JP2004015404A - Connection conversion structure between strip line and post wall waveguide - Google Patents

Connection conversion structure between strip line and post wall waveguide Download PDF

Info

Publication number
JP2004015404A
JP2004015404A JP2002165752A JP2002165752A JP2004015404A JP 2004015404 A JP2004015404 A JP 2004015404A JP 2002165752 A JP2002165752 A JP 2002165752A JP 2002165752 A JP2002165752 A JP 2002165752A JP 2004015404 A JP2004015404 A JP 2004015404A
Authority
JP
Japan
Prior art keywords
conductor
resonator
waveguide
strip line
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002165752A
Other languages
Japanese (ja)
Inventor
Takashi Hitai
比田井 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2002165752A priority Critical patent/JP2004015404A/en
Publication of JP2004015404A publication Critical patent/JP2004015404A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To convert the connection by matching a strip line configured to a substrate of a dielectric base such as a printed wiring board having three or more conductor layers with a post wall waveguide employing a coaxial-conductor array over a broadband or a desired pass bandwidth. <P>SOLUTION: The strip line 7 whose both ends are connected to a ground conductor layer 1a or 1b and resonated at an operating frequency acts like a first resonator; a waveguide resonator wherein one end of the post wall waveguide is short-circuited by the coaxial-conductor array 3c, the other end is narrowed by a coaxial-conductor 3, and resonated at the operating frequency acts like a second resonator; the first resonator is disposed in the second resonator to couple the two resonators thereby configuring a band pass filter of 2 sections and obtaining a broadband or a desired pass bandwidth. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、印刷配線基板等に形成したポスト壁導波管と、ストリップ線路とを広帯域または所望の通過帯域幅で整合させて接続変換するストリップ線路とポスト壁導波管との接続変換構造に関する。
【0002】
【従来の技術】
ミリ波・準ミリ波帯域の高周波回路では、マイクロストリップ線路よりも損失を低減させたり、有害な回路間の結合を避けるため、ストリップ線路が使われる他、更に損失の少ない線路としてポスト壁導波管が使われる。また、これらストリップ線路とポスト壁導波管を一つの回路基板内で使用することも考えられる。なお、ストリップ線路は、別名トリプレート線路と呼ばれることもある。
【0003】
図3および図4はポスト壁導波管とストリップ線路とを一般的な技術で接続した場合の一例を示す図で、図3は側面断面図、図4は平面透視図である。
【0004】
ストリップ線路とポスト壁導波管を一つの基板内で混在させるのは、半導体や抵抗、コンデンサ等の集中定数部品を接続するのにマイクロストリップ線路が都合が良く、マイクロストリップ線路からストリップ線路への変換は簡単なことから、線路の長さが短いなど、損失があまり問題にならない場合にストリップ線路が使われる。
【0005】
一方、例えば無線機において、アンテナ端子に接続される入出力バンドパスフィルタや送受信切替え等に使われるサーキュレータ等は低損失であることが求められる。ところが、空洞共振器や誘電体共振器あるいは空洞導波管等、特別なものを使わずに低コスト化しようとするとき、ストリップ線路と同一基板内で実現でき、ストリップ線路より低損失なポスト壁導波管による導波管形バンドパスフィルタやサーキュレータを使うことが有利である。
【0006】
ここで、ポスト壁導波管とストリップ線路を混在させることのできる最小の基板条件は、図3および図4に示すように、グランド導体層1a,1bをポスト壁導波管のH面導体として使用するとともに、これらをストリップ線路の上下グランド導体としても使用することのできる導体3層を有する誘電体基板である。
【0007】
この場合、ポスト壁導波管の厚み、すなわち導波管のE面寸法は、不要モードが発生しないように、電気長で1/2波長未満とし、できるだけ厚くすることが誘電体損失を減らす意味で有効である。しかし、一般的に低損失の誘電体材料は高価であるため、損失の許す範囲で薄くしたく、例えば26GHz帯で比誘電率2.2のPTFEベースの基板を使用する場合でも1mm程度にしたいという事情がある。
【0008】
これに対し、ストリップ線路としては、主にこれに接続されるマイクロストリップ線路の都合から、図3に示す誘電体板2aの厚みをできるだけ薄くしたいという要望がある。
【0009】
なお、上述する都合とは、マイクロストリップ線路の輻射損失や有害な結合を減らし、伝送モードを安定にすることや、図5に示すようにベース導体8上に乗せた薄い半導体チップ9を信号導体4に接続するとき、一般に100μm以下の半導体チップ9の厚みに対して誘電体板2aの厚みを近づけ、接続のための例えばボンディングワイヤ10をできるだけ短くした場合等である。
【0010】
これらの事情を踏まえ、例えばプローブ結合を使った空洞導波管と同軸線路の接続変換例(図示せず)から類推すると、図3の側面透視図および図4の平面透視図に示すように、ポスト壁導波管の一部を貫通導体列3cと貫通導体3を使って、導波管としてのH面を所定の間隔S1に狭めてなる導波管形の共振器を形成し、この共振器の中にE面と平行に貫通導体によるプローブ5を設け、このプローブ5を信号ライン導体4に接続する構造が考えられる。
【0011】
【発明が解決しようとする課題】
ところで、前述したようにポスト壁導波管は、厚みを可能な範囲で薄くしたいとともに、前述した比誘電率2.2の基板でも1mm程度の厚みに抑えたい。しかしながら、この厚みは電気長で約1/8波長であり、E面に平行に立てたプローブ5の長さは当然1/8波長以下となってしまう。
【0012】
従って、ポスト壁導波管とプローブ5によるストリップ線路との結合が弱いため、貫通導体3による間隔S1を狭めて導波管共振器としてのQを高め、共振周波数のポイントで整合させるしかない。このように、導波管共振器のQを高めて整合させるため、例えば図8の曲線(A)に示す狭い単峰の通過特性となり、帯域幅を広くすることができない。
【0013】
なお、図3でプローブ5はグランド導体層1bに接続したが、これを例えばプローブ5の位置でグランド導体層1bの一部を削除して、開放形のプローブにしても、ポスト壁導波管との結合が弱いことには変わりない。
【0014】
このため、ポスト壁導波管とストリップ線路とを広帯域に接続する構造が求められていた。
【0015】
そこで、本発明は上記問題点に鑑みてなされたものであり、印刷配線基板等、誘電体板の両面および内層に導体層を設けた誘電体基板に対し、ポスト壁導波管とストリップ線路とを構成し、これらを広帯域に整合させて接続するストリップ線路とポスト壁導波管との接続変換構造を提供することを目的としている。
【0016】
【課題を解決するための手段】
上記目的を達成するため、本発明は、誘電体板2の両面にグランド導体層1a,1bを設け、前記両面のグランド導体層間を接続する柱状の貫通導体3を複数並べた貫通導体列3a,3bを2列配置し、前記両面のグランド導体層1a,1bを導波管のH面とし、前記貫通導体列3a,3bを導波管のE面とするポスト壁導波管と、
信号ライン導体4を二枚の誘電体板2a,2bで挟み、更に前記誘電体板の外側を二つのグランド導体層1a,1bで挟んだストリップ線路とを接続変換するストリップ線路とポスト壁導波管との接続変換構造において、
前記ポスト壁導波管内に設けられる共振器用ストリップ線路7の両端を、貫通導体6a,6bで前記二つのグランド導体層1a,1bのいずれか一方に接続してストリップ線路形の第一の共振器とし、この第一の共振器にストリップ線路の信号ライン導体4を接続し、
前記第一の共振器を含む前記ポスト壁導波管の一方の開口を貫通導体列3cで塞ぎ、この貫通導体列3cから所定の距離L1離れた位置でグランド導体層1a,1b間を接続する貫通導体3によって前記ポスト壁導波管のH面を所定の寸法S1に狭めた導波管形の第二の共振器とすることを特徴とする。
【0017】
【発明の実施の形態】
図1はポスト壁導波管の構成を示している。例えば印刷配線基板にように、図1に示す誘電体板2の両面にグランド導体層1a,1bをつけたものに対し、例えば樹脂ベース印刷配線基板のスルーホール加工や、セラミック基板のピアホール埋めのように、誘電体板2を貫通し、両面のグランド導体層1a,1bに接続した貫通導体3にて2列の貫通導体列3a,3bが形成される。これにより、貫通導体列3a,3bを導波管のE面とし、両面のグランド導体層1a,1bをH面とするポスト壁導波管が構成される。
【0018】
なお、貫通導体列3a,3b(後述する貫通導体列3cも含む)の貫通導体3間のピッチは、十分な電気壁となるように、通常使用周波数で1/4波長、できれば1/8波長以下にするのが好ましい。
【0019】
図2はストリップ線路の構成を示している。図2に示すように、ストリップ線路は、信号ライン導体4を二枚の誘電体板2a,2bで挟み、更に誘電体板2a,2bの外側を二つのグランド導体層1a,1bで挟んで構成される。
【0020】
なお、理想的なストリップ線路としては、二枚の誘電体板2a,2bを同じ厚さとし、グランド導体層1a,1b間による平行平板モードの漏れ出しを抑えたい。しかし、図3に示すように、誘電体板2a,2bの厚みを変える場合は、必要に応じて図7に示す貫通導体列3d,3eでストリップ線路をシールドする方法や、図6(b)に示すように導体層1dを追加する方法およびこれらを併用する方法などを採用すれば良い。
【0021】
図6(a),(b)および図7は本発明によるストリップ線路とポスト壁導波管との接続変換構造の実施の形態を示す図であり、図6は側面断面図、図7は平面透視図である。
【0022】
本発明の接続変換構造は、図6および図7に示すように、ポスト壁導波管(図1)とストリップ線路(図2)とを広帯域に、または所望の帯域幅で接続変換する構造として用いられるものである。
【0023】
図6(a)において、信号ライン導体4を2枚の誘電体板2a,2bで挟み、更にその外側をグランド導体層1a,1bで挟んでストリップ線路を形成するとともに、図7に示す貫通導体列3a,3bにてポスト壁導波管を形成する。なお、ストリップ線路は、図6(b)に示すように、グランド用の導体層1dを追加して前述の理想的なストリップ線路に近づけてもよい。
【0024】
図7において、前記ポスト壁導波管内に、所定の長さの共振器用ストリップ線路7を設け、この線路7の両端を貫通導体6a,6bで導体層1aまたは1bに接続し、使用周波数で共振するストリップ線路形の第一の共振器を構成する。図6は共振器用ストリップ線路7を貫通導体6a,6bにて導体層1aに接続した例である。
【0025】
図7において、前記第一の共振器を含むポスト壁導波管の一方の開口を貫通導体列3cで塞ぎ、この貫通導体列3cから所定の距離L1離れた位置で2枚のグランド導体層1a,1b間を接続する貫通導体3によって、ポスト壁導波管のH面を所定の寸法S1に狭め、使用周波数で共振する導波管形の第二の共振器を構成する。
【0026】
そして、貫通導体列3a〜3cの何れかの一部の隙間を広げ(出来れば1/4波長以下で、局所的には差し支え無い範囲まで広げ)、ストリップ線路の信号ライン導体4を第二の共振器内に導き、信号ライン導体4を前述したストリップ線路形の第一の共振器に接続する。図7の例では、貫通導体列3cの一部を広げて信号ライン導体4を第二の共振器内に通している。
【0027】
このように、二つの共振器は、第二の共振器内の空間を共有することによって結合し、第一の共振器にはストリップ線路が負荷として接続され、第二の共振器には貫通導体3による隙間S1を通じてポスト壁導波管が負荷として接続された2セクションのバンドパスフィルタとなる。
【0028】
一般に共振器を二つ使った2セクションのバンドパスフィルタは、二つの共振器をそれぞれの負荷Qに依存する臨界結合付近で結合するとき、図8の曲線(B)に示すように通過特性の平坦部分、すなわち帯域幅を最大にすることができること、また二つの共振器の負荷Qが低いほど臨界結合時の帯域幅が広がること、および同じ負荷Qでも図8の曲線(A)に示す一つの共振器による単峰特性よりも、平坦部がはるかに広がった図8の曲線(B)に示す通過特性になることは周知の通りである。
【0029】
図9は第一の共振器の負荷Qの一般的な調整方法を示す平面図であり、図9(a),(b),(c)の順に負荷が重くなり負荷Qが下がる。
【0030】
第二の共振器の負荷Qは貫通導体3の間隔S1を広げるほど負荷が重くなり、負荷Qが下がる。
【0031】
また、二つの共振器の結合度は、第一の共振器の位置L2で調整でき、第二の共振器のほぼ中央に配置したときに最大の結合度が得られる。
【0032】
【発明の効果】
以上の説明で明らかなように、本発明の接続変換方法によれば、ポスト壁導波管とストリップ線路とを広帯域に接続変換することができ、例えば26GHz帯での実施で、リタンロス−15dB以下の比帯域を約20%以上確保することができた。
【0033】
また、以上は帯域幅をできるだけ広くすることに重点を置いて説明したが、例えば無線送受信には通常バンドパスフィルタが必要である。
【0034】
すなわち、送信機としては規定周波数以外のスプリアス成分を除去する必要があり、受信機としてはスプリアス感度の抑制や、目的外周波数である他の通信成分を除去して、これによる受信特性の悪化を防止するなどである。
【0035】
このために、本発明の接続変換構造がバンドパスフィルタの構成であることに注目し、これを所望の帯域幅になるように設計したり、必要に応じて3セクション以上のフィルタの一部とするなど、積極的に利用すれば、回路構成が縮小でき、低コスト化に寄与することもできる。
【図面の簡単な説明】
【図1】ポスト壁導波管の構造を示す図
【図2】ストリップ線路の構造を示す図
【図3】従来のストリップ線路とポスト壁導波管との接続変換構造を示す側面透視図
【図4】図3の平面透視図
【図5】半導体チップ搭載例を示す図
【図6】(a),(b) 本発明のストリップ線路とポスト壁導波管との接続変換構造を示す側面透視図
【図7】図6(a)の平面透視図
【図8】通過特性の一例を示す図
【図9】(a)〜(c) ストリップ線路形共振器の負荷Q調整方法の例を示す図
【符号の説明】
1a,1b…グランド導体層、2,2a,2b…誘電体板、3…貫通導体、3a,3b,3c…貫通導体列、4…信号ライン導体、5…プローブ、6a,6b…ストリップ線路形共振器用貫通導体、7…共振器用ストリップ線路、8…ベース板、9…半導体チップ、10…ボンディングワイヤ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection conversion structure between a strip line and a post wall waveguide for connecting and converting a post wall waveguide formed on a printed wiring board or the like and a strip line by matching them with a wide band or a desired pass bandwidth. .
[0002]
[Prior art]
In high-frequency circuits in the millimeter-wave and quasi-millimeter-wave bands, strip lines are used to reduce losses and avoid coupling between harmful circuits compared to microstrip lines. Tubes are used. It is also conceivable to use the stripline and the post-wall waveguide in one circuit board. It should be noted that the strip line is sometimes called a triplate line.
[0003]
3 and 4 are views showing an example in which a post-wall waveguide and a strip line are connected by a general technique. FIG. 3 is a side sectional view, and FIG. 4 is a plan perspective view.
[0004]
Mixing a stripline and a post-wall waveguide in one substrate is because a microstrip line is convenient for connecting lumped constant components such as semiconductors, resistors, and capacitors. Since the conversion is simple, a strip line is used when the loss is not a problem, such as when the line length is short.
[0005]
On the other hand, for example, in a wireless device, an input / output bandpass filter connected to an antenna terminal and a circulator used for switching between transmission and reception are required to have low loss. However, when trying to reduce the cost without using a special resonator such as a cavity resonator, a dielectric resonator, or a cavity waveguide, the post wall can be realized in the same substrate as the strip line and has lower loss than the strip line. It is advantageous to use a waveguide-type bandpass filter or circulator with a waveguide.
[0006]
Here, the minimum substrate condition in which the post-wall waveguide and the strip line can be mixed is as shown in FIGS. 3 and 4 by using the ground conductor layers 1a and 1b as H-plane conductors of the post-wall waveguide. This is a dielectric substrate having three conductor layers which can be used as well as upper and lower ground conductors of a strip line.
[0007]
In this case, the thickness of the post-wall waveguide, that is, the E-plane dimension of the waveguide, is set to an electric length of less than 1/2 wavelength so that unnecessary modes do not occur. Is effective in However, since a low-loss dielectric material is generally expensive, it is desirable to reduce the thickness as far as the loss allows, for example, to set the thickness to about 1 mm even when a PTFE-based substrate having a relative dielectric constant of 2.2 in a 26 GHz band is used. There are circumstances.
[0008]
On the other hand, there is a demand that the thickness of the dielectric plate 2a shown in FIG. 3 be made as small as possible mainly because of the microstrip line connected to the strip line.
[0009]
The above-mentioned convenience means that the radiation loss and harmful coupling of the microstrip line are reduced and the transmission mode is stabilized, and a thin semiconductor chip 9 mounted on the base conductor 8 as shown in FIG. 4, the thickness of the dielectric plate 2a is generally made closer to the thickness of the semiconductor chip 9 of 100 μm or less, for example, when the bonding wires 10 for connection are made as short as possible.
[0010]
Based on these circumstances, for example, by analogy with a connection conversion example (not shown) of a hollow waveguide and a coaxial line using probe coupling, as shown in the side perspective view of FIG. 3 and the plan perspective view of FIG. A part of the post-wall waveguide is formed by using the through conductor array 3c and the through conductor 3 to form a waveguide-type resonator in which the H plane as the waveguide is narrowed to a predetermined interval S1. A structure is conceivable in which a probe 5 made of a through conductor is provided in the vessel in parallel with the E plane, and this probe 5 is connected to the signal line conductor 4.
[0011]
[Problems to be solved by the invention]
By the way, as described above, it is desired that the post-wall waveguide be as thin as possible, and that the substrate having the relative dielectric constant of 2.2 be suppressed to about 1 mm. However, this thickness is about 1/8 wavelength in electrical length, and the length of the probe 5 set in parallel with the E plane is naturally 1/8 wavelength or less.
[0012]
Therefore, since the coupling between the post-wall waveguide and the strip line by the probe 5 is weak, there is no other way but to narrow the interval S1 by the through conductor 3 to increase Q as the waveguide resonator, and to match at the resonance frequency point. As described above, since the Q of the waveguide resonator is increased and matched, a narrow single-peak transmission characteristic shown in, for example, a curve (A) of FIG. 8 is obtained, and the bandwidth cannot be widened.
[0013]
Although the probe 5 is connected to the ground conductor layer 1b in FIG. 3, for example, a part of the ground conductor layer 1b may be deleted at the position of the probe 5 to form an open probe. Is still weak.
[0014]
Therefore, a structure for connecting the post-wall waveguide and the strip line in a wide band has been required.
[0015]
Therefore, the present invention has been made in view of the above-described problems, and a post-wall waveguide and a stripline are used for a dielectric substrate having a conductor layer on both surfaces and an inner layer of a dielectric plate such as a printed wiring board. It is an object of the present invention to provide a connection conversion structure between a strip line and a post-wall waveguide for connecting these by matching them in a wide band.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a through conductor array 3a in which ground conductor layers 1a and 1b are provided on both surfaces of a dielectric plate 2 and a plurality of columnar through conductors 3 connecting the ground conductor layers on both surfaces are arranged. 3b, a post-wall waveguide in which the ground conductor layers 1a, 1b on both sides are the H plane of the waveguide, and the through conductor rows 3a, 3b are the E plane of the waveguide;
A strip line and a post-wall waveguide for connecting and converting a signal line conductor 4 between two dielectric plates 2a and 2b and further connecting and converting a strip line having the outside of the dielectric plate between two ground conductor layers 1a and 1b. In the connection conversion structure with the pipe,
Both ends of a resonator strip line 7 provided in the post-wall waveguide are connected to one of the two ground conductor layers 1a, 1b by through conductors 6a, 6b to form a strip line type first resonator. And a signal line conductor 4 of a strip line is connected to the first resonator,
One opening of the post wall waveguide including the first resonator is closed with a through conductor array 3c, and the ground conductor layers 1a and 1b are connected at a position separated by a predetermined distance L1 from the through conductor array 3c. It is characterized in that the H-plane of the post wall waveguide is narrowed to a predetermined size S1 by a through conductor 3 to form a waveguide-type second resonator.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the configuration of a post-wall waveguide. For example, as in the case of a printed wiring board, the ground conductor layers 1a and 1b are provided on both surfaces of the dielectric plate 2 shown in FIG. 1, for example, through-hole processing of a resin-based printed wiring board or filling of a peer hole in a ceramic substrate. As described above, two through conductor rows 3a and 3b are formed by the through conductors 3 penetrating the dielectric plate 2 and connected to the ground conductor layers 1a and 1b on both surfaces. As a result, a post-wall waveguide having the through conductor rows 3a and 3b as the E plane of the waveguide and the ground conductor layers 1a and 1b on both sides as the H plane is formed.
[0018]
The pitch between the penetrating conductors 3 of the penetrating conductor rows 3a and 3b (including the penetrating conductor row 3c to be described later) is usually 通常 wavelength, preferably 1 / wavelength at a used frequency so as to have a sufficient electric wall. It is preferable to set the following.
[0019]
FIG. 2 shows a configuration of the strip line. As shown in FIG. 2, the strip line is configured such that the signal line conductor 4 is sandwiched between two dielectric plates 2a and 2b, and the outside of the dielectric plates 2a and 2b is sandwiched between two ground conductor layers 1a and 1b. Is done.
[0020]
In addition, as an ideal strip line, it is desired that the two dielectric plates 2a and 2b have the same thickness and leakage in the parallel plate mode between the ground conductor layers 1a and 1b is suppressed. However, as shown in FIG. 3, when the thickness of the dielectric plates 2a and 2b is changed, a method of shielding the strip line with the through conductor rows 3d and 3e shown in FIG. As shown in (1), a method of adding the conductor layer 1d and a method of using them in combination may be adopted.
[0021]
6 (a), 6 (b) and 7 are views showing an embodiment of a connection conversion structure between a stripline and a post wall waveguide according to the present invention, FIG. 6 is a side sectional view, and FIG. It is a perspective view.
[0022]
As shown in FIGS. 6 and 7, the connection conversion structure of the present invention is a structure for connecting and converting a post-wall waveguide (FIG. 1) and a stripline (FIG. 2) in a wide band or with a desired bandwidth. What is used.
[0023]
6A, the signal line conductor 4 is sandwiched between two dielectric plates 2a and 2b, and the outside thereof is sandwiched between ground conductor layers 1a and 1b to form a strip line. The columns 3a and 3b form a post wall waveguide. As shown in FIG. 6B, the strip line may be made closer to the ideal strip line by adding a conductor layer 1d for ground.
[0024]
In FIG. 7, a resonator strip line 7 of a predetermined length is provided in the post-wall waveguide, and both ends of the line 7 are connected to the conductor layer 1a or 1b by through conductors 6a and 6b, and resonance occurs at the used frequency. A first resonator of a strip line type is formed. FIG. 6 shows an example in which the resonator strip line 7 is connected to the conductor layer 1a by through conductors 6a and 6b.
[0025]
In FIG. 7, one opening of the post-wall waveguide including the first resonator is closed with a through conductor array 3c, and two ground conductor layers 1a are separated from the through conductor array 3c by a predetermined distance L1. , 1b, the H-plane of the post wall waveguide is narrowed to a predetermined dimension S1 to constitute a waveguide-type second resonator that resonates at the used frequency.
[0026]
Then, the gap of any part of the through conductor rows 3a to 3c is widened (preferably, it is expanded to a range of not more than 1/4 wavelength and locally not hindered), and the signal line conductor 4 of the strip line is changed to the second. The signal line conductor 4 is guided into the resonator, and is connected to the strip-line type first resonator described above. In the example of FIG. 7, the signal line conductor 4 is passed through the second resonator by expanding a part of the through conductor row 3c.
[0027]
As described above, the two resonators are coupled by sharing the space in the second resonator, a strip line is connected as a load to the first resonator, and a through conductor is connected to the second resonator. 3, the post-wall waveguide becomes a two-section bandpass filter connected as a load through the gap S1.
[0028]
In general, a two-section bandpass filter using two resonators has a pass characteristic as shown by a curve (B) in FIG. 8 when the two resonators are coupled near critical coupling depending on the respective loads Q. The flat portion, that is, the bandwidth can be maximized, the lower the load Q of the two resonators, the wider the bandwidth at the time of critical coupling, and the same load Q has one of the characteristics shown in the curve (A) of FIG. It is well known that the bandpass characteristic shown in the curve (B) of FIG. 8 in which the flat portion is much wider than the single-peak characteristic of the two resonators is obtained.
[0029]
FIG. 9 is a plan view showing a general method of adjusting the load Q of the first resonator. The load becomes heavier and the load Q decreases in the order of FIGS. 9A, 9B, and 9C.
[0030]
The load Q of the second resonator increases as the distance S1 between the through conductors 3 increases, and the load Q decreases.
[0031]
Further, the degree of coupling between the two resonators can be adjusted at the position L2 of the first resonator, and the maximum degree of coupling can be obtained when the two resonators are arranged substantially at the center.
[0032]
【The invention's effect】
As is clear from the above description, according to the connection conversion method of the present invention, the post-wall waveguide and the strip line can be connected and converted in a wide band. For example, in the 26 GHz band, the return loss is -15 dB or less. Of about 20% or more could be secured.
[0033]
Although the above description has been made with emphasis on making the bandwidth as wide as possible, for example, wireless transmission and reception usually require a bandpass filter.
[0034]
In other words, it is necessary for the transmitter to remove spurious components other than the specified frequency, and for the receiver, it is necessary to suppress spurious sensitivity and remove other communication components that are unintended frequencies, thereby deteriorating the reception characteristics. And so on.
[0035]
For this purpose, attention is paid to the fact that the connection conversion structure of the present invention is a configuration of a band-pass filter, which is designed so as to have a desired bandwidth, and if necessary, a part of a filter having three or more sections. If it is actively used, for example, the circuit configuration can be reduced, which can contribute to cost reduction.
[Brief description of the drawings]
FIG. 1 is a view showing the structure of a post wall waveguide. FIG. 2 is a view showing the structure of a strip line. FIG. 3 is a side perspective view showing a conventional connection conversion structure between a strip line and a post wall waveguide. FIG. 4 is a perspective plan view of FIG. 3. FIG. 5 is a view showing an example of mounting a semiconductor chip. FIGS. 6 (a) and 6 (b) are side views showing a connection conversion structure between a strip line and a post wall waveguide according to the present invention. FIG. 7 is a plan view of FIG. 6 (a). FIG. 8 is a view showing an example of a transmission characteristic. FIG. 9 (a) to FIG. 9 (c) are examples of a method of adjusting a load Q of a stripline resonator. Diagrams [Description of symbols]
1a, 1b: ground conductor layer, 2, 2a, 2b: dielectric plate, 3: through conductor, 3a, 3b, 3c: through conductor row, 4: signal line conductor, 5: probe, 6a, 6b: strip line type Resonator through conductor, 7: resonator strip line, 8: base plate, 9: semiconductor chip, 10: bonding wire.

Claims (1)

誘電体板(2)の両面にグランド導体層(1a,1b)を設け、前記両面のグランド導体層間を接続する柱状の貫通導体(3)を複数並べた貫通導体列(3a,3b)を2列配置し、前記両面のグランド導体層(1a,1b)を導波管のH面とし、前記貫通導体列(3a,3b)を導波管のE面とするポスト壁導波管と、
信号ライン導体(4)を二枚の誘電体板(2a,2b)で挟み、更に前記誘電体板の外側を二つのグランド導体層(1a,1b)で挟んだストリップ線路とを接続変換するストリップ線路とポスト壁導波管との接続変換構造において、
前記ポスト壁導波管内に設けられる共振器用ストリップ線路(7)の両端を、貫通導体(6a,6b)で前記二つのグランド導体層(1a,1b)のいずれか一方に接続してストリップ線路形の第一の共振器とし、この第一の共振器にストリップ線路の信号ライン導体(4)を接続し、
前記第一の共振器を含む前記ポスト壁導波管の一方の開口を貫通導体列(3c)で塞ぎ、この貫通導体列(3c)から所定の距離(L1)離れた位置でグランド導体層(1a,1b)間を接続する貫通導体(3)によって前記ポスト壁導波管のH面を所定の寸法(S1)に狭めた導波管形の第二の共振器とすることを特徴とするストリップ線路とポスト壁導波管との接続変換構造。
Ground conductor layers (1a, 1b) are provided on both sides of the dielectric plate (2), and two through conductor rows (3a, 3b) in which a plurality of columnar through conductors (3) connecting the ground conductor layers on both sides are arranged. A post-wall waveguide in which the ground conductor layers (1a, 1b) on both sides are arranged as the H plane of the waveguide, and the through conductor arrays (3a, 3b) are arranged on the E plane of the waveguide;
A strip for connecting and converting a signal line conductor (4) between two dielectric plates (2a, 2b) and a strip line having the outside of the dielectric plate sandwiched between two ground conductor layers (1a, 1b) In the connection conversion structure between the line and the post wall waveguide,
Both ends of a resonator strip line (7) provided in the post wall waveguide are connected to one of the two ground conductor layers (1a, 1b) by through conductors (6a, 6b) to form a strip line. And a signal line conductor (4) of a strip line is connected to the first resonator,
One opening of the post wall waveguide including the first resonator is closed by a through conductor row (3c), and a ground conductor layer (3) is separated from the through conductor row (3c) by a predetermined distance (L1). 1a, 1b) is a waveguide-type second resonator in which the H-plane of the post wall waveguide is narrowed to a predetermined size (S1) by a through conductor (3) connecting between the post-wall waveguides. Connection conversion structure between stripline and post-wall waveguide.
JP2002165752A 2002-06-06 2002-06-06 Connection conversion structure between strip line and post wall waveguide Pending JP2004015404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165752A JP2004015404A (en) 2002-06-06 2002-06-06 Connection conversion structure between strip line and post wall waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165752A JP2004015404A (en) 2002-06-06 2002-06-06 Connection conversion structure between strip line and post wall waveguide

Publications (1)

Publication Number Publication Date
JP2004015404A true JP2004015404A (en) 2004-01-15

Family

ID=30433518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165752A Pending JP2004015404A (en) 2002-06-06 2002-06-06 Connection conversion structure between strip line and post wall waveguide

Country Status (1)

Country Link
JP (1) JP2004015404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732159A1 (en) 2005-06-06 2006-12-13 Fujitsu Limited Waveguide substrate and high-frequency circuit module
JP2009055574A (en) * 2007-08-29 2009-03-12 Kyocera Corp Branched waveguide line, and multi-layer wiring and antenna substrates having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732159A1 (en) 2005-06-06 2006-12-13 Fujitsu Limited Waveguide substrate and high-frequency circuit module
US7439822B2 (en) 2005-06-06 2008-10-21 Fujitsu Limited Waveguide substrate having two slit-like couplings and high-frequency circuit module
JP2009055574A (en) * 2007-08-29 2009-03-12 Kyocera Corp Branched waveguide line, and multi-layer wiring and antenna substrates having the same
JP4722097B2 (en) * 2007-08-29 2011-07-13 京セラ株式会社 Branched waveguide line and multilayer wiring board and antenna board having the same

Similar Documents

Publication Publication Date Title
RU2703604C1 (en) Transient device comprising a contactless transition or connection between siw and a waveguide or antenna
US8089327B2 (en) Waveguide to plural microstrip transition
US7057483B2 (en) High-frequency circuit device and high-frequency circuit module
US7227428B2 (en) RF module and mode converting structure having magnetic field matching and penetrating conductor patterns
JP2020532891A (en) Transition device, transition structure, and integrated package structure
US7113060B2 (en) Dielectric waveguide filter with inductive windows and coplanar line coupling
US8358182B2 (en) Duplexer for integration in communication terminals
US6396363B1 (en) Planar transmission line to waveguide transition for a microwave signal
KR101812490B1 (en) Designs and methods to implement surface mounting structures of SIW
JPH10303640A (en) Antenna system
JP2003289201A (en) Post-wall waveguide and junction conversion structure for cavity waveguide
JP4097138B2 (en) Impedance matching circuit, semiconductor element using the same, and wireless communication apparatus
US8022784B2 (en) Planar transmission line-to-waveguide transition apparatus having an embedded bent stub
JP3923891B2 (en) Connection structure of cavity waveguide and dielectric waveguide
Sheta et al. A new class of miniature quadrature couplers for MIC and MMIC applications
US20030117245A1 (en) Transmission line and transceiver
KR20190056884A (en) Transition structure between micro stripline and rectangular waveguide
JP2004015404A (en) Connection conversion structure between strip line and post wall waveguide
JP2000252712A (en) Connection structure between dielectric waveguide line and high frequency line conductor
JP4114001B2 (en) Radio signal transmission / reception circuit and radio signal transmission / reception device
Hammou et al. V-band microstrip to standard rectangular waveguide transition using a substrate integrated waveguide (SIW)
Mallick et al. Transitions from SIW to Various Transmission Lines for Substrate Integrated Circuits
Lee et al. A very compact 62‐GHz transmitter LTCC SiP module for wireless terminals applications
KR20190056892A (en) Transition structure between suspended stripline and rectangular waveguide
CN114335953B (en) Transition structure and application thereof, and dual-mode resonant waveguide excitation method