JP2004016945A - Method and apparatus for sorting object - Google Patents

Method and apparatus for sorting object Download PDF

Info

Publication number
JP2004016945A
JP2004016945A JP2002176497A JP2002176497A JP2004016945A JP 2004016945 A JP2004016945 A JP 2004016945A JP 2002176497 A JP2002176497 A JP 2002176497A JP 2002176497 A JP2002176497 A JP 2002176497A JP 2004016945 A JP2004016945 A JP 2004016945A
Authority
JP
Japan
Prior art keywords
sorting
value
threshold value
probability distribution
characteristic values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176497A
Other languages
Japanese (ja)
Other versions
JP2004016945A5 (en
Inventor
Tomoyoshi Ishitani
石谷 与佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terada Seisakusho Co Ltd
Original Assignee
Terada Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terada Seisakusho Co Ltd filed Critical Terada Seisakusho Co Ltd
Priority to JP2002176497A priority Critical patent/JP2004016945A/en
Publication of JP2004016945A publication Critical patent/JP2004016945A/en
Publication of JP2004016945A5 publication Critical patent/JP2004016945A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sorting Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for sorting objects, by which the various objects such as farm and marine products to be sorted can be sorted according to the individual or common characteristics of the objects to be sorted for the purpose of uniforming processing conditions, sorting according to application, obtaining differentiated goods and improving storage and transportation conditions. <P>SOLUTION: The object to be sorted is sorted precisely according to the actual conditions of a sorting purpose and a change of a probability distribution of the characteristic values by analyzing the probability distribution of the characteristic values obtained for sorting the object to be sorted, deciding a threshold value corresponding to the target value on the basis of the analyzed result under open-loop control and changing parameters of the probability distribution and the calculation range and the weight of each of the characteristic values. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は農水産物等を始め各種の仕分け対象物を、加工条件を揃えたり、用途を分けたり、差別化した商品にしたり、貯蔵や運送の条件を改善したりする目的で、個々のあるいは集合の特性に応じて、仕分ける技術に関するもので、予め定められている基準にそって分ける選別と異なり、仕分けた結果あるまとまった量を得ることを主要な目的とする物の仕分け方法と仕分け装置に関するものである。
【0002】
【従来の技術】
農水産物を始め多くの物が生産・流通の過程で選別操作を受ける。選別はあらかじめ設定されている規格を根拠にして行われる。その規格は流通上の必要を満たすために設けられ、何らかの測定(五感等による評価判定等を含む…以下単に測定等という)可能な特性値で表現されている。農水産物、例えば果物の特性値である重量、サイズ、糖度、酸度などは確率分布(図3参照…実務的にはヒストグラムで表し、数学的には確率密度関数で表す)に従うから、選別された量は確率分布関数(確率密度関数を−∞から積分したもので、実務的には累積頻度(確率)グラフに相当する)に従うことになるが、多くの場合そのことは意識されていない。
【0003】
規格が設定されていなくても、何かの特性値に基づいて区分けすることは、設備効率を高めたり、加工条件を揃えたり、用途を分けたり、差別化した商品にしたり、貯蔵や運送の条件を改善したりと、メリットが発生する。このような仕分けの操作では、特性値に対する絶対的な要求よりも、量ないしは量的な比率に対する要求に意味があることも多い。特性値の確率分布関数が既知であれば、所要の量的比率を分け取るための境目になる特性値(以下、これをしきい値と呼ぶ)は算出できる。ところが農水産物等では、特性値の分布は日により、産地により変化するし、来歴の異なるものが混入した状態で供給されることもあるので確率分布は一定しない(図2にそのパラメータの変化を示す)。仕分けの対象物から均等にサンプリングして特性値を得られるなら、確率分布関数を推定できるが、これらの産物の加工場や集荷場では、集荷時間に幅があり、しかも集荷した物は限られた時間に処理を求められているから、全体から均等にサンプリングすることは望むべくもない。また例え確率分布自体は安定していても、統計的な偏りは常に発生し、分布の端を全体の十分の一だけ(即ち図3では確率0.1に対応する特性値20.5で)仕分けるようなことは、試みる前から難しいと予見できる。このような事情から品質評価に基づいて仕分けし、仕分け結果の量的な比率の目標からのズレに基づいて仕分けのしきい値を操作する取り組みはなされなかった。
【0004】
【発明が解決しようとする課題】
供給される仕分け対象物を、特性を揃えて複数のグループ(以下、単純にランクと呼ぶ)に分けるとき、量的な比率を確保することを目標とするなら、確率分布関数から量的な比率に対応する特性値(基準のしきい値)を求め、これをしきい値として仕分けることになる。そしてそのランクの量的な比率が不足するときに、そのランクに振り分けるべき特性値の範囲を広げれば次第に量が増え、逆に量的な比率が余っているときに、特性値の範囲を狭めれば次第に量が減り、目標の比率に近づくはずである。制御工学でいうところのフィードバック制御(言い換えれば閉ループ制御)に相当する考えである。ところが仕分けの途中で特性値の確率分布状態は変化し、フィードバック制御の基準点とすべきしきい値は変化する。また確率分布関数が変わらなくても確率現象であるから特性値の出現が偏ることは避けられず、閉ループ制御とは別に確率分布の状態を的確に把握する必要があることがわかる。そしてこの基準のしきい値には、確率分布の変化には追随し、確率分布の一時的な偏りには追随しないことが求められる。なお一般に制御工学では制御モデルを状態方程式で表し、それは時間の関数である。本発明の場合、厳密には順序の進行であって時間の進行はない。また状態方程式ではなくそれに代わるものとして上述のように確率関数で表現する。また制御の対象はフローとしても量ではなくストック量である。つまり過去の制御結果は100%現在の制御結果に含まれている。にもかかわらず供給の順序を変われば結果が変わってしまう。便宜上、制御工学で常用する用語を用いているが、制御工学の知識がそのまま適用できる訳ではなく、確率論に基づいて制御手法を検討しなければならない。
【0005】
【課題を解決するための手段】
相反する目的、特性値を揃えることと量を確保することを調和する鍵として、まず仕分けのために測定等によって得た特性値の出現の頻度(言い換えれば確率密度関数)から累積頻度(言い換えれば確率分布関数)を求め、その時点でのしきい値を算出する。制御の誤差を見ていないから閉ループではなく開ループ制御に対応する。これだけでも分布の変動が小さいとか、数多く仕分けるなら自ずから目標に近づく。そうでないなら必要に応じて誤差を押さえるため、これをフィードバック制御の基準点にして、図1に破線で示すように閉ループ制御を組み込むのである。次にこの基準点には確率的な一時的偏りには追随せず、確率分布関数の変化には追随することが求められるのであるが、まず分布の形が判っている場合、例えば最もよく見られる正規分布の場合には、平均と標準偏差をパラメータとして確率分布関数(図3の正規分布の累積確率グラフに対応)が決まり、任意の仕分け比率に対応する特性値が得られるからこれを基準のしきい値に採用する。確率分布関数の変化が比較的小さい場合は、(1)供給される仕分け対象物を、量的な比率を所要の目標値にしながら複数のグループに特性を揃えて分けるとき、仕分けの時点までに得た特性値のすべてを用いて確率分布のパラメータを算出し、該パラメータによって仕分けの基準となるしきい値を決定する。また確率分布関数の変化が比較的大きい場合は、(2)供給される仕分け対象物を、量的な比率を所要の目標値にしながら複数のグループに特性を揃えて分けるとき、仕分けの時点までに得た特性値のうち最新の所定個数に限定したデータを用いて確率分布のパラメータを算出し、該パラメータによって仕分けの基準となるしきい値を決定する。
【0006】
次にこれらの手段と組み合わせて、上記のパラメータの算出過程において、(3)特性値を均等な重みで計算する。または、(4)新しい特性値を大きい重みで計算する。重みの係数には一般に等比級数が用いられ、係数の合計は1になる。以上正規分布する場合について述べたが、これに対して分布の形が判っていない場合(判っていても構わない)には、(5)確率分布関数のパラメータの算出に代えて、仕分けの時点までに得た特性値の累積頻度曲線によって目標の比率に対応する基準のしきい値を決定する。つまり、得られた特性値を小さい方から並べ直して累積頻度グラフを作り(図3、実際の累積グラフを参照)、これに回帰線(確率分布関数の逆関数で直線化するとやりやすい)を当てはめたり、単純に補間計算、外挿計算をして直接任意の仕分け比率に対応した特性値を算出し、これを基準のしきい値に採用する。この方法はその時点までに得た全ての特性値を使う場合も、その時点までに得た全ての特性値のうち、最新の一定データ数に限定して算出する場合にも適用できる。正規分布するかどうかは一般には正規確率紙を用いて判定するが、実際には判定しにくいものもあり得る。実際、茶生葉のN/F指数のように相関性の高い成分の比でさえ、正規分布と見なして差し支えないことがある。このように分布の形にこだわらないこの技法には汎用性がある。仕分ける量が著しく不揃いの場合、あるいは量と特性値に相関関係が認められる場合には、(6)特性値を仕分ける量で重み付けして計算し、分布を的確に把握する。確率分布の両端には発生頻度こそ低いが、異常にかけ離れた特性値が生じることがあり、(7)特性値を前回の平均値等(もしくはこれに代わる中央値など)から一定の範囲に制限して(例えば、前回平均値から標準偏差の2〜3倍程度を越えないように制限する。図2では11番、24番、57番、64番、82番のデータが制限されている)計算する。この制限は特性値の要素となる計測値に対して実施しても良い。
【0007】
さらに仕分けの開始時には基準のしきい値が無く、またしばらくは算出されるパラメータは不安定であるから、(8)仕分けの開始時点で初期値として確率分布関数のパラメータもしくは基準のしきい値を与え、仕分けの時点までに得た特性値から求めた基準のしきい値に緩やかに移行する。つまり、適当な初期値を与え、計算データ数が増えるに従って測定データに基づくパラメータに緩やかに移行する。または、(9)仕分けの開始時点で、対象物のサンプルに対して仕分けのためと同様に特性値を得て基準のしきい値を与える。つまり、初期値を与える代わりに、初期の荷口もしくはサンプリングされた試料の特性値を求めて基準のしきい値を決定し、その後に仕分けの作業に移行する。この場合、標準偏差の変化が小さい状況ではパラメータとしては平均値が判れば良いのであるから、5〜10個のデータでも十分に機能する。実際のデータを分析すると標準偏差の日間変動は僅かであり、これを一定と見なして仕分け制御を行う方が特性値の揃いが良くなる。特性値の確率現象は平均値に対して偏るだけでなく、極端に平均値の近くに集中するような現象もあるからである。
【0008】
(10)対象物の品質計測手段と、対象物の量を計測する手段と、仕分けの時点までに得た特性値の分布を分析してしきい値を求め、該しきい値により対象物を仕分ける仕分け制御手段と、該仕分け制御手段の結果により対象物を搬送する搬送手段とより構成した確率分布に従う物の仕分け装置を用いる(図6参照)。
【0009】
なお(6)で仕分け量が著しく不揃いの場合の処理方法に触れたが、よりよい方法としては仕分け対象物を複数回に分割して測定等を行って得たパラメータを用いるべきである。分割は厳密でなくても良いが、測定等1回当たりの対象物の量がおおむね同じことが望ましい。仕分け操作と誤差計算は必ず対応させるが、これらは分割計測とは必ずしも対応しなくても良い。なお特性値は一次元の量として表現できることが多いが、図4のように2次元で捉える場合もある。
【0010】
【作用】
本発明では基本的に仕分けのために測定等で得た特性値の出現の頻度(言い換えれば確率密度関数)から累積頻度(言い換えれば確率分布関数)を求め、その時点でのしきい値を算出してこれをフィードバック制御の基準点にするから、確率分布が変化して仕分けの量的比率に誤差を生じても、まずフィードバックの基準点が目標の量が得られる点に移動し、これを基点に誤差を修正回復するためのフィードバック機能を追加することができる(図5参照)。その上で(1)の手段により、仕分けの時点までに得た特性値の全てを用いて算出した確率分布関数のパラメータを用いて基準のしきい値を逐次決定することにより、最も安定した基準のしきい値が得られる。あるいは、(2)の手段により、仕分けの時点までに得た特性値うち、最新の所定個数に限ったデータから算出した確率分布関数のパラメータを用いて基準のしきい値を逐次決定することにより、確率分布の形の変化に追従しやすい基準のしきい値が得られる。いわゆる移動平均であるが、前後のデータを使うことはできずその時点以前のデータのみ使うので本質的には遅れを持っているものの、(1)に比べると追従は早くフィードバックと同じ方向にしきい値を動かすからフィードバックの代替え効果がある。特にデータ数を少なくすれば分布の急変にも追従しやすくなる。
【0011】
次にこれら二つの手段と組み合わせて、(3)の手段により、上記のパラメータの算出過程において、各測定等で得た特性値を均等な比重で計算することで、分布の形が安定している場合に最も精度の高い基準のしきい値が得られる。あるいは、(4)の手段により、パラメータの算出過程で、新しい特性値をどの程度大きい重みで計算するかにより確率分布の変化への反応を調整することができる。一つ前の時点の特性値の平均と今回の特性値を一定の比率で平均計算する方法は計算方法が単純で反応の早さの調整も簡単である(等比級数による計算の変形である。…図2の9:1平均を参照)。(5)の手段により、測定等で得た特性値を小さい方から並べ直して累積頻度グラフを作り、これに回帰線を当てはめたり、単純に補間計算、外挿計算をすることで、任意の仕分け比率に対応した特性値を算出し、これを基準のしきい値に採用することができる。この方法は確率分布の形が特定できないときでも適用できる。回帰線を引く方法は分布の両端の異常なデータや、量の多いデータに惑わされることなくパラメータを推定できる。(6)の手段により、仕分ける量が不揃いの場合、あるいは量と特性値に関係が認められる場合でも、計算対象データを仕分け量で重み付けして計算することで、適切な基準のしきい値を得ることができる。(7)の手段により、異常なデータを一定の範囲に制限するから平均値の変動が安定になる。
【0012】
(8)の手段により、仕分け初期のデータ数が少ない間でも、パラメータが大きく変動することを防ぐことができる。また適切な初期値を与えることができない場合でも、(9)の手段により、仕分け操作をしないで仕分け対象物のデータを得た後に、改めて仕分けを始めることができるから、最初から適切な仕分けを行うことができる。(10)の手段により、これらの仕分け対象物の品質計測手段と、対象物の量の計測手段と、仕分けの時点までに得た特性値の分布を分析してしきい値を求め、該しきい値により対象物を仕分ける仕分け制御手段と、該仕分け制御手段の結果により対象物を搬送する搬送手段とより構成した設備で的確に行うことができる。
【0013】
【発明の実施の形態】
本発明を製茶工場に適用した場合を事例として、図6のブロックダイアグラムに基づいて説明する。製茶工場に搬入された茶生葉は品質計測手段で測定される。測定のタイミングは工場によって異なり、荷受装置に投入される前の場合もあるし、後の場合もある。品質計測手段としては茶生葉の成分を測る方式のほか、嵩密度、硬さなどの物性、大きさ、色など一般に五感による外観特性を測っても良い。計測と前後して品種、摘採方法、栽培方法、病虫害など計測しない項目を判定し(これらを数値化してあつかうこともある)、計測制御手段に入力する。計測制御手段では品質の計測値とその他の判定項目のデータをまとめて、仕分け制御手段と会計システムへ送る。会計システムではそれらを総合して品質判定値が決定され、茶生葉の買い入れ価格を決定するために使用される。一方、仕分け制御手段では特性の揃ったグループに仕分けるためのデータとなる。判定項目の中にはその項目だけで特別な区分けを要する場合もあるが、以下の説明では品質の計測値と組み合わせて総合的な特性値になる場合で、特性値が正規分布になる場合を例として説明する。
【0014】
取引のための量として、受入れ重量の計測は一般に搬入の前後に車両ごと計測が行われるが、これとは別に加工用データとして計測と対応させて仕分け重量を積算しても良い。重量データは仕分け制御手段と会計システムへ送られる。仕分け制御手段では双方のデータの受付番号などを介して特性値と重量計測値とを対応データとして記憶する。仕分け制御手段では、記憶した特性値の平均値と標準偏差を算出し、それらに基づいて各ランクの基準となるしきい値を決定する。(平均値、標準偏差の算出と基準となるしきい値の決定を仕分けの決定後に行い、次の仕分けに適用しても実用上大きな差はない。さらには仕分け回数が多い場合、数回前までのデータしか得られなくても実用上制御できる。)
【0015】
仕分け制御手段では特性値を加工上の必要性に従って設定した各ランクに対応したしきい値と比較してどのランクに仕分けるかを決定し、搬送装置を制御するが、しきい値は基準となるしきい値に後述するフィードバック操作量を加えたものである。なおここでしきい値の変動範囲を制限し、特性値の変動範囲を保証する必要がある場合にはしきい値が取りうる範囲に限度を設定する。特にそのような必要が無い場合でも、三つ以上のランクに分けると、二つのしきい値が干渉しうるから、干渉防止のための限度を設ける。
【0016】
さらに仕分け制御手段ではランク別に仕分けられた重量を積算する。また搬入された茶生葉重量を積算して、各ランクの所要の仕分け比率を乗じてその時点でのランク別の所要重量を算出する。そしてランク別の仕分け積算重量の所要重量に対する誤差を計算する。この誤差に仕分け比率に対応した制御ゲインを乗じてしきい値のフィードバック操作量を算出する。
【0017】
なお制御の開始に当たってしきい値の初期値が必要になる。その値は過去の実績値、あるいは摘採開始日を決定するための茶園の予察等から決定する。参照できる特性値のデータがある場合には小さい順に並べ替えて、所要の量的比率になる判定数値を見つけることもできる。初期値から実勢値へのしきい値の移行は順次緩やかに行う。
【0018】
本発明は上述の実施の形態を基本の実施の形態とするものであるが、基準のしきい値の変化が確率分布に敏感な計算方式を選んだ場合、重量の過不足に基づくフィードバック制御を行わず、平均値、標準偏差の推移に応じて基準のしきい値を自動的に再設定するだけ、あるいは累積頻度から直接決定できる基準のしきい値を自動的に再設定するだけでも、ランク分けしたときの量的バランスを設備の許容範囲に収めることができる。確率分布がほとんど変化しない場合も同様である。
【0019】
また本実施例では図6に示すように品質計測、その他の判定、重量計測、搬送装置が一系統である場合を説明したが、これらが複数系統設置された施設であっても同じであり、またそれらが遠隔の地であって通信線等で仕分け制御部と結ばれていても一体的に実行できる。
【0020】
以上、集荷した茶葉の仕分けについて述べたが、この他にも加工条件を揃えたり、用途を分けたり、差別化した商品にしたり、貯蔵や運送の条件を改善したり、このような仕分け技術を応用できる分野は数多くあり、農水産物に限らず確率分布に従う物なら同じように仕分けできる。ここにその一端として農水産物の例をを述べる。最近の動きとして生産者が消費者への直販の増加が見られるが、この場合、直販の顧客が最優先し、品質の良い物からその出荷量を確保したいという考え方が働く。収穫量の何パーセントを直販に振り向けるかということになれば、従来の選別ではなく「仕分け」の考えが必要になる。これとは逆に、大手流通業者はもちろん外食・中食の事業者でも市場機能をバイパスした調達に走っている。これら業者が生産者と直接に取り引きするとき現実的に自分の必要とするものを経済的に得るには産物の実態に即した取引条件を設定するのが合理的であり、仕分けの技法はその実現を促進できる。このような特化する動きの根底にほとんどの産物が過剰供給の状況にあることが指摘できる。このような状況であるから生産地では市場の価格動向に非常に敏感になっており、出荷団体では情報化が進められてきたが、収量や時期を自由にはできないから出荷の調整、用途の調整は避けられない。例えば果物の場合、出荷の規格とは別に貯蔵への適性の有無があるから、出荷と貯蔵の比率を定めた仕分けを選果工程と併用することができる。また生食用とジュースや缶詰などの加工用を選択できる場合には、生食用の規格内、規格外の境界を仕分け制御して量を調整することができる。さらに缶詰用を例に取れば、缶のサイズと釣り合う範囲でカット物と全形物の比率を生産計画に合わせて仕分け調整できる。以上述べたような仕分け制御を応用できる仕分け対象物は多岐にわたるが、一般的な産物を例示すれば、トマト、アスパラガス、ジャガイモ、タマネギ、メロン、柑橘類、りんご、ぶどう、もも、おうとう、すもも、うめ、くり、かつお、さんま、うなぎ、さけ、さば、いわし、あるいは魚の切り身、貝類、卵、籾米、玄米、精米等が挙げられる。
【0021】
【発明の効果】
本発明は、以上のような構成により次のような効果を有する。仕分けのためにその時点までに測定した特性値データから確率分布のパラメータを算出し、該パラメータによって仕分けの基準となるしきい値を再設定するに際し、計算対象データの範囲と重みを調整することで、特性値の確率分布の変化に的確に追従できる。確率分布関数の形が特定できない場合でも累積頻度曲線から同様に基準となるしきい値を再設定でき、仕分けの開始時点には適当な初期値を与えることで円滑に仕分けを開始できる。
【図面の簡単な説明】
【図1】本発明が課題とする確率分布に従う物を比率を目標として仕分ける方法を一般の制御工学との対応させながら示した概念図。
【図2】供給される物の特性値の変動と移動計算した標準偏差値の変動例であり、仕分けの都度再計算される平均値についても示した図。
【図3】図2の例について特性値の分布をヒストグラムに表し、算出した平均値と標準偏差をもとに描いた正規分布と重ね合わせて示し、また密度関数を−∞から積分した確率分布関数(累積確率)も示した図。(ただし、この曲線と重なり合う実際の累積確率グラフは仕分け重量で重み付けされた累積グラフである。)
【図4】相関性を持つ2次元の分布を仕分ける概念図。
【図5】仕分け誤差としきい値を基準のしきい値から振る量の関係、即ち制御ゲインの概念図。
【図6】制御システムのブロックダイアグラムを示した図。
[0001]
[Industrial applications]
The present invention is intended to sort or sort various objects, including agricultural and marine products, individually or collectively for the purpose of aligning processing conditions, dividing applications, making differentiated products, and improving storage and transport conditions. It is related to the technology of sorting according to the characteristics of the product, and is different from the sorting that sorts according to a predetermined standard, and is related to a sorting method and a sorting device for a product whose main purpose is to obtain a certain amount as a result of sorting. Things.
[0002]
[Prior art]
Many things, including agricultural and marine products, undergo sorting operations during production and distribution. The selection is performed based on a preset standard. The standard is provided in order to satisfy the necessity of distribution, and is expressed by a characteristic value that allows some measurement (including evaluation judgment by the five senses and the like, hereinafter simply referred to as measurement, etc.). Agricultural and marine products, for example, the characteristic values of fruits, such as weight, size, sugar content, acidity, etc., are selected according to the probability distribution (see FIG. 3... Represented by a histogram in practice, and mathematically represented by a probability density function). The quantity will follow a probability distribution function (integrating the probability density function from -∞, which is practically equivalent to a cumulative frequency (probability) graph), but in many cases this is not considered.
[0003]
Even if a standard is not set, classification based on some characteristic value increases equipment efficiency, aligns processing conditions, divides applications, differentiates products, stores and transports, etc. Benefits arise when conditions are improved. In such a sorting operation, it is often more significant to have a requirement for a quantity or a quantitative ratio than an absolute requirement for a characteristic value. If the probability distribution function of the characteristic value is known, a characteristic value (hereinafter, referred to as a threshold value) serving as a boundary for separating a required quantitative ratio can be calculated. However, in agricultural and marine products, the distribution of characteristic values varies from day to day, depending on the place of production, and may be supplied in a mixed state with different histories, so that the probability distribution is not constant. Shown). Probability distribution functions can be estimated if the characteristic values can be obtained by sampling uniformly from the objects to be sorted.However, at the processing and collection sites for these products, the collection time has a wide range, and the collected items are limited. Since the processing is required at the same time, it is not desirable to sample uniformly from the whole. Also, even if the probability distribution itself is stable, a statistical bias always occurs, and the end of the distribution is only a tenth of the whole (that is, in FIG. 3, a characteristic value 20.5 corresponding to a probability of 0.1). Sorting out can be foreseen to be difficult before trying. Under such circumstances, no effort has been made to sort on the basis of quality evaluation and to operate the threshold for sorting based on the deviation of the quantitative ratio of the sorting result from the target.
[0004]
[Problems to be solved by the invention]
When the supplied sorting objects are divided into a plurality of groups (hereinafter simply referred to as ranks) with the same characteristics, if the goal is to secure a quantitative ratio, the quantitative ratio can be calculated from the probability distribution function. Is obtained as a characteristic value (reference threshold value), and this is sorted as a threshold value. When the quantitative ratio of the rank is insufficient, the range of the characteristic value to be assigned to the rank is expanded, and the amount gradually increases.On the other hand, when the quantitative ratio is excessive, the range of the characteristic value is narrowed. The amount should gradually decrease and approach the target ratio. This is a concept corresponding to feedback control (in other words, closed loop control) in control engineering. However, during the sorting, the probability distribution state of the characteristic value changes, and the threshold value to be used as a reference point for feedback control changes. Further, even if the probability distribution function does not change, it is inevitable that the appearance of the characteristic value is biased because it is a stochastic phenomenon, and it is understood that it is necessary to accurately grasp the state of the probability distribution separately from the closed loop control. The threshold value of this reference is required to follow a change in the probability distribution and not to follow a temporary bias in the probability distribution. In general, in control engineering, a control model is represented by a state equation, which is a function of time. In the case of the present invention, strictly speaking, the order is advanced, and there is no time progress. Instead of the state equation, it is expressed by a probability function as described above. The control target is not a quantity but a stock quantity as a flow. That is, the past control results are included in 100% current control results. Nevertheless, changing the order of supply will change the results. For the sake of convenience, terms commonly used in control engineering are used, but knowledge of control engineering cannot be applied as it is, and control methods must be examined based on probability theory.
[0005]
[Means for Solving the Problems]
As a key to harmonizing conflicting objectives, equalizing characteristic values and securing quantities, first, the frequency of appearance of characteristic values obtained by measurement or the like for sorting (in other words, the probability density function) is used to calculate the cumulative frequency (in other words, (Probability distribution function), and the threshold value at that time is calculated. Since no control error is observed, it corresponds to open-loop control instead of closed-loop control. If this alone has little fluctuation in the distribution, or if you sort a lot, you will naturally approach the target. If this is not the case, in order to reduce the error if necessary, this is used as a reference point for the feedback control, and the closed loop control is incorporated as shown by the broken line in FIG. Next, it is required that this reference point does not follow the stochastic temporary bias, but follows the change of the probability distribution function.If the shape of the distribution is known, for example, In the case of a normal distribution, a probability distribution function (corresponding to the cumulative probability graph of the normal distribution in FIG. 3) is determined using the average and the standard deviation as parameters, and a characteristic value corresponding to an arbitrary sorting ratio is obtained. Adopt the threshold of When the change of the probability distribution function is relatively small, (1) when the supplied sorting target is divided into a plurality of groups with the characteristics being aligned while maintaining a quantitative ratio to a required target value, the sorting is performed by the time of sorting. A parameter of the probability distribution is calculated using all of the obtained characteristic values, and a threshold value serving as a sorting reference is determined based on the parameter. If the change in the probability distribution function is relatively large, (2) when the supplied sorting target is divided into a plurality of groups with the characteristics being uniform while the quantitative ratio is set to a required target value, until the sorting point The parameters of the probability distribution are calculated using the data limited to the latest predetermined number among the characteristic values obtained in step (1), and the threshold value serving as a reference for sorting is determined based on the parameters.
[0006]
Next, in combination with these means, (3) the characteristic value is calculated with equal weights in the above-described parameter calculation process. Or (4) calculate a new characteristic value with a large weight. In general, a geometric series is used as a coefficient of the weight, and the sum of the coefficients is 1. Although the case of normal distribution has been described above, if the shape of the distribution is not known (it may be known), (5) the time of sorting is replaced with the calculation of the parameters of the probability distribution function. The reference threshold value corresponding to the target ratio is determined based on the cumulative frequency curve of the characteristic values obtained up to this point. In other words, the obtained characteristic values are rearranged in ascending order to create a cumulative frequency graph (see FIG. 3, actual cumulative graph), and a regression line (it is easy to linearize with an inverse function of the probability distribution function). A characteristic value corresponding to an arbitrary sorting ratio is directly calculated by fitting or simply performing interpolation calculation or extrapolation calculation, and this is used as a reference threshold value. This method can be applied to a case where all the characteristic values obtained up to that point are used, and a case where only the latest fixed number of data among all the characteristic values obtained up to that point are calculated. In general, whether or not a normal distribution is performed is determined using normal probability paper. In fact, even ratios of highly correlated components, such as the N / F index of fresh tea leaves, may be considered a normal distribution. This technique, which does not care about the shape of the distribution, has versatility. If the amounts to be sorted are extremely irregular, or if there is a correlation between the amounts and the characteristic values, (6) the characteristic values are weighted by the amount to be sorted and calculated to accurately grasp the distribution. Although the occurrence frequency is low at both ends of the probability distribution, characteristic values that are abnormally far apart may occur. (7) The characteristic value is limited to a certain range from the previous average value or the like (or a substitute median value). (For example, the data is restricted so as not to exceed about two to three times the standard deviation from the previous average value. In FIG. 2, data of Nos. 11, 24, 57, 64, and 82 are restricted.) calculate. This restriction may be applied to a measured value that is an element of the characteristic value.
[0007]
Further, since there is no reference threshold value at the start of sorting and the calculated parameter is unstable for a while, (8) the parameter of the probability distribution function or the threshold value of the reference is used as an initial value at the start of sorting. And gradually shifts to the reference threshold value obtained from the characteristic values obtained up to the time of sorting. That is, an appropriate initial value is given, and the parameter is gradually shifted to the parameter based on the measurement data as the number of calculation data increases. Alternatively, (9) at the start of sorting, a characteristic value is obtained for a sample of an object in the same manner as for sorting, and a reference threshold value is given. In other words, instead of giving the initial value, the characteristic value of the initial consignment or the sampled sample is determined to determine the reference threshold value, and thereafter, the operation proceeds to the sorting operation. In this case, in a situation where the change of the standard deviation is small, it is sufficient that the average value is known as the parameter, so that 5 to 10 pieces of data can function sufficiently. When the actual data is analyzed, the daily fluctuation of the standard deviation is slight, and the uniformity of the characteristic values is better if the sorting control is performed by regarding the fluctuation as a constant. This is because the probability phenomena of the characteristic values are not only biased with respect to the average value, but also there are phenomena that are extremely concentrated near the average value.
[0008]
(10) Object quality measuring means, object quantity measuring means, and characteristic value distribution obtained up to the time of sorting are analyzed to obtain a threshold, and the target is determined based on the threshold. An apparatus for sorting objects according to a probability distribution, comprising sorting control means for sorting and transport means for transporting an object based on the result of the sorting control means, is used (see FIG. 6).
[0009]
Although the processing method in the case where the sorting amounts are extremely irregular in (6) has been described, as a better method, the parameters obtained by dividing the sorting object into a plurality of times and performing measurement or the like should be used. The division may not be strict, but it is desirable that the amount of the target object per measurement or the like is almost the same. Although the sorting operation and the error calculation always correspond to each other, these need not necessarily correspond to the division measurement. Note that the characteristic value can often be expressed as a one-dimensional quantity, but may be captured in a two-dimensional manner as shown in FIG.
[0010]
[Action]
In the present invention, the cumulative frequency (in other words, the probability distribution function) is obtained from the frequency of occurrence (in other words, the probability density function) of the characteristic value obtained by measurement or the like for sorting, and the threshold value at that time is calculated. Since this is used as a reference point for feedback control, even if the probability distribution changes and an error occurs in the quantitative ratio of sorting, first, the reference point for feedback moves to the point where the target amount is obtained, and A feedback function for correcting and recovering an error can be added to the base point (see FIG. 5). Then, by means of (1), the threshold value of the reference is sequentially determined by using the parameters of the probability distribution function calculated using all of the characteristic values obtained up to the time of sorting, so that the most stable reference value is obtained. Is obtained. Alternatively, by means of (2), a reference threshold value is sequentially determined by using a parameter of a probability distribution function calculated from data limited to the latest predetermined number among characteristic values obtained up to the time of sorting, A reference threshold value that can easily follow changes in the form of the probability distribution is obtained. Although it is a so-called moving average, the data before and after cannot be used and only the data before that time is used, so there is an inherent delay, but the tracking is faster than (1) and follows the same direction as the feedback. Since the value is changed, there is an effect of substituting feedback. In particular, if the number of data is reduced, it becomes easier to follow sudden changes in the distribution.
[0011]
Next, in combination with these two means, by means of (3), the characteristic value obtained by each measurement or the like is calculated with an equal specific gravity in the above-described parameter calculation process, so that the shape of the distribution is stabilized. The most accurate reference threshold is obtained. Alternatively, by means of (4), it is possible to adjust the response to the change in the probability distribution by how large a new characteristic value is calculated in the parameter calculation process. The method of calculating the average of the characteristic value of the previous time point and the current characteristic value at a fixed ratio is a simple calculation method and the adjustment of the reaction speed is easy (a modification of the calculation by geometric series) ... see 9: 1 average in Figure 2). By means of (5), the characteristic values obtained by measurement or the like are rearranged from the smaller one to create a cumulative frequency graph, and a regression line is applied to the graph, or an interpolation calculation or an extrapolation calculation is performed. A characteristic value corresponding to the sorting ratio is calculated, and this can be used as a reference threshold value. This method can be applied even when the shape of the probability distribution cannot be specified. The method of drawing a regression line can estimate parameters without being distracted by abnormal data at both ends of the distribution or a large amount of data. By means of (6), even when the amounts to be sorted are not uniform or when there is a relationship between the amounts and the characteristic values, the data to be calculated is weighted by the amount of sorting to calculate the appropriate reference threshold value. Obtainable. By means of (7), abnormal data is limited to a certain range, so that the fluctuation of the average value becomes stable.
[0012]
By means of (8), it is possible to prevent parameters from fluctuating greatly even while the number of data in the initial stage of sorting is small. Further, even when an appropriate initial value cannot be given, the sorting can be started again after obtaining data of the sorting target object without performing the sorting operation by the means (9). It can be carried out. By means of (10), the quality measuring means of the sorting object, the measuring means of the amount of the object, and the distribution of characteristic values obtained up to the time of sorting are analyzed to obtain a threshold value. This can be accurately performed by a facility including sorting control means for sorting the objects based on the threshold value and transport means for transporting the objects based on the result of the sorting control means.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An example in which the present invention is applied to a tea factory will be described based on the block diagram of FIG. Fresh tea leaves brought into the tea factory are measured by quality measuring means. The timing of the measurement differs depending on the factory, and may be before or after being put into the receiving device. As a quality measuring means, besides a method of measuring the components of fresh tea leaves, physical properties such as bulk density and hardness, size and color, and generally appearance characteristics by the five senses may be measured. Before and after the measurement, items that are not to be measured, such as varieties, plucking methods, cultivation methods, pests and the like, are determined (these may be treated numerically) and input to the measurement control means. The measurement control means collects the measured values of the quality and the data of the other judgment items and sends them to the sorting control means and the accounting system. In the accounting system, the quality judgment value is determined by integrating them, and is used to determine the purchase price of green tea leaves. On the other hand, the sorting control means serves as data for sorting into groups with uniform characteristics. There are cases where special classification is required only for some of the judgment items.However, in the following description, the case where the characteristic values are combined with measured This will be described as an example.
[0014]
As a quantity for the transaction, the measurement of the accepted weight is generally performed for each vehicle before and after the carry-in, but separately from this, the sorting weight may be integrated as processing data in association with the measurement. The weight data is sent to the sorting control means and the accounting system. The sorting control means stores the characteristic values and the measured weight values as corresponding data via the reception numbers of both data and the like. The sorting control means calculates an average value and a standard deviation of the stored characteristic values, and determines a reference threshold value for each rank based on the average value and the standard deviation. (Even if the calculation of the average value and the standard deviation and the determination of the reference threshold value are performed after the determination of the sorting and applied to the next sorting, there is no practically significant difference. Even if only the data up to is obtained, it can be controlled practically.)
[0015]
The sorting control means determines which rank is to be sorted by comparing the characteristic value with a threshold value corresponding to each rank set according to the processing necessity, and controls the transfer device. The threshold value is a reference. This is obtained by adding a feedback operation amount described later to the threshold value. Here, if it is necessary to limit the fluctuation range of the threshold value and guarantee the fluctuation range of the characteristic value, the limit is set to the range that the threshold value can take. Even in the case where such a need is not particularly required, if the values are divided into three or more ranks, two thresholds may interfere with each other.
[0016]
Further, the sorting control means integrates the weights sorted by rank. Further, the weight of the brought-in fresh tea leaves is integrated, and the required sorting ratio of each rank is multiplied to calculate the required weight for each rank at that time. Then, an error with respect to the required weight of the sorting integrated weight for each rank is calculated. This error is multiplied by a control gain corresponding to the sorting ratio to calculate a threshold feedback operation amount.
[0017]
At the start of the control, an initial threshold value is required. The value is determined based on the past actual value or the forecast of the tea garden for determining the picking start date. If there is characteristic value data that can be referred to, it can be rearranged in ascending order to find a judgment value that provides a required quantitative ratio. The transition of the threshold value from the initial value to the actual value is performed gradually and gradually.
[0018]
The present invention is based on the above-described embodiment.However, when a calculation method in which a change in a reference threshold value is sensitive to a probability distribution is selected, feedback control based on excess or deficiency of weight is performed. Without performing this, simply resetting the reference threshold value automatically according to the transition of the average value and standard deviation, or simply resetting the reference threshold value that can be determined directly from the cumulative frequency, The quantitative balance when divided can be kept within the allowable range of the equipment. The same applies when the probability distribution hardly changes.
[0019]
Further, in the present embodiment, as shown in FIG. 6, the case where the quality measurement, other determination, the weight measurement, and the transport device are one system is described. Further, even if they are remote places and are connected to the sorting control unit by a communication line or the like, they can be executed integrally.
[0020]
As mentioned above, sorting of collected tea leaves has been described.In addition, processing conditions are aligned, applications are separated, differentiated products are improved, storage and transportation conditions are improved, and such sorting technology is also used. There are many fields in which it can be applied, and not only agricultural and marine products but also those that follow a probability distribution can be similarly sorted. Here, an example of agricultural and marine products is described as one of the examples. As a recent trend, producers have seen an increase in direct sales to consumers, but in this case, the idea that direct sales customers have the highest priority and that they want to secure the shipment volume from high-quality products works. When it comes to deciding what percentage of the harvest will go to direct sales, you need to think about "sorting" instead of traditional sorting. Conversely, not only major distributors, but also food service and ready-to-eat meal businesses are procuring to bypass market functions. In order to obtain what they need practically and economically when dealing directly with producers, it is reasonable to set up transaction conditions that are in line with the actual conditions of the products. Can accelerate the realization. It can be pointed out that most products are undersupply under such specialized movements. Under these circumstances, the production area is very sensitive to market price trends, and information has been promoted by shipping organizations. Adjustments are inevitable. For example, in the case of fruits, since there is a presence or absence of suitability for storage separately from the standard of shipping, sorting in which the ratio of shipping and storage is determined can be used together with the fruit selection step. In addition, when it is possible to select between raw food and processing such as juice and canned food, it is possible to adjust the amount by sorting and controlling boundaries within and outside the standard for raw food. Further, taking canning as an example, it is possible to sort and adjust the ratio of cut and whole products according to the production plan within a range that is in proportion to the size of the can. Sorting objects to which the sorting control described above can be applied are wide-ranging, but examples of common products include tomato, asparagus, potato, onion, melon, citrus, apple, grape, peach, Plums, ume, kuri, bonito, saury, eel, salmon, mackerel, sardine, or fish fillets, shellfish, eggs, rice, brown rice, milled rice, and the like.
[0021]
【The invention's effect】
The present invention has the following effects by the above configuration. Calculate the parameters of the probability distribution from the characteristic value data measured up to that point for sorting, and adjust the range and weight of the data to be calculated when resetting the threshold as a reference for sorting based on the parameters. Thus, it is possible to accurately follow the change in the probability distribution of the characteristic value. Even when the form of the probability distribution function cannot be specified, the reference threshold value can be similarly reset from the cumulative frequency curve, and the sorting can be started smoothly by giving an appropriate initial value at the start of the sorting.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method of sorting objects according to a probability distribution according to the present invention with a ratio as a target, in correspondence with general control engineering.
FIG. 2 is a diagram illustrating an example of a change in a characteristic value of a supplied material and a change in a standard deviation value calculated by movement, and also illustrates an average value recalculated each time sorting is performed.
FIG. 3 is a histogram showing the distribution of characteristic values in the example of FIG. 2, superimposed on a normal distribution drawn based on a calculated average value and a standard deviation, and a probability distribution obtained by integrating a density function from −∞. The figure which also showed the function (cumulative probability). (However, the actual cumulative probability graph that overlaps this curve is a cumulative graph weighted by the sort weight.)
FIG. 4 is a conceptual diagram for sorting a two-dimensional distribution having correlation.
FIG. 5 is a conceptual diagram of a relationship between a sorting error and an amount by which a threshold value is shifted from a reference threshold value, that is, a control gain.
FIG. 6 shows a block diagram of a control system.

Claims (10)

供給される仕分け対象物を、量的な比率を所要の目標値にしながら複数のグループに特性を揃えて分けるとき、仕分けの時点までに得た特性値のすべてを用いて確率分布のパラメータを算出し、該パラメータによって仕分けの基準となるしきい値を決定することを特徴とする物の仕分け方法。Calculate the parameters of the probability distribution using all of the characteristic values obtained up to the point of sorting when dividing the supplied sorting target into multiple groups while keeping the quantitative ratio to the required target value. And determining a threshold value as a reference for sorting based on the parameters. 供給される仕分け対象物を、量的な比率を所要の目標値にしながら複数のグループに特性を揃えて分けるとき、仕分けの時点までに得た特性値のうち最新の所定個数に限定したデータを用いて確率分布のパラメータを算出し、該パラメータによって仕分けの基準となるしきい値を決定することを特徴とする物の仕分け方法。When sorting the supplied sorting target objects into a plurality of groups while keeping the quantitative ratio to the required target value, the data limited to the latest predetermined number of the characteristic values obtained up to the time of sorting A method of calculating a parameter of a probability distribution using the parameter, and determining a threshold value serving as a reference for sorting based on the parameter. 特性値を均等な重みで計算することを特徴とする請求項1、2記載の物の仕分け方法。3. The method according to claim 1, wherein the characteristic values are calculated with equal weights. 新しい特性値を大きい重みで計算することを特徴とする請求項1、2記載の物の仕分け制御。3. The object sorting control according to claim 1, wherein a new characteristic value is calculated with a large weight. 確率分布関数のパラメータの算出に代えて、仕分けの時点までに得た特性値の累積頻度曲線によって目標の比率に対応する基準のしきい値を決定することを特徴とする請求項1、2、3、4記載の物の仕分け方法。3. The method according to claim 1, wherein a reference threshold value corresponding to the target ratio is determined based on a cumulative frequency curve of characteristic values obtained up to the time of sorting, instead of calculating a parameter of the probability distribution function. 3. The method for sorting objects according to 3 or 4. 特性値を仕分ける量で重み付けして計算することを特徴とする請求項1、2、3、4、5記載の物の仕分け方法。6. The method according to claim 1, wherein the characteristic values are weighted by an amount to be sorted. 特性値を前回の平均値等から一定の範囲に制限して計算することを特徴とする請求項1、2、3、4、5、6記載の物の仕分け方法。7. The method according to claim 1, wherein the characteristic value is calculated by limiting the characteristic value to a certain range from a previous average value or the like. 仕分けの開始時点で初期値として確率分布関数のパラメータもしくは基準のしきい値を与え、仕分けの時点までに得た特性値から求めた基準のしきい値に緩やかに移行することを特徴とする請求項1、2、3、4、5、6、7記載の物の仕分け方法。At the start of sorting, a parameter of a probability distribution function or a threshold value of a reference is given as an initial value, and a gradual transition to a reference threshold value obtained from characteristic values obtained up to the time of sorting is performed. Item 1, 2, 3, 4, 5, 6, and 7. 仕分けの開始時点で、対象物のサンプルに対して仕分けのためと同様に特性値を得て基準のしきい値を与えることを特徴とする請求項1、2、3、4、5、6、7記載の物の仕分け方法。4. The method according to claim 1, wherein at the start of the sorting, a characteristic value is obtained for the sample of the object in the same manner as for the sorting and a reference threshold value is given. 7. The method for sorting objects according to 7. 対象物の品質計測手段と、対象物の量の計量手段と、計測制御手段と、仕分けの時点までに得た特性値を用いて確率分布のパラメータを算出し、該パラメータによって仕分けの基準となるしきい値を決定する仕分け制御手段と、該仕分け制御手段の結果により対象物を搬送する搬送手段とより構成することを特徴とする物の仕分け装置。Object quality measurement means, object quantity measurement means, measurement control means, and parameters of probability distribution are calculated using characteristic values obtained up to the time of sorting, and the parameters serve as a reference for sorting. An object sorting apparatus comprising: sorting control means for determining a threshold value; and transport means for transporting an object based on the result of the sorting control means.
JP2002176497A 2002-06-18 2002-06-18 Method and apparatus for sorting object Pending JP2004016945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176497A JP2004016945A (en) 2002-06-18 2002-06-18 Method and apparatus for sorting object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176497A JP2004016945A (en) 2002-06-18 2002-06-18 Method and apparatus for sorting object

Publications (2)

Publication Number Publication Date
JP2004016945A true JP2004016945A (en) 2004-01-22
JP2004016945A5 JP2004016945A5 (en) 2005-10-13

Family

ID=31174784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176497A Pending JP2004016945A (en) 2002-06-18 2002-06-18 Method and apparatus for sorting object

Country Status (1)

Country Link
JP (1) JP2004016945A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071948A (en) * 2008-09-22 2010-04-02 Ishida Co Ltd Metering device and program
JP2013083559A (en) * 2011-10-11 2013-05-09 Anritsu Corp Signal processor and signal processing method
JP2014222193A (en) * 2013-05-14 2014-11-27 大和製衡株式会社 Weight selector and filling measurement system
JP2016080583A (en) * 2014-10-20 2016-05-16 ヤンマー株式会社 Agricultural product determination device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071948A (en) * 2008-09-22 2010-04-02 Ishida Co Ltd Metering device and program
JP2013083559A (en) * 2011-10-11 2013-05-09 Anritsu Corp Signal processor and signal processing method
JP2014222193A (en) * 2013-05-14 2014-11-27 大和製衡株式会社 Weight selector and filling measurement system
JP2016080583A (en) * 2014-10-20 2016-05-16 ヤンマー株式会社 Agricultural product determination device

Similar Documents

Publication Publication Date Title
Liu et al. Optimal purchase and inventory retrieval policies for perishable seasonal agricultural products
Buzby et al. Supermarket loss estimates for fresh fruit, vegetables, meat, poultry, and seafood and their use in the ERS loss-adjusted food availability data
US10408748B2 (en) System and method for evaluating fruits and vegetables
Munhoz et al. Optimization approaches to support decision making in the production planning of a citrus company: A Brazilian case study
Leithner et al. A simulation model to investigate impacts of facilitating quality data within organic fresh food supply chains
van der Vorst et al. Quality controlled logistics in food supply chain networks: integrated decision-making on quality and logistics to meet advanced customer demands
JONGEN Food supply chains: from productivity toward quality
KR101978066B1 (en) Method For Providing Dietary Recommendation Service For One-person Households
Suthar et al. Modeling postharvest loss and water and energy use in Florida tomato operations
Bibwe et al. Mass modeling of guava (cv. Allahabad safeda) fruit with selected dimensional attributes: regression analysis approach
Darekar et al. Price forecasting of pulses: case of pigeonpea
JP2004016945A (en) Method and apparatus for sorting object
Kailaku et al. Traceability and quality monitoring improvement throughout carrot supply chain with the implementation of Internet-Of-Things
Fauza et al. An inventory model of production-inventory policy for food products considering quality loss in raw materials
Hamid et al. The competitiveness and complementarities of agriculture trade among ASEAN-5 countries: an empirical analysis
Jeder et al. Transmission between retail and producer prices for main vegetable crops in Tunisia
Woodward et al. Relationships between ‘Hayward’kiwifruit weight and dry matter content
JP2004010312A (en) Method and device for sorting objects
JP2004121999A (en) Object sorting method and sorting device used for the same
JP2004174292A (en) Method and apparatus for classifying article
JP2004033931A (en) Sorting method for article and sorting device
French et al. Demand and price-markup functions for canned cling peaches and fruit cocktail
JP2004136217A (en) Sorting method and sorting apparatus
JP2004290845A (en) Sorting method and sorting device for article
Loy et al. Staggering and synchronisation of prices in a low‐inflation environment: Evidence from German food stores

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A621 Written request for application examination

Effective date: 20050609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513