JP2004017275A - Cemented carbide-composed solid metal saw of set-blade specification - Google Patents

Cemented carbide-composed solid metal saw of set-blade specification Download PDF

Info

Publication number
JP2004017275A
JP2004017275A JP2002210261A JP2002210261A JP2004017275A JP 2004017275 A JP2004017275 A JP 2004017275A JP 2002210261 A JP2002210261 A JP 2002210261A JP 2002210261 A JP2002210261 A JP 2002210261A JP 2004017275 A JP2004017275 A JP 2004017275A
Authority
JP
Japan
Prior art keywords
cutting edge
cutting
solid metal
metal saw
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002210261A
Other languages
Japanese (ja)
Inventor
Hiroichi Matsumoto
松本 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA TOOL CO Ltd
Original Assignee
MA TOOL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MA TOOL CO Ltd filed Critical MA TOOL CO Ltd
Priority to JP2002210261A priority Critical patent/JP2004017275A/en
Publication of JP2004017275A publication Critical patent/JP2004017275A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid metal circular saw for cutting processes, aimed at preventing occurrence of fusion/seizure due to frictional heat between the cutting blade side face and the cut material, and attaining greatly improved cutting performance. <P>SOLUTION: On the cutting blade side 6 of a solid metal saw composed of cemented carbide as its base material, gradient portions characterized by concave shapes with minor angles and shallow clearance grooves are formed continuously, to constitute a so-called set type blade in which multiple blade edge portions are alternately protruding from the base face 7 of the clearance groove bottom. <P>COPYRIGHT: (C)2004,JPO

Description

[産業上の利用分野]
【0001】
鉄鋼、非鉄金属、樹脂などの材料、部品などの切断・溝加工に用いる円盤状で外周部に複数の切れ刀を持つ、いわゆる丸鋸に代表される切削工具に利用する。本発明は塑性加工が不可能な超硬合金、サーメット、セラミック等の切削工具材料からなり、切れ刃があさり刃形状をなし且つ切れ刃部と基台が一体化したソリッドメタルソーに代表される外周部に複数の切れ刃を有する円板状切削工具に関する。
[従来技術]
【0002】
ソリッドメタルソーに代表される丸鋸(以下ソリッドメタルソーと称す)は色々な材料、部品などの切断加工や溝入れ加工に利用され、特に超硬合金製で切れ刃部と基台部が一体となった超硬ソリッドメタルソーは高硬度、対磨耗性が高い、高剛性、研削加工が比較的容易などの特徴から最近非常に多く利用されている。
【0003】
ソリッドメタルソーは外周部に複数の切れ刃を持っているため1刃あたりの切削に寄与する負荷が小さく効率良く切断加工が行える。しかし、一般的にメタルソーの厚さは0.1mm〜4mm程度の薄い場合が多く、技術面およびコストの面から通常のフライス工具、旋削工具等の切れ刃側面に見られる明確な逃げ面加工、いわゆる側面切れ刃を製作することは極めて困難である。
【0004】
そこで、メタルソーの側面に於いては通常外径部から中心に向かって中凹状態の勾配研削仕上げ、いわゆる勾配部側面を形成し、通常チップソーなどでいうあさり角とし、切れ刃の外周逃げ面、すくい面と構成させることにより軸方向と円周方向の工具逃げ角として機能させる。
【0005】
丸鋸の例えば、鋼の基台の外周部に超硬合金の切れ刃チップをロー付けなどで設けた刃厚の大きい円板状の丸鋸、いわゆるチップソーにおいては基台厚に比べて切れ刃チップ厚は大きく、後工程で切れ刃側面のあさり角など必要な工具逃げ角は容易に研削仕上げ出来る為メタルソーに実施される勾配研削は通常行われない。
【0006】
然るにソリッドメタルソーの場合、薄厚であるためバックテーパーの勾配角度は0.025〜0.25°程度と僅かであり、その為使用機械の剛性、加工ワークの形状、ワークの機械への保持状態、ワークの残留応力、摩擦熱による熱膨張等の影響を受け切断加工中に既切断幅の変形により切断加工面がソリッドメタルソーの切れ刃側面、基台側面を締め付け、いわゆるブレーキ現象を起こしソリッドメタルソーが破損し易い。またコーナーエッジの早期摩損により切れ刃にチッピングが発生し易く、被加工製品には過大なバリが発生し生産性に多大の悪影響を及ぼす。
【0007】
特に、パイプにおいては軸方向から直交方向まで色々な角度方向に切断加工あるいは半割切断加工を行う際、切削状態が不安定となり肉厚にもよるが一般に異常な切断面の挙動が切れ刃に影響し前記現象が頻出する。また、ジュラコンなどのエンジニアリングプラスチック類の丸棒、板材などは熱伝導率が小さく摩擦熱が蓄積し易く、丸鋸を利用して切断加工を実施する場合において材料が粘弾性挙動を示し切断面の肌荒れやバリ、溶融などの不具合が発生し易い。
【0008】
前記プラスチック類の切断加工に用いる丸鋸は切削抵抗と摩擦熱の発生を極力小さくなる切れ刃構成と切れ味の良い切れ刃であることが必要であり、その為バックテーパー研削仕上げのみの丸鋸より、あさりのある丸鋸が多く用いられているが、現在市場に提供されているあさりのついた丸鋸は、塑性加工の容易な工具鋼で製作されているため工具寿命が短く頻繁に工具交換を要する。特にガラス繊維入りのエンジニアリングプラスチックの場合、切れ刃摩損は顕著であり利用に適しない。また、工具鋼で製作される丸鋸はプラスチック類や木材などの切断加工は出来ても、金属類の切断加工には不適である。
【0009】
また、超硬合金チップを取り付けたチップソーの場合、金属類やガラス繊維入りのプラスチック類の切断加工は可能であるが前記ソリッドメタルソーのように切れ刃部を薄厚にすることが極めて困難であるため公称切れ刃厚さが大きいものが多く、切断幅が大きくなり製品歩留まりが極端に悪化し、小型精密部品を対象とする場合は不適当である。
[発明が解決しようとする課題]
【0010】
そこで前記問題に鑑み、切断・溝加工における加工中の切削抵抗の減少、摩擦熱の現象、破損防止などを目的とし、加工精度、製品歩留まり、耐久性などが格段に向上する切れ刃形状をもつソリッドメタルソーを提供するものである。
[課題を解決するための手段]
【0011】
第一に、工具材料に超硬合金、サーメット、セラミックなど切削工具材料として極めて優れた性質を有する素材を用い、切れ刃部と基台部が一体となったいわゆるソリッドタイプのメタルソーとする。
【0012】
第二に、前記素材は塑性加工が不可能であるため、切れ刃部、基台部とも砥石による研削加工により所定の寸法、形状に形成する。公称切れ刃厚を決める側面研削は一般に平行研削を行い、その後中凹状態にするための勾配研削を行うが平行研削を省略しても差し支えない。
【0013】
第三に、ソリッドメタルソー側面の切れ刃外径部の一部と機械アーバーへの取り付け部、いわゆるボス部を残し、微小な勾配量だけでは問題となる切削時の被加工材料からの締め付けに対処するため所定の勾配部を残してリング状に浅い溝状のヌスミ部を隣接して形成する。
【0014】
第四に、一刃あたりの切削抵抗を減少させるため各切れ刃側面は一刃ごとに切れ刃交互に斜めに除去する。すなわち、切れ刃構成部は千鳥刃形状とし、公称切削切れ刃厚さは連続する2個の切れ刃で構成される組み合わせにより決定される。
【0015】
第五に、前記除去部を設けた反対側、すなわち、実際の切断の幅寸法に寄与する切れ刃側面側に、所定の長さの勾配部を除き少なくとも切れ刃の深さ位置まで除去部を研削加工により設ける。
【0016】
[作用]
あさりがなく、且つあさり角がないかあっても極めて小さい丸鋸を切断加工に利用する場合、切削抵抗の増大・摩擦熱の発生など物理的な影響が大きい。あさりはこれらの影響を出来るだけ小さくするため形成されるが、従来の丸鋸は一般に工具材料の塑性変形性を利用してあさりが形成される。
【0017】
然るに、前記丸鋸は塑性加工が可能な工具材料で製作されているため木材、プラスチックなどに利用されているのみであり、現在金属材料等難切削材を切断加工する目的に供するあさり刃仕様のソリッドタイプの丸鋸は市場に供されていない。
【0018】
金属材料など難切削性の材料切断加工に最適の切削工具素材である超硬合金、サーメット、セラミック等においてはあさり形成のための従来工法による塑性加工は不可能であり、したがって超硬ソリッドメタルソーに代表されるソリッドタイプの前記薄厚円板状切削工具の切れ刃構成部におけるあさり刃仕様は不可能とされてきた。
【0019】
本発明のあさり刃仕様の超硬ソリッドメタルソーは、超硬合金などの円板体の側面に従来の切れ刃を構成する勾配部に隣接して浅い溝を設け、更に切れ刃構成部側面にあさりをなす研削除去部を全周にわたって交互に形成することにより、切削抵抗の軽減、摩擦熱発生の減少、切断面の工具への締め付け現象の軽減などが可能となる。
[実施例]
【0020】
本発明によるソリッドメタルソーの製作方法は、最初に焼結された超硬合金などの高硬度・脆性材料の円板の両側面を研削し、所定の公称厚さT1に仕上げる。次に所定の外径・内径寸法に仕上げ研削した後、図6に示すように外周部から中心に向かい角度 θ1 の中凹状態に勾配研削を行う。すなわち該工程において外径部の厚さが切断幅となる切れ刃の公称厚さT1となり中心に向かってあさり角 θ1となる勾配側面の形成された研削円板を製作する。
【0021】
前記勾配研削は必要に応じ内径部側に機械アーバーへ取り付けるためのボス部20を残して研削する。更に、研削円板の両側面に図4、図6に示すように外周から勾配部6を残しボス部20に至る位置まで本発明のソリッドメタルソーの基台面7を形成するリング状の浅い逃がし溝21を研削する。ここで残される勾配側面部の長さD3は切れ刃深さD2以内とし、それらの関係は 0.05×D2≦D3≦D2とする。
【0022】
また、前記基台面7の厚さT3は切れ刃の公称厚さT1によって決められ、それらの関係は 0.7×T1≦T3≦0.97×T1である。次に、外周部に図1、図2、図3に示すように複数且つ偶数のすくい面3、逃げ面2,4、チップポケット5からなる切れ刃構成部を研削加工する。
【0023】
前記切れ刃において、切れ刃側面を1刃ごとに交互に全周にわたって研削除去面9を形成する。すなわち、該研削工程後の切れ刃は交互に側面に研削除去面9を形成され、残された勾配部側面6が反対側に突出した図7に示すあさり刃仕様となる。
【0024】
図4、図7は隣り合う任意の切れ刃について説明図である。各切れ刃の幅T4の厚さ方向における重なり部長さLは、公称切れ刃厚さT1によって決められ、それらの関係は
0.5×T1<T4≦0.97×T1 および0<L≦0.94×T1
で表される。研削除去面9を設けることにより一刃あたりの切削抵抗が減少し切削性が向上する。
【0025】
更に研削除去面9のそれぞれの反対側切れ刃側面部において、図1、図5、図8に示すように研削除去面8を切れ刃側面の勾配部6の長さD1を除き切れ刃全周にわたって一刃おきに形成する。ここで、図8に示す側面の外周部付近に残された部分6の長さD1は切れ刃の深さD2によって決められ、それらの関係は
0.1×D2≦D1≦0.5×D2である。
【0026】
研削除去面8、9は切れ刃側面のソリッドメタルソー中心方向についてはそれぞれ 切れ刃底近傍まで形成し円周方向については概切れ刃側面の長さ全体に実施する。研削除去面8は砥石による研削加工が行われるため略アール形状となり図8に示すあさり角θ2が形成される。
【0027】
前記[0023]の工程で完成された切れ刃は図4、図7に示すように勾配研削によるあさり角θ1を交互に形成された切れ刃仕様のソリッドメタルソーであり、[0024]の工程で完成された切れ刃は図1、図2、図3、図5、図8に示すように角度θ1および角度θ2の2段のあさり角を形成されたソリッドメタルソーである。
【0028】
前記それぞれのソリッドメタルソーを用いて切断加工を行う場合、一般的なソリッドメタルソーに比べて切削抵抗は小さくなる。切り屑も小さく切り屑の排出性が格段に向上し、あさり角、あさり量が大きいため切断中の切断面による締め付けによる物理的な影響も格段に軽減される。
【0029】
焼結された超硬合金等の塑性加工は不可能であり、したがって超硬ソリッドメタルソーに代表されるソリッドタイプの薄厚円板状切削工具のあさり刃仕様は不可能とされてきたが、実施例に示すように、逃がし溝、研削除去部をそれぞれの切れ刃に形成することにより、あさり刃仕様の超硬ソリッドメタルソーが完成された。
【0030】
[発明の効果]
記載するソリッドメタルソーは前記したように勾配研削によるあさり角は僅かであるがさらえ刃としての効果があるため切断面の肌荒れへの影響は少なく且つ逃がし溝21あるいは逃がし溝21と研削除去面8,9を形成された本発明のソリッドメタルソーは従来工具破損の頻出したパイプ切断加工や肌荒れ問題、溶着問題の頻出したジュラコンの精密切断に威力を発揮する。
【0031】
近年生産性を考慮してソリッドメタルソーによる切断加工面は最終仕上げ面として利用される場合が多い。その為、切削性がよい、加工精度が高い、耐久性がよい、加工面粗さがよく加工バリが少ない等ソリッドメタルソーの切断加工特性に対する要求は強く、本発明のソリッドメタルソーはこれらの要求に対して十分な効果を発揮する。
【0032】
被削材の凝着や溶着のし易いアルミ合金などの材料を一般的なメタルソーで切断加工する場合において、本発明の超硬ソリッドメタルソーは切り屑が細かく裁断され、且つ側面の逃がし部が従来製品に比べて十分に大きいため、切り屑の排出が良く切れ刃側面と切断面との摩擦による発熱・被削材の溶着・焼き付き現象などの諸問題が格段に改善するという優れた特長をもつ。
【0033】
本発明のソリッドメタルソーの母材は超硬合金に限定されるものではなく、サーメット、セラミックなどの焼結された高硬度脆性材料の適用、また一般的な熱処理後の高速度鋼など工具鋼にも適用できる。
【図面の簡単な説明】
【図1】本発明の請求項2に示す超硬合金ソリッドメタルソーのあさり刃仕様の切れ刃説明図
【図2】図1のA矢視図
【図3】図1のB矢視図
【図4】本発明の請求項1に示す超硬合金ソリッドメタルソーの任意の切れ刃すくい面側からの視観図
【図5】図1のC矢視図
【図6】側面形成後の断面図
【図7】図4の寸法関係説明図
【図8】図5の寸法関係説明図
【図9】切れ刃深さと残された勾配部長さとの関係説明図
【符号の説明】
1 1 切れ刃
2 2 二番逃げ面
3 3 すくい面
4 4 逃げ面
5 5 チップポケット
6 6 切れ刃側面
7 7 基台面
8 8 研削除去部
9 9 研削除去部
20 20 ボス部
21 21 逃がし溝
T1 切れ刃の公称刃厚さ
T3 基台厚さ
T4 各切れ刃の実際の長さ
L  各切れ刃の厚さ方向において切削に寄与する寸法上の重なり長さ
D1 図1に示す切れ刃側面6の軸方向への長さ
D2 切れ刃の深さ
D3 図4に示す切れ刃側面6の軸方向への長さ
θ1 勾配側面6のあさり角
θ2 研削除去面8のあさり角
[Industrial applications]
[0001]
Used for cutting tools such as so-called circular saws, which have a plurality of cutting blades on the outer periphery and are used for cutting and grooving of materials and parts such as steel, non-ferrous metal, and resin. The present invention is made of a cutting tool material such as cemented carbide, cermet, or ceramic that cannot be subjected to plastic working, and has an outer periphery typified by a solid metal saw in which the cutting edge has a flattened blade shape and the cutting edge portion and the base are integrated. The present invention relates to a disk-shaped cutting tool having a plurality of cutting edges in a portion.
[Prior art]
[0002]
Circular saws represented by solid metal saws (hereinafter referred to as solid metal saws) are used for cutting and grooving of various materials and parts. Especially, they are made of cemented carbide and the cutting edge and base are integrated. Carbide solid metal saws have recently been very widely used because of their features such as high hardness, high wear resistance, high rigidity, and relatively easy grinding.
[0003]
Since the solid metal saw has a plurality of cutting edges on the outer peripheral portion, the load contributing to cutting per blade is small and cutting can be performed efficiently. However, in general, the thickness of the metal saw is often as thin as about 0.1 mm to 4 mm, and from the viewpoint of technology and cost, a normal flank surface can be seen on a cutting edge side of a normal milling tool, a turning tool, etc. It is extremely difficult to produce a so-called side cutting edge.
[0004]
Therefore, on the side surface of the metal saw, a gradient grinding finish in a concave shape is usually formed from the outer diameter portion toward the center, that is, the so-called slope side surface is formed, and the cutting edge is usually set to a so-called angle, and the outer flank of the cutting edge, By forming a rake face, it functions as a tool clearance angle in the axial direction and the circumferential direction.
[0005]
For a circular saw, for example, a circular saw with a large blade thickness provided with a cutting edge tip made of cemented carbide on the outer periphery of a steel base by brazing, etc. Since the insert thickness is large and the necessary tool clearance angle such as the set angle of the cutting edge side can be easily ground in the post-process, gradient grinding performed on a metal saw is not usually performed.
[0006]
However, in the case of a solid metal saw, the inclination angle of the back taper is as small as about 0.025 to 0.25 ° because of its thinness, so the rigidity of the machine used, the shape of the work to be machined, the state of holding the work to the machine, Under the influence of residual stress of the work, thermal expansion due to frictional heat, etc., the cutting surface is tightened on the cutting edge side and base side of the solid metal saw due to deformation of the already cut width during cutting, causing the so-called braking phenomenon, Easy to break. Further, chipping is apt to occur on the cutting edge due to early wear of the corner edge, and excessive burrs are generated on the product to be processed, which greatly affects productivity.
[0007]
In particular, when cutting or half-cutting pipes in various angular directions from the axial direction to the orthogonal direction, the cutting state becomes unstable and abnormal behavior of the cut surface generally depends on the wall thickness, but depending on the wall thickness, Affects and the above phenomenon occurs frequently. In addition, round bars and plates made of engineering plastics such as Duracon have low thermal conductivity and easily accumulate frictional heat, and when performing cutting using a circular saw, the material exhibits viscoelastic behavior and Problems such as rough skin, burrs, and melting are likely to occur.
[0008]
The circular saw used for cutting the plastics needs to have a cutting edge configuration and a sharp cutting edge that minimize cutting resistance and generation of frictional heat as much as possible. Circular saws with a set are widely used, but the circular saws with a set currently available on the market are made of tool steel that is easy to plastically process, so the tool life is short and tool change is frequent. Cost. In particular, in the case of engineering plastics containing glass fibers, the cutting edge wear is remarkable and is not suitable for use. Circular saws made of tool steel can cut plastics and wood, but are not suitable for cutting metals.
[0009]
Further, in the case of a chip saw to which a cemented carbide tip is attached, it is possible to cut a metal or a plastic containing glass fiber, but it is extremely difficult to make the cutting edge portion thin like the solid metal saw. In many cases, the nominal cutting edge thickness is large, the cutting width is large, and the product yield is extremely deteriorated, which is not suitable for small precision parts.
[Problems to be solved by the invention]
[0010]
Therefore, in view of the above problems, the cutting edge shape is intended to reduce cutting resistance during processing in cutting / grooving, a phenomenon of frictional heat, prevention of breakage, etc., and the processing accuracy, product yield, durability and the like are remarkably improved. It provides solid metal saws.
[Means for solving the problem]
[0011]
First, a so-called solid type metal saw in which a cutting edge portion and a base portion are integrated is used by using a material having extremely excellent properties as a cutting tool material such as a cemented carbide, a cermet, and a ceramic as a tool material.
[0012]
Second, since the material cannot be plastically processed, both the cutting edge portion and the base portion are formed into predetermined dimensions and shapes by grinding using a grindstone. In general, side grinding for determining the nominal cutting edge thickness is performed by parallel grinding, and then gradient grinding is performed to form a concave state. However, parallel grinding may be omitted.
[0013]
Third, leaving a part of the outer diameter of the cutting edge on the side of the solid metal saw and the part to be attached to the machine arbor, the so-called boss part, addressing the tightening from the work material at the time of cutting, which is a problem with only a small gradient amount For this purpose, a shallow groove-shaped groove portion is formed adjacently in a ring shape leaving a predetermined slope portion.
[0014]
Fourth, in order to reduce the cutting resistance per blade, the side surfaces of each cutting edge are obliquely removed alternately for each cutting edge. That is, the cutting edge component has a staggered blade shape, and the nominal cutting edge thickness is determined by a combination of two continuous cutting edges.
[0015]
Fifth, on the opposite side where the removal portion is provided, that is, on the side surface of the cutting edge that contributes to the actual width dimension of the cutting, the removal portion is removed to at least the depth position of the cutting edge except for a slope portion having a predetermined length. Provided by grinding.
[0016]
[Action]
When a circular saw having no set and no set angle is used for cutting, a physical effect such as an increase in cutting resistance and generation of frictional heat is large. Although a set is formed to minimize these effects, a conventional circular saw generally forms a set by utilizing the plastic deformability of a tool material.
[0017]
However, since the circular saw is made of a tool material capable of plastic working, it is used only for wood, plastic, and the like, and currently has a cutting blade specification for the purpose of cutting hard-to-cut materials such as metal materials. Solid circular saws are not available on the market.
[0018]
For cutting tools that are ideal for cutting difficult-to-cut materials such as metal materials, cemented carbides, cermets, ceramics, etc. cannot be plastically processed by the conventional method for forming a set. It has been considered impossible to specify the setting blade in the cutting edge component of the thin disk-shaped cutting tool of a representative solid type.
[0019]
The cemented carbide solid metal saw of the present invention is provided with a shallow groove on the side surface of a disk body made of a cemented carbide or the like, adjacent to the slope portion constituting the conventional cutting edge, and further has a set on the side surface of the cutting edge component. By alternately forming the grinding and removing portions over the entire circumference, it is possible to reduce the cutting resistance, reduce the generation of frictional heat, and reduce the phenomenon of fastening the cut surface to the tool.
[Example]
[0020]
In the method of manufacturing a solid metal saw according to the present invention, first, both sides of a disk made of a high hardness and brittle material such as a cemented carbide are ground to a predetermined nominal thickness T1. Next, after finish grinding to predetermined outer diameter and inner diameter dimensions, as shown in FIG. 6, gradient grinding is performed in a concave state at an angle θ1 from the outer peripheral portion toward the center. That is, in this step, a grinding disk having a sloped side surface with a nominal thickness T1 of the cutting edge whose outer diameter portion is a cutting width and a slope angle θ1 toward the center is manufactured.
[0021]
The above-mentioned gradient grinding is performed by leaving a boss portion 20 for attaching to a machine arbor on the inner diameter side as necessary. Further, as shown in FIGS. 4 and 6, a ring-shaped shallow relief groove for forming the base surface 7 of the solid metal saw of the present invention from the outer periphery to the position reaching the boss portion 20 as shown in FIGS. Grind 21. The length D3 of the remaining slope side portion is set to be within the cutting edge depth D2, and the relationship between them is 0.05 × D2 ≦ D3 ≦ D2.
[0022]
The thickness T3 of the base surface 7 is determined by the nominal thickness T1 of the cutting edge, and their relationship is 0.7 × T1 ≦ T3 ≦ 0.97 × T1. Next, as shown in FIG. 1, FIG. 2, and FIG. 3, a cutting edge constituting portion composed of a plurality and an even number of rake faces 3, flank faces 2, 4, and chip pockets 5 is formed on the outer peripheral portion.
[0023]
In the cutting edge, the grinding removal surface 9 is formed over the entire periphery of the cutting edge side surface alternately for each blade. That is, the cutting edge after the grinding step has a grinding blade specification shown in FIG. 7 in which the grinding removal surface 9 is alternately formed on the side surface and the remaining inclined portion side surface 6 projects to the opposite side.
[0024]
FIG. 4 and FIG. 7 are explanatory views of adjacent cutting edges. The overlapping portion length L in the thickness direction of the width T4 of each cutting edge is determined by the nominal cutting edge thickness T1, and their relationship is 0.5 × T1 <T4 ≦ 0.97 × T1 and 0 <L ≦ 0. .94 × T1
Is represented by The provision of the ground removal surface 9 reduces the cutting resistance per blade and improves the machinability.
[0025]
Further, as shown in FIGS. 1, 5 and 8, the grinding-removed surface 8 is cut around the entire periphery of the cutting edge 9 except for the length D1 of the inclined portion 6 on the side of the cutting edge, as shown in FIGS. Over every other blade. Here, the length D1 of the portion 6 left near the outer peripheral portion of the side surface shown in FIG. 8 is determined by the depth D2 of the cutting edge, and their relationship is 0.1 × D2 ≦ D1 ≦ 0.5 × D2. It is.
[0026]
Grinding removal surfaces 8 and 9 are formed up to the vicinity of the bottom of the cutting edge in the direction of the center of the solid metal saw on the side of the cutting edge, respectively, and in the circumferential direction, the grinding is performed over the entire length of the side surface of the cutting edge. Since the grinding removal surface 8 is subjected to grinding with a grindstone, the grinding removal surface 8 has a substantially round shape, and a set angle θ2 shown in FIG. 8 is formed.
[0027]
The cutting edge completed in the step [0023] is a solid metal saw of a cutting edge specification in which a set angle θ1 is alternately formed by gradient grinding as shown in FIGS. 4 and 7, and is completed in the step [0024]. The resulting cutting edge is a solid metal saw having a two-step set angle of an angle θ1 and an angle θ2 as shown in FIGS. 1, 2, 3, 5, and 8.
[0028]
When cutting is performed using the respective solid metal saws, the cutting resistance is smaller than that of a general solid metal saw. Since the chips are small and the chip dischargeability is remarkably improved, and the set angle and the set amount are large, the physical influence of the tightening by the cut surface during cutting is remarkably reduced.
[0029]
Plastic working of sintered cemented carbide, etc. is not possible, so it has been considered impossible to use a thin-type, thin, disk-shaped cutting tool, such as a solid carbide solid metal saw, with a cutting edge. As shown in (1), a relief solid and a hard metal solid saw with a cutting edge specification were completed by forming a relief groove and a grinding removal portion on each cutting edge.
[0030]
[The invention's effect]
As described above, the solid metal saw described has a small set angle due to the gradient grinding, but has an effect as a razor blade, so that it has little effect on the rough surface of the cut surface, and has a relief groove 21 or the relief groove 21 and the grinding removal surface 8, The solid metal saw according to the present invention 9 is effective for precision cutting of Duracon, which is a tool that frequently breaks pipes and has rough surfaces and welding problems.
[0031]
In recent years, in consideration of productivity, a cut surface with a solid metal saw is often used as a final finished surface. Therefore, there are strong demands on the cutting characteristics of solid metal saws, such as good cutting properties, high processing accuracy, good durability, good surface roughness, and low processing burrs, and the solid metal saw of the present invention meets these requirements. It exerts a sufficient effect on it.
[0032]
When cutting a material such as an aluminum alloy, which is easy to adhere and weld to a work material, with a general metal saw, the solid carbide metal saw of the present invention cuts chips into small pieces and has a side relief portion. It is large enough compared to the product, and has the excellent feature that the discharge of chips is good and various problems such as heat generation due to friction between the cutting edge side and the cut surface, welding and seizure of the work material are remarkably improved. .
[0033]
The base material of the solid metal saw of the present invention is not limited to cemented carbide, but may be applied to sintered high-hardness brittle materials such as cermets and ceramics, or to tool steels such as high-speed steel after general heat treatment. Is also applicable.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a cutting edge of a set blade of a cemented carbide solid metal saw according to claim 2 of the present invention. FIG. 2 is a view as seen from an arrow A in FIG. 1. FIG. 3 is a view as seen from an arrow B in FIG. 4 is a view from the side of the rake face of any cutting edge of the cemented carbide solid metal saw according to claim 1 of the present invention. FIG. 5 is a view taken in the direction of arrow C in FIG. 1. FIG. FIG. 7 is an explanatory diagram of the dimensional relationship in FIG. 4; FIG. 8 is an explanatory diagram of the dimensional relationship in FIG. 5; FIG. 9 is an explanatory diagram of the relationship between the cutting edge depth and the remaining slope portion length.
Reference Signs List 1 1 cutting edge 2 2 second flank 3 3 rake face 4 4 flank 5 5 chip pocket 6 6 cutting edge side 7 7 base surface 8 8 grinding removal section 9 9 grinding removal section 20 20 boss section 21 21 relief groove T1 Nominal blade thickness T3 of cutting edge Base thickness T4 Actual length L of each cutting edge Overlapping length D1 that contributes to cutting in the thickness direction of each cutting edge D1 The cutting edge side 6 shown in FIG. Axial length D2 Cutting edge depth D3 Axial length θ1 of cutting edge side surface 6 shown in FIG. 4 Set angle θ2 of inclined side surface 6 Set angle of ground removal surface 8

Claims (2)

円板状体外周部に複数の切れ刃を持ち、外周部における厚さ方向の最大寸法が公称切れ刃厚さとなるメタルソーにおいて、両側面は中凹状態の勾配部とリング状に浅い逃がし溝部が連接され、且つ前記勾配部側面は1刃おきに交互に各切れ刃側面を斜めに除去し、両側面に残された勾配部を含む切れ刃があさり刃形状となることを特徴とする超硬合金ソリッドメタルソー。In a metal saw with a plurality of cutting edges on the outer periphery of the disc-shaped body, and the maximum dimension in the thickness direction at the outer periphery becomes the nominal thickness of the cutting edge, both sides have a concave portion with a concave portion and a shallow relief groove in a ring shape. Carbide characterized in that the side surfaces of the inclined portion are connected alternately, and the side surfaces of the respective cutting edges are alternately removed at every other blade so that the cutting edge including the remaining gradient portions on both side surfaces has a straightened blade shape. Alloy solid metal saw. 前記切れ刃構成部において、残された各勾配部側面に切れ刃深さの1/10〜1/2の長さの勾配部を残し除去部を設け、両側面に残された勾配部を含む切れ刃があさり刃形状となることを特徴とする超硬合金ソリッドメタルソー。In the cutting edge constituent part, a removal part is provided leaving a slope part of a length of 1/10 to の of a cutting edge depth on a side face of each remaining slope part, and includes a slope part left on both side faces. A cemented carbide solid metal saw whose cutting edge has a straight blade shape.
JP2002210261A 2002-06-14 2002-06-14 Cemented carbide-composed solid metal saw of set-blade specification Pending JP2004017275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210261A JP2004017275A (en) 2002-06-14 2002-06-14 Cemented carbide-composed solid metal saw of set-blade specification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210261A JP2004017275A (en) 2002-06-14 2002-06-14 Cemented carbide-composed solid metal saw of set-blade specification

Publications (1)

Publication Number Publication Date
JP2004017275A true JP2004017275A (en) 2004-01-22

Family

ID=31184383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210261A Pending JP2004017275A (en) 2002-06-14 2002-06-14 Cemented carbide-composed solid metal saw of set-blade specification

Country Status (1)

Country Link
JP (1) JP2004017275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043463A (en) * 2014-08-26 2016-04-04 株式会社アマダホールディングス Saw blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043463A (en) * 2014-08-26 2016-04-04 株式会社アマダホールディングス Saw blade

Similar Documents

Publication Publication Date Title
JP6347258B2 (en) Radius end mill and cutting method
IL268579B2 (en) Ceramic face mill with circular arc profile for machining inconel
JP2007075944A (en) Ball end mill
KR20190129075A (en) Milling heads for ball track milling cutters, ball track milling cutters with such milling heads, methods of manufacturing cutting edges for ball track milling cutters, computer program products for performing these methods, data carriers with such computer program products And a grinding machine for carrying out the method
CN101389436B (en) A milling insert of cbn and a milling insert tool for thread milling
JP5580239B2 (en) Milling tools
JPH08276311A (en) Spiral end mill and its manufacture
JP2012218083A (en) Cutting tool, and method for manufacturing workpiece using the same
JP2004017275A (en) Cemented carbide-composed solid metal saw of set-blade specification
JP2013013962A (en) Cbn end mill
JP2004230531A (en) Rotating saw
JPH08192305A (en) Throwaway tip and manufacture thereof
JP6626853B2 (en) Rotary cutting tool
JP5610124B2 (en) Forming tool processing method
CN108136521B (en) Cutting insert and cutting tool
JP2008229764A (en) Rotary tool and machining method
JP5929144B2 (en) Hard sintered ball end mill
JP2007319968A (en) Formed cutter
JP4623674B2 (en) Rotary cutting tool
JP7250720B2 (en) Cutting tools and cutting methods
JP6968933B2 (en) Cutter head structure and cutting tools
JP4756609B2 (en) Rotary cutting tool
JP2002036028A (en) Coating circular saw
JPS6076902A (en) Highly hard material cutting tool
JP3794739B2 (en) Stainless steel broaching tool for high speed cutting