JP2013083559A - Signal processor and signal processing method - Google Patents

Signal processor and signal processing method Download PDF

Info

Publication number
JP2013083559A
JP2013083559A JP2011223912A JP2011223912A JP2013083559A JP 2013083559 A JP2013083559 A JP 2013083559A JP 2011223912 A JP2011223912 A JP 2011223912A JP 2011223912 A JP2011223912 A JP 2011223912A JP 2013083559 A JP2013083559 A JP 2013083559A
Authority
JP
Japan
Prior art keywords
signal
article
probability density
weight
pdf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011223912A
Other languages
Japanese (ja)
Other versions
JP5774957B2 (en
Inventor
Sunao Ronte
素直 論手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2011223912A priority Critical patent/JP5774957B2/en
Publication of JP2013083559A publication Critical patent/JP2013083559A/en
Application granted granted Critical
Publication of JP5774957B2 publication Critical patent/JP5774957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reliably remove influences by noise elements and to perform accurate weight estimation in a technology for estimating article weight on the basis of probability density function of amplitude of a measurement signal.SOLUTION: The signal processor has: a plurality of N filters CHto CHfor extracting from a measurement signal, signal components Sto Sin a plurality of N partial bands different within a frequency range except that of DC and its vicinity among bands to be processed of a measurement signal s(t); a whole band data processing part 25 for calculating amplitude probability density function PDFof an output signal Sof the whole band to be processed during a prescribed period when article is loaded on a load sensor; a plurality of N partial band data processing parts 30(1) to 30(N) for calculating probability density functions PDFto PDFduring the prescribed period of the amplitude of the signal components Sto Sin the plurality of N partial bands respectively; and a weight estimation part 40 for estimating weight of the article on the basis of the probability density functions PDFto PDFobtained.

Description

本発明は、荷重センサに順次負荷される物品の重量を、簡単な構成、手法で正確に測定するための信号処理装置及び信号処理方法に関する。   The present invention relates to a signal processing apparatus and a signal processing method for accurately measuring the weight of an article sequentially loaded on a load sensor with a simple configuration and technique.

物品の重量を測定する計量装置として、物品をコンベアで搬送している間に重量検出を行う計量コンベア方式のものが従来から多用されている。この種の計量装置は、荷重センサとしての計量器で支持した計量コンベアに、前段コンベアから物品を搬入し、搬入物品が計量コンベア上を搬送している間に計量器から出力される計量信号に基づいて物品重量を検出し、重量が検出された物品を後段コンベアへ搬出する。   2. Description of the Related Art Conventionally, as a weighing device for measuring the weight of an article, a weighing conveyor type that performs weight detection while the article is being conveyed by a conveyor has been widely used. This type of weighing device carries an article from a preceding conveyor to a weighing conveyor supported by a weighing machine as a load sensor, and outputs a weighing signal output from the weighing instrument while the loaded article is transported on the weighing conveyor. Based on this, the weight of the article is detected, and the article whose weight has been detected is carried out to the rear conveyor.

このような計量装置は、主に食品等の製造ラインに組み込まれて設置されるため、他の生産設備等により起こる床振動や計量コンベアのローラやベルトによる低周期振動成分などが雑音成分として計量器の出力信号に重畳し計量精度の悪化を招く。   Since such weighing devices are mainly installed in food production lines, floor vibrations caused by other production facilities and low-frequency vibration components due to the rollers and belts of weighing conveyors are measured as noise components. Superimposes on the output signal of the instrument, leading to deterioration of weighing accuracy.

このため、計量器の出力信号から雑音成分を効率よく除去し、より真の値に近い物品の重量測定が行え、高精度高速化が図れる動的重量計測手法が要望されている。ソフトウェアの観点では、計量装置により計量され、計量装置を構成するセンサ測定系の固有振動や、床振動環境下での計量搬送系の振動雑音などに乱された計測データから、いかに物品の重量を効率よく正確に推定するかという研究課題として捉えることができる。   For this reason, there is a demand for a dynamic weight measurement method that can efficiently remove noise components from the output signal of the weighing instrument, perform weight measurement of articles closer to the true value, and achieve high accuracy and high speed. From a software perspective, the weight of an article can be determined from the measurement data that is measured by the weighing device and disturbed by the natural vibrations of the sensor measurement system that constitutes the weighing device and the vibration noise of the weighing and conveying system in a floor vibration environment. It can be understood as a research subject on how to estimate efficiently and accurately.

ここで、関連する動的重量計測分野の研究としては、例えば、ハカリ系を線形の状態空間表現でモデル化し質量の状態推定問題に帰着した研究、ロードセルの出力信号に含まれる雑音信号を除去した信号に対して線形システム理論とシステム同定法を適用した研究、加速度センサとカルマンフィルタを組み合わせた研究報告などがある。   Here, as a related research in the dynamic weight measurement field, for example, a study that modeled a hakari system with a linear state space representation and resulted in a mass state estimation problem, and removed the noise signal contained in the output signal of the load cell There are studies that apply linear system theory and system identification methods to signals, and research reports that combine acceleration sensors and Kalman filters.

さらに、本体セルとは別に補償セルを付加して床振動除去を対象に相対補償原理を適用した研究がある。   In addition, there is a study in which a compensation cell is added separately from the main body cell and the relative compensation principle is applied to floor vibration removal.

一方、振動雑音発生の事前知識を用いた研究例として、多連秤での計量測定にロードセルなどの計量器の出力信号をA/D変換して低域通過フィルタ(FIR型LPF)によるフィルタ処理を振動雑音抑圧除去に適用した報告もある。   On the other hand, as an example of research using prior knowledge of vibration noise generation, the output signal of a measuring instrument such as a load cell is A / D converted for weighing measurement with a multiple scale, and the filter processing is performed by a low-pass filter (FIR type LPF) There is also a report that applied to the removal of vibration noise suppression.

このように、計量器の出力信号から振動雑音成分を除去して、真の質量成分を高速高精度に抽出する研究が従来から行われてきたが、その計算手法は主に線形演算によるものであった。この線形演算を用いた信号処理として、一般的に多用されている低域通過フィルタLPFでは、LPFの遮断周波数幅を低く設定することで低い周波数の雑音成分まで除去することが可能になる。   In this way, research has been conducted to remove the vibration noise component from the output signal of the measuring instrument and extract the true mass component with high speed and high accuracy, but the calculation method is mainly based on linear calculation. there were. As signal processing using this linear operation, a low-pass filter LPF that is widely used generally can remove low-frequency noise components by setting the cutoff frequency width of the LPF low.

しかしながら、このような線形演算を用いた信号処理では、解析や評価の手順が一意的に決まる半面、処理遅延時間や時間周波数の不確定性に基づくフィルタの応答時間等には原理的な制約が伴う。具体的には、LPFの遮断周波数を低く設定した場合、センシング期間を長くする必要があり、その分だけ応答速度が遅くなるという問題があった。また、LPFの遮断周波数を制限することでLPF自らが人工雑音を発生し、計量器からの出力信号に人工雑音が重畳され、測定結果に信頼性を欠くという問題があった。そして、計量能力の限界に設定されたLPFの遮断周波数より低い周波数の雑音成分については除去することができなかった。   However, in signal processing using such linear operations, the analysis and evaluation procedures are uniquely determined, but the filter response time based on the processing delay time and time frequency uncertainty is limited in principle. Accompany. Specifically, when the cut-off frequency of the LPF is set low, there is a problem that it is necessary to lengthen the sensing period, and the response speed is slowed accordingly. Further, there is a problem in that the LPF itself generates artificial noise by limiting the cutoff frequency of the LPF, and the artificial noise is superimposed on the output signal from the measuring instrument, and the measurement result lacks reliability. In addition, a noise component having a frequency lower than the cutoff frequency of the LPF set to the limit of the weighing capacity cannot be removed.

このため、上記制約を取り払うひとつの考え方に、遭遇する物理現象の事前知識を有効活用する手段がある。例えば、カルマンフィルタなどは信号生成の事前知識を利用した推定手法と考えられる。   For this reason, there is a means for effectively utilizing prior knowledge of physical phenomena encountered in one way of thinking to remove the above-mentioned restrictions. For example, a Kalman filter or the like is considered as an estimation method using prior knowledge of signal generation.

しかしながら、信号生成の数理モデリングを確実に実態と合致させるには、初期条件の設定や突発的事象の発生などの不確定要素があり、極めて困難な作業であった。   However, in order to ensure that the mathematical modeling of signal generation matches the actual situation, there are uncertain elements such as setting of initial conditions and occurrence of sudden events, which is extremely difficult.

この問題を解決する有効な技術として、本願発明者は、物品が負荷されている間の一定期間内に、計量信号を所定周期でサンプリングして得られた振幅値の発生頻度を表す確率密度関数PDFを算出し、その確率密度関数PDFに基づいて物品重量を推定するシステムを提案している(非特許文献1)。   As an effective technique for solving this problem, the inventor of the present application has developed a probability density function representing the frequency of occurrence of amplitude values obtained by sampling a weighing signal at a predetermined period within a certain period while an article is loaded. A system for calculating a PDF and estimating an article weight based on the probability density function PDF has been proposed (Non-Patent Document 1).

論手素直:「振幅確率分布(APD)測定技術を用いた動的重量計測の検討」,第27回センシングフォーラム資料,27(pp.198-202)(2010)Naosuke Nori: “Examination of dynamic weight measurement using amplitude probability distribution (APD) measurement technology”, 27th Sensing Forum document, 27 (pp.198-202) (2010)

上記の計量信号の振幅の確率密度関数を用いた重量計測手法は、荷重センサに物品が負荷されてから一定期間が経過した計量信号のある期間の信号を取り込んでその振幅確率密度を算出し、例えばその期間の期待値等を算出してこれを基に物品重量を推定するというものであって、信号生成の数理モデリングを厳密に行うという煩雑な処理が不要で簡単で且つ実用的な精度で重量推定が行えるという利点がある。   The weight measurement method using the probability density function of the amplitude of the weighing signal described above calculates the amplitude probability density by taking in a signal of a certain period of the weighing signal after a certain period of time has elapsed since the load sensor was loaded with an article, For example, the expected value of the period is calculated and the weight of the article is estimated based on the expected value. The complicated process of mathematical modeling for signal generation is not required and simple and practically accurate. There is an advantage that weight estimation can be performed.

しかし、この手法においても、多種の雑音信号の影響の除去という点でさらなる改善が望まれる。   However, even in this method, further improvement is desired in terms of eliminating the influence of various noise signals.

本発明はこの点を改善して、計量信号の振幅の確率密度関数に基づいて物品重量を推定する技術において、雑音成分による影響をより確実に除去でき、より正確な重量推定が可能な信号処理装置及び信号処理方法を提供することを目的としている。   The present invention improves this point, and in the technology for estimating the weight of an article based on the probability density function of the amplitude of the weighing signal, the signal processing that can more reliably remove the influence of the noise component and enable more accurate weight estimation. An object is to provide an apparatus and a signal processing method.

上記目的を達成するために、本発明の請求項1の信号処理装置は、
物品が負荷された状態の荷重センサが出力する計量信号を受けて、荷重された物品の重量値を検出するための処理を行う信号処理装置において、
物品の荷重に対応する直流と該直流に重畳する雑音成分とを含む計量信号の処理対象帯域のうち、直流分およびその近傍を除く周波数範囲内で異なる複数(N)の部分帯域の信号成分(S、S、…、S)を計量信号から抽出する複数(N)のフィルタ(CH〜CH)と、
前記荷重センサに物品が負荷されている所定期間における前記処理対象帯域全体の出力信号(S)の振幅の確率密度関数(PDF)を算出する全帯域データ処理部(25)と、
前記複数(N)の部分帯域の信号成分をそれぞれ受け、該各信号成分の振幅の前記所定期間における確率密度関数(PDF〜PDF)をそれぞれ算出する複数(N)の部分帯域データ処理部(30(1)〜30(N))と、
前記全帯域データ処理部で得られた確率密度関数と、前記部分帯域データ処理部で得られた確率密度関数に基づいて、前記物品の重量を推定する重量推定部(40)とを有していることを特徴とする。
In order to achieve the above object, a signal processing device according to claim 1 of the present invention comprises:
In a signal processing device that receives a measurement signal output from a load sensor in a state where an article is loaded and performs processing for detecting a weight value of the loaded article,
Among the processing target bands of the measurement signal including the direct current corresponding to the load of the article and the noise component superimposed on the direct current, the signal components in a plurality of (N) subbands that are different within the frequency range excluding the direct current component and the vicinity thereof ( S 1, S 2, ..., a filter (CH 1 ~CH N) of the plurality (N) to be extracted from the weighing signal S N),
An all-band data processing unit (25) that calculates a probability density function (PDF 0 ) of the amplitude of the output signal (S 0 ) of the entire processing target band during a predetermined period when an article is loaded on the load sensor;
A plurality (N) of partial band data processing units respectively receiving the plurality (N) of partial band signal components and calculating probability density functions (PDF 1 to PDF N ) of the amplitudes of the respective signal components in the predetermined period. (30 (1) -30 (N)),
A probability density function obtained by the full-band data processing unit, and a weight estimation unit (40) for estimating the weight of the article based on the probability density function obtained by the partial-band data processing unit. It is characterized by being.

また、本発明の請求項2記載の信号処理装置は、請求項1記載の信号処理装置において、
前記重量推定部は、前記全帯域データ処理部および部分帯域データ処理部で得られた確率密度関数の期待値または下限値と上限値の中間値を算出し、該算出値に基づいて前記物品の重量を推定することを特徴とする。
A signal processing device according to claim 2 of the present invention is the signal processing device according to claim 1,
The weight estimation unit calculates an expected value or an intermediate value between a lower limit value and an upper limit value of the probability density function obtained by the full band data processing unit and the partial band data processing unit, and based on the calculated value, The weight is estimated.

また、本発明の信号処理方法は、
物品が負荷された状態の荷重センサが出力する計量信号を受けて、荷重された物品の重量値を検出するための処理を行う信号処理方法において、
物品の荷重に対応する直流と該直流に重畳する雑音成分とを含む計量信号の処理対象帯域のうち、直流分およびその近傍を除く周波数範囲内で異なる複数(N)の部分帯域の信号成分(S、S、…、S)を計量信号から抽出する段階と、
前記荷重センサに物品が負荷されている所定期間における前記処理対象帯域全体の出力信号(S)の振幅の確率密度関数(PDF)と、前記所定期間における前記各部分帯域の信号成分の振幅の確率密度関数(PDF〜PDF)をそれぞれ算出する段階と、
前記算出した前記処理対象帯域全体の出力信号について得られた確率密度関数(PDF)と、各部分帯域の信号成分について得られた確率密度関数(PDF〜PDF)とに基づいて前記物品の重量を推定する段階とを含むことを特徴とする。
Further, the signal processing method of the present invention includes:
In a signal processing method for receiving a measurement signal output from a load sensor in a state where an article is loaded and performing processing for detecting a weight value of the loaded article,
Among the processing target bands of the measurement signal including the direct current corresponding to the load of the article and the noise component superimposed on the direct current, the signal components in a plurality of (N) subbands that are different within the frequency range excluding the direct current component and the vicinity thereof ( Extracting S 1 , S 2 ,..., S N ) from the weighing signal;
Probability density function (PDF 0 ) of the amplitude of the output signal (S 0 ) of the entire processing target band during a predetermined period when an article is loaded on the load sensor, and the amplitude of the signal component of each partial band during the predetermined period Calculating respective probability density functions (PDF 1 to PDF N ) of
The article based on the probability density function (PDF 0 ) obtained for the calculated output signal of the entire processing target band and the probability density function (PDF 1 to PDF N ) obtained for the signal components of each partial band. Estimating the weight of the.

また、本発明の請求項4記載の信号処理方法は、請求項3記載の信号処理方法において、
前記重量を推定する段階は、
前記算出された各確率密度関数の期待値または下限値と上限値の中間値を算出し、該算出値に基づいて前記物品の重量を推定することを特徴とする。
A signal processing method according to claim 4 of the present invention is the signal processing method according to claim 3,
Estimating the weight comprises:
An expected value or an intermediate value between a lower limit value and an upper limit value of each calculated probability density function is calculated, and the weight of the article is estimated based on the calculated value.

上記したように、本発明は、重量計測過程の振幅変動を確率過程とみなし、荷重センサに物品が負荷されている間の所定期間に出力される計量信号に対して設定された処理対象帯域全体の振幅の確率密度関数と、その処理対象帯域のうち直流およびその近傍を除く周波数範囲内で異なる複数の部分帯域の信号についての確率密度関数とをそれぞれ算出し、これら異なる帯域について算出した確率密度関数に基づいて物品の重量値を推定している。   As described above, the present invention regards the amplitude variation of the weight measurement process as a stochastic process, and the entire processing target band set for the weighing signal output during a predetermined period while the load sensor is loaded with the article. And a probability density function for a plurality of different subband signals within the frequency range excluding the direct current and its vicinity in the processing target band, and the probability density calculated for these different bands. The weight value of the article is estimated based on the function.

このため、物品重量に対応した直流分に重畳されている減衰振動成分や床振動成分等の雑音成分を、複数の部分帯域から抽出した信号の確率密度関数に対応付けることができ、処理対象帯域全体の確率密度関数から得られる重量推定値から、各部分帯域の信号についての確率密度関数から得られる推定値分を除去することで、多種の雑音成分の影響を取り除いたより正確な重量値を求めることができる。   For this reason, noise components such as damped vibration components and floor vibration components superimposed on the DC component corresponding to the article weight can be associated with the probability density function of signals extracted from a plurality of partial bands, and the entire processing target band By removing the estimated value obtained from the probability density function for each sub-band signal from the weight estimated value obtained from the probability density function, a more accurate weight value is obtained by removing the effects of various noise components. Can do.

確率密度関数PDF、累積確率分布APDを説明するための図A diagram for explaining a probability density function PDF and a cumulative probability distribution APD 本発明の多チャネルPDF測定手法の処理手順を示す図The figure which shows the process sequence of the multi-channel PDF measurement method of this invention. 本発明の実施形態の信号処理装置の構成を示す図The figure which shows the structure of the signal processing apparatus of embodiment of this invention. 計量部の構成を示す図Diagram showing the configuration of the weighing unit 計量信号の実測波形図Measured waveform diagram of weighing signal 全帯域CHについてのシミュレーション結果を示す図Show simulation results for the entire band CH 0 部分帯域CHについてのシミュレーション結果を示す図It shows a simulation result of the partial band CH 1 部分帯域CHについてのシミュレーション結果を示す図It shows a simulation result of the partial band CH 2

本発明は、物品が負荷された荷重センサから出力される計量信号の振幅を確率変数とし、その確率密度関数PDFや累積確率分布APDを求めて物品重量を推定するものであるので、始めに、確率密度関数PDF、累積確率分布APDについて簡単に説明する。   The present invention uses the amplitude of the weighing signal output from the load sensor loaded with the article as a random variable, and obtains the probability density function PDF and the cumulative probability distribution APD to estimate the article weight. The probability density function PDF and the cumulative probability distribution APD will be briefly described.

確率密度関数(確率密度分布ともいう)PDFは、図1のような時間信号を例にとると、測定時間T内において、適切なサンプリング時間で抽出された振幅値の発生頻度を必要測定精度で量子化した振幅レベルごとに計数して求められる。   A probability density function (also referred to as probability density distribution) PDF takes the time signal as shown in FIG. 1 as an example, and the occurrence frequency of amplitude values extracted at an appropriate sampling time within the measurement time T can be obtained with the required measurement accuracy. It is obtained by counting for each quantized amplitude level.

このPDF値を、確率変数で積分(累積)すればAPD値になるが、APD値の定義「信号振幅の包絡線信号がある閾値レベルを超える時間確率」を採用すると、信号振幅r(t)に対して信号振幅の離散値xを確率変数とし、測定時間Tでは、信号振幅閾値Rでの占有時間W(x)を累積加算し、Tで割るとxにおけるAPD値が次式(1)のように求められる。 If this PDF value is integrated (accumulated) with a random variable, it becomes an APD value. However, if the definition of the APD value “time probability that the envelope signal of the signal amplitude exceeds a certain threshold level” is adopted, the signal amplitude r (t) the signal amplitude of the discrete values x i of the random variable, the measurement time T, the signal amplitude threshold R occupancy at time W i (x k) cumulatively adds, APD value of x i divided by T is following for It is calculated | required like Formula (1).

APD(x)=ΣW(x)/T ……(1)
ただし、記号Σは、i=1〜N(x)までの総和を表す
APD (x i ) = ΣW i (x k ) / T (1)
However, symbol Σ represents the sum total from i = 1 to N (x k ).

逆に、このAPD値を確率変数について差分演算を行えば、PDF値を求めることができる。   Conversely, if this APD value is subjected to a difference calculation with respect to a random variable, the PDF value can be obtained.

以上の準備のもとに、本発明の信号処理手法を説明する。なお、本発明では、物品の重量値に対応する直流と、それに重畳する有害な雑音成分とを含む計量信号について処理対象として設定された帯域全体を処理対象帯域とし、その処理対象帯域全体の信号についての確率密度関数と、処理対象帯域のうち直流とその近傍を除いた周波数範囲のうち異なる複数の帯域から抽出した信号についての確率密度関数に基づいて、物品重量を推定しており、この方式を「多チャネルPFD測定手法」と呼ぶことにする。   Based on the above preparation, the signal processing method of the present invention will be described. In the present invention, the entire band set as the processing target for the measurement signal including the direct current corresponding to the weight value of the article and the harmful noise component superimposed thereon is set as the processing target band, and the signal of the entire processing target band This method estimates the weight of an article based on the probability density function for, and the probability density function for signals extracted from different bands in the frequency range excluding the direct current and its vicinity in the processing target band. Will be referred to as a “multi-channel PFD measurement technique”.

図2は、本発明の多チャネルPDF測定手法の処理手順を示す図である。
前記した計量コンベア方式で用いられる荷重センサ(計量コンベアの計量器)に物品が負荷(搬入)されてからその負荷が解除(搬出)されるまでに荷重センサから出力される計量信号は、図2の(a)のような、台形波に雑音信号が重畳された波形となる。
FIG. 2 is a diagram showing a processing procedure of the multi-channel PDF measurement technique of the present invention.
The weighing signal output from the load sensor until the load is released (carrying out) after the article is loaded (carrying in) on the load sensor (the weighing conveyor weighing device) used in the above-described weighing conveyor system is shown in FIG. (A) becomes a waveform in which a noise signal is superimposed on a trapezoidal wave.

この計量信号を、測定基準タイミング(物品搬入タイミングが適切である)t=0から時間Tp(秒)毎に分割し、その各時間信号を図2の(b)のように、周波数軸上で配置したフィルタ群(CH〜CH)に入力し、各フィルタの出力時間信号を観測する。 This weighing signal is divided every time Tp (seconds) from measurement reference timing (appropriate article delivery timing) t = 0, and each time signal is divided on the frequency axis as shown in FIG. Input to the arranged filter group (CH 0 to CH N ), and observe the output time signal of each filter.

ここで、フィルタCHは、処理対象帯域全体を通過させるLPF型のフィルタとし、他のフィルタCH〜CHはBPF型で、処理対象帯域のうち直流とその近傍を除いた周波数範囲内で異なる複数Nの部分帯域の信号を選択的に通過させるように設定されている。なお、フィルタCHは、他のフィルタの前段で計量信号に対して帯域制限してもよく、A/D変換処理前に用いる帯域制限フィルタを兼用してもよい。 Here, the filter CH 0 is an LPF type filter that allows the entire processing target band to pass, and the other filters CH 1 to CH N are BPF type, and within the frequency range excluding the direct current and the vicinity thereof in the processing target band. Different N subband signals are set to selectively pass therethrough. The filter CH 0 may limit the band of the measurement signal before the other filter, and may also serve as a band limiting filter used before the A / D conversion process.

そして、図2の(c)のように、各フィルタ(CH〜CH)から出力される時間信号のPDF値をそれぞれ求め、そのPDF値から、APD値、期待値E[x]等を計算する。 Then, as shown in FIG. 2C, the PDF value of the time signal output from each filter (CH 0 to CH N ) is obtained, and the APD value, the expected value E [x], etc. are obtained from the PDF value. calculate.

フィルタCHの出力(全帯域信号)に対して算出された期待値には、取得したい物品の重量値(直流値)に対応した成分値だけでなく、過渡振動や床振動等の周波数が異なる雑音成分の影響による成分値が含まれているが、これらの雑音成分値は、他の複数NのフィルタCH〜CHの出力に対する期待値に現れる。 The expected value calculated for the output of the filter CH 1 (full-band signal) is not only the component value corresponding to the weight value (DC value) of the article to be acquired, but also the frequency of transient vibration, floor vibration, etc. Although the component value by the influence of a noise component is contained, these noise component values appear in the expected value with respect to the outputs of the other N filters CH 1 to CH N.

したがって、図2の(d)のように、フィルタCHの出力についての処理帯域全体における期待値E[x]から、フィルタCH〜CHの出力について得られる各期待値E[x]〜E[x]の成分を除去し、その除去後の値から物品重量を推定することで、多種の雑音成分の影響下での重量推定を正確に行うことができる。なお、フィルタCH〜CHの出力について得られる期待値E[x]〜E[x]に関しては、その全てを採用する必要はなく、測定精度に応じて設定したしきい値と比較し、しきい値以下の期待値を無視することも可能である。 Therefore, as shown in (d) of FIG. 2, each expected value E 1 [x obtained for the outputs of the filters CH 1 to CH N from the expected value E 0 [x] in the entire processing band for the output of the filter CH 0. ] To E N [x] are removed, and the weight of the article is estimated from the value after the removal, thereby accurately estimating the weight under the influence of various noise components. Note that it is not necessary to employ all of the expected values E 1 [x] to E N [x] obtained for the outputs of the filters CH 1 to CH N , and they are compared with the threshold values set according to the measurement accuracy. It is also possible to ignore expected values below the threshold.

また、後述するように、物品の重量値検出の目的だけでなく、測定対象の物品の種類毎に、全帯域および部分帯域についての確率密度関数PDF、累積確率密度APD、期待値E[x]等を記憶しておき、次に測定対象となる物品について新たに求めた確率密度関数PDF、累積確率密度APD、期待値E[x]等のデータと、その物品について過去の測定で得られた確率密度関数PDF、累積確率密度APD、期待値E[x]等のデータとを比較することで、計量部の動作(例えばモータの回転ムラ等)や運転環境の変化(床振動の増減)等を把握することができ、それらに影響されて測定結果に大きな誤差が含まれることを未然に防止する状態管理目的で用いることも可能である。   As will be described later, not only the purpose of detecting the weight value of an article, but also the probability density function PDF, cumulative probability density APD, and expected value E [x] for all bands and partial bands for each type of article to be measured. , Etc., and the data such as the probability density function PDF, cumulative probability density APD, expected value E [x] newly obtained for the article to be measured, and the article were obtained by past measurement. By comparing the data such as probability density function PDF, cumulative probability density APD, expected value E [x], etc., the operation of the measuring unit (eg, motor rotation unevenness), the operating environment change (increase / decrease in floor vibration), etc. It is also possible to use for the purpose of state management to prevent a measurement result from containing a large error by being influenced by them.

なお、上記方式において、計量信号のどのタイミングの信号をどの長さで取り込むかによって、算出される各期待値が異なってくるが、その取得タイミングを変えながらサンプル品の計量を繰り返し、必要な精度で重量推定が行える時間帯を求めてから、実際の計量運転を開始すればよい。   In the above method, each expected value calculated varies depending on which timing signal of the weighing signal is captured and at which length, but the sample product is repeatedly weighed while changing the acquisition timing to obtain the required accuracy. It is only necessary to start the actual weighing operation after obtaining a time period during which the weight can be estimated by.

図3は、上記原理を用いた信号処理装置20の全体構成を示している。この信号処理装置20は、図4に示す計量部10からの計量信号を処理対象とする。   FIG. 3 shows the overall configuration of the signal processing apparatus 20 using the above principle. The signal processing device 20 uses the measurement signal from the measurement unit 10 shown in FIG. 4 as a processing target.

計量部10は、荷重センサ11で支持された計量コンベア12に対して前段コンベア13から物品Wを搬入し、計量コンベア12を搬送された物品Wを後段コンベア14に搬出する構造を有しており、計量コンベア12に対する物品Wの搬入タイミングは、搬入センサ15によって検知される。また、ここでは説明を簡単にするために、計量コンベア12から出力される計量信号s(t)は、コンベア重量分が差し引かれたものとして扱うが、コンベア重量分を後述処理のいずれかの段階で差し引いて物品重量を求めてもよい。   The weighing unit 10 has a structure in which the article W is carried from the front conveyor 13 to the weighing conveyor 12 supported by the load sensor 11 and the article W conveyed by the weighing conveyor 12 is carried out to the rear conveyor 14. The carry-in timing of the article W to the weighing conveyor 12 is detected by the carry-in sensor 15. Further, here, for the sake of simplicity, the weighing signal s (t) output from the weighing conveyor 12 is treated as a value obtained by subtracting the conveyor weight. The article weight may be obtained by subtracting with.

計量部10からの計量信号s(t)は、図3に示しているように、A/D変換部21に入力され、デジタルのデータ列に変換されてフィルタブロック22に入力される。   As shown in FIG. 3, the weighing signal s (t) from the weighing unit 10 is input to the A / D conversion unit 21, converted into a digital data string, and input to the filter block 22.

フィルタブロック22は、処理対象帯域全体を通過させるLPF型のフィルタCHと、その全帯域のうち直流およびその近傍を除く周波数範囲内で複数Nの異なる部分帯域に対応した信号成分を抽出するBPF型のフィルタCH〜CHによって構成されており、フィルタCHから出力される全帯域信号Sは、全帯域データ処理部25に入力される。 The filter block 22 extracts an LPF type filter CH 0 that allows the entire processing target band to pass through, and a BPF that extracts signal components corresponding to a plurality of N different partial bands within the frequency range excluding the direct current and the vicinity thereof in the entire band. is constituted by the type of filter CH 1 to CH N, full-band signal S 0 output from the filter CH 0 is input to the full-band data processing unit 25.

全帯域データ処理部25は、計量部10の搬入センサ15からの信号を受けてから、予め設定された時間Ta経過後の一定期間TpにフィルタCHから出力される全帯域信号Sについての確率密度関数PDF等を算出する。 The all-band data processing unit 25 receives the signal from the carry-in sensor 15 of the weighing unit 10 and then receives the signal for the all-band signal S 0 output from the filter CH 0 during a predetermined period Tp after the preset time Ta has elapsed. A probability density function PDF or the like is calculated.

より具体的に説明すると、全帯域信号Sを正規化処理部26に入力し、負のデータなどが生じた時は全体として正のデータにするシフト処理などを行い、その正規化した値を対数変換部27によって対数変換し、その対数値を計測目標とする精度の単位で量子化する。なお、対数変換部27は、多数のデータの処理を円滑にするためであり、この構成を省くこともできる。 More specifically, the full bandwidth signal S 0 is input to the normalization processing unit 26, when such negative data occurs performs a shift process to positive data as a whole, the normalized value Logarithmic conversion is performed by the logarithmic conversion unit 27, and the logarithmic value is quantized in units of accuracy to be measured. The logarithmic conversion unit 27 is for smooth processing of a large number of data, and this configuration can be omitted.

そして、この対数値をPDF演算部28に入力する。PDF演算部28は、入力される対数値の各出現頻度(ヒストグラム)を求め、これを一定時間Tpに入力されたデータ総数で割ることで、正規化された確率密度関数PDFを算出する。 The logarithmic value is input to the PDF calculation unit 28. The PDF calculation unit 28 obtains each appearance frequency (histogram) of the input logarithmic value and divides this by the total number of data input during a certain time Tp, thereby calculating a normalized probability density function PDF 0 .

また、APD演算部29は、算出された確率密度関数PDFを累積加算して、累積確率分布APDを求める。なお、確率密度関数PDFと累積確率分布APDは継続して求めても良く、測定期間として1箇所又は複数箇所、さらに回数として1回又は複数回を任意に選択することができる。また、測定期間としては雑音成分のうち、測定に影響を与えると予測される最も低い周波数成分の1周期分(またはそれ以上)が好ましい。 Further, the APD calculation unit 29 cumulatively adds the calculated probability density function PDF 0 to obtain a cumulative probability distribution APD 0 . Note that the probability density function PDF and the cumulative probability distribution APD may be continuously obtained, and one or a plurality of locations as the measurement period and one or a plurality of times as the number of times can be arbitrarily selected. The measurement period is preferably one period (or more) of the lowest frequency component that is expected to affect the measurement among noise components.

一方、フィルタCH〜CHから出力される部分帯域信号S〜Sは、それぞれ部分帯域データ処理部30(1)〜30(N)に入力される。 Meanwhile, sub-band signals S 1 to S N to be outputted from the filter CH 1 to CH N are input to each partial band data processing section 30 (1) ~30 (N) .

これら複数Nの部分帯域データ処理部30(1)〜30(N)は、全帯域データ処理部25と同一構成であり、前記一定期間TpにそれぞれのフィルタCH〜CHから出力される部分帯域信号S〜Sについての確率密度関数PDF〜PDF等を求める。 These N partial band data processing units 30 (1) to 30 (N) have the same configuration as the full band data processing unit 25, and are output from the respective filters CH 1 to CH N during the predetermined period Tp. Probability density functions PDF 1 to PDF N and the like for the band signals S 1 to S N are obtained.

即ち、各部分帯域信号S〜Sをそれぞれ正規化処理部31に入力し、負のデータなどが生じた時は全体として正のデータにするシフト処理などを行い、その正規化した値をそれぞれ対数変換部32によって対数変換し、その対数値を計測目標とする精度の単位で量子化する。 That is, each of the partial band signals S 1 to S N is input to the normalization processing unit 31, and when negative data or the like is generated, a shift process or the like is performed to make the data positive as a whole. Each logarithmic conversion unit 32 performs logarithmic conversion, and the logarithmic value is quantized in units of accuracy to be measured.

そして、この対数値をそれぞれPDF演算部33に入力し、入力される対数値の各出現頻度(ヒストグラム)を求め、これを一定時間Tpに入力されたデータ総数で割ることで、正規化された確率密度関数PDF〜PDFをそれぞれ算出し、それをAPD演算部34によって累積加算して、累積確率分布APD〜APDをそれぞれ求める。 Then, the logarithmic values are respectively input to the PDF calculation unit 33, the appearance frequencies (histograms) of the input logarithmic values are obtained, and normalized by dividing this by the total number of data input at a certain time Tp. calculating a probability density functions PDF 1 ~PDF N respectively, which was cumulatively added by APD calculation unit 34 obtains respectively the cumulative probability distribution APD 1 ~APD N.

このようにして得られた各情報は、重量推定部40に入力される。重量推定部40は、全帯域データ処理部25で得られた確率密度関数PDFと、各部分帯域データ処理部30(1)〜30(N)で得られた確率密度関数PDF〜PDFとに基づいて、物品Wの重量を推定する。 Each information obtained in this way is input to the weight estimation unit 40. The weight estimation unit 40 includes the probability density function PDF 0 obtained by the entire band data processing unit 25 and the probability density functions PDF 1 to PDF N obtained by the partial band data processing units 30 (1) to 30 (N). Based on the above, the weight of the article W is estimated.

具体的には、前記したように、各確率密度関数からそれぞれ求めた期待値E[x]、E[x]〜E[x]を用い、例えば、次の演算によって物品重量に対応した期待値E[x]を求める。なお、ここで期待値とは、一定時間Tpに出現する全ての確率変数(この場合振幅値)について、その値と頻度の積の累計を出現総数で除算した値であり、簡単に言えば、一定時間Tpに出力される信号振幅の単純平均に対応している。 Specifically, as described above, the expected values E 0 [x] and E 1 [x] to E N [x] obtained from each probability density function are used, for example, corresponding to the weight of the article by the following calculation. The expected value E W [x] is obtained. Here, the expected value is a value obtained by dividing the total of the product of the value and the frequency by the total number of appearances for all random variables (in this case, amplitude values) appearing at a certain time Tp. This corresponds to a simple average of signal amplitudes output at a certain time Tp.

[x]=E[x]−ΣEi[x]
ただし、記号Σはi=1〜Nの総和を示す
E W [x] = E 0 [x] −ΣE i [x]
The symbol Σ indicates the sum of i = 1 to N.

そして、この期待値E[x]を重量換算することで、物品Wの重量値を得ることができる。 The weight value of the article W can be obtained by converting the expected value E W [x] by weight.

一方、データ管理部50は、過去に測定したときの全帯域および部分帯域についての確率密度関数PDF、累積確率密度APD、期待値E[x]等を物品の種別情報等とともに記憶しておき、次に測定対象となる物品について新たに求めた確率密度関数PDF、累積確率密度APD、期待値E[x]等のデータと、その物品について過去の測定で得られた確率密度関数PDF、累積確率密度APD、期待値E[x]等のデータとを比較する。   On the other hand, the data management unit 50 stores the probability density function PDF, cumulative probability density APD, expected value E [x], etc. for all bands and partial bands when measured in the past, together with the item type information, etc. Next, data such as the probability density function PDF, cumulative probability density APD, expected value E [x], etc. newly obtained for the article to be measured, probability density function PDF, cumulative probability obtained in the past measurement for the article Data such as density APD and expected value E [x] are compared.

ここで、例えば、計量部10の動作変調(例えばモータの回転ムラ等)や、運転環境変化(床振動の増減)等があると、全帯域および部分帯域についての確率密度関数PDFの期待値や中間値、累積確率密度APDのパターンに変化が現れるので、その変化の度合いに応じて、重量推定部40に対して重量推定処理の許可、不許可の指示を与え、計量部10の状態変化に影響されて大きな測定誤差が生じることを未然に防止する。   Here, for example, when there is an operation modulation of the measuring unit 10 (for example, uneven rotation of the motor) or a change in the operating environment (increase / decrease in floor vibration), the expected value of the probability density function PDF for all bands and partial bands, Since a change appears in the pattern of the intermediate value and the cumulative probability density APD, the weight estimation unit 40 is instructed to permit or reject the weight estimation process according to the degree of the change, and the state change of the weighing unit 10 is caused. It is possible to prevent a large measurement error from being affected.

以下、上記構成の信号処理装置20の動作について、3チャネルフィルタ(N=2)でシミュレーションした結果について説明する。   Hereinafter, the result of simulating the operation of the signal processing device 20 having the above-described configuration using a three-channel filter (N = 2) will be described.

APD確率分布を算出するために必要なサンプリング数は現象を把握する上では大きいほどよいが、それに応じて計算時間も長くなってしまうので、ここでは、センサ信号帯域が有する最大周波数の10倍程度の時間でサンプリングしたデータを用いる。   The larger the number of samplings necessary for calculating the APD probability distribution, the better for grasping the phenomenon. However, the calculation time also increases accordingly, and here, about 10 times the maximum frequency of the sensor signal band. Data sampled at the time is used.

また、シミュレーション条件として、全帯域用のフィルタCHは1kHzの信号帯域矩形フィルタ、部分帯域用のフィルタCHは、遮断周波数が20Hz(低域)と400Hz(高域)のBPF、フィルタCHは400Hz〜600Hzの直線位相特性のBPFである。また、計量信号としては、図5に示す計量信号の実測データ(重量真値を90.3409dBと見積もっている)を用いている。 Further, as simulation conditions, the filter CH 0 for the entire band is a 1 kHz signal band rectangular filter, the filter CH 1 for the partial band is a BPF having a cutoff frequency of 20 Hz (low band) and 400 Hz (high band), and a filter CH 2. Is a BPF with a linear phase characteristic of 400 Hz to 600 Hz. As the measurement signal, the measurement data of the measurement signal shown in FIG. 5 (the true weight value is estimated to be 90.3409 dB) is used.

測定対象時間Tpは、計量信号に含まれる固有振動周波数30Hzの一周期分を包含するのに必要な50m秒とし、物品の負荷開始タイミングから700〜750m秒の期間を測定するものとする。   The measurement target time Tp is 50 milliseconds required to include one period of the natural vibration frequency 30 Hz included in the measurement signal, and a period of 700 to 750 milliseconds is measured from the load start timing of the article.

各フィルタCH、CH、CHの出力に対するPDF/APDの測定結果を、図6、図7、図8に示す。各図で横軸は対数振幅レベル値(dB)、縦軸が確率を示す。PDF値は10倍して表示している。また、フィルタCH、CHの出力は振動雑音などの交流成分であるが、比較し易いように定数α(65535/2=90.3088dB表示)を加算して表示している。 The measurement results of PDF / APD for the outputs of the filters CH 0 , CH 1 , and CH 2 are shown in FIGS. In each figure, the horizontal axis indicates the logarithmic amplitude level value (dB), and the vertical axis indicates the probability. The PDF value is displayed 10 times larger. The outputs of the filters CH 1 and CH 2 are alternating current components such as vibration noise, but are added and displayed with a constant α (65535/2 = 90.3088 dB display) for easy comparison.

図6、図7のフィルタCH、CHの結果から、測定期間内の振動成分の周波数挙動を微視的/巨視的に観測することができる。つまり、この例では図6の全帯域のPDF特性は、図7のCHのPDF特性と類似(高い相関性をもつ)していることから、全帯域の特性の分散(つまり雑音成分)は、CHの成分が支配的であり、CHの振動雑音成分は観測できないほど小さいレベルであることが明確に容易に把握できる。 From the results of the filters CH 0 and CH 1 in FIGS. 6 and 7, the frequency behavior of the vibration component within the measurement period can be observed microscopically / macroscopically. That is, in this example, the PDF characteristic of the entire band in FIG. 6 is similar (has high correlation) to the PDF characteristic of CH 1 in FIG. , CH 1 components are dominant, and it can be clearly and easily understood that the vibration noise components of CH 2 are so small that they cannot be observed.

図6のCHの成分は、振動成分CH、CHの成分を含んでいるため、重量推定値としては、線形性を前提にすると、前記したように、CHの期待値E[x]からCH、CHの期待値E[x]、E[x]を除去することで、精度の高い推定値が得られることがわかる。 Component of CH 0 in FIG. 6, because it contains components of vibration components CH 1, CH 2, as the weight estimate, when assuming linearity, as described above, the expected value of the CH 0 E 0 [ It can be seen that a highly accurate estimated value can be obtained by removing the expected values E 1 [x] and E 2 [x] of CH 1 and CH 2 from x].

その計算結果を以下に示す。ただし、CH、CHの計算結果には、前記定数αが加算されている。
CHの期待値E[x]=90.3064dB
CHの期待値E[x]+α=90.2475dB
CHの期待値E[x]+α=90.3103dB
物品重量推定値E[x]=90.3659dB
The calculation results are shown below. However, the constant α is added to the calculation results of CH 1 and CH 2 .
Expected value E 0 [x] of CH 0 = 90.3064 dB
Expected value E 1 [x] + α = 90.2475 dB of CH 1
Expected value of CH 2 E 2 [x] + α = 90.3103 dB
Article weight estimated value E W [x] = 90.3659 dB

この結果から、複数の部分帯域の期待値分を除去して得られた物品重量推定値E[x](=90.3659dB)は、全帯域について得られた期待値E[x](=90.3064dB)よりも真値R(=90.3409dB)に近いことが確認された。 From this result, the estimated product weight E W [x] (= 90.3659 dB) obtained by removing the expected values of the plurality of partial bands is the expected value E 0 [x] ( It was confirmed that it was closer to the true value R (= 90.3409 dB) than = 90.3064 dB).

なお、上記実施形態では、全帯域および部分帯域について求めた確率密度関数PDFからその期待値を求めて重量推定を行っていたが、確率密度関数PDFの分布が、真の重量振幅値の周りに発生する一様な雑音分布で、その分布形状が対称性を有しているとみなされるときには、前記各期待値の代わりに、確率密度関数PDFが存在する確率変数の下限値min(x)と上限値max(x)の中間値、
C={max(x)−min(x)}/2
を用い、これに基づいて重量推定を行うようにしてもよい。
In the above embodiment, the expected value is obtained from the probability density function PDF obtained for the entire band and the partial band, and weight estimation is performed, but the distribution of the probability density function PDF is around the true weight amplitude value. When the generated uniform noise distribution is considered to have symmetry in the distribution shape, the lower limit value min (x) of the random variable in which the probability density function PDF exists is used instead of each expected value. Intermediate value of the upper limit value max (x),
C = {max (x) −min (x)} / 2
The weight may be estimated based on this.

このように、本発明の信号処理装置20は、計量信号に対して設定された処理対象帯域全体の信号についての確率密度関数PDFと、処理対象帯域から直流およびその近傍を除いた周波数範囲内の異なる複数の部分帯域から抽出した信号について確率密度関数PDFとを求め、それらに基づいて物品の重量を推定するようにしているから、詳細なモデリングを準備する必要がなく、多種の雑音成分の影響を確実に除去した精度の高い測定が行える。   As described above, the signal processing device 20 of the present invention includes the probability density function PDF for the signal of the entire processing target band set for the metric signal, and the frequency range within the processing target band excluding the direct current and the vicinity thereof. Since the probability density function PDF is obtained for signals extracted from a plurality of different sub-bands, and the weight of the article is estimated based on the probability density function PDF, it is not necessary to prepare detailed modeling, and the effects of various noise components Can be measured with high accuracy.

なお、ここでは、計量コンベア方式の計量部からの計量信号に対する処理について説明したが、本発明は、荷重センサに対して物品の負荷とその解除を繰り返し行う計量装置であれば、同様に適用できる。例えば、計量器で支持され計量ホッパを複数設け、それらの計量ホッパに物品を投入して、その重量を求め、重量が求められた物品の組合せの中から、組合せ重量が目標範囲に入る組合せを選定してそれらをひとまとめに排出する組合せ計量装置においても本発明を適用できる。   Here, the processing for the weighing signal from the weighing conveyor type weighing unit has been described, but the present invention can be similarly applied to any weighing device that repeatedly loads and releases an article with respect to a load sensor. . For example, a plurality of weighing hoppers supported by a weighing instrument are provided, articles are put into these weighing hoppers, the weights thereof are obtained, and combinations in which the combined weight falls within the target range are determined from the combinations of articles for which the weights are obtained. The present invention can also be applied to a combination weighing device that selects and discharges them collectively.

10……計量部、11……計量器(荷重センサ)、12……計量コンベア、15……搬入センサ、20……信号処理装置、21……A/D変換部、22……フィルタブロック、25……全帯域データ処理部、30(1)〜30(N)……部分帯域データ処理部、26、31……正規化処理部、27、32……対数変換部、28、33……PDF演算部、29、34……APD演算部、40……重量推定部、50……管理部   DESCRIPTION OF SYMBOLS 10 ... Weighing part, 11 ... Measuring device (load sensor), 12 ... Weighing conveyor, 15 ... Carry-in sensor, 20 ... Signal processing device, 21 ... A / D conversion part, 22 ... Filter block, 25... All band data processing unit, 30 (1) to 30 (N)... Partial band data processing unit, 26, 31... Normalization processing unit, 27, 32. PDF calculation unit, 29, 34... APD calculation unit, 40... Weight estimation unit, 50.

Claims (4)

物品が負荷された状態の荷重センサが出力する計量信号を受けて、荷重された物品の重量値を検出するための処理を行う信号処理装置において、
物品の荷重に対応する直流と該直流に重畳する雑音成分とを含む計量信号の処理対象帯域のうち、直流分およびその近傍を除く周波数範囲内で異なる複数(N)の部分帯域の信号成分(S、S、…、S)を計量信号から抽出する複数(N)のフィルタ(CH〜CH)と、
前記荷重センサに物品が負荷されている所定期間における前記処理対象帯域全体の出力信号(S)の振幅の確率密度関数(PDF)を算出する全帯域データ処理部(25)と、
前記複数(N)の部分帯域の信号成分をそれぞれ受け、該各信号成分の振幅の前記所定期間における確率密度関数(PDF〜PDF)をそれぞれ算出する複数(N)の部分帯域データ処理部(30(1)〜30(N))と、
前記全帯域データ処理部で得られた確率密度関数と、前記部分帯域データ処理部で得られた確率密度関数に基づいて、前記物品の重量を推定する重量推定部(40)とを有していることを特徴とする信号処理装置。
In a signal processing device that receives a measurement signal output from a load sensor in a state where an article is loaded and performs processing for detecting a weight value of the loaded article,
Among the processing target bands of the measurement signal including the direct current corresponding to the load of the article and the noise component superimposed on the direct current, the signal components in a plurality of (N) subbands that are different within the frequency range excluding the direct current component and the vicinity thereof ( S 1, S 2, ..., a filter (CH 1 ~CH N) of the plurality (N) to be extracted from the weighing signal S N),
An all-band data processing unit (25) that calculates a probability density function (PDF 0 ) of the amplitude of the output signal (S 0 ) of the entire processing target band during a predetermined period when an article is loaded on the load sensor;
A plurality (N) of partial band data processing units respectively receiving the plurality (N) of partial band signal components and calculating probability density functions (PDF 1 to PDF N ) of the amplitudes of the respective signal components in the predetermined period. (30 (1) -30 (N)),
A probability density function obtained by the full-band data processing unit, and a weight estimation unit (40) for estimating the weight of the article based on the probability density function obtained by the partial-band data processing unit. A signal processing device.
前記重量推定部は、前記全帯域データ処理部および部分帯域データ処理部で得られた確率密度関数の期待値または下限値と上限値の中間値を算出し、該算出値に基づいて前記物品の重量を推定することを特徴とする請求項1記載の信号処理装置。   The weight estimation unit calculates an expected value or an intermediate value between a lower limit value and an upper limit value of the probability density function obtained by the full band data processing unit and the partial band data processing unit, and based on the calculated value, The signal processing apparatus according to claim 1, wherein the weight is estimated. 物品が負荷された状態の荷重センサが出力する計量信号を受けて、荷重された物品の重量値を検出するための処理を行う信号処理方法において、
物品の荷重に対応する直流と該直流に重畳する雑音成分とを含む計量信号の処理対象帯域のうち、直流分およびその近傍を除く周波数範囲内で異なる複数(N)の部分帯域の信号成分(S、S、…、S)を計量信号から抽出する段階と、
前記荷重センサに物品が負荷されている所定期間における前記処理対象帯域全体の出力信号(S)の振幅の確率密度関数(PDF)と、前記所定期間における前記各部分帯域の信号成分の振幅の確率密度関数(PDF〜PDF)をそれぞれ算出する段階と、
前記算出した前記処理対象帯域全体の出力信号について得られた確率密度関数(PDF)と、各部分帯域の信号成分について得られた確率密度関数(PDF〜PDF)とに基づいて前記物品の重量を推定する段階とを含むことを特徴とする信号処理方法。
In a signal processing method for receiving a measurement signal output from a load sensor in a state where an article is loaded and performing processing for detecting a weight value of the loaded article,
Among the processing target bands of the measurement signal including the direct current corresponding to the load of the article and the noise component superimposed on the direct current, the signal components in a plurality of (N) subbands that are different within the frequency range excluding the direct current component and the vicinity thereof ( Extracting S 1 , S 2 ,..., S N ) from the weighing signal;
Probability density function (PDF 0 ) of the amplitude of the output signal (S 0 ) of the entire processing target band during a predetermined period when an article is loaded on the load sensor, and the amplitude of the signal component of each partial band during the predetermined period Calculating respective probability density functions (PDF 1 to PDF N ) of
The article based on the probability density function (PDF 0 ) obtained for the calculated output signal of the entire processing target band and the probability density function (PDF 1 to PDF N ) obtained for the signal components of each partial band. Estimating the weight of the signal processing method.
前記重量を推定する段階は、
前記算出された各確率密度関数の期待値または下限値と上限値の中間値を算出し、該算出値に基づいて前記物品の重量を推定することを特徴とする請求項3記載の信号処理方法。
Estimating the weight comprises:
4. The signal processing method according to claim 3, wherein the expected value of each calculated probability density function or an intermediate value between a lower limit value and an upper limit value is calculated, and the weight of the article is estimated based on the calculated value. .
JP2011223912A 2011-10-11 2011-10-11 Signal processing apparatus and signal processing method Expired - Fee Related JP5774957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223912A JP5774957B2 (en) 2011-10-11 2011-10-11 Signal processing apparatus and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223912A JP5774957B2 (en) 2011-10-11 2011-10-11 Signal processing apparatus and signal processing method

Publications (2)

Publication Number Publication Date
JP2013083559A true JP2013083559A (en) 2013-05-09
JP5774957B2 JP5774957B2 (en) 2015-09-09

Family

ID=48528893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223912A Expired - Fee Related JP5774957B2 (en) 2011-10-11 2011-10-11 Signal processing apparatus and signal processing method

Country Status (1)

Country Link
JP (1) JP5774957B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274555A (en) * 1997-03-11 1998-10-13 Mettler Toledo Ag Electronic weighing instrument
JP2001099700A (en) * 1999-09-30 2001-04-13 Anritsu Corp Signal-processing apparatus
JP2004016945A (en) * 2002-06-18 2004-01-22 Terada Seisakusho Co Ltd Method and apparatus for sorting object
JP2006300868A (en) * 2005-04-25 2006-11-02 Anritsu Corp Strain sensor signal processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274555A (en) * 1997-03-11 1998-10-13 Mettler Toledo Ag Electronic weighing instrument
JP2001099700A (en) * 1999-09-30 2001-04-13 Anritsu Corp Signal-processing apparatus
JP2004016945A (en) * 2002-06-18 2004-01-22 Terada Seisakusho Co Ltd Method and apparatus for sorting object
JP2006300868A (en) * 2005-04-25 2006-11-02 Anritsu Corp Strain sensor signal processing device

Also Published As

Publication number Publication date
JP5774957B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
KR102044041B1 (en) Apparatus for measuring earthquake intensity and method for the same
JP2017531410A5 (en)
JP6763394B2 (en) Recording medium for storing the soil quality judgment device, soil quality judgment method and program
CN104698273A (en) Harmonic contribution division method and harmonic contribution division system
US9392388B2 (en) Noise identifying apparatus and noise identifying method using the same
MY156075A (en) Full wavefield inversion using time varying filters
JP5375435B2 (en) Seismic intensity measuring device
JP5507903B2 (en) Seismic intensity estimation method and apparatus
WO2019074712A3 (en) Performance based condition monitoring
JP2007081455A (en) Sound source position/sound reception position estimating method, apparatus thereof, program thereof and recording medium thereof
JP2006220629A (en) Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery
CN111736222A (en) Single-shot data signal-to-noise ratio determining method and device
CN104502824A (en) Local discharge signal periodic impulse interference inhibiting method based on chaotic system
JP5774957B2 (en) Signal processing apparatus and signal processing method
KR101386255B1 (en) Apparatus for measuring earthquake magnitude and distance and method for measuring the same
WO2011089421A1 (en) Apparatus and method for measuring a phasor of an electrical power system signal
CN106352974B (en) A kind of digital sound level meter pulse weighted method and device
JP5539824B2 (en) Signal processing apparatus and signal processing method
JP5797135B2 (en) Filter device and filtering method
JP7209960B2 (en) Vibration characteristic detection device and vibration characteristic detection method
Mukherjee Median-based noise floor tracker (MNFT): robust estimation of noise floor drifts in interferometric data
Bogomolov et al. Entropy-based technique for denoising of acoustic emission signals
CN111239010A (en) Method and apparatus for detecting particles
JP2013246107A (en) Signal processing device and signal processing method
CN117076932B (en) High-sensitivity capacitance change detection method, system, electronic device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150702

R150 Certificate of patent or registration of utility model

Ref document number: 5774957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees