JP2004033931A - Sorting method for article and sorting device - Google Patents

Sorting method for article and sorting device Download PDF

Info

Publication number
JP2004033931A
JP2004033931A JP2002195312A JP2002195312A JP2004033931A JP 2004033931 A JP2004033931 A JP 2004033931A JP 2002195312 A JP2002195312 A JP 2002195312A JP 2002195312 A JP2002195312 A JP 2002195312A JP 2004033931 A JP2004033931 A JP 2004033931A
Authority
JP
Japan
Prior art keywords
sorting
value
threshold value
target
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195312A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Ishitani
石谷 与佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terada Seisakusho Co Ltd
Original Assignee
Terada Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terada Seisakusho Co Ltd filed Critical Terada Seisakusho Co Ltd
Priority to JP2002195312A priority Critical patent/JP2004033931A/en
Publication of JP2004033931A publication Critical patent/JP2004033931A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sorting Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for automatically sorting an article in which a fed object to be sorted is sorted to a plurality of groups while controlling characteristics respectively while contradiction of a quantity and the characteristic is harmonized and a quantitative ratio of each other is ensured although a threshold value corresponding to the quantitative ratio of sorting is a temporary value and is varied during a midway point of feeding, the sorted article cannot be changed and although when the threshold value is operated against a deviation of a temporary characteristic value appeared so far as the characteristic value follows probability distribution to recover the quantitative ratio, it is contradicted to align the characteristics. <P>SOLUTION: An open loop control for determining a reference threshold value corresponding to a target value based on an analysis of the distribution state of the characteristic value measured for the sorting; and a closed loop control for correcting an error from the target are combined. Various kinds of restrictions suitable for the purpose of the sorting are added to the threshold value. Thereby, the control harmonizing the quantity and the characteristics is realized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は農水産物等を始め各種仕分け対象物を、加工条件を揃えたり、用途を分けたり、差別化した商品にしたり、貯蔵や運送の条件を改善したりする目的で、個々のあるいは集合の特性に応じて、仕分ける技術に関するもので、予め定められている基準にそって分ける選別と異なり、仕分けた結果あるまとまった量を得ることを主要な目的とする方法と装置に関するものである。
【0002】
【従来の技術】
農水産物を始め多くの物が生産・流通の過程で選別操作を受ける。選別はあらかじめ設定されている規格を根拠にして行われる。その規格は流通上の必要を満たすために設けられ、何らかの測定(五感等による評価判定等を含む。以下単に測定等という)可能な特性値で表現されている。農水産物、例えば果物の特性値である重量、サイズ、糖度、酸度などは確率分布(図3参照…実務的にはヒストグラムで表し、数学的には確率密度関数で表す)に従うから、選別される量は確率分布関数(確率密度関数を−∞から積分したもので、実務的には累積頻度グラフに相当する)に従い、規格の範囲を広げるにつれ増えることになるが、多くの場合そのことは意識されていない。規格が設定されていなくても、何かの特性値に基づいて区分けすることは、設備効率を高めたり、加工条件を揃えたり、用途を分けたり、差別化した商品にしたり、貯蔵や運送の条件を改善したりと、メリットが発生する。このような仕分けの操作では、特性値に対する絶対的な要求よりも、量ないしは量的な比率に対する要求に意味があることも多い。特性値の確率分布関数が既知であれば、所要の量的比率を分け取るための境目になる特性値(以下、これをしきい値と呼ぶ)を算出できる。
【0003】
ところが農水産物等では、特性値の分布は日により、産地により変化するし、来歴の異なるものが混入した状態で供給されることもあるので確率分布関数は一定しない(図2にそのパラメータ変化を示す)。仕分けの対象物から均等にサンプリングして特性値を計測できるなら、確率分布関数を推定できるが、これらの産物の加工場や集荷場では集荷時間に幅があり、しかも集荷した物は限られた時間に処理を求められているから、全体から均等にサンプリングすることは望むべくもない。また例え確率分布自体は安定していても、統計的な偏りは常に発生し、分布の端を全体の十分の一だけ(即ち図3では確率0.1に対応する特性値20.5で)仕分けるようなことは、試みる前から難しいと予見できる。このような事情から品質評価に基づいて仕分けし、仕分け結果の量的な比率の目標からのズレに基づいて仕分けのしきい値を操作する取り組みはなされなかった。
【0004】
【発明が解決しようとする課題】
供給される仕分け対象物をそれぞれ特性を揃えて複数のグループ(以下、単純にランクと呼ぶ)に分けるとき、量的な比率を確保することを目標とするなら、確率分布関数から量的な比率に対応するしきい値を求め、これによって仕分けることになる。この考えは仕分けの誤差には着目しておらず制御工学でいうところのオープン制御に相当する。そしてそのランクの量的な比率が不足するときに、上記しきい値を基準にしてそのランクに振り分けるべき特性値の範囲を広げれば次第に量が増え、逆に量的な比率が余っているときに、特性値の範囲を狭めれば次第に量が減り、目標の比率に近づくはずである(このような制御は基準となるしきい値を算出する過程に織り込むこともできるが、ここでは分かり易い別途誤差に基づいて計算する方法で説明する)。これはフィードバック制御(言い換えれば閉ループ制御)に相当する考えである。このように二つの制御を組み合わせた概念を図1に示す。
【0005】
ところが範囲を変更することは特性を揃えるという前提と矛盾する操作である。これは本質的な矛盾であり、前提をある程度緩めるしかなく、どこまで緩めるかを直接的に表現すれば、フィードバックでしきい値を動かせる範囲により示すと言うことになる。ところが仕分けには様々な目的があり、例えば特性値を揃えることに重点を置いて、仕分けた後で隣り合うランクの特性値の平均値どうしが十分な間隔を保つようにしたいとか、逆に量の比率を主要な目的にしたいとか、要求が違う場合がある。また品質の劣る物を確実に除外しようとする場合もあるし、比較的品質の優れた物を比較的多めに集めたい場合でも、多少余っても良いから一定量を確保したいような場合もあれば、悪いものを取り込んでまで量を欲しくはない場合もある。
【0006】
本発明が課題とすることは、確率分布に従う量を仕分けるのにいわゆるフィードバック制御などが陥る矛盾を緩和しつつ、様々な仕分けの目的に適合したしきい値の制限方法を見いだすことである。なお一般に制御工学では制御モデルを状態方程式で表し、それは時間の関数である。本発明の場合、厳密には順序の進行であって時間の進行はない。また状態方程式ではなくそれに代わるものとして上述のように確率関数で表現する。また制御の対象はフローとしての量ではなくストック量である。つまり過去の制御結果は100%現在の制御結果に含まれているにもかかわらず供給の順序が変われば結果が変わってしまう。便宜上、制御工学で常用する用語を用いているが、制御工学の知識がそのまま適用できる訳ではなく、常に確率論に基づいて制御手法を検討しなければならない。
【0007】
【課題を解決するための手段】
以上の課題を解決するため次のような手段をとる。一つには(1)供給される仕分け対象物を、それぞれ特性を揃えて複数のグループに分けて、互いの量的な比率を所要の目標値にする仕分け制御において、特性値の分布状態を分析して目標値に対応する基準のしきい値を決定する開ループ制御と、目標からの誤差に応じてしきい値を調整する閉ループ制御を組み合わせて制御システムを構成し、しきい値の変動範囲を基準のしきい値を基点にした所定値までに制限する。目標の比率に仕分ける鍵を握る基準のしきい値は、そのまま確率分布の変化に応じて変動するに任せ、フィードバック制御の可動範囲のみを制限する。即ち各ランクの特性値の揃いに対する要求程度に応じて、そのランクを仕分けるための基準のしきい値を基点にしきい値の制限範囲を設定する(図6参照)。確率密度は、厳密にはしきい値の上と下でアンバランスであるが、特性値を揃える目的であるから基本的には特性値主導で決める。もう一つ別の考え方として(2)供給される仕分け対象物を、それぞれ特性を揃えて複数のグループに分けて、互いの量的な比率を所要の目標値にする仕分け制御において、仕分けのために調整するしきい値の変動範囲を、特性値の変動許容範囲によって直接制限する。そのランクに要求される特性値の変動許容範囲により直接しきい値の変動範囲を制限する(図7参照)。この種の制限は一般に品質維持のための規格値を意味する。但しこの規格値は必ずしも流通上の規格を意味しない。またフィードバック制御を行わない場合にも適用できる。この場合、仕分けのため調整するしきい値とは、特性値の分布状態を仕分けの進行とともに分析して得られた基準のしきい値そのものとなる。
【0008】
以上の説明では一つのしきい値に対して一つの制限が存在する例を図示したが、一つに限るものではなく、一つのしきい値の変動範囲の上と下にそれぞれ制限を設定しても良い。あるいは、(3)しきい値の変動範囲の一方を基準のしきい値を基点にした所定値までに制限し、他方を特性値の変動許容範囲により直接制限する。つまり、一つのしきい値に設けうる二つの範囲制限の一方を基準のしきい値からの距離で決め、もう一方を基準のしきい値と関係なく決めた規格値とする。当然二つの制限値の上下関係が逆転しないように配慮する。さらにこれを発展させたものとして、(4)目標からの仕分け誤差に応じて調整するしきい値の変動範囲の両側に加える制限を基準のしきい値に対し非対称とする。フィードバックのゲインも非対称とすることもできる。(5)特性値の分布状態を分析して目標値に対応する基準のしきい値を本来の値からバイアスして決定する。つまり、基準のしきい値は仕分けの量的比率と対応しているが、基準のしきい値自身を本来の位置からバイアスして決定し、仕分け比率の上で希望するマージンを持たせる(図8参照)。
【0009】
(6)対象物の品質計測手段と、対象物の量を計測する手段と、仕分けのために調整するしきい値の変動範囲を制限する仕分け制御手段と、該仕分け制御手段の結果により対象物を搬送する搬送手段とより構成した確率分布に従う物の仕分け装置を用いる(図8参照)。
【0010】
なお以上の説明では、一つのしきい値について述べたが、分布の両端に位置するランクではしきい値は一つしかないが、中間のランクでは上下ふたつのしきい値を持つ(図4参照)。従って二つの基準のしきい値の中間にそれぞれのしきい値が干渉しないための制限を設けることがある。また各しきい値にどのような制限を持たせるかはそのしきい値の両側のランクの間にどのような関係を持たせるかによって決まる。以上述べた各種の制限方法は操作員が選択するようにしても良い。
【0011】
なお搬入された一口の仕分け対象物について、一回だけ品質計測等を行うものとして説明してきたが、よりよい方法としては仕分け対象物を複数回に分割して測定等を行って得たパラメータを用いるべきである。分割は厳密でなくても良いが、測定等1回当たりの対象物の量がおおむね同じことが望ましい。分割計測と仕分け操作や誤差量計算は必ずしも対応しなくても良い。また特性値は一次元の量として表現できることが多いが、図5のように2次元で捉える場合もある。
【0012】
【作用】
本発明では基本的に仕分けのために測定等で得た特性値の出現の頻度(言い換えれば確率密度関数)から累積頻度(言い換えれば確率分布関数)を求め、その時点でのしきい値を算出して仕分けの境目を調節するから、確率分布が変化して仕分けの量的比率に誤差を生じても、まずしきい値が目標の量が得られる点に移動し仕分け比率が維持される。さらにこれを基点に誤差を修正回復するためのフィードバック機能を追加することができる(図6、7、8に左側のランクの仕分け誤差の変化によってしきい値が基準のしきい値から左右に変動し、確率密度関数のどこで仕分けられるかを概念図として示した)。その上で(1)の手段により、特性値を揃えるという目的と所要の比率に仕分けるという目的との矛盾を、基準のしきい値を基点にしきい値の制限範囲を設定することによって調整することができる(図6の制限範囲の線を参照)。分布の状態が変化しても制限範囲が的確に維持できる利点がある。
【0013】
これに対して(2)の手段によれば、特性値の変動を単に抑制するだけでなく、特性値に特別な制約、例えば品質維持のための規格を設けることができる(図7の品質規格の線を参照)。例えば品質の良いランク(左側部分)について品質の劣る物の混入を確実に排除するには、品質の良い物の仕分け比率が下がってもしきい値が品質の劣る物の範囲にまで入らないよう制限できる。この制限値は確率分布の変化による基準のしきい値の変化に左右されない。従って品質規格の線と基準のしきい値の位置関係が逆転することもあり得る。図6、図7のように一つのしきい値の上下片側にのみ変動範囲制限を設ける場合、一方のランクについて仕分け比率の低下に際しては特性値範囲を広げることを制限し、仕分け比率の上昇に際しては特性値範囲を無制限に狭めるよう動作させることができる。このことは他方のランクについて言えばある程度成り行きに任されることを意味する。
【0014】
一つのしきい値は二つのランクの境界である。特性値の変動幅を抑制することを両方のランクで追求する場合には、一つのしきい値に対して上下それぞれに制限を設定してこれを実現できる。さらにこの場合、(3)の手段により、特性値の変動範囲を規格的に制限したいランクが一方のみの場合、そのランクから見て遠い方の制限値に(2)の手段を採用することによってこれを実現できる。
【0015】
さらに(4)の手段によれば、このような隣り合う二つのランクの間のどちらの量的な確保を優先して制御するかを非対称の度合いによって調節することができる。極端な場合、正負いずれかのフィードバックを禁ずることもできる。(5)の手段により、量的比率に予めマージンを与えて仕分けをすることができる。基準のしきい値は仕分けの量的比率と対応しているが、たまたま仕分けの終わり頃に特性値の出現が偏ると目標が未達に終わることもある。また搬入される総量が的確に予想できないこともある。このようなときでもある程度の余裕を見込んで仕分けすることができる(図8の太線の位置に制御の特性線が移動する)。
【0016】
(6)対象物の品質計測手段と、対象物の量を計測する手段と、仕分けのために調整するしきい値の変動範囲を制限する仕分け制御手段と、該仕分け制御手段の結果により対象物を搬送する搬送手段とより構成した確率分布に従う物の仕分け装置で的確に行うことができる。
【0017】
【発明の実施の形態】
本発明を製茶工場に適用した場合を事例として、図9のブロックダイアグラムに基づいて説明する。製茶工場に搬入された茶生葉は品質計測手段で測定される。測定のタイミングは工場によって異なり、荷受装置に投入される前の場合もあるし、後の場合もある。品質計測手段としては茶生葉の成分を測る方式のほか、嵩密度、硬さなどの物性、大きさ、色など一般に五感による外観特性を測っても良い。計測と前後して品種、摘採方法、栽培方法、病虫害など計測しない項目を判定し(これらも数値化して扱うことがある)、計測制御手段に入力する。計測制御手段では品質の計測値とその他の判定項目のデータをまとめて、仕分け制御手段と会計システムへ送る。会計システムではそれらを総合して品質判定値が決定され、茶生葉の買い入れ価格を決定するために使用される。一方、仕分け制御手段では特性の揃ったグループに仕分けるためのデータとなる。判定項目の中にはその項目だけで特別な区分けを要する場合もあるが、以下の説明では品質の計測値と組み合わせて総合的な特性値になる場合で、特性値が正規分布になる場合を例として説明する。
【0018】
取引のための量として、受入れ重量の計測は一般に搬入の前後に車両ごと計測が行われるが、これとは別に加工用データとして計測と対応させて仕分け重量を積算しても良い。重量データは仕分け制御手段と会計システムへ送られる。仕分け制御手段では双方のデータの受付番号などを介して特性値と重量計測値とを対応データとして記憶する。仕分け制御手段では、記憶した特性値の平均値と標準偏差を算出し、それらに基づいて各ランクの基準となるしきい値を決定する。仕分けた量にある程度の余裕を持たせたい場合は、このとき基準のしきい値に若干のバイアスを与える。(平均値、標準偏差の算出と基準となるしきい値の決定を仕分けの決定後に行い、次の仕分けに適用しても実用上大きな差はない。さらには仕分け回数が多い場合、数回前までのデータしか得られなくても実用上制御できる。)
【0019】
仕分け制御手段では特性値を加工上の必要性に従って設定した各ランクに対応したしきい値と比較してどのランクに仕分けるかを決定し、搬送装置を制御するが、しきい値は基準となるしきい値に後述するフィードバック操作量を加えて算出したものを用いることもできる。そしてしきい値の計算に当たっては、仕分け制御の目標に適合したしきい値の変動範囲に制限を加えておく。この他に三つ以上のランクに分けると、二つのしきい値が干渉しうるから、干渉防止のための限度を設ける。
【0020】
さらに仕分け制御手段ではランク別に仕分けられた重量を積算する。また搬入された茶生葉重量を積算して、各ランクの所要の仕分け比率を乗じてその時点でのランク別の所要重量を算出する。そしてランク別の仕分け積算重量の所要重量に対する誤差を計算する。この誤差に仕分け比率に対応した制御ゲインを乗じてしきい値のフィードバック操作量を算出し、次の仕分けに用いる。
【0021】
なお制御の開始に当たってしきい値の初期値が必要になる。その値は過去の実績値、あるいは摘採開始日を決定するための茶園の予察等から決定する。参照できる特性値のデータがある場合には小さい順に並べ替えて、所要の量的比率になる判定数値を見つけることもできる。初期値から実勢値への移行は緩やかに行う。
【0022】
本発明は上述の実施の形態を基本の実施の形態とするものであるが、誤差が増えてもフィードバック量を飽和させるのことに意義があり、必ずしも図6、7、8のような非線形の特性にこだわるものではない。類似した特性になる線形関数でも同等の作用効果を得ることができる。
【0023】
また本実施例では図9に示すように品質計測、その他の判定、重量計測、搬送装置が一系統である場合を説明したが、これらが複数系統設置された施設であっても同じであり、またそれらが遠隔の地にあって通信線等で仕分け制御部と結ばれていても一体的に実行できる。
【0024】
以上、集荷した茶葉の仕分けについて述べたが、この他にも加工条件を揃えたり、用途を分けたり、差別化した商品にしたり、貯蔵や運送の条件を改善したり、このような仕分け技術を応用できる分野は数多くあり、農水産物に限らず確率分布に従う物なら同じように仕分けできる。ここにその一端として農水産物の例を述べる。最近の動きとして生産者が消費者への直販の増加が見られるが、この場合、直販の顧客が最優先し、品質の良い物からその出荷量を確保したいという考え方が働く。収穫量の何パーセントを直販に振り向けるかということになれば、従来の選別ではなく「仕分け」の考えが必要になる。これとは逆に、大手流通業者はもちろん外食・中食の事業者でも市場機能をバイパスした調達に走っている。
【0025】
これら業者が生産者と直接に取り引きするとき現実的に自分の必要とするものを経済的に得るには産物の実態に即した取引条件を設定するのが合理的であり、仕分けの技法はその実現を促進できる。このような特化する動きの根底にほとんどの産物が過剰供給の状況にあることが指摘できる。このような状況であるから生産地では市場の価格動向に非常に敏感になっており、出荷団体では情報化が進められてきたが、収量や時期を自由にはできないから出荷の調整、用途の調整は避けられない。例えば果物の場合、出荷の規格とは別に貯蔵への適性の有無があるから、出荷と貯蔵の比率を定めた仕分けを選果工程と併用することができる。また生食用とジュースや缶詰などの加工用を選択できる場合には、生食用の規格内、規格外の境界を仕分け制御して量を調整することができる。さらに缶詰用を例に取れば、缶のサイズと釣り合う範囲でカット物と全形物の比率を生産計画に合わせて仕分け調整できる。以上述べたような仕分け制御を応用できる仕分け対象物は多岐にわたるが、一般的な産物を例示すれば、トマト、アスパラガス、ジャガイモ、タマネギ、メロン、柑橘類、りんご、ぶどう、もも、おうとう、すもも、うめ、くり、かつお、さんま、うなぎ、さけ、さば、いわし、あるいは魚の切り身、貝類、卵、籾米、玄米、精米等が挙げられる。また、茶については、生葉に限らず、荒茶、あるいは加工途中の茶葉、緑茶以外の茶等にも利用できる。
【0026】
【発明の効果】
本発明は、以上のような構成により次のような効果を有する。仕分けの誤差にのみ着目したフィードバック制御に、開ループ制御を組み合わせることで、フィードバックだけでは得られない的確なフィードバックの基準点が得られ、緩やかなフィードバック制御で仕分け比率を制御できる。フィードバックの基準点は仕分けのための測定値を分析して得るから分布状態の変化にも対応できる。またこれにしきい値の変動範囲に制限を加えることで特性値を揃えるという目的と量的比率を確保するという目的を直接的に調和できるようになる。
【図面の簡単な説明】
【図1】本発明が課題とする確率分布に従う物を比率を目標として仕分ける方法を一般の制御工学との対応させながら示した概念図。
【図2】供給される物の特性値の変動と移動計算した標準偏差値の変動例であり、仕分けの都度再計算される平均値についても示した図。
【図3】図2の例について特性値の分布をヒストグラムに表し、算出した平均値と標準偏差をもとに描いた正規分布と重ね合わせて示し、また密度関数を−∞から積分した確率分布関数(累積確率)も示した図。(ただし、この曲線と重なり合う実際の累積確率グラフは仕分け重量で重み付けされた累積グラフである。)
【図4】特性値の確率分布とランクの変動範囲、しきい値の変動範囲の関係を示す図。
【図5】相関性を持つ2次元の分布を仕分ける概念図。
【図6】基準となるしきい値から一定値に制限する場合のしきい値の振れを制限する概念図。
【図7】ランクの変動範囲を保証するために制限する場合のしきい値の振れを制限する概念図。
【図8】基準のしきい値をバイアスする場合のしきい値の振れを制限する概念図。
【図9】制御システムのブロックダイアグラムを示した図。
[0001]
[Industrial applications]
The present invention is to sort or sort various objects to be sorted, including agricultural and marine products, for the purpose of aligning processing conditions, dividing applications, making differentiated products, and improving storage and transport conditions, individually or collectively. The present invention relates to a technique for sorting according to characteristics, and to a method and an apparatus mainly intended to obtain a certain amount as a result of sorting, unlike sorting which sorts according to a predetermined standard.
[0002]
[Prior art]
Many things, including agricultural and marine products, undergo sorting operations during production and distribution. The selection is performed based on a preset standard. The standard is provided in order to satisfy distribution needs, and is expressed by a characteristic value that allows some measurement (including evaluation judgment by the five senses or the like; hereinafter simply referred to as measurement or the like). The characteristic values of agricultural and marine products, for example, fruits, such as weight, size, sugar content, acidity, etc., are selected according to a probability distribution (see FIG. 3... Represented by a histogram in practice and mathematically represented by a probability density function). The quantity follows the probability distribution function (integrating the probability density function from -∞, which is practically equivalent to a cumulative frequency graph), and increases as the range of the standard is expanded. It has not been. Even if a standard is not set, classification based on some characteristic value increases equipment efficiency, aligns processing conditions, divides applications, differentiates products, stores and transports, etc. Benefits arise when conditions are improved. In such a sorting operation, it is often more significant to have a requirement for a quantity or a quantitative ratio than an absolute requirement for a characteristic value. If the probability distribution function of the characteristic value is known, a characteristic value (hereinafter, referred to as a threshold value) serving as a boundary for separating a required quantitative ratio can be calculated.
[0003]
However, in agricultural and marine products, etc., the distribution of characteristic values varies from day to day, depending on the place of production, and may be supplied in a mixed state with different histories. Therefore, the probability distribution function is not constant (Fig. Shown). Probability distribution functions can be estimated if the characteristic values can be measured by sampling evenly from the objects to be sorted, but the processing time and collection site for these products have a wide range of collection times, and the collected items are limited. Since processing is required in time, it is not desirable to sample uniformly from the whole. Also, even if the probability distribution itself is stable, a statistical bias always occurs, and the end of the distribution is only a tenth of the whole (that is, in FIG. 3, a characteristic value 20.5 corresponding to a probability of 0.1). Sorting out can be foreseen to be difficult before trying. Under such circumstances, no effort has been made to sort on the basis of quality evaluation and to operate the threshold for sorting based on the deviation of the quantitative ratio of the sorting result from the target.
[0004]
[Problems to be solved by the invention]
When dividing the supplied sorting objects into a plurality of groups (hereinafter simply referred to as ranks) with the same characteristics, if the goal is to secure a quantitative ratio, the quantitative ratio is calculated from the probability distribution function. Is determined, and sorting is performed based on this. This idea is equivalent to open control in control engineering without focusing on sorting errors. And when the quantitative ratio of the rank is insufficient, if the range of characteristic values to be assigned to the rank is expanded based on the above threshold, the amount gradually increases, and conversely, when the quantitative ratio is surplus In addition, if the range of the characteristic value is narrowed, the amount gradually decreases, and should approach the target ratio. (Such control can be incorporated in the process of calculating the reference threshold value, but it is easy to understand here. It will be described separately with a method of calculating based on the error). This is a concept corresponding to feedback control (in other words, closed loop control). FIG. 1 shows the concept of the combination of the two controls.
[0005]
However, changing the range is an operation that contradicts the assumption that the characteristics are uniform. This is an essential contradiction, and the premise must be relaxed to some extent, and if the level is loosely expressed, it is indicated by the range in which the threshold can be moved by feedback. However, sorting has a variety of purposes, for example, emphasizing the alignment of characteristic values, such as whether the average values of the characteristic values of adjacent ranks should be kept sufficiently spaced after sorting, or conversely, Or the requirements may be different. In addition, there are cases where it is necessary to reliably exclude inferior quality items, and in cases where it is desired to collect relatively high quality items in a relatively large amount, there is also a need to secure a certain amount because a little extra may be required. Sometimes you don't want the amount until you get the bad ones.
[0006]
An object of the present invention is to find a method of limiting a threshold value suitable for various sorting purposes, while alleviating inconsistency in so-called feedback control or the like in sorting quantities according to a probability distribution. In general, in control engineering, a control model is represented by a state equation, which is a function of time. In the case of the present invention, strictly speaking, the order is advanced, and there is no time progress. Instead of the state equation, it is expressed by a probability function as described above. The control target is not the flow amount but the stock amount. That is, although the past control result is included in the 100% current control result, if the supply order changes, the result will change. For the sake of convenience, terms commonly used in control engineering are used, but knowledge of control engineering cannot be applied as it is, and control methods must always be studied based on probability theory.
[0007]
[Means for Solving the Problems]
The following measures are taken to solve the above problems. For example, (1) the supplied sorting objects are divided into a plurality of groups with the same characteristics, and the distribution state of the characteristic values is changed in the sorting control for setting the mutual quantitative ratio to a required target value. A control system is constructed by combining open-loop control, which analyzes and determines a reference threshold value corresponding to a target value, and closed-loop control, which adjusts the threshold value in accordance with an error from the target value, to change the threshold value. The range is limited to a predetermined value based on a reference threshold value. The threshold value of the criterion, which is the key to sorting the target ratio, is left to fluctuate according to the change in the probability distribution, and only the movable range of the feedback control is limited. That is, in accordance with the degree of request for the uniformity of the characteristic values of each rank, a threshold limit range is set based on a reference threshold value for sorting the ranks (see FIG. 6). Although the probability density is strictly unbalanced above and below the threshold value, it is basically determined by the characteristic value initiative because it is for the purpose of equalizing the characteristic values. Another idea is (2) to sort the supplied objects to be sorted into a plurality of groups having the same characteristics, and to make the mutual quantitative ratio a required target value. Is directly limited by the allowable range of the characteristic value. The variation range of the threshold value is directly limited by the variation allowable range of the characteristic value required for the rank (see FIG. 7). Such a restriction generally means a standard value for maintaining quality. However, this standard value does not necessarily mean a standard for distribution. Also, the present invention can be applied to a case where the feedback control is not performed. In this case, the threshold value adjusted for sorting is the reference threshold value itself obtained by analyzing the distribution of the characteristic values as the sorting progresses.
[0008]
In the above description, an example in which one limit exists for one threshold is illustrated. However, the present invention is not limited to one, and limits may be set above and below a variation range of one threshold. good. Alternatively, (3) one of the threshold value fluctuation ranges is limited to a predetermined value based on the reference threshold value, and the other is directly restricted by the characteristic value fluctuation allowable range. That is, one of the two range limits that can be provided for one threshold value is determined by the distance from the reference threshold value, and the other is set to a standard value determined regardless of the reference threshold value. Of course, care is taken so that the upper and lower relationship between the two limit values does not reverse. As a further development of this, (4) Limits applied to both sides of the fluctuation range of the threshold value adjusted according to the sorting error from the target are made asymmetric with respect to the reference threshold value. The feedback gain can also be asymmetric. (5) The distribution state of the characteristic value is analyzed, and the reference threshold value corresponding to the target value is determined by biasing from the original value. In other words, the reference threshold value corresponds to the quantitative ratio of sorting, but the reference threshold value itself is determined by biasing from the original position, and a desired margin is provided on the sorting ratio (see FIG. 8).
[0009]
(6) means for measuring the quality of the object, means for measuring the amount of the object, sorting control means for limiting the variation range of the threshold value adjusted for sorting, and the object based on the result of the sorting control means And an apparatus for sorting objects according to the probability distribution, which is configured by a conveying means for conveying the object (see FIG. 8).
[0010]
In the above description, one threshold value has been described. However, there is only one threshold value at ranks located at both ends of the distribution, but an intermediate rank has two upper and lower threshold values (see FIG. 4). ). Therefore, a limit may be provided between the threshold values of the two standards so that the respective threshold values do not interfere with each other. Also, what kind of restriction is given to each threshold value depends on what kind of relationship is given between ranks on both sides of the threshold value. The various limiting methods described above may be selected by the operator.
[0011]
It has been described that quality measurement and the like are performed only once for a single bite of the sorting target object, but as a better method, parameters obtained by dividing the sorting target object into a plurality of times and performing measurement and the like are described. Should be used. The division may not be strict, but it is desirable that the amount of the target object per measurement or the like is almost the same. The division measurement, the sorting operation, and the error amount calculation do not necessarily have to correspond. Although the characteristic value can often be expressed as a one-dimensional quantity, it may be captured in a two-dimensional manner as shown in FIG.
[0012]
[Action]
In the present invention, the cumulative frequency (in other words, the probability distribution function) is obtained from the frequency of occurrence (in other words, the probability density function) of the characteristic value obtained by measurement or the like for sorting, and the threshold value at that time is calculated. Therefore, even if the probability distribution changes and an error occurs in the quantitative ratio of the sorting, the threshold value is first moved to a point where the target amount is obtained, and the sorting ratio is maintained. Further, a feedback function for correcting and recovering an error can be added based on this point. (FIGS. 6, 7, and 8 show that the threshold value fluctuates left and right from the reference threshold value due to a change in the sorting error of the left rank. And a conceptual diagram showing where in the probability density function they can be sorted). Then, by means of (1), the contradiction between the purpose of equalizing the characteristic values and the purpose of sorting into the required ratio is adjusted by setting a limit range of the threshold value based on the reference threshold value. (See the range line in FIG. 6). There is an advantage that the limited range can be accurately maintained even if the distribution state changes.
[0013]
On the other hand, according to the means (2), it is possible to not only suppress the fluctuation of the characteristic value, but also to set a special restriction on the characteristic value, for example, a standard for maintaining the quality (the quality standard in FIG. 7). Line). For example, in order to surely eliminate the incorporation of inferior quality items in the high quality rank (left part), limit the threshold so that it does not fall within the range of inferior quality items even if the sorting ratio of high quality items decreases. it can. This limit value is not affected by a change in the reference threshold value due to a change in the probability distribution. Therefore, the positional relationship between the quality standard line and the reference threshold value may be reversed. In the case where the fluctuation range is limited only to one upper and lower side of one threshold value as shown in FIGS. 6 and 7, when the sorting ratio is reduced for one rank, the characteristic value range is restricted from being expanded, and when the sorting ratio is increased. Can operate to limit the characteristic value range indefinitely. This means that the other rank is left to some extent.
[0014]
One threshold is the boundary between two ranks. When pursuing to suppress the fluctuation range of the characteristic value by both ranks, this can be realized by setting upper and lower limits for one threshold value. Further, in this case, by means of (3), when there is only one rank in which the variation range of the characteristic value is to be restricted in a standard manner, the means of (2) is adopted for the limit value far from the rank. This can be achieved.
[0015]
Further, according to the means (4), it is possible to adjust which of the two adjacent ranks is to be controlled with priority given to securing the quantity according to the degree of asymmetry. In extreme cases, either positive or negative feedback can be prohibited. By means of (5), the quantitative ratio can be sorted by giving a margin in advance. Although the threshold value of the reference corresponds to the quantitative ratio of the sorting, if the occurrence of the characteristic value is biased at the end of the sorting, the target may not be reached. In addition, the total amount to be carried in may not be accurately predicted. Even in such a case, sorting can be performed with some allowance (the control characteristic line moves to the position indicated by the thick line in FIG. 8).
[0016]
(6) means for measuring the quality of the object, means for measuring the amount of the object, sorting control means for limiting the variation range of the threshold value adjusted for sorting, and the object based on the result of the sorting control means The apparatus for sorting objects according to the probability distribution, which is configured by a transporting means for transporting the objects, can be accurately performed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An example in which the present invention is applied to a tea factory will be described with reference to the block diagram of FIG. Fresh tea leaves brought into the tea factory are measured by quality measuring means. The timing of the measurement differs depending on the factory, and may be before or after being put into the receiving device. As a quality measuring means, besides a method of measuring the components of fresh tea leaves, physical properties such as bulk density and hardness, size and color, and generally appearance characteristics by the five senses may be measured. Before and after the measurement, items that are not to be measured, such as varieties, plucking methods, cultivation methods, pests and the like, are determined (these are sometimes treated numerically) and input to the measurement control means. The measurement control means collects the measured values of the quality and the data of the other judgment items and sends them to the sorting control means and the accounting system. In the accounting system, the quality judgment value is determined by integrating them, and is used to determine the purchase price of green tea leaves. On the other hand, the sorting control means serves as data for sorting into groups with uniform characteristics. There are cases where special classification is required only for some of the judgment items.However, in the following description, the case where the characteristic values are combined with measured This will be described as an example.
[0018]
As a quantity for the transaction, the measurement of the accepted weight is generally performed for each vehicle before and after the carry-in, but separately from this, the sorting weight may be integrated as processing data in association with the measurement. The weight data is sent to the sorting control means and the accounting system. The sorting control means stores the characteristic values and the measured weight values as corresponding data via the reception numbers of both data and the like. The sorting control means calculates an average value and a standard deviation of the stored characteristic values, and determines a reference threshold value for each rank based on the average value and the standard deviation. If it is desired to have a certain margin in the sorted amount, a slight bias is applied to the reference threshold value at this time. (Even if the calculation of the average value and the standard deviation and the determination of the reference threshold value are performed after the determination of the sorting and applied to the next sorting, there is no practically significant difference. Even if only the data up to is obtained, it can be controlled practically.)
[0019]
The sorting control means determines which rank is to be sorted by comparing the characteristic value with a threshold value corresponding to each rank set according to the processing necessity, and controls the transfer device. The threshold value is a reference. A value calculated by adding a feedback operation amount described later to the threshold value can also be used. In calculating the threshold value, a variation range of the threshold value suitable for the sorting control target is restricted. In addition to the above, if three or more ranks are used, two thresholds may interfere with each other, so that a limit for preventing interference is provided.
[0020]
Further, the sorting control means integrates the weights sorted by rank. Further, the weight of the brought-in fresh tea leaves is integrated, and the required sorting ratio of each rank is multiplied to calculate the required weight for each rank at that time. Then, an error with respect to the required weight of the sorting integrated weight for each rank is calculated. This error is multiplied by a control gain corresponding to the sorting ratio to calculate a feedback operation amount of the threshold, and used for the next sorting.
[0021]
At the start of the control, an initial threshold value is required. The value is determined based on the past actual value or the forecast of the tea garden for determining the picking start date. If there is characteristic value data that can be referred to, it can be rearranged in ascending order to find a judgment value that provides a required quantitative ratio. The transition from the initial value to the actual value is performed slowly.
[0022]
Although the present invention is based on the above-described embodiment, it is significant to saturate the feedback amount even if the error increases, and the present invention is not necessarily limited to the non-linearity shown in FIGS. It does not stick to the characteristics. A similar function and effect can be obtained with a linear function having similar characteristics.
[0023]
Further, in this embodiment, as shown in FIG. 9, the case where the quality measurement, the other determination, the weight measurement, and the transport device are one system has been described. However, the same applies to a facility where a plurality of these systems are installed. Further, even if they are in a remote place and are connected to the sorting control unit by a communication line or the like, they can be executed integrally.
[0024]
As mentioned above, sorting of collected tea leaves has been described.In addition, processing conditions are aligned, applications are separated, differentiated products are improved, storage and transportation conditions are improved, and such sorting technology is also used. There are many fields in which it can be applied, and not only agricultural and marine products but also those that follow a probability distribution can be similarly sorted. Here, an example of agricultural and marine products is described as one of the examples. As a recent trend, producers have seen an increase in direct sales to consumers, but in this case, the idea that direct sales customers have the highest priority and that they want to secure the shipment volume from high-quality products works. When it comes to deciding what percentage of the harvest will go to direct sales, you need to think about "sorting" instead of traditional sorting. Conversely, not only major distributors, but also food service and ready-to-eat meal businesses are procuring to bypass market functions.
[0025]
In order to obtain what they need practically and economically when dealing directly with producers, it is reasonable to set up transaction conditions that are in line with the actual conditions of the products. Can accelerate the realization. It can be pointed out that most products are undersupply under such specialized movements. Under these circumstances, the production area is very sensitive to market price trends, and information has been promoted by shipping organizations. Adjustments are inevitable. For example, in the case of fruits, since there is a presence or absence of suitability for storage separately from the standard of shipping, sorting in which the ratio of shipping and storage is determined can be used together with the fruit selection step. In addition, when it is possible to select between raw food and processing such as juice and canned food, it is possible to adjust the amount by sorting and controlling boundaries within and outside the standard for raw food. Further, taking canning as an example, it is possible to sort and adjust the ratio of cut and whole products according to the production plan within a range that is in proportion to the size of the can. Sorting objects to which the sorting control described above can be applied are wide-ranging, but examples of common products include tomato, asparagus, potato, onion, melon, citrus, apple, grape, peach, Plums, ume, kuri, bonito, saury, eel, salmon, mackerel, sardine, or fish fillets, shellfish, eggs, rice, brown rice, milled rice, and the like. Further, the tea is not limited to fresh leaves, and can be used for crude tea, tea leaves in the process of processing, teas other than green tea, and the like.
[0026]
【The invention's effect】
The present invention has the following effects by the above configuration. By combining open loop control with feedback control that focuses only on sorting errors, an accurate feedback reference point that cannot be obtained by feedback alone can be obtained, and the sorting ratio can be controlled with gentle feedback control. Since the reference point of the feedback is obtained by analyzing the measured values for sorting, it can cope with a change in the distribution state. In addition, by limiting the fluctuation range of the threshold value, it is possible to directly harmonize the purpose of making the characteristic values uniform and the purpose of securing the quantitative ratio.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method of sorting objects according to a probability distribution according to the present invention with a ratio as a target, in correspondence with general control engineering.
FIG. 2 is a diagram illustrating an example of a change in a characteristic value of a supplied material and a change in a standard deviation value calculated by movement, and also illustrates an average value recalculated each time sorting is performed.
FIG. 3 is a histogram showing the distribution of characteristic values in the example of FIG. 2, superimposed on a normal distribution drawn based on a calculated average value and a standard deviation, and a probability distribution obtained by integrating a density function from −∞. The figure which also showed the function (cumulative probability). (However, the actual cumulative probability graph that overlaps this curve is a cumulative graph weighted by the sort weight.)
FIG. 4 is a diagram showing a relationship between a probability distribution of characteristic values, a range of rank variation, and a range of threshold variation.
FIG. 5 is a conceptual diagram for sorting a two-dimensional distribution having correlation.
FIG. 6 is a conceptual diagram for limiting fluctuation of a threshold value when limiting the threshold value to a constant value from a reference threshold value.
FIG. 7 is a conceptual diagram for restricting fluctuation of a threshold value when restricting to guarantee a fluctuation range of a rank.
FIG. 8 is a conceptual diagram for limiting fluctuation of a threshold when biasing a reference threshold.
FIG. 9 shows a block diagram of a control system.

Claims (6)

供給される仕分け対象物を、それぞれ特性を揃えて複数のグループに分けて、互いの量的な比率を所要の目標値にする仕分け制御において、特性値の分布状態を分析して目標値に対応する基準のしきい値を決定する開ループ制御と、目標からの誤差に応じてしきい値を調整する閉ループ制御を組み合わせて制御システムを構成し、しきい値の変動範囲を基準のしきい値を基点にした所定値までに制限することを特徴とする物の仕分け方法。The sorting objects to be supplied are divided into multiple groups with the same characteristics, and in the sorting control that sets the mutual quantitative ratio to the required target value, the distribution of the characteristic values is analyzed to correspond to the target value. A control system is configured by combining open-loop control that determines the reference threshold value to be adjusted and closed-loop control that adjusts the threshold value in accordance with the error from the target. A method for sorting objects, the method comprising limiting the value to a predetermined value based on the reference value. 供給される仕分け対象物を、それぞれ特性を揃えて複数のグループに分けて、互いの量的な比率を所要の目標値にする仕分け制御において、仕分けのために調整するしきい値の変動範囲を、特性値の変動許容範囲により、直接制限することを特徴とする物の仕分け方法。In the sorting control in which the supplied sorting objects are divided into a plurality of groups with the same characteristics, and the quantitative ratio of each is set to a required target value, a variation range of a threshold value adjusted for sorting is determined. A method for sorting objects, characterized by directly limiting according to the allowable range of the characteristic value. しきい値の変動範囲の一方を、特性値の変動許容範囲により直接制限することを特徴とする請求項1記載の物の仕分け方法。2. The method according to claim 1, wherein one of the threshold value fluctuation ranges is directly limited by the characteristic value fluctuation allowable range. 目標からの仕分け誤差に応じて調整するしきい値の変動範囲の両側に加える制限を基準のしきい値に対し非対称とすることを特徴とする請求項1記載の物の仕分け方法。2. The object sorting method according to claim 1, wherein the restriction applied to both sides of the variation range of the threshold value adjusted according to the sorting error from the target is asymmetric with respect to the reference threshold value. 特性値の分布状態を分析して目標値に対応する基準のしきい値を本来の値からバイアスして決定することを特徴とする請求項1、2、3または4記載の物の仕分け方法。5. The method according to claim 1, wherein the characteristic value distribution is analyzed to determine a reference threshold value corresponding to the target value by biasing the reference value from an original value. 対象物の品質計測手段と、対象物の量の計量手段と、計測制御手段と、仕分けのために調整するしきい値の変動範囲を制限する仕分け制御手段と、該仕分け制御手段の結果により対象物を搬送する搬送手段とより構成することを特徴とする物の仕分け装置。Object quality measurement means, object quantity measurement means, measurement control means, sorting control means for limiting the range of variation of the threshold value adjusted for sorting, and the target based on the result of the sorting control means. An apparatus for sorting objects, comprising a conveying means for conveying the objects.
JP2002195312A 2002-07-04 2002-07-04 Sorting method for article and sorting device Pending JP2004033931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195312A JP2004033931A (en) 2002-07-04 2002-07-04 Sorting method for article and sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195312A JP2004033931A (en) 2002-07-04 2002-07-04 Sorting method for article and sorting device

Publications (1)

Publication Number Publication Date
JP2004033931A true JP2004033931A (en) 2004-02-05

Family

ID=31703724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195312A Pending JP2004033931A (en) 2002-07-04 2002-07-04 Sorting method for article and sorting device

Country Status (1)

Country Link
JP (1) JP2004033931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247101A (en) * 2009-04-17 2010-11-04 Yamato Scale Co Ltd Weight selector
CN106909774A (en) * 2017-01-10 2017-06-30 亳州职业技术学院 Moutan bark commercial specification classification standard formulating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247101A (en) * 2009-04-17 2010-11-04 Yamato Scale Co Ltd Weight selector
CN106909774A (en) * 2017-01-10 2017-06-30 亳州职业技术学院 Moutan bark commercial specification classification standard formulating method

Similar Documents

Publication Publication Date Title
Liu et al. Optimal purchase and inventory retrieval policies for perishable seasonal agricultural products
Munhoz et al. Optimization approaches to support decision making in the production planning of a citrus company: A Brazilian case study
Catalá et al. A bi-objective optimization model for tactical planning in the pome fruit industry supply chain
Zhang et al. Economic analysis of a low-cost apple harvest-assist unit
Dhakre et al. Price behaviour of potato in agra market-a statistical analysis
van der Vorst et al. Quality controlled logistics in food supply chain networks: integrated decision-making on quality and logistics to meet advanced customer demands
JP2004033931A (en) Sorting method for article and sorting device
Zhang et al. Models for economic evaluation of multi-purpose apple harvest platform and software development
Lyons et al. Nitrogen response models for winter cereals grown for forage
JP2004016945A (en) Method and apparatus for sorting object
KR102222004B1 (en) Prediction system for traffic of fruits and predicting method using the same
JP2004010312A (en) Method and device for sorting objects
JP2004121999A (en) Object sorting method and sorting device used for the same
Jeder et al. Transmission between retail and producer prices for main vegetable crops in Tunisia
Günden et al. The Turkish olive oil sector’s priorities related to the factors affecting domestic and international competition
Woodward et al. Relationships between ‘Hayward’kiwifruit weight and dry matter content
CN116384880A (en) Inventory analysis management system for coal processing based on big data
Calvin et al. Labor-intensive US fruit and vegetable industry competes in a global market
JP2004136217A (en) Sorting method and sorting apparatus
CN116167886A (en) Agricultural product planting recommendation method and system based on big data
Bollen Traceability in fresh produce supply chains
Zhang et al. Multi-purpose apple harvest platform economic evaluation modeling and software development
CN117196659B (en) Product tracing method and system based on block chain technology
JP6850715B2 (en) Carry-in order determination device
Alston et al. Restricting flow of almonds to export markets may raise profits