JP3844391B2 - Method for producing mortar or concrete member - Google Patents
Method for producing mortar or concrete member Download PDFInfo
- Publication number
- JP3844391B2 JP3844391B2 JP35123497A JP35123497A JP3844391B2 JP 3844391 B2 JP3844391 B2 JP 3844391B2 JP 35123497 A JP35123497 A JP 35123497A JP 35123497 A JP35123497 A JP 35123497A JP 3844391 B2 JP3844391 B2 JP 3844391B2
- Authority
- JP
- Japan
- Prior art keywords
- curing
- concrete
- expanded
- temperature
- mortar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/245—Curing concrete articles
- B28B11/246—Underwater curing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/02—Selection of the hardening environment
- C04B40/0277—Hardening promoted by using additional water, e.g. by spraying water on the green concrete element
- C04B40/0286—Hardening under water
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は土木建築分野において使用されるモルタル又はコンクリート部材の製造方法、詳しくは収縮が小さく高強度な、また、膨張の大きいモルタル又はコンクリート部材の製造方法に関する。
【0002】
【従来の技術とその課題】
従来、軽量で、内部に気泡を大量に含有するために断熱性を有し、主に建築物の外壁材として利用されているALC(オートクレーブ気泡コンクリート)や、電柱杭や推進管など、パイプ形状をしたPCパイルやポールなどは、オートクレーブ養生で製造されている。
オートクレーブ養生とは、セメントや石灰などに、けい酸質混和材その他を調合して成形したモルタル又はコンクリート部材を気密な圧力容器に入れ、高温とその温度に対応する蒸気圧による高圧蒸気養生であり、一般のコンクリート製品の常圧蒸気養生とは根本的に異なる(最近のセメント・コンクリート製品'71-72 工業と製品 No.53 42〜53頁)。
そして、例えば、コンクリートパイル等は、常圧蒸気養生後、10気圧、180 ℃の高温高圧下で養生することによって、養生後有用な高強度部材として製造されている。
しかしながら、この方法は飽和蒸気圧下で行われるために、養生中に収縮ひずみを生じ、例えば、減圧時や温度下降時において部材が乾燥し、これがひび割れ発生につながる等の課題があった。
【0003】
本発明者は、前記課題を解決すべく鋭意検討した結果、特定の方法でモルタル又はコンクリート部材を養生することにより、前記課題が解決できる知見を得て本発明を完成するに至った。
【0004】
【課題を解決するための手段】
即ち、本発明は、酸化カルシウム系膨張材を含有してなる膨張モルタル又は膨張コンクリートを100℃を越える高温水中で養生することを特徴とする膨張モルタル又は膨張コンクリート部材の製造方法であり、酸化カルシウム系膨張材を25〜40kg/m 3 含有してなる膨張モルタル又は膨張コンクリートを130〜150 ℃の高温水中で養生することを特徴とする膨張モルタル又は膨張コンクリート部材の製造方法である。
【0005】
以下、本発明をさらに詳しく説明する。
【0006】
本発明で、モルタル又はコンクリート部材(以下単に部材という)は、養生中、常に部材全体が100 ℃を越える高温水に接し、雰囲気は高温高圧を保つものである。
本発明における高温水とは、温度が100 ℃を超える水であり、120 〜200 ℃が好ましく、130 〜150 ℃がより好ましい。100 ℃以下では収縮の小さい部材は得られるものの、高強度を発現しない場合がある。水の温度は200 ℃を越えても本発明の効果は得られるが、経済的に好ましくない。
【0007】
本発明で高温水を調製するためには、水を高温高圧下に置く必要がある。
従って本発明を用いて部材を製造する際には、気密な圧力容器が必要となるが、その材質は気密性を有する耐圧容器であれば特に制限はなく、従来のオートクレーブ装置として用いられてきた圧力釜も使用が可能である。
しかしながら、通常、この圧力釜は横置き型であるため、養生終了後ハッチを開けた際に高温水が流出することが考えられるので、例えば、縦型の圧力容器にに水を満たし、その中に部材を沈めた状態で養生することが好ましい。
【0008】
本発明において部材を製造する材料としては、普通、早強、及び超早強等の各種ポルトランドセメント、これらポルトランドセメントに、シリカ、高炉スラグ、又はフライアッシュを混和した各種混合セメントなどのセメントの使用が可能である。
また、ポルトランドセメントに、シリカ、高炉スラグ、又はフライアッシュを、JIS 等によって定められた混和率を超えて配合したセメントも使用可能であり、シリカフューム等の活性シリカやメタカオリン等といった粘土鉱物の焼成物や未焼成物を配合したセメントも使用可能である。
さらに、セメントに膨張材を配合した膨張セメントも使用可能である。
【0009】
ここで、膨張材としては、酸化カルシウム系膨張材、アウイン系膨張材、及びアルミネート系膨張材等、各種膨張材の使用が可能である。
【0010】
これら材料を用いて、通常の方法で混練し、型枠に投入して成形する。
【0011】
部材を成形した後、本発明の養生をするまでを前置きといい、その時間を前置き時間という。
本発明での前置き時間は、部材が型枠から脱型できる材齢以降であれば特に限定されるものではない。
【0012】
高温水まで加熱する昇温時間は特に限定されるものではないが1〜5時間程度が好ましく、3時間程度がより好ましい。
最高温度に達してからその温度を保持する時間(以下保持時間という)は特に限定されるものではないが2〜8時間が好ましく、4〜6時間程度がより好ましい。
その後常温まで冷却する時間(以下冷却時間という)は、部材が常温まで冷却されるに充分な時間であれば特に限定されるものではないが、9時間程度が適当である。
【0013】
【実施例】
以下、実施例により本発明を詳細に説明する。
【0014】
実施例1
各材料の単位量を、セメント995kg/m3、細骨材414kg/m3、粗骨材702kg/m3、及び水183kg/m3とし、水セメント比(W/C)20%、細骨材率(S/a)38%のコンクリート配合に、減水剤aを19.9kg/m3 混合(配合A)してコンクリートを調製した。
まず、粗骨材以外の材料を強制練りコンクリートミキサーに投入し、180 秒間混練した後粗骨材を投入、さらに180 秒間混練し排出した。その後直ちに10×10×40cmの型枠に二層に分けて詰め、充分に締め固めを行い、10×10×40cmの供試体を作製した。
作製した供試体を、20℃、80%R.H.の恒温恒湿室に静置し、前置き時間24時間とし、その後、600 φ×1200cmの気密な圧力容器の水中に投入し、昇温時間3時間、表1に示す最高温度の保持時間6時間、及び温度降下時間6時間の高温水中の養生を行い、その長さ変化と圧縮強度を測定した。結果を表1に併記する。
比較のため、最高温度180 ℃のオートクレーブ養生を行った。結果を表1に併記する。
【0015】
<使用材料>
セメント :市販普通ポルトランドセメント、比重3.16
減水剤a :ポリカルボン酸系高分子界面活性剤、市販品
【0016】
<測定方法>
長さ変化 :JIS A 1129「モルタル及びコンクリートの長さ変化試験方法」のコンタクトゲージ方法に準拠して、20℃一定の条件下で測定した。測定は養生開始直前(前置き時間終了直後)と冷却完了直後(温度降下時間終了直後)に行い、それらの差を養生中に生じた長さ変化とした。
圧縮強度 :JIS A 1108に準拠して測定した。なお、測定は高温水中養生又はオートクレーブ養生完了直後(温度降下終了直後)とした。
【0017】
【表1】
【0018】
表から養生の最高温度が130 〜150 ℃の場合の収縮ひずみの低減効果が最も大きく、圧縮強度も最も高いことが明らかである。
また、オートクレーブ養生に比較して、本発明の養生方法は、低い養生温度で収縮が小さく、高強度の部材が得られることが明らかである。
【0019】
実施例2
表2に示す配合を用いてコンクリートを調製したこと以外は実施例1と同様に行った。結果を表3に示す。
なお、混練は、セメント、混和材、及び細骨材を30秒間空練りした後、減水剤を配合した水を混合し、配合記号AとBは 150秒間、その他の配合は30秒間混練し、最後に粗骨材を混合して 180秒間混練した。
【0020】
<使用材料>
減水剤b :ナフタレンスルホン酸ホルマリン高縮合物塩、市販品
混和材 :フライアッシュ、比重2.27、ブレーン値4,000cm2/g
【0021】
【表2】
【0022】
【表3】
【0023】
実施例3
表4に示す単位量のセメントと膨張材、並びに、細骨材684kg/m3、粗骨材946kg/m3、及び減水剤aのコンクリート配合を用い、水/(セメント+膨張材)比が35%、及び細骨材率S/aが42%の膨張コンクリートを調製したこと以外は実施例1と同様に行った。結果を表4に併記する。
【0024】
<使用材料>
膨張材イ :酸化カルシウム系、市販品、ブレーン値3,100cm2/g
膨張材ロ :アウイン系膨張材、市販品、ブレーン値2,950cm2/g
膨張材ハ :試薬1級のCaCO3 、Al2O3 、及びCaSO4 を、CaO/Al2O3 モル比6.5 〜18で、CaSO4/Al2O3 モル比 1.5〜4となるように配合し、1,350 ℃の電気炉で1時間焼成し、生成したクリンカーをブレーン値3,000 ±200cm2/gに調整
【0025】
【表4】
【0026】
表から、同一の膨張材を同量添加した場合、常温水中養生に比較して、本発明の養生方法は著しく大きな膨張が得られる。
【0027】
【発明の効果】
本発明の養生方法を用いてモルタル又はコンクリート部材を製造することにより、セメントの硬化を著しく促進しつつ、養生中又は養生完了後以降の収縮ひずみを著しく低減できる。
また、オートクレーブ養生に比較してより低い温度で所定の圧縮強度を得ることができるなどの効果を奏する。
さらに、膨張材を添加して本発明の養生方法を用いると、常温で水中養生を行った場合に比較して、同一の添加量において著しく大きな膨張を得ることが可能となるなどの効果を奏する。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a mortar or concrete member used in the field of civil engineering and construction, and more particularly to a method for producing a mortar or concrete member having high shrinkage and small shrinkage.
[0002]
[Prior art and its problems]
Pipe shape such as ALC (autoclave aerated concrete), utility pole piles and propulsion pipes that are light and have heat insulation because they contain a large amount of bubbles inside, and are mainly used as exterior wall materials for buildings. PC piles and poles that have been made are manufactured by autoclave curing.
Autoclave curing is a high-pressure steam curing with high temperature and vapor pressure corresponding to the temperature, putting mortar or concrete material, which is made by mixing silicate admixture and others with cement and lime, etc. into an airtight pressure vessel. This is fundamentally different from ordinary steam curing of concrete products (Recent cement and concrete products '71 -72 Industry and product No. 53 pages 42-53).
For example, concrete piles and the like are manufactured as high-strength members useful after curing by curing under normal temperature steam curing at a high temperature and high pressure of 10 atm and 180 ° C.
However, since this method is performed under saturated vapor pressure, shrinkage strain is generated during curing, and there is a problem that, for example, the member dries when the pressure is reduced or the temperature is lowered, which leads to the occurrence of cracks.
[0003]
As a result of intensive studies to solve the above problems, the present inventor has obtained knowledge that the above problems can be solved by curing a mortar or a concrete member by a specific method, and has completed the present invention.
[0004]
[Means for Solving the Problems]
That is, the present invention is a process for the manufacture of expanded mortar or expansion concrete member, characterized in that curing at a high temperature water exceeding 100 ° C. The expansion mortar or expansion concrete comprising calcium oxide-based expansive, calcium oxide 130 to 150 expanded mortar or expanded concrete containing 25 to 40 kg / m 3 of a system expanded material A method for producing an expanded mortar or an expanded concrete member, characterized by curing in high-temperature water at 0 ° C.
[0005]
Hereinafter, the present invention will be described in more detail.
[0006]
In the present invention, a mortar or concrete member (hereinafter simply referred to as a member) is always in contact with high temperature water exceeding 100 ° C. during curing, and the atmosphere is maintained at high temperature and high pressure.
The high temperature water in the present invention is water having a temperature exceeding 100 ° C., preferably 120 to 200 ° C., more preferably 130 to 150 ° C. Below 100 ° C, a member with small shrinkage can be obtained, but high strength may not be exhibited. Even if the water temperature exceeds 200 ° C., the effect of the present invention can be obtained, but it is not economically preferable.
[0007]
In order to prepare high temperature water in the present invention, it is necessary to place water under high temperature and high pressure.
Therefore, when manufacturing a member using the present invention, an airtight pressure vessel is required. However, the material is not particularly limited as long as the material is an airtight pressure vessel, and has been used as a conventional autoclave device. A pressure cooker can also be used.
However, since this pressure cooker is a horizontal type, it is considered that hot water will flow out when the hatch is opened after curing, so for example, fill a vertical pressure vessel with water. It is preferable to cure in a state where the member is submerged.
[0008]
In the present invention, as a material for producing a member, various portland cements such as normal, early strength, and ultra early strength, and cements such as various mixed cements in which silica, blast furnace slag, or fly ash is mixed with these portland cements are used. Is possible.
It is also possible to use cement containing silica, blast furnace slag, or fly ash mixed with Portland cement in excess of the mixing ratio specified by JIS, etc. Also, cement containing unfired material can be used.
Further, an expanded cement obtained by blending an expanded material with cement can also be used.
[0009]
Here, as the expansion material, various expansion materials such as a calcium oxide expansion material, an Auin expansion material, and an aluminate expansion material can be used.
[0010]
Using these materials, they are kneaded by a usual method, put into a mold and molded.
[0011]
The time until the curing of the present invention is carried out after forming the member is referred to as a pre-set, and the time is referred to as the pre-set time.
The pre-setting time in the present invention is not particularly limited as long as it is after the age when the member can be removed from the mold.
[0012]
The temperature raising time for heating to high temperature water is not particularly limited, but is preferably about 1 to 5 hours, and more preferably about 3 hours.
Although the time (henceforth holding | maintenance time) which hold | maintains the temperature after reaching maximum temperature is not specifically limited, 2 to 8 hours are preferable and about 4 to 6 hours are more preferable.
Thereafter, the time for cooling to room temperature (hereinafter referred to as cooling time) is not particularly limited as long as the member is a time sufficient to cool the member to room temperature, but about 9 hours is appropriate.
[0013]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0014]
Example 1
The unit quantity of each material, cement 995kg / m 3, fine aggregates 414kg / m 3, the coarse aggregate 702kg / m 3, and water 183 kg / m 3, water-cement ratio (W / C) 20%, fine aggregate Concrete was prepared by mixing 19.9 kg / m 3 of a water reducing agent a into a concrete composition having a material ratio (S / a) of 38% (mixing A).
First, materials other than coarse aggregate were forcibly kneaded into a concrete mixer, kneaded for 180 seconds, then coarse aggregate was added, and then kneaded and discharged for 180 seconds. Immediately after that, it was packed in two layers in a 10 × 10 × 40 cm formwork and sufficiently compacted to prepare a 10 × 10 × 40 cm specimen.
The prepared specimen is left in a constant temperature and humidity chamber at 20 ° C and 80% RH for 24 hours, then put into water in a 600 φ × 1200cm airtight pressure vessel and heated for 3 hours. Curing was performed in high-temperature water with a maximum temperature holding time of 6 hours and a temperature drop time of 6 hours shown in Table 1, and the length change and compressive strength were measured. The results are also shown in Table 1.
For comparison, an autoclave curing at a maximum temperature of 180 ° C. was performed. The results are also shown in Table 1.
[0015]
<Materials used>
Cement: Commercial ordinary Portland cement, specific gravity 3.16
Water reducing agent a: polycarboxylic acid polymer surfactant, commercially available product
<Measurement method>
Length change: Measured under a constant condition of 20 ° C. in accordance with the contact gauge method of JIS A 1129 “Method for length change test of mortar and concrete”. The measurement was performed immediately before the start of curing (immediately after the end of the preliminary time) and immediately after completion of cooling (immediately after the end of the temperature drop time), and the difference between them was defined as the length change that occurred during curing.
Compressive strength: Measured according to JIS A 1108. The measurement was performed immediately after completion of curing in high-temperature water or autoclave curing (immediately after the end of temperature drop).
[0017]
[Table 1]
[0018]
From the table, it is clear that when the maximum temperature of curing is 130 to 150 ° C., the effect of reducing shrinkage strain is the greatest and the compressive strength is also the highest.
Further, it is clear that the curing method of the present invention has a small shrinkage and a high strength member at a low curing temperature compared to the autoclave curing.
[0019]
Example 2
The same procedure as in Example 1 was performed except that concrete was prepared using the formulation shown in Table 2. The results are shown in Table 3.
For kneading, the cement, admixture, and fine aggregate are kneaded for 30 seconds, and then water mixed with a water reducing agent is mixed. The blending symbols A and B are kneaded for 150 seconds, and other blends are kneaded for 30 seconds. Finally, the coarse aggregate was mixed and kneaded for 180 seconds.
[0020]
<Materials used>
Water reducing agent b: Naphthalenesulfonic acid formalin high condensate salt, commercially available admixture: fly ash, specific gravity 2.27, brain value 4,000cm 2 / g
[0021]
[Table 2]
[0022]
[Table 3]
[0023]
Example 3
Using the concrete amount of cement and expansion material shown in Table 4 and fine aggregate 684kg / m 3 , coarse aggregate 946kg / m 3 and water reducing agent a, the water / (cement + expansion material) ratio is The same procedure as in Example 1 was performed except that expanded concrete having a fine aggregate ratio S / a of 35% was prepared at 35%. The results are also shown in Table 4.
[0024]
<Materials used>
Expansion material A: Calcium oxide, commercially available, Blaine value 3,100cm 2 / g
Expansion material B: Auin-based expansion material, commercial product, brain value 2,950cm 2 / g
Expansion material C: Reagent grade CaCO 3 , Al 2 O 3 , and CaSO 4 so that the CaO / Al 2 O 3 molar ratio is 6.5 to 18 and the CaSO 4 / Al 2 O 3 molar ratio is 1.5 to 4 Blended and fired in an electric furnace at 1,350 ° C for 1 hour, and adjusted the clinker to a brain value of 3,000 ± 200 cm 2 / g.
[Table 4]
[0026]
From the table, when the same amount of the same expansion material is added, the curing method of the present invention can achieve a significantly large expansion as compared with the room temperature water curing.
[0027]
【The invention's effect】
By producing a mortar or concrete member using the curing method of the present invention, the shrinkage strain during curing or after completion of curing can be significantly reduced while significantly promoting the hardening of the cement.
Moreover, there exists an effect that predetermined | prescribed compressive strength can be obtained at lower temperature compared with an autoclave curing.
Further, when the curing method of the present invention is used with an expansion material added, it is possible to obtain an effect such that it is possible to obtain a significantly large expansion at the same addition amount as compared with the case of underwater curing at room temperature. .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35123497A JP3844391B2 (en) | 1997-12-19 | 1997-12-19 | Method for producing mortar or concrete member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35123497A JP3844391B2 (en) | 1997-12-19 | 1997-12-19 | Method for producing mortar or concrete member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11180785A JPH11180785A (en) | 1999-07-06 |
JP3844391B2 true JP3844391B2 (en) | 2006-11-08 |
Family
ID=18415966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35123497A Expired - Fee Related JP3844391B2 (en) | 1997-12-19 | 1997-12-19 | Method for producing mortar or concrete member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3844391B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1149892B1 (en) | 1999-12-01 | 2007-04-04 | Kao Corporation | Surfactant composition |
JP4694937B2 (en) * | 2005-10-03 | 2011-06-08 | 学校法人 中央大学 | Curing method in the manufacture of highly durable cement-based molded products |
CN108162154B (en) * | 2017-12-20 | 2020-01-14 | 中交第三航务工程局有限公司 | Steam curing-free maintenance method and production process for large tubular pile |
-
1997
- 1997-12-19 JP JP35123497A patent/JP3844391B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11180785A (en) | 1999-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7018466B2 (en) | Process for producing a concrete and a mortar | |
JPS6363505B2 (en) | ||
US4187118A (en) | Concrete composition for making concrete moldings and method for making such concrete moldings | |
JP3672518B2 (en) | Cement admixture, cement composition and concrete using the same | |
JP3844391B2 (en) | Method for producing mortar or concrete member | |
JP7260705B1 (en) | Curing accelerator for hydraulic material, cement composition, and hardened body | |
EP0959052A1 (en) | Cement composition and process for producing concrete and precast concrete with the same | |
JP2004107129A (en) | Cement composition for carbonated hardened body, cement concrete composition for carbonated hardened body and method of manufacturing carbonated hardened body | |
US4230499A (en) | Concrete composition for making concrete moldings and method for making such concrete moldings | |
JP2872815B2 (en) | Cement composition for mass concrete | |
JP4563562B2 (en) | Cement composition | |
JP2001294460A (en) | Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same | |
JPH07277795A (en) | Admixture of cement and cement composition | |
JP2005289657A (en) | Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby | |
KR101943039B1 (en) | Composition for high strength concrete panel with reduced shrinkage property and high strength concrete panel with reduced shrinkage property for inner or outer wall of building prepared by using the same | |
JPH10167792A (en) | Fiber-reinforced cement composition and production of cement cured product | |
JP4409281B2 (en) | Method for producing lightweight cellular concrete | |
JP4115756B2 (en) | Cement composition for carbonized cured body, cement concrete composition for carbonized cured body, and method for producing carbonated cured body | |
JP4317736B2 (en) | Injection material | |
JPH06345507A (en) | Method for improving strength of hardened body of cement or the like | |
JP3907980B2 (en) | Manufacturing method of cement molding | |
JPH08208284A (en) | Production of light-weight foamed concrete | |
JP2530637B2 (en) | Method for producing cement molded body | |
JPH04149051A (en) | Cement composition | |
JP2769182B2 (en) | Manufacturing method of cement molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060815 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130825 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |