬化体は破壊靱性が低いので、一度マイクロクラックが入ると、これを破壊源としてクラックが進展するため、セメント硬化体の機械強度が著しく低下する。このため、機械強度が要求される用途、例えば土木材料・建築材料分野における大型板材では、マイクロクラックが入った製品はただちに不良品とされた。したがって土木材料・建築材料分野における大型板材用途でセメント硬化体の歩留まりを向上させるためには、マイクロクラックの発生を抑制する効果がある製法及び材料が必要とされてきた。
【0007】
そこでビーライトを38%以上含むセメントを水で混練し、硬化させた後に炭酸化させる方法が提案されている(特開平10−194798号公報)。この方法で作製した炭酸化したセメント硬化体は、たしかに圧縮強度及び長期炭酸化後の曲げ強度が高いという特徴を有するが、炭酸化を7日行っても曲げ強度が15N/mmと低いという課題を有していた。この発明により得られたセメント硬化体は、圧縮強度及び長期炭酸化後の曲げ強度が優れていた。しかし、納期短縮の要求に応えるため、圧縮強度を多少犠牲にしても、初期の曲げ強度が高い材料が必要とされてきた。
【0008】
このようなビーライト含有セメントの炭酸化したセメント系硬化体の初期強度不足を補う方法として、有機高分子系炭酸化促進剤を添加する方法が知られている(特開2001−261467号公報)。この方法では、有機高分子系炭酸化促進剤として、ポリアクリル酸エステル、ポリ酢酸ビニル、及びエチレン−酢酸ビニル共重合体等を添加する方法が開示されている。しかし、この方法では、たしかにセメント系硬化体の長期炭酸養生後の圧縮強度及び長期炭酸養生後の曲げ強度は従来のセメント材料と比べて高いが、炭酸化における初期炭酸養生後の曲げ強度が低く、長期にわたる炭酸化が必要であるという課題があり、さらに、水和硬化時にマイクロクラックが発生しやすいという課題を同時に十分に達成したとはいえず、180cm×90cmを超える大型の板材や複雑な形状を有する成形体を製造する時には、歩留まりが低下することがあった。
【0009】
そこで本発明者らは、前記課題を解消すべく鋭意検討した結果、特定のセメント組成物を用い、成形後に炭酸化することにより、初期炭酸養生後の曲げ強度、特に7日目の曲げ強度が高く、圧縮強度と初期炭酸養生後の曲げ強度のバランスが良く、かつ、マイクロクラックの少ない炭酸化硬化体が得られることを見出し、本発明を完成するに至った。
【0010】
【課題を解決するための手段】
すなわち、本発明は(1)アクリル酸、メタアクリル酸、マレイン酸、及びフマル酸の不飽和カルボン酸、並びに、これらの不飽和カルボン酸の、塩、酸ハライド、及び酸無水物からなる化合物群から選ばれた1種又は2種以上の化合物を繰返し単位として有するビニル重合体、(2)ビーライト、(3)セメントを含む結合材を含有し、かつ、セメントを含む結合材及びビーライトからなる無機成分粉末中のビーライト含有量が40%以上であることを特徴とする炭酸化硬化体用セメント組成物であり、セメントを含む結合材及びビーライトからなる無機成分粉末のブレーン比表面積が4,000cm/g以上であることを特徴とする該炭酸化硬化体用セメント組成物であり、該炭酸化硬化体用セメント組成物及び水を含有することを特徴とする炭酸化硬化体用セメントコンクリート組成物であり、該炭酸化硬化体用セメントコンクリート組成物を硬化させたセメント硬化体を炭酸化することを特徴とする炭酸化硬化体の製造方法であり、表面から少なくとも厚さ2mm以上を炭酸化させることを特徴とする該炭酸化硬化体の製造方法である。
【0011】以下、本発明を詳細に説明する。
【0012】
本発明におけるアクリル酸、メタアクリル酸、マレイン酸、及びフマル酸の不飽和カルボン酸、並びに、これらの不飽和カルボン酸、塩、酸ハライド、及び酸無水物からなる化合物群から選ばれた1種又は2種以上の化合物を繰返し単位として有するビニル重合体(以下「アクリル酸等のビニル重合体」という)とは、水分と接触すると、繰返し単位の一部又は全部がアクリル酸、メタアクリル酸、マレイン酸、フマル酸、又はこれらの酸の塩となるビニル重合体を指す。該重合体はアクリル酸、メタアクリル酸、マレイン酸、フマル酸の、フリーの不飽和カルボン酸、及びそれらの塩、酸無水物、又は酸ハライド等からなるホモポリマーであってもよく、エチレン、酢酸ビニル、及びスチレン等のビニル化合物との共重合体又は混合物等であってもよい。
【0013】
アクリル酸等のビニル重合体の塩としては、リチウム塩、ナトリウム塩、及びカリウム塩等のアルカリ金属塩、マグネシウム塩及びカルシウム塩等のアルカリ土類金属塩、アルミニウム塩、アンモニウム塩、並びにアミン塩等が挙げられる。酸無水物は無水マレイン酸のような分子内の酸無水物であってもよく、2分子のカルボキシル基が分子間で脱水反応してなる酸無水物であってもよい。また、酸ハライドはカルボン酸のOH基をハロゲンで置換した化合物で、化学式R−CO−X(Rはアルキル基、Xはハロゲン元素)型の構造を有する化合物である。
【0014】
一方、アクリル酸、メタアクリル酸、マレイン酸、及びフマル酸であって、加水分解をする可能性がある化合物であっても、すべての−COH基がエステル、アミド、及びイミド等の官能基の一部となっていて、すべての−COH基が他の化合物等と強固な共有結合を形成し、水中で−COH基又はその塩として機能しない繰返し単位のみを有するビニル重合体は、本発明のアクリル酸等のビニル重合体として使用できない。
【0015】
アクリル酸、メタアクリル酸、マレイン酸、及びフマル酸等の、ビニル重合体中での化学的な形態としては、フリーの−COH基を有するカルボン酸、アンモニウム塩、及びアルカリ金属塩が入手しやすく、かつ、水への溶解性が良いために好ましく、アルカリ金属を含まないアンモニウム塩及びフリーの−COH基を有するカルボン酸がより好ましい。
【0016】
アクリル酸等のビニル重合体の数平均分子量は1,000以上であれば使用可能であるが、炭酸化硬化体の曲げ強度を高める目的から、アクリル酸等のビニル重合体の数平均分子量を1,000〜10万とすることが好ましい。数平均分子量が1,000未満では炭酸化硬化体の曲げ強度増加への寄与が小さい場合があり、数平均分子量が10万を超えると、粘度が高くなり、取扱いにくいことがある。
【0017】
本発明で使用するアクリル酸等のビニル重合体の性状は特に限定されるものではないが、粉末、粉末エマルジョン、水性ポリマーディスパージョン、液状ポリマー、水溶液、又は繊維等、セメントコンクリート中で均一に分散される形態であればよく、水性ポリマーディスパージョン、粉末エマルジョン、又は水溶液が好ましく、水溶液又は粉末エマルジョンがより好ましい。また、本炭酸化硬化体用セメント組成物の混合時にアクリル酸、メタアクリル酸、マレイン酸、又はフマル酸を、不飽和カルボン酸、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルキルアミン塩、酸ハライド、又は酸無水物等の形態で、モノマーとして公知の重合触媒等と併用し、重合反応をさせてもよい。
【0018】
また、本炭酸化硬化体用セメント組成物中の全ビニル重合体含有量は特に限定されるものではないが、固形分換算で炭酸化硬化体用セメント組成物中1〜10%が好ましく、2〜5%がより好ましい。全ビニル重合体含有量が1%未満ではマイクロクラックが発生しやすくなることがあり、10%を超えると強度増進効果が顕著でない場合がある。
【0019】
アクリル酸等のビニル重合体のカルボキシル基の含有量は特に制限されないが、本炭酸化硬化体用セメント組成物100部中、カルボキシル基の含有量は0.05〜5部が好ましく、0.2〜3部がより好ましい。カルボキシル基の含有量が0.05部未満ではクラック抑制効果が少なく、5部を超えるとコンクリートの硬化不良の原因になるおそれがある。
【0020】
ビーライトとは、2CaO・SiO又はCS等と表現され、水硬性のα型、α’型、及びβ型等の多形が存在する。本発明ではいずれの多形も使用可能であるが、入手が容易であり、水硬性を有するα型、α’型、及びβ型のビーライトが好ましく、β型がより好ましい。ビーライトは不純物としてAl、Fe、MgO、NaO、KO、TiO、MnO、ZnO、又はCuO等の酸化物が固溶している場合があるが、本発明の目的を阻害しない範囲であれば制限されない。
【0021】
ビーライト源としては、低熱セメント又はビーライトセメント等、ビーライト含有量が高いセメントを用いてもよく、また、酸化カルシウム及びシリカを原料とし1400℃以上の高温で加熱し溶融体を作る方法等の公知の方法で合成したものでもよいが、ビーライトセメント及び/又は低熱セメントを用いることが好ましい。高温の溶融体からビーライトを製造する場合は、酸化カルシウム及びシリカを溶融した後、圧縮空気等で吹飛ばす等の方法で急冷することが好ましい。
【0022】
本発明の炭酸化硬化体用セメント組成物はビーライト含有量が40%以上である必要があり、40〜60%であることが好ましい。ビーライト含有量が40%未満では炭酸化が困難で強度増強が期待できず、また60%を超えると炭酸化は可能であるが、炭酸化しても充分な曲げ強度が得られない場合がある。
【0023】
本発明に用いる結合材としては、セメント類や潜在性水硬性物質が挙げられる。セメント類としては普通セメント、早強セメント、超早強セメント、中庸熱セメント、及び低熱セメント等の各種ポルトランドセメントが挙げられる。また、これらのセメント類に、潜在性水硬性物質である高炉スラグ、フライアッシュ、又はシリカを配合した各種混合セメント等を結合材の一部として用いてもよく、これらの結合材を1種又は2種以上混合してもよい。
【0024】
なお、ビーライトは水硬性を有するものであり、本発明ではセメントの一部として含まれるものを使用する場合もあるが、ビーライトは独立した化合物として取扱うものとし、結合材には含めないものとする。
【0025】
本発明に用いる結合材及びビーライトは、アクリル酸等のビニル重合体との分散性が要求される。本発明の炭酸化硬化体用セメント組成物からアクリル酸等のビニル重合体の重合体及び各種有機添加剤等の有機物を除いた、結合材及びビーライトからなる無機成分粉末のブレーン比表面積値は4,000cm/g以上が好ましく、6,000〜10,000cm/gがより好ましい。無機成分粉末の比表面積値が4,000cm/g未満では曲げ強度が不足することがあり、10,000cm/gを超えると粉砕動力が必要となり、コスト増の原因となる。
【0026】
有機物を含む本炭酸化硬化体用セメント組成物を用い、結合材及びビーライトからなる無機成分粉末の比表面積を測定する際には、本炭酸化硬化体用セメント組成物又は無機成分粉末を空気又は酸素雰囲気下で、あらかじめ400〜1,000℃で30分以上加熱し、水分及び有機成分を十分に除去しておくことが好ましい。
【0027】
本発明において、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良く、あらかじめ一部を、あるいは全部を混合しておいても差支えない。
【0028】
混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。また、本発明における無機成分粉末を微粉化する装置は特に制限されないが、ボールミル、タワーミル、及びローラーミル等が挙げられる。
【0029】
本炭酸化硬化体用セメント組成物に水分を添加して混練し所定の形状に成形する。この際の水/無機成分粉末比(W/C比)は特に限定されないが、30〜60%が好ましく、40〜55%がより好ましい。30%未満では混練できない場合があり、60%を超えると炭酸化が進行しても強度増進につながらない場合がある。
【0030】
本発明で使用するセメントコンクリートのスランプ値やフロー値は特に限定されないが、流込成形で複雑な形状を有する製品を作製する場合には、JIS A 1101で規定された方法によるスランプ値で5cm以上、スランプコーンを引抜いた際のコンクリートのフロー値で22cm以上の流動性を有するものが好ましい。
【0031】
本発明の炭酸化硬化体用セメント組成物を水和させてセメント硬化体を成形する方法としては、加圧成形、流込み成形、及び遠心成形等があり、作業効率の点から流込み成形及び遠心成形が好ましく、複雑な形状を成形できる流込み成形が最も好ましい。
【0032】
また、成形して得られたセメント硬化体の養生方法は特に限定されず、通常の常温養生の他に、水中養生、湿空養生、又は蒸気養生等の加温養生等も可能である。また、養生と同時に炭酸化を行うことも可能である。養生期間は水/セメント比、セメント中のビーライト含有量、及び配合等により異なるが、加温養生で2〜24時間程度であり、常温養生では3〜28日程度であり、養生時間が短い加温養生が好ましい。
【0033】
炭酸化の方法としては、(1)加温しながら炭酸化する方法、(2)炭酸ガス分圧の高い雰囲気で暴露する方法、(3)高湿度雰囲気下で炭酸化する方法、(4)炭酸水等の炭酸イオンや重炭酸イオンを含有する水にセメント硬化体を浸漬し、促進炭酸化する方法等が考えられる。これらの方法の中では、経済性や生産性等の面から、(1)〜(3)の方法を1種又は2種以上併用するのが好ましい。
【0034】
また、雰囲気ガスとしては炭酸ガス以外に、空気、窒素、酸素、水蒸気、ヘリウム、又はアルゴン等、炭酸ガス以外のガスを本発明の目的を阻害しない範囲内で混合して用いることができる。
【0035】
炭酸化では、加温する場合には蒸気養生及びオートクレーブ養生等では雰囲気温度30〜180℃が好ましく、40〜160℃がより好ましい。30℃未満では生産性が不十分の場合があり、180℃を超えるとポリマーが変質して着色し、外観不良の原因となる場合がある。養生後、セメント硬化体を水中に浸しておき、水分をセメント硬化体内部に十分に湿潤状態としておくことが好ましい。また、雰囲気温度が100℃を超える場合は、スチーム存在下で炭酸化することが好ましい。
【0036】
炭酸化における炭酸ガス濃度及び圧力は特に限定されるものではないが、全ガス圧及び炭酸ガス濃度の積として算出される炭酸ガス分圧が0.0005〜1MPaであることが好ましく、0.01〜0.3MPaがより好ましい。炭酸ガス分圧が0.0005MPa未満では炭酸化が促進されず、不経済である。また、炭酸ガス分圧が1MPaでは炭酸化時間は数分で終了するため、これより高い炭酸ガス分圧にするのは不経済である。
【0037】
また、室温での炭酸化における相対湿度については特に限定されるものではないが、相対湿度で40%〜90%が好ましく、60〜85%がより好ましい。40%未満では炭酸化の速度が遅く不経済であり、90%を超えると結露し、炭酸化硬化体の表面が浸食されるために製品の外観が悪くなることがある。炭酸化時の雰囲気温度は特に制限されないが、促進炭酸化を行う場合は30〜180℃が好ましく、50〜160℃がより好ましい。30℃未満では促進炭酸化の効果が顕著でなく、180℃を超えるとポリマー成分が劣化するおそれがある。
【0038】
炭酸化硬化体の炭酸化深さを調べるためには、炭酸化硬化体が高アルカリ性から中性側に漸次移行することを利用する。すなわち、炭酸化硬化体を切断し、切断面にフェノールフタレイン溶液を噴霧すると、未炭酸化部は赤色に呈色し、炭酸化した部分は呈色しないため、炭酸化硬化体の表面から着色部までの深さを測定して炭酸化深さを測定すればよい。
【0039】
炭酸化硬化体の表面から少なくとも2mm以上、好ましくは5mm以上炭酸化されていれば、曲げ強度の向上が認められる。さらに、炭酸化硬化体の全体にわたって炭酸化された場合はこの効果が一層顕著になる。
【0040】
また、本発明では、骨材、分散剤、界面活性剤、凍結防止剤、AE剤、凝結遅延剤、減水剤、及び顔料等の公知の添加物を1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で併用することができる。
【0041】
【実施例】
以下の実験例に基づき詳細に説明する。
【0042】
実験例1
ポリアクリル酸エマルジョンを含有するビニル重合体Aを、実験No.1−1〜実験No.1−9はポリマー全体の含有量を内割で10%、実験No.1−9では1%、実験No.1−10では5%とし、セメントを含有する表1の配合の各種セメント組成物を調製した。セメント組成物/砂比が1/2、水/無機成分粉末比が1/1のモルタルを調製した。型枠に詰め、温度20℃、相対湿度80%の試験室で8時間養生を行った後、昇温速度15℃/時間、最高温度50℃、保持時間4時間の条件で蒸気養生を実施し、材令24時間で脱型して4×4×16cmの供試体を作製した。
【0043】
この供試体を大気圧、炭酸ガス濃度10%(炭酸ガス分圧約0.01MPa)、温度40℃、相対湿度60%の環境で材令7日まで炭酸化を行い、中性化深さ及び曲げ強度を測定した結果を表1に示す。なお、比較のため、20℃の水中で材令7日まで養生した場合(以下、標準養生という)、及びビーライト含有量が40%未満のセメント組成物を用いた場合を比較とした結果を表1に示す。
【0044】
<使用材料>
ポリアクリル酸エマルジョン:市販品、数平均分子量6,000、pH=5.2
エチレン−酢酸ビニル共重合体系エマルジョン:市販品、中性、数平均分子量30,000、副ポリマー成分としてポリビニルアルコールを含む。
ビニル重合体A:エチレン−酢酸ビニル共重合体系エマルジョン及びポリアクリル酸エマルジョンの10:1混合品、ポリマー含有量50%、カルボキシル基含有量2%、数平均分子量約25,000、pH=5.0
高炉水砕スラグ:第一セメント社製
セメントα:普通ポルトランドセメント、(β型ビーライト含有量27%、電気化学工業社製)、ボールミルで粉砕してブレーン比表面積6,000cm/gに調整
セメントβ:低熱セメント(電気化学工業(株)製)及び高炉水砕スラグの3:1混合品、β型ビーライト含有量40%、ボールミルで粉砕してブレーン比表面積6,000cm/gに調整
セメントγ:ビーライトセメント、(β型ビーライト含有量60%、電気化学工業社製)、ボールミルで粉砕してブレーン比表面積6,000cm/gに調整
砂    :新潟県姫川産、主成分は珪石
水    :水道水
【0045】
<測定方法>
圧縮強度:JIS A 1171規格に準じて4×4×16cm供試体を作製し、強度を測定。
中性化深さ:供試体表面を垂直に割裂したセメントコンクリート断面に、フェノールフタレインの1%水溶液を塗布し、赤色に呈色しなかった部分の表面から深さを測定し、4点の平均値をとった。
曲げ強度:4×4×16cmの供試体を作製し、JIS A 1106に準じて測定した。
ビニル重合体の数平均分子量:GPC法(ゲルパーミエーションクロマトグラフィー法)を用い、テトラヒドロフラン溶媒で展開して分子量分布を測定し、数平均分子量を計算した。
【0046】
【表1】

Figure 2004018298
【0047】
実験例2
セメントγに対し、ビニル重合体Aをポリマー分換算で10%使用し、表2に示すように水/無機成分粉末比を変化させて炭酸化したこと以外は実験例1と同様に行った。結果を表2に示す。
【0048】
【表2】
Figure 2004018298
【0049】
実験例3
セメントγを使用し、ビニル重合体の種類を表3に示すように変え、セメントγに対して外割、固形分換算で10%添加して炭酸化し、マイクロクラックの有無を調べたこと以外は実験例1と同様に行った。結果を表3に示す。
【0050】
<使用材料>
ポリメタアクリル酸エマルジョン:市販品、ポリマー成分含有量30%、数平均分子量約6,000、pH=5.2
ポリアクリル酸ナトリウム水溶液:市販品、30%溶液、数平均分子量約6,000、pH=10.3
ポリアクリル酸カリウム水溶液 :市販品、30%溶液、数平均分子量約6,000、pH=10.5
ビニル重合体B:ポリメタアクリル酸エマルジョン及びエチレン−酢酸ビニル共重合体エマルジョンの1:10混合品、ポリマー含有量30%、カルボキシル基含有量2%、数平均分子量約25,000、pH=5.8
ビニル重合体C:ポリアクリル酸ナトリウム水溶液及びポリアクリル酸エステル水溶性ディスパージョンの1:10混合品、ポリマー含有量30%、カルボキシル基含有量2%、数平均分子量約25,000、pH=9.9
ビニル重合体D:ポリアクリル酸カリウム水溶液及び酢酸ビニル共重合体エマルジョンの1:10混合品、ポリマー含有量30%、カルボキシル基含有量2%、数平均分子量約25,000、pH=8.7
ビニル重合体E:ポリアクリル酸エステル系再乳化樹脂、中性、市販品、ポリマー含有量30%、フリーカルボキシル基含まず、数平均分子量約25,000
ビニル重合体F:ポリアクリル酸エステル系エマルジョン、中性、市販品、ポリマー含有量30%、フリーカルボキシル基含まず、数平均分子量約25,000
【0051】
<測定方法>
マイクロクラック:脱型後の供試体を目視により観察。
【0052】
【表3】
Figure 2004018298
注:実験No.3−4及び実験No.3−5は表面に微小クラックが観察されたため、曲げ強度、
圧縮強度、及び中性化深さの評価を中止した。
【0053】
実験例4
セメントγ及びビニル重合体Aを固形分換算で外割で10%使用し、表4に示すように炭酸化条件を変化させ、マイクロクラックの有無を調べたこと以外は実験例1と同様に行った。結果を表4に示す。
【0054】
【表4】
Figure 2004018298
【0055】
実験例5
炭酸カルシウム及びアルミナをモル比で2:1の割合で混合し、電気炉で1450℃で3時間焼成し、炉外に取出し圧縮空気で吹飛ばして急冷し、β型を主成分とするビーライトを合成した。ボールミルを用いてビーライトを約2,000cm/gの粗粉となるまで粉砕し、セメントα100部及び合成したビーライト粗粉22部の混合粉(ビーライト含有量40%)とし、表5に示したブレーン比表面積までボールミル粉砕し、セメント及びビーライトからなる無機成分粉末の微粉とした。また、ビニル重合体Aを、無機成分粉末に対してポリマー成分換算で外割10%使用し、2m×2m×5cmの板状セメント硬化体を複数作製し、脱型後、うち1枚を切断し、炭酸化し、マイクロクラックの有無を調べた後に供試体としたこと以外は実験例1と同様に行った。結果を表5に示す。
【0056】
<使用材料>
炭酸カルシウム:和光純薬工業(株)製、試薬1級
アルミナ:昭和電工製、BET比表面積15m/g
【0057】
【表5】
Figure 2004018298
【0058】
【発明の効果】
本発明の炭酸化硬化体用セメント組成物及び炭酸化硬化体用セメントコンクリート組成物は、水和時のクラックよる不良品が発生しにくく、炭酸化初期の曲げ強度と圧縮強度のバランスが優れるという特徴を有する。該炭酸化硬化体は、運搬や施工中での衝撃による端部又は角部の破損に対して強いという特徴を有するため、主として土木・建築分野において、大型の建築物に使用される板材、カーテンウォール、パネル材、及びコンクリート製埋設型枠等に適する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to carbonation used for building materials such as large plates used for relatively large buildings, for example, curtain walls, panel materials, and concrete embedded formwork mainly in the field of civil engineering materials and building materials. The present invention relates to a cement composition for a cured product, a cement concrete for a carbonated cured product, and a method for producing a carbonated cured product. In the present invention, cement concrete is a general term for cement paste, mortar, and concrete, and parts and% in the present invention are indicated by mass unless otherwise specified.
[0002]
[Prior art and its problems]
A conventional hardened cement obtained by adding water to cement has a bending strength of about 5 N / mm 2 in order to be used for applications such as large plate materials, for example, curtain walls, panel materials, and buried concrete formwork. There was a problem that it was small and easy to chip when handling.
[0003]
In a plate material used as a panel material in a large building, for example, an ALC (Autoclave Lightweight Concrete) or the like, a sufficient bending strength is required from the viewpoint of lateral holding, and an edge or a corner is damaged during transportation or construction. Also requires strength.
[0004]
Until now, in order to manufacture a cement hardened body used for applications requiring bending strength, a method of performing high-temperature and high-pressure curing such as steam curing or autoclave curing (see Takahashi, Anthill, Cement Technical Annual Report, pp. 299-309, 1960) A method of lowering the water / cement ratio by using a water reducing agent or the like (Japanese Patent Publication No. 61-025670) has been effective.
[0005]
However, when ordinary concrete was cured under steam curing or high temperature and high pressure, minute cracks having a width of 1 mm or less (hereinafter referred to as microcracks) were easily formed in the hardened cement. In addition, there is a problem that even a hardened cement body having no microcracks and capable of obtaining high compressive strength has low bending strength. Further, even with the method of lowering the water / cement ratio, since the flexural strength of the hardened cement is as low as about 4 to 7 N / mm 2 , the workability is poor, such as the occurrence of chipping of the plate during manufacture or handling. , It was necessary to handle it carefully by transporting the hardened cement.
[0006]
Since a normal hardened cement has low fracture toughness, once a microcrack is formed, the crack propagates by using the microcrack as a fracture source, so that the mechanical strength of the hardened cement is significantly reduced. For this reason, in applications requiring mechanical strength, for example, in the case of large plates in the field of civil engineering materials and building materials, products containing microcracks were immediately rejected. Therefore, in order to improve the yield of hardened cement in large plate applications in the fields of civil engineering materials and building materials, a manufacturing method and a material that have an effect of suppressing the occurrence of microcracks have been required.
[0007]
Accordingly, a method has been proposed in which a cement containing belite of 38% or more is kneaded with water, hardened, and then carbonated (Japanese Patent Application Laid-Open No. 10-194798). Although the carbonized cement hardened body produced by this method has the feature of certainly having high compressive strength and high flexural strength after long-term carbonation, the flexural strength is as low as 15 N / mm 2 even after 7 days of carbonation. Had issues. The cement hardened body obtained by this invention was excellent in compressive strength and bending strength after long-term carbonation. However, in order to meet the demand for shortening the delivery time, a material having a high initial bending strength has been required even if the compression strength is somewhat sacrificed.
[0008]
As a method for compensating for the lack of initial strength of the carbonized cement-based hardened body of belite-containing cement, a method of adding an organic polymer-based carbonation accelerator is known (JP-A-2001-261467). . In this method, a method of adding a polyacrylate, polyvinyl acetate, an ethylene-vinyl acetate copolymer, or the like as an organic polymer-based carbonation accelerator is disclosed. However, in this method, although the compressive strength after long-term carbonation and the flexural strength after long-term carbonation of the cement-based cured product are higher than those of conventional cement materials, the flexural strength after initial carbonation in carbonation is lower. However, there is a problem that long-term carbonation is necessary, and furthermore, it cannot be said that the problem that microcracks are easily generated at the time of hydration hardening has been sufficiently achieved at the same time. When manufacturing a molded article having a shape, the yield may decrease.
[0009]
Therefore, the present inventors have conducted intensive studies to solve the above-described problems, and as a result, by using a specific cement composition and performing carbonation after molding, the bending strength after the initial carbonation curing, particularly the bending strength on the seventh day, has been improved. The present inventors have found that a carbonated cured product having high compressive strength and good bending strength after initial carbonation curing and having few microcracks can be obtained, thereby completing the present invention.
[0010]
[Means for Solving the Problems]
That is, the present invention provides (1) an unsaturated carboxylic acid of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, and a compound group consisting of salts, acid halides, and acid anhydrides of these unsaturated carboxylic acids. A vinyl polymer having as a repeating unit one or more compounds selected from the group consisting of (2) belite, (3) a binder containing cement, and a binder containing cement and belite. The beanite content in the inorganic component powder is 40% or more, the cement composition for a carbonation hardened body, wherein the inorganic component powder comprising a cement-containing binder and belite has a Blaine specific surface area of a carbonation curing-body cement composition, characterized in that at 4,000 cm 2 / g or more, in that it contains carbon oxide cure-body cement composition and water A method for producing a carbonated hardened product, comprising: carbonizing a cement hardened product obtained by hardening a cement concrete composition for a carbonated hardened product, wherein the cement concrete composition is hardened. And carbonizing at least 2 mm or more in thickness from the surface.
Hereinafter, the present invention will be described in detail.
[0012]
One kind selected from the group consisting of unsaturated carboxylic acids of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, and unsaturated carboxylic acids, salts, acid halides, and acid anhydrides in the present invention. Alternatively, a vinyl polymer having two or more compounds as a repeating unit (hereinafter, referred to as a "vinyl polymer such as acrylic acid") is such that when it comes into contact with moisture, part or all of the repeating unit is acrylic acid, methacrylic acid, Maleic acid, fumaric acid, or a vinyl polymer that is a salt of these acids. The polymer may be a homopolymer of acrylic acid, methacrylic acid, maleic acid, fumaric acid, free unsaturated carboxylic acids, and salts, acid anhydrides, or acid halides thereof, ethylene, It may be a copolymer or a mixture of vinyl acetate and a vinyl compound such as styrene.
[0013]
Salts of vinyl polymers such as acrylic acid include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, ammonium salt and amine salt. Is mentioned. The acid anhydride may be an acid anhydride in a molecule such as maleic anhydride, or may be an acid anhydride obtained by a dehydration reaction between two carboxyl groups between molecules. The acid halide is a compound in which the OH group of a carboxylic acid is substituted with a halogen, and is a compound having a structure of a chemical formula R-CO-X (R is an alkyl group, X is a halogen element).
[0014]
On the other hand, acrylic acid, methacrylic acid, maleic acid, and a fumaric acid may be a compound that may hydrolysis, all -CO 2 H group is an ester, amide, and functional, such as imide A vinyl group having only a repeating unit which forms a strong covalent bond with other compounds or the like in which all of the -CO 2 H groups are part of a group, and which do not function as a -CO 2 H group or a salt thereof in water. The union cannot be used as a vinyl polymer such as acrylic acid of the present invention.
[0015]
Acrylic acid, methacrylic acid, maleic acid, and fumaric acid, as the chemical forms of vinyl polymer, carboxylic acid, ammonium salt, and the alkali metal salts obtained with a free -CO 2 H group easily, and preferred for better solubility in water, more preferably carboxylic acids having an ammonium salt and free -CO 2 H group containing no alkali metal.
[0016]
The number average molecular weight of a vinyl polymer such as acrylic acid can be used as long as it is 1,000 or more. However, in order to increase the bending strength of the carbonated cured product, the number average molecular weight of the vinyl polymer such as acrylic acid is 1 It is preferable that the number is from 10,000 to 100,000. When the number average molecular weight is less than 1,000, the contribution to the increase in the bending strength of the carbonated cured product may be small, and when the number average molecular weight exceeds 100,000, the viscosity becomes high and handling may be difficult.
[0017]
The properties of the vinyl polymer such as acrylic acid used in the present invention are not particularly limited, but are uniformly dispersed in cement concrete, such as powder, powder emulsion, aqueous polymer dispersion, liquid polymer, aqueous solution, or fiber. An aqueous polymer dispersion, a powder emulsion, or an aqueous solution is preferable, and an aqueous solution or a powder emulsion is more preferable. Further, at the time of mixing the cement composition for a carbonated hardened body, acrylic acid, methacrylic acid, maleic acid, or fumaric acid is converted into an unsaturated carboxylic acid, an alkali metal salt, an alkaline earth metal salt, an ammonium salt, an alkylamine salt. The polymerization reaction may be carried out in the form of an acid halide, an acid anhydride or the like in combination with a known polymerization catalyst as a monomer.
[0018]
Further, the total vinyl polymer content in the present cementation composition for carbonation hardening is not particularly limited, but is preferably 1 to 10% in terms of solid content in terms of solid content, and preferably 2 to 10%. ~ 5% is more preferable. If the total vinyl polymer content is less than 1%, microcracks are likely to occur, and if it exceeds 10%, the strength increasing effect may not be remarkable.
[0019]
Although the content of the carboxyl group of the vinyl polymer such as acrylic acid is not particularly limited, the content of the carboxyl group is preferably 0.05 to 5 parts in 100 parts of the present carbonated cured cement composition, and is preferably 0.2 to 5 parts. ~ 3 parts is more preferred. When the content of the carboxyl group is less than 0.05 part, the effect of suppressing cracks is small, and when the content exceeds 5 parts, there is a possibility that concrete hardening failure may occur.
[0020]
Belite is expressed as 2CaO.SiO 2 or C 2 S, and has polymorphs such as hydraulic α-form, α′-form, and β-form. In the present invention, any of the polymorphs can be used, but are readily available, and are preferably hydraulic, α-type, α′-type, and β-type belite, and more preferably β-type. In belite, oxides such as Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, K 2 O, TiO 2 , MnO, ZnO, or CuO may be dissolved as impurities. There is no limitation as long as the object of the invention is not impaired.
[0021]
As a belite source, a cement having a high belite content, such as low heat cement or belite cement, may be used, or a method in which calcium oxide and silica are used as raw materials and heated at a high temperature of 1400 ° C. or more to form a melt. May be used, but it is preferable to use belite cement and / or low heat cement. In the case of producing belite from a high-temperature melt, it is preferable to melt calcium oxide and silica and then rapidly cool them by blowing them off with compressed air or the like.
[0022]
The cement composition for a hardened carbonation product of the present invention needs to have a belite content of 40% or more, and preferably 40 to 60%. If the belite content is less than 40%, carbonation is difficult and strength enhancement cannot be expected. If it exceeds 60%, carbonation is possible, but sufficient bending strength may not be obtained even with carbonation. .
[0023]
Examples of the binder used in the present invention include cements and latent hydraulic substances. Examples of the cements include various portland cements such as ordinary cement, early-strength cement, ultra-high-strength cement, moderate heat cement, and low heat cement. In addition, blast furnace slag, fly ash, or various kinds of mixed cement in which silica is blended with these cements may be used as a part of the binder, and these binders may be used alone or in combination. You may mix two or more types.
[0024]
In addition, belite has hydraulic properties, and in the present invention, belite may be used as a part of cement, but belite is handled as an independent compound and is not included in the binder. And
[0025]
The binder and belite used in the present invention are required to have a dispersibility with vinyl polymers such as acrylic acid. Excluding the organic polymer such as a polymer of vinyl polymer such as acrylic acid and various organic additives from the cement composition for the carbonation hardened body of the present invention, the Blaine specific surface area value of the inorganic component powder composed of the binder and belite is: It is preferably 4,000 cm 2 / g or more, more preferably 6,000 to 10,000 cm 2 / g. If the specific surface area of the inorganic component powder is less than 4,000 cm 2 / g, the bending strength may be insufficient, and if it exceeds 10,000 cm 2 / g, pulverizing power is required, which causes an increase in cost.
[0026]
When the specific surface area of the inorganic component powder composed of the binder and belite is measured using the present cementation composition for a hardened carbonaceous material containing an organic substance, the cement composition for a hardened carbonized material or the inorganic component powder is air-exchanged. Alternatively, it is preferable to previously heat at 400 to 1,000 ° C. for 30 minutes or more in an oxygen atmosphere to sufficiently remove moisture and organic components.
[0027]
In the present invention, the method of mixing the respective materials is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all may be mixed in advance.
[0028]
As the mixing device, any existing device can be used, and for example, a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, a Nauta mixer and the like can be used. The apparatus for pulverizing the inorganic component powder in the present invention is not particularly limited, and examples thereof include a ball mill, a tower mill, and a roller mill.
[0029]
Water is added to the present cementation composition for carbonation hardening, kneaded, and molded into a predetermined shape. The water / inorganic component powder ratio (W / C ratio) at this time is not particularly limited, but is preferably 30 to 60%, and more preferably 40 to 55%. If it is less than 30%, kneading may not be possible, and if it exceeds 60%, even if carbonation proceeds, strength may not be increased.
[0030]
The slump value and flow value of the cement concrete used in the present invention are not particularly limited, but when a product having a complicated shape is produced by casting, a slump value of 5 cm or more according to the method specified in JIS A 1101 is used. It is preferable that the concrete has a fluidity of 22 cm or more as a concrete flow value when the slump cone is pulled out.
[0031]
As a method of hydrating the cement composition for a carbonated hardened body of the present invention to form a hardened cement, there are pressure molding, casting, centrifugal molding, and the like. Centrifugal molding is preferred, and cast molding, which can form complex shapes, is most preferred.
[0032]
The method for curing the cured cement body obtained by molding is not particularly limited, and in addition to ordinary room-temperature curing, heated curing such as underwater curing, wet-air curing, or steam curing is also possible. It is also possible to perform carbonation simultaneously with curing. The curing period varies depending on the water / cement ratio, the belite content in the cement, the composition, etc., but is about 2 to 24 hours for warm curing, about 3 to 28 days for room temperature curing, and the curing time is short. Heated curing is preferred.
[0033]
As the carbonation method, (1) a method of carbonation while heating, (2) a method of exposure in an atmosphere having a high carbon dioxide partial pressure, (3) a method of carbonation in a high humidity atmosphere, and (4) A method of immersing the hardened cement body in water containing carbonate ions such as carbonated water or bicarbonate ions to promote carbonation may be considered. Among these methods, it is preferable to use one or more of the methods (1) to (3) in view of economy, productivity and the like.
[0034]
In addition, as the atmospheric gas, a gas other than carbon dioxide, such as air, nitrogen, oxygen, water vapor, helium, or argon, other than carbon dioxide, may be mixed and used as long as the object of the present invention is not hindered.
[0035]
In carbonation, when heating, the ambient temperature is preferably 30 to 180 ° C, more preferably 40 to 160 ° C, for steam curing and autoclave curing. If the temperature is lower than 30 ° C., the productivity may be insufficient. If the temperature is higher than 180 ° C., the polymer may be deteriorated and colored, resulting in poor appearance. After curing, it is preferable that the hardened cement is immersed in water so that moisture is sufficiently wet inside the hardened cement. When the ambient temperature exceeds 100 ° C., carbonation is preferably performed in the presence of steam.
[0036]
The carbon dioxide concentration and the pressure in the carbonation are not particularly limited, but the carbon dioxide partial pressure calculated as the product of the total gas pressure and the carbon dioxide concentration is preferably 0.0005 to 1 MPa, and 0.01 -0.3 MPa is more preferable. If the carbon dioxide partial pressure is less than 0.0005 MPa, carbonation is not promoted, which is uneconomical. When the carbon dioxide partial pressure is 1 MPa, the carbonation time is completed in several minutes, and it is uneconomical to increase the carbon dioxide partial pressure to a higher value.
[0037]
Further, the relative humidity in the carbonation at room temperature is not particularly limited, but is preferably 40% to 90%, more preferably 60% to 85% in relative humidity. If it is less than 40%, the rate of carbonation is slow and uneconomical, and if it exceeds 90%, dew condensation occurs and the surface of the carbonation hardened body is eroded, so that the appearance of the product may be deteriorated. The temperature of the atmosphere during carbonation is not particularly limited, but is preferably 30 to 180 ° C, more preferably 50 to 160 ° C, in the case of performing accelerated carbonation. If it is lower than 30 ° C., the effect of accelerated carbonation is not remarkable, and if it exceeds 180 ° C., the polymer component may be deteriorated.
[0038]
In order to examine the carbonation depth of the carbonation hardened body, the fact that the carbonated hardened body gradually shifts from a high alkalinity to a neutral side is used. That is, when the carbonated cured product is cut and the phenolphthalein solution is sprayed on the cut surface, the uncarbonated portion turns red, and the carbonated portion does not show color. The depth of carbonation may be measured by measuring the depth to the part.
[0039]
If at least 2 mm or more, preferably 5 mm or more is carbonated from the surface of the carbonation hardened body, improvement in bending strength is recognized. Further, when carbonation is carried out over the entire carbonation hardened body, this effect becomes more remarkable.
[0040]
In the present invention, one or more known additives such as aggregates, dispersants, surfactants, antifreezing agents, AE agents, setting retarders, water reducing agents, and pigments are used in the present invention. They can be used together as long as the purpose is not substantially inhibited.
[0041]
【Example】
This will be described in detail based on the following experimental examples.
[0042]
Experimental example 1
A vinyl polymer A containing a polyacrylic acid emulsion was prepared according to Experiment Nos. 1-1 to Experiment No. 1 In Test Nos. 1-9, the content of the whole polymer was 10% by inner percentage. 1-9 for Experiment No. 1-9, In 1-10, 5% was used, and various cement compositions containing the cement and having the composition shown in Table 1 were prepared. A mortar having a cement composition / sand ratio of 1/2 and a water / inorganic component powder ratio of 1/1 was prepared. After filling in a mold and curing for 8 hours in a test room at a temperature of 20 ° C and a relative humidity of 80%, steam curing was carried out under the conditions of a heating rate of 15 ° C / hour, a maximum temperature of 50 ° C, and a holding time of 4 hours. The specimen was demolded for 24 hours to prepare a 4 × 4 × 16 cm specimen.
[0043]
The specimen was subjected to carbonation until the age of 7 days in an environment of atmospheric pressure, carbon dioxide concentration of 10% (carbon dioxide partial pressure of about 0.01 MPa), temperature of 40 ° C. and relative humidity of 60%, neutralization depth and bending. Table 1 shows the results of measuring the strength. For comparison, the results obtained by comparing the case of curing in water at 20 ° C. up to the age of 7 days (hereinafter referred to as “standard curing”) and the case of using a cement composition having a belite content of less than 40% are shown. It is shown in Table 1.
[0044]
<Material used>
Polyacrylic acid emulsion: commercial product, number average molecular weight 6,000, pH = 5.2
Ethylene-vinyl acetate copolymer emulsion: Commercial product, neutral, number average molecular weight 30,000, containing polyvinyl alcohol as a secondary polymer component.
Vinyl polymer A: 10: 1 mixture of an ethylene-vinyl acetate copolymer emulsion and a polyacrylic acid emulsion, polymer content 50%, carboxyl group content 2%, number average molecular weight about 25,000, pH = 5. 0
Granulated blast furnace slag: Cement made by Daiichi Cement Co. α: Ordinary Portland cement (β-type belite content: 27%, manufactured by Denki Kagaku Kogyo Co., Ltd.), pulverized by a ball mill and adjusted to a Blaine specific surface area of 6,000 cm 2 / g Cement β: 3: 1 mixture of low heat cement (manufactured by Denki Kagaku Kogyo KK) and granulated blast furnace slag, β-type belite content 40%, pulverized with a ball mill to a Blaine specific surface area of 6,000 cm 2 / g Adjusted cement γ: Belite cement, (β-type belite content 60%, manufactured by Denki Kagaku Kogyo Co., Ltd.), pulverized with a ball mill to adjust the brane specific surface area to 6,000 cm 2 / g Sand: Himekawa, Niigata Is quartzite water: tap water [0045]
<Measurement method>
Compressive strength: A 4 × 4 × 16 cm specimen was prepared according to JIS A 1171 standard, and the strength was measured.
Neutralization depth: A 1% aqueous solution of phenolphthalein was applied to a section of cement concrete in which the surface of the specimen was split vertically, and the depth was measured from the surface of the part that did not show red color. The average was taken.
Flexural strength: A specimen having a size of 4 × 4 × 16 cm was prepared and measured according to JIS A 1106.
Number average molecular weight of vinyl polymer: The molecular weight distribution was measured by developing with a tetrahydrofuran solvent using a GPC method (gel permeation chromatography), and the number average molecular weight was calculated.
[0046]
[Table 1]
Figure 2004018298
[0047]
Experimental example 2
The experiment was carried out in the same manner as in Experimental Example 1 except that 10% of the vinyl polymer A was used in terms of the polymer content with respect to the cement γ, and the water / inorganic component powder ratio was changed and carbonation was performed as shown in Table 2. Table 2 shows the results.
[0048]
[Table 2]
Figure 2004018298
[0049]
Experimental example 3
Using cement γ, changing the type of vinyl polymer as shown in Table 3, adding 10% in terms of solid content in terms of the solid content to cement γ and carbonating it, and examining the presence or absence of microcracks. Performed in the same manner as in Experimental Example 1. Table 3 shows the results.
[0050]
<Material used>
Polymethacrylic acid emulsion: Commercial product, polymer component content 30%, number average molecular weight about 6,000, pH = 5.2
Aqueous sodium polyacrylate solution: commercially available product, 30% solution, number average molecular weight about 6,000, pH = 10.3
Aqueous potassium polyacrylate solution: Commercial product, 30% solution, number average molecular weight about 6,000, pH = 10.5
Vinyl polymer B: 1:10 mixture of polymethacrylic acid emulsion and ethylene-vinyl acetate copolymer emulsion, polymer content 30%, carboxyl group content 2%, number average molecular weight about 25,000, pH = 5 .8
Vinyl polymer C: 1:10 mixture of sodium polyacrylate aqueous solution and polyacrylate water-soluble dispersion, polymer content 30%, carboxyl group content 2%, number average molecular weight about 25,000, pH = 9 .9
Vinyl polymer D: 1:10 mixture of aqueous potassium polyacrylate solution and vinyl acetate copolymer emulsion, polymer content 30%, carboxyl group content 2%, number average molecular weight about 25,000, pH = 8.7
Vinyl polymer E: polyacrylate re-emulsifying resin, neutral, commercial product, polymer content 30%, free carboxyl group-free, number average molecular weight about 25,000
Vinyl polymer F: polyacrylate emulsion, neutral, commercial product, polymer content 30%, free carboxyl group-free, number average molecular weight about 25,000
[0051]
<Measurement method>
Microcrack: The specimen after demolding was visually observed.
[0052]
[Table 3]
Figure 2004018298
Note: Experiment No. 3-4 and Experiment Nos. In 3-5, since microcracks were observed on the surface, the bending strength,
Evaluation of compressive strength and neutralization depth was discontinued.
[0053]
Experimental example 4
Performed in the same manner as in Experimental Example 1 except that cement γ and vinyl polymer A were used in an amount of 10% in terms of solid content, and carbonation conditions were changed as shown in Table 4 to check for the presence of microcracks. Was. Table 4 shows the results.
[0054]
[Table 4]
Figure 2004018298
[0055]
Experimental example 5
Calcium carbonate and alumina are mixed at a molar ratio of 2: 1 and calcined in an electric furnace at 1450 ° C. for 3 hours, taken out of the furnace, blown off with compressed air, and quenched. Belite mainly composed of β type Was synthesized. Using a ball mill, belite was ground to a coarse powder of about 2,000 cm 2 / g to obtain a mixed powder (belite content: 40%) of 100 parts of cement α and 22 parts of synthesized belite coarse powder. Was milled to the specific surface area of the brane as shown in Table 1 to obtain a fine powder of an inorganic component powder composed of cement and belite. In addition, vinyl polymer A is used in an amount of 10% in terms of a polymer component with respect to the inorganic component powder, and a plurality of 2 m × 2 m × 5 cm hardened plate-like cement bodies are produced, and after demolding, one of them is cut. The test was performed in the same manner as in Experimental Example 1 except that the specimen was prepared after carbonation and the presence or absence of microcracks were examined. Table 5 shows the results.
[0056]
<Material used>
Calcium carbonate: manufactured by Wako Pure Chemical Industries, Ltd., reagent first grade alumina: manufactured by Showa Denko, BET specific surface area: 15 m 2 / g
[0057]
[Table 5]
Figure 2004018298
[0058]
【The invention's effect】
The cement composition for a carbonated hardened body and the cement concrete composition for a carbonated hardened body of the present invention are less likely to cause defective products due to cracks during hydration, and have an excellent balance between bending strength and compressive strength at the initial carbonation. Has features. Since the carbonated hardened product has a feature that it is resistant to damage of the end or corner portion due to impact during transportation or construction, mainly in the civil engineering and construction fields, plate materials and curtains used for large buildings. Suitable for walls, panel materials, concrete buried formwork, etc.

Claims (5)

(1)アクリル酸、メタアクリル酸、マレイン酸、及びフマル酸の不飽和カルボン酸、並びに、これらの不飽和カルボン酸の、塩、酸ハライド、及び酸無水物からなる化合物群から選ばれた1種又は2種以上の化合物を繰返し単位として有するビニル重合体、(2)ビーライト、(3)セメントを含む結合材を含有し、かつ、セメントを含む結合材及びビーライトからなる無機成分粉末中のビーライト含有量が40%以上であることを特徴とする炭酸化硬化体用セメント組成物。(1) 1 selected from the group consisting of unsaturated carboxylic acids of acrylic acid, methacrylic acid, maleic acid and fumaric acid, and salts, acid halides and acid anhydrides of these unsaturated carboxylic acids A vinyl polymer having a kind or two or more kinds of compounds as a repeating unit, (2) belite, (3) a binder containing cement, and an inorganic component powder comprising a binder containing cement and belite. Wherein the belite content is 40% or more. セメントを含む結合材及びビーライトからなる無機成分粉末のブレーン比表面積が4,000cm/g以上であることを特徴とする請求項1記載の炭酸化硬化体用セメント組成物。Binder, and claim 1 carbonation curing-body cement composition according Blaine specific surface area of the inorganic component powder consisting of belite is characterized in that at 4,000 cm 2 / g or more, including cement. 請求項1又は請求項2記載の炭酸化硬化体用セメント組成物及び水を含有することを特徴とする炭酸化硬化体用セメントコンクリート組成物。A cement concrete composition for a carbonated hardened product, comprising the cement composition for a carbonated hardened product according to claim 1 or 2 and water. 請求項3記載の炭酸化硬化体用セメントコンクリート組成物を硬化させたセメント硬化体を炭酸化することを特徴とする炭酸化硬化体の製造方法。A method for producing a cured carbonized product, comprising: carbonizing a cured cement product obtained by curing the cement concrete composition for a carbonated cured product according to claim 3. 表面から少なくとも厚さ2mm以上を炭酸化させることを特徴とする請求項4記載の炭酸化硬化体の製造方法。The method for producing a carbonated cured product according to claim 4, wherein at least a thickness of 2 mm or more is carbonated from the surface.
JP2002173698A 2002-06-14 2002-06-14 Cement composition for carbonized cured body, cement concrete composition for carbonized cured body, and method for producing carbonated cured body Expired - Fee Related JP4115756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173698A JP4115756B2 (en) 2002-06-14 2002-06-14 Cement composition for carbonized cured body, cement concrete composition for carbonized cured body, and method for producing carbonated cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173698A JP4115756B2 (en) 2002-06-14 2002-06-14 Cement composition for carbonized cured body, cement concrete composition for carbonized cured body, and method for producing carbonated cured body

Publications (2)

Publication Number Publication Date
JP2004018298A true JP2004018298A (en) 2004-01-22
JP4115756B2 JP4115756B2 (en) 2008-07-09

Family

ID=31172855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173698A Expired - Fee Related JP4115756B2 (en) 2002-06-14 2002-06-14 Cement composition for carbonized cured body, cement concrete composition for carbonized cured body, and method for producing carbonated cured body

Country Status (1)

Country Link
JP (1) JP4115756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223819A (en) * 2006-02-21 2007-09-06 Matsushita Electric Works Ltd Belite-mixed cement and method of producing concrete product using the same
WO2015198380A1 (en) * 2014-06-23 2015-12-30 電気化学工業株式会社 Bonding material for carbonated construction materials, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125670B2 (en) * 1980-09-05 1986-06-17 Denki Kagaku Kogyo Kk
JPH02248354A (en) * 1989-03-23 1990-10-04 Nippon Kayaku Co Ltd Production of hardened cement body
JPH07267713A (en) * 1994-03-30 1995-10-17 Asahi Chem Ind Co Ltd Production of cement molded body
JPH09301758A (en) * 1996-05-10 1997-11-25 Nof Corp Hydraulic material composition and molded body
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JPH10226553A (en) * 1997-02-17 1998-08-25 Nikko Co High strength cement hardened body excellent in water resistance and its production
JP2001261467A (en) * 2000-03-14 2001-09-26 Taiheiyo Cement Corp Production process of cement-based hardened body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125670B2 (en) * 1980-09-05 1986-06-17 Denki Kagaku Kogyo Kk
JPH02248354A (en) * 1989-03-23 1990-10-04 Nippon Kayaku Co Ltd Production of hardened cement body
JPH07267713A (en) * 1994-03-30 1995-10-17 Asahi Chem Ind Co Ltd Production of cement molded body
JPH09301758A (en) * 1996-05-10 1997-11-25 Nof Corp Hydraulic material composition and molded body
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JPH10226553A (en) * 1997-02-17 1998-08-25 Nikko Co High strength cement hardened body excellent in water resistance and its production
JP2001261467A (en) * 2000-03-14 2001-09-26 Taiheiyo Cement Corp Production process of cement-based hardened body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223819A (en) * 2006-02-21 2007-09-06 Matsushita Electric Works Ltd Belite-mixed cement and method of producing concrete product using the same
WO2015198380A1 (en) * 2014-06-23 2015-12-30 電気化学工業株式会社 Bonding material for carbonated construction materials, and method for producing same
JPWO2015198380A1 (en) * 2014-06-23 2017-04-20 デンカ株式会社 Binder for carbonized building materials and method for producing the same

Also Published As

Publication number Publication date
JP4115756B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
KR101533093B1 (en) High-Early Strength cement concrete composition and concrete pavement repair it using the same method using silicon sludge
JP3579559B2 (en) Carbonated cement, hardened cement and its production method
US20070256604A1 (en) Mortar Compositions with Base on Ultra-Fine Clinker, Refined Sand and Chemical Additives
JP2019085304A (en) Non-shrinkage grout composition, and non-shrinkage grout material
CN103874671B (en) The manufacture method of fast demoulding agent and concrete product
US6231665B1 (en) Efflorescence control in cementitious compositions and masonry units
JP4634213B2 (en) Alumina cement composition and repair method using the same
JP2004107129A (en) Cement composition for carbonated hardened body, cement concrete composition for carbonated hardened body and method of manufacturing carbonated hardened body
JP3672518B2 (en) Cement admixture, cement composition and concrete using the same
JP4115756B2 (en) Cement composition for carbonized cured body, cement concrete composition for carbonized cured body, and method for producing carbonated cured body
EP3458495B1 (en) Formulation for the production of acid and heat-resistant construction products
JP2001097759A (en) Quick hardening type grout composition
JPH07277795A (en) Admixture of cement and cement composition
JP6180176B2 (en) Quick hardening polymer cement mortar composition
JP3888931B2 (en) Hardened cement and method for producing the same
JP2005289657A (en) Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby
JP2003095714A (en) Cement admixture, cement composition, and high fluidity concrete obtained by using the same
JP3844391B2 (en) Method for producing mortar or concrete member
JP3158657B2 (en) Manufacturing method of low shrinkage lightweight concrete
JP2002068812A (en) Cement composition
JPH10167792A (en) Fiber-reinforced cement composition and production of cement cured product
JP3844458B2 (en) Cement admixture and cement composition
JP2001354463A (en) Production process of polymer modified cement composition and polymer modified cement composition
JP7461776B2 (en) Polymer cement mortar composition and polymer cement mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4115756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees