JP2004015072A - Nitride semiconductor light emitting element - Google Patents

Nitride semiconductor light emitting element Download PDF

Info

Publication number
JP2004015072A
JP2004015072A JP2003334578A JP2003334578A JP2004015072A JP 2004015072 A JP2004015072 A JP 2004015072A JP 2003334578 A JP2003334578 A JP 2003334578A JP 2003334578 A JP2003334578 A JP 2003334578A JP 2004015072 A JP2004015072 A JP 2004015072A
Authority
JP
Japan
Prior art keywords
layer
well
nitride semiconductor
grown
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003334578A
Other languages
Japanese (ja)
Inventor
Shinichi Nagahama
長濱 慎一
Shuji Nakamura
中村 修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003334578A priority Critical patent/JP2004015072A/en
Publication of JP2004015072A publication Critical patent/JP2004015072A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the output of a nitride semiconductor light emitting element containing In (indium) in a well layer. <P>SOLUTION: In the nitride semiconductor light emitting element having an active layer on a substrate according to the present invention, the active layer includes the well layer and a barrier layer and at the same time, includes an intermediate layer between the well layer and the barrier layer arranged in order from the substrate side, the well layer contains In, and the band gap energy of the intermediate layer is equal to or higher than that of the barrier layer. By thus providing the intermediate layer between the well layer and the barrier layer, the crystallinity of the barrier layer becomes excellent and the output of light emission is improved. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は窒化物半導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなる発光ダイオード(LED)、レーザダイオード(LD)、スーパールミネッセントダイオード(SLD)等の発光素子及びその発光素子を用いたフルカラーディスプレイ、信号灯のような発光装置に関する。 The present invention relates to a light emitting diode (LED), a laser diode (LD), a superluminescent diode (SLD), etc. composed of a nitride semiconductor (InXAlYGa1-X-YN, 0≤X, 0≤Y, X + Y≤1). The present invention relates to an element and a light emitting device such as a signal lamp and a full color display using the light emitting element.

 窒化物半導体は青色LEDとして1993年末より実用化され、続いて緑色LEDとして94年中旬に実用化され、GaAs、AlInGaP系赤色LEDと共に、フルカラーディスプレイとして、既に各所に設置されている。現在の青色LED、緑色LEDはInGaN井戸層1層の単一量子井戸構造、又はInGaN井戸層と、GaN若しくはInGaN障壁層とが積層された多重量子井戸構造からなる活性層が、n型とp型の窒化物半導体で挟まれたダブルへテロ構造を有する。LEDの発光波長は井戸層のIn組成を増減することによって決定されている。 Nitride semiconductors have been put into practical use as blue LEDs since the end of 1993, and subsequently put into practical use as green LEDs in the middle of 1994. Together with GaAs and AlInGaP-based red LEDs, they have already been installed in various places as full-color displays. The current blue LED and green LED have an active layer composed of a single quantum well structure having one InGaN well layer or a multiple quantum well structure in which an InGaN well layer and a GaN or InGaN barrier layer are stacked. It has a double hetero structure sandwiched between the mold nitride semiconductors. The emission wavelength of the LED is determined by increasing or decreasing the In composition of the well layer.

 窒化物半導体のようなワイドギャップ半導体では、その活性層の組成の一つであるIn組成を変化させることにより、その発光領域が紫外〜赤色にまで変化することが知られている。異なるIn組成を有する活性層を複数層形成して単一の発光素子で多色発光させる技術が、例えば特開平7−183576号公報に開示されている。また、青色LED、緑色LED、赤色LED3種類のLED素子を用いたディスプレイ装置が既に各所で設置されている。このディスプレイ装置の青色成分と緑色成分は窒化物半導体から成る。 It is known that, in a wide-gap semiconductor such as a nitride semiconductor, the emission region changes from ultraviolet to red by changing the In composition, which is one of the compositions of the active layer. A technique of forming a plurality of active layers having different In compositions to emit light of multiple colors with a single light emitting element is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-183576. In addition, display devices using three types of LED elements, blue LED, green LED, and red LED, have already been installed in various places. The blue component and the green component of this display device are made of a nitride semiconductor.

 また、LEDの他、我々は窒化物半導体基板の上に、活性層を含む窒化物半導体レーザ素子を作製して、世界で初めて室温での連続発振1万時間以上を達成したことを発表した(ICNS'97 予稿集,October 27-31,1997,P444-446、及びJpn.J.Appl.Phys.Vol.36(1997)pp.L1568-1571、Part2,No.12A,1 December 1997)。 In addition to LEDs, we announced that we fabricated a nitride semiconductor laser device containing an active layer on a nitride semiconductor substrate and achieved more than 10,000 hours of continuous oscillation at room temperature for the first time in the world ( ICNS'97 Proceedings, October 27-31, 1997, P444-446, and Jpn. J. Appl. Phys. Vol. 36 (1997) pp. L1568-1571, Part 2, No. 12A, 1 December 1997).

 このようにLEDでは既に窒化物半導体により、青色と緑色とが実用化されており、例えば20mAにおける青色LEDの出力は約5mW、緑色LEDでは約3mWである。さらに窒化物半導体の場合、黄緑色、黄色、橙色と順に長波長になるに従って、出力が低下する傾向にある。これは井戸層のIn組成を多くするに伴い井戸層の結晶性が悪くなるためである。 As described above, blue and green colors have already been put to practical use in LEDs using nitride semiconductors. For example, the output of a blue LED at 20 mA is about 5 mW, and that of a green LED is about 3 mW. Further, in the case of a nitride semiconductor, the output tends to decrease as the wavelength becomes longer in the order of yellow-green, yellow, and orange. This is because the crystallinity of the well layer deteriorates as the In composition of the well layer increases.

 例えば信号灯では黄色、若しくは黄橙が必要となるが、黄色を窒化物半導体で実現しようとすると、他の緑色LED、赤色LEDの出力に比較して、やや出力が不十分である。またフルカラーディスプレイでは緑色LEDの出力が向上すればさらに低消費電力が実現できる。本発明のこのような事情を鑑みて成されたものであり、その目的とするところは、井戸層にInを含む窒化物半導体発光素子の出力を向上させることにある。 For example, a signal lamp requires yellow or yellow-orange, but when trying to realize yellow with a nitride semiconductor, the output is somewhat insufficient compared to the outputs of other green LEDs and red LEDs. In a full-color display, lower power consumption can be realized if the output of the green LED is improved. The present invention has been made in view of such circumstances, and an object of the present invention is to improve the output of a nitride semiconductor light emitting device containing In in a well layer.

 本発明は、基板上に活性層を有する窒化物半導体発光素子において、前記活性層は井戸層と障壁層を有すると共に、基板側から順に配置された井戸層と障壁層との間にさらに中間層を有し、前記井戸層はInを含み、かつ前記中間層は前記障壁層とバンドギャップエネルギーが同じか、若しくはそれよりも大きいことを特徴とする。 The present invention provides a nitride semiconductor light emitting device having an active layer on a substrate, wherein the active layer has a well layer and a barrier layer, and further has an intermediate layer between the well layer and the barrier layer arranged in order from the substrate side. Wherein the well layer contains In, and the intermediate layer has the same or larger band gap energy as the barrier layer.

 井戸層はInXGa1-XN(0<X<1)で構成することが望ましく、その膜厚は100オングストローム以下、さらに好ましくは70オングストローム以下最も好ましくは50オングストローム以下にすると量子効果により、高出力な発光素子が得られる。またその他、3元混晶のInAlN、4元混晶のInAlGaNで構成することもできる。 The well layer is preferably composed of InXGa1-XN (0 <X <1), and its thickness is preferably 100 Å or less, more preferably 70 Å or less, and most preferably 50 Å or less. An element is obtained. In addition, it may be made of ternary mixed crystal InAlN and quaternary mixed crystal InAlGaN.

 障壁層は井戸層よりも膜厚が厚いか、若しくはバンドギャップエネルギーが大きい窒化物半導体で形成し、好ましくはInYGa1-YN(0≦Y<1、Y<X)とする。障壁層の好ましい膜厚としては200オングストローム以下、さらに好ましくは100オングストローム以下、最も好ましくは70オングストローム以下にする。また障壁層を井戸層よりもバンドギャップエネルギーが大きい3元混晶のInAlN、4元混晶のInAlGaNとすることもできる。 (4) The barrier layer is formed of a nitride semiconductor having a thickness larger than that of the well layer or having a large band gap energy, and is preferably InYGa1-YN (0 ≦ Y <1, Y <X). The preferred thickness of the barrier layer is less than 200 angstroms, more preferably less than 100 angstroms, and most preferably less than 70 angstroms. Further, the barrier layer may be made of ternary mixed crystal InAlN and quaternary mixed crystal InAlGaN having a larger band gap energy than the well layer.

 なお、Inを含む窒化物半導体より成る井戸層を有する活性層において、長波長にする、即ち井戸層のIn組成を多くするに従って、井戸層数を多くする。これは、井戸層の結晶性に関係する。例えばInGaNではIn組成が多くなるに従って結晶性が悪くなり、発光素子の出力が低下する傾向にある。しかし、井戸層の上に井戸層よりもバンドギャップエネルギーが大きい障壁層を積層すると、その障壁層により井戸層の結晶性が改善される。つまり、障壁層は井戸層よりもIn量が少ないために結晶性がよく、その障壁層を積むことにより活性層全体の結晶性が良くなる。従ってIn組成の大きい井戸層では、井戸層を多くして、同時に障壁層を多くすることにより、井戸層の少ないものに比較して発光出力が向上する。また井戸層のIn組成を増加すると歪みが大きくなりピエゾ効果でも光らなくなる。このため井戸層を増やし、各井戸層に係る歪みを減少させて、ピエゾ効果を緩和することにより、さらに光らせるという作用もある。 In an active layer having a well layer made of a nitride semiconductor containing In, the number of well layers is increased as the wavelength is increased, that is, as the In composition of the well layer is increased. This relates to the crystallinity of the well layer. For example, in InGaN, as the In composition increases, the crystallinity deteriorates, and the output of the light emitting element tends to decrease. However, when a barrier layer having a larger band gap energy than the well layer is stacked on the well layer, the crystallinity of the well layer is improved by the barrier layer. That is, since the barrier layer has a smaller amount of In than the well layer, the crystallinity is good, and the crystallinity of the entire active layer is improved by stacking the barrier layer. Therefore, in a well layer having a large In composition, by increasing the number of the well layers and simultaneously increasing the number of the barrier layers, the light emission output is improved as compared with a well layer having a small number of the well layers. In addition, when the In composition of the well layer is increased, the strain increases and the light is not emitted even by the piezo effect. For this reason, the number of well layers is increased, the strain related to each well layer is reduced, and the piezo effect is alleviated, so that there is an effect of further shining.

 本発明では、さらに、井戸層と障壁層との間に、障壁層とバンドギャップエネルギーが同じか、若しくはそれよりも大きい中間層を挿入することにより、障壁層の結晶性が良くなり、発光出力が向上するのである。 According to the present invention, further, by inserting an intermediate layer having the same or larger band gap energy as that of the barrier layer between the well layer and the barrier layer, the crystallinity of the barrier layer is improved and the light emission output is improved. Is improved.

 図1は本実施例に係るLED素子の構造を示す模式的な断面図である。以下、この図を基に実施例1について説明する。 FIG. 1 is a schematic sectional view showing the structure of the LED element according to the present embodiment. Hereinafter, the first embodiment will be described with reference to FIG.

 1インチ角のSiドープGaNよりなる窒化物半導体基板1を用意する。この窒化物半導体基板1は、以下のようにして成長させたものである。
(窒化物半導体基板1)
 2インチφ、C面を主面とするサファイアよりなる異種基板1をMOVPE反応容器内にセットし、温度を500℃にして、トリメチルガリウム(TMG)、アンモニア(NH3)を用い、GaNよりなるバッファ層を200オングストロームの膜厚で成長させる。バッファ層成長後、温度を1050℃にして、同じくGaNよりなる下地層を4μmの膜厚で成長させる。
A nitride semiconductor substrate 1 made of 1-inch square Si-doped GaN is prepared. This nitride semiconductor substrate 1 is grown as follows.
(Nitride semiconductor substrate 1)
A 2 inch φ heterogeneous substrate 1 made of sapphire having a C-plane as a main surface is set in a MOVPE reaction vessel, the temperature is set to 500 ° C., and a buffer made of GaN using trimethylgallium (TMG) and ammonia (NH3) is used. The layer is grown to a thickness of 200 Å. After the growth of the buffer layer, the temperature is raised to 1050 ° C., and an underlayer of GaN is grown to a thickness of 4 μm.

 下地層成長後、ウェーハを反応容器から取り出し、この下地層の表面に、ストライプ幅10μm、ストライプ間隔(窓部)2μmのSiO2よりなる保護膜を形成する。保護膜形成後、ウェーハを再度MOVPEの反応容器内にセットし、温度を1050℃にして、TMG、アンモニアを用い、アンドープGaN層を5μm成長させ、SiO2の表面を覆う。成長後、ウェーハをMOVPE装置からHVPE装置に移送しGaメタルと、アンモニア、HCl、シランガスを用い、Siを1×1018/cm3ドープしたn型GaN層を200μmの膜厚で成長させる。成長後、サファイア基板側から研磨して、サファイア基板、バッファ層、下地層、保護膜を除去することにより、総膜厚170μmのSiドープGaNからなる窒化物半導体基板1を作製する。SiドープGaNのSi濃度は5×1017〜1×1019/cm3の範囲に調整することが望ましい。
(バッファ層2)
 以上のようにして作製した窒化物半導体基板1をMOVPE装置に移送し、アンモニアとTMG、不純物ガスとしてシランガスを用い、AS-GROWN側の窒化物半導体基板面に、1050℃でSiを1×1018/cm3ドープしたGaNよりなるバッファ層2を2μmの膜厚で成長させる。このように窒化物半導体と異なる材料よりなる異種基板上に、100μm以上の膜厚で基板となるような窒化物半導体を成長させ、その後異種基板を除去して窒化物半導体基板を作製した場合、その窒化物半導体基板のAS-GROWN面(異種基板除去側と反対側面)に、まずGaNを10μm以下の膜厚で成長させてバッファ層とすると、次に成長させる窒化物半導体の結晶性が良くなる傾向にある。
(活性層3)
 次に、800℃で、Siを1×1018/cm3ドープしたn型In0.2Ga0.8Nよりなる障壁層を100オングストロームの膜厚で成長させる。続いて750℃で、アンドープIn0.4Ga0.6Nよりなる井戸層を30オングストロームの膜厚で成長させる。次に温度を750℃に保持したままTMAを原料ガスに加え、アンドープAl0.1Ga0.9Nよりなる中間層を10オングストローム成長させる。次に温度を800℃に上昇してSiを1×1018/cm3ドープしたn型In0.2Ga0.8Nよりなる障壁層を100オングストローム成長させる。
After the growth of the underlayer, the wafer is taken out of the reaction vessel, and a protective film made of SiO2 having a stripe width of 10 μm and a stripe interval (window portion) of 2 μm is formed on the surface of the underlayer. After the formation of the protective film, the wafer is set again in the MOVPE reaction vessel, the temperature is set to 1050 ° C., and an undoped GaN layer is grown to a thickness of 5 μm using TMG and ammonia to cover the surface of SiO 2. After the growth, the wafer is transferred from the MOVPE apparatus to the HVPE apparatus, and an n-type GaN layer doped with 1 × 10 18 / cm 3 of Si is grown to a thickness of 200 μm using Ga metal, ammonia, HCl and silane gas. After the growth, the sapphire substrate is polished from the sapphire substrate side to remove the sapphire substrate, the buffer layer, the underlayer, and the protective film, thereby producing a nitride semiconductor substrate 1 made of Si-doped GaN having a total thickness of 170 μm. It is desirable that the Si concentration of Si-doped GaN be adjusted in the range of 5 × 10 17 to 1 × 10 19 / cm 3.
(Buffer layer 2)
The nitride semiconductor substrate 1 manufactured as described above is transferred to a MOVPE apparatus, and ammonia and TMG are used, and silane gas is used as an impurity gas. On the surface of the nitride semiconductor substrate on the AS-GROWN side, 1 × 10 18 Si is applied at 1050 ° C. A buffer layer 2 made of GaN doped with / cm 3 is grown to a thickness of 2 μm. When a nitride semiconductor such as a substrate having a thickness of 100 μm or more is grown on a heterogeneous substrate made of a material different from the nitride semiconductor in this way, and then the heterogeneous substrate is removed to produce a nitride semiconductor substrate, If GaN is first grown to a thickness of 10 μm or less on the AS-GROWN surface of the nitride semiconductor substrate (the side opposite to the side from which the heterogeneous substrate is removed) to form a buffer layer, then the crystallinity of the nitride semiconductor to be grown next is good. Tend to be.
(Active layer 3)
Next, at 800 ° C., a barrier layer made of n-type In0.2Ga0.8N doped with 1 × 10 18 / cm 3 of Si is grown to a thickness of 100 Å. Subsequently, at 750 ° C., a well layer made of undoped In0.4Ga0.6N is grown to a thickness of 30 Å. Next, while maintaining the temperature at 750 ° C., TMA is added to the source gas, and an intermediate layer made of undoped Al 0.1 Ga 0.9 N is grown to 10 Å. Next, the temperature is raised to 800 ° C., and a barrier layer made of n-type In0.2Ga0.8N doped with 1 × 10 18 / cm 3 of Si is grown to 100 Å.

 障壁層成長後、温度を750℃に下げ、続いてアンドープIn0.4Ga0.6Nよりなる井戸層を30オングストロームの膜厚で成長させる、続いて750℃にて、アンドープAl0.2Ga0.8Nよりなる中間層を10オングストローム成長させ、次に温度を800℃にしてSiドープIn0.01Ga0.99Nよりなる障壁層を100オングストローム成長させる。 After growth of the barrier layer, the temperature is lowered to 750 ° C., and then a well layer of undoped In0.4Ga0.6N is grown to a thickness of 30 Å, followed by an intermediate layer of undoped Al0.2Ga0.8N at 750 ° C. The layer is grown for 10 Å, and then the temperature is raised to 800 ° C. to grow the barrier layer made of Si-doped In0.01 Ga0.99 N to 100 Å.

 このようにして障壁+(井戸+中間+障壁)×3とを積層した総膜厚800オングストロームの多重量子井戸構造(井戸層数3)からなる活性層3を成長させる。 活性 Thus, an active layer 3 having a multiple quantum well structure (three well layers) having a total film thickness of 800 angstroms in which barrier + (well + intermediate + barrier) × 3 is stacked is grown.

 活性層3では、InGaNからなる井戸層と、井戸層よりもバンドギャップエネルギーが大きいか、若しくは膜厚が厚い障壁層との間に、30オングストローム以下で、障壁層とバンドギャップエネルギーが同一か、それよりも大きいAlGaN、GaN(AlXGa1-XN、0≦X<1)からなる中間層を成長させることが望ましい。一般に中間層の分解温度は井戸層よりも高い。従って、その分解温度の高い中間層の上にGaN、InGaN(この場合、In組成比は井戸層よりも小さい)等からなる障壁層を成長させると、障壁層を厚膜で成長させた場合に結晶性が良くなる。また井戸層と障壁層との間にAlを含む窒化物半導体層若しくはGaN層が存在すると、発光開始電圧が低下しやすい傾向にある。従って井戸層+中間層+障壁層を繰り返して積層した多重量子井戸構造の活性層を成長させることにより、長波長の素子が得られて、素子の出力が向上する。
(p側クラッド層4)
 続いて、850℃でMgを1×1019/cm3ドープしたp型Al0.05Ga0.95Nよりなるp側クラッド層4を0.1μm成長させる。なお、このp側クラッド層4は省略可能である。
(p側コンタクト層5)
 最後に、850℃でMgを1×1020/cm3ドープしたp型GaNよりなるp側コンタクト層5を500オングストロームの膜厚で成長させる。p側コンタクト層はp型のInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成することができ、好ましくはMgをドープしたGaN、InGaNとすれば、p電極6と最も好ましいオーミック接触が得られる。またMg濃度はVfを低下させる上でp側クラッド層4よりも大きくすることが望ましい。
In the active layer 3, between the well layer made of InGaN and the barrier layer having a larger band gap energy or a larger thickness than the well layer, the barrier layer has a band gap energy equal to or less than 30 angstroms, It is desirable to grow a larger intermediate layer made of AlGaN or GaN (Al x Ga 1 -xN, 0 ≦ x <1). Generally, the decomposition temperature of the intermediate layer is higher than that of the well layer. Therefore, when a barrier layer made of GaN, InGaN (in this case, the In composition ratio is smaller than that of the well layer) or the like is grown on the intermediate layer having a high decomposition temperature, when the barrier layer is grown as a thick film, Crystallinity is improved. In addition, when a nitride semiconductor layer or a GaN layer containing Al exists between the well layer and the barrier layer, the light emission starting voltage tends to decrease. Therefore, by growing an active layer having a multiple quantum well structure in which a well layer + intermediate layer + barrier layer is repeatedly stacked, a device having a long wavelength can be obtained, and the output of the device is improved.
(P-side cladding layer 4)
Subsequently, a p-side cladding layer 4 of p-type Al0.05Ga0.95N doped with Mg at 1.times.10.sup.19 / cm.sup.3 is grown at 850.degree. The p-side cladding layer 4 can be omitted.
(P-side contact layer 5)
Finally, a p-side contact layer 5 made of p-type GaN doped with Mg at 1 × 10 20 / cm 3 at 850 ° C. is grown to a thickness of 500 Å. The p-side contact layer can be composed of p-type InXAlYGa1-X-YN (0≤X, 0≤Y, X + Y≤1). Preferably, if GaN or InGaN doped with Mg is used, the p-electrode 6 The most favorable ohmic contact is obtained. It is desirable that the Mg concentration be higher than that of the p-side cladding layer 4 in order to lower Vf.

 成長後、ウェーハを反応容器から取り出し、最上層のp側コンタクト層5の表面にオーミック用のNi/Auからなる透光性のp電極6を200オングストロームの膜厚で形成し、その上にAuからなるボンディング用のpパッド電極7を形成する。一方窒化物半導体基板の裏面のほぼ全面にはTi/Alよりなるn電極8を形成する。 After the growth, the wafer is taken out of the reaction vessel, and a transmissive p-electrode 6 made of Ni / Au for ohmic purposes is formed on the surface of the uppermost p-side contact layer 5 to a thickness of 200 Å, and Au is formed thereon. A p pad electrode 7 for bonding is formed. On the other hand, an n-electrode 8 made of Ti / Al is formed on almost the entire back surface of the nitride semiconductor substrate.

 電極形成後、矩形状のチップに分離してLED素子としたところ、20mAにおいて520nmの緑色発光を示し、順方向電圧3.2V、発光出力4.2mWであった。 (5) After the electrodes were formed, the LED chip was separated into rectangular chips, which showed green light emission of 520 nm at 20 mA, a forward voltage of 3.2 V, and a light emission output of 4.2 mW.

 一方比較のため、井戸層の組成を同一組成とし、井戸層1層から成る単一量子井戸構造の活性層を成長させたLED素子は、20mAにおける順方向電圧は3.4Vで、発光出力は3.5mWであった。 On the other hand, for comparison, the LED element in which the composition of the well layer was the same and the active layer of a single quantum well structure composed of one well layer was grown, the forward voltage at 20 mA was 3.4 V, and the light emission output was It was 3.5 mW.

 また、前述の緑色LED素子とは別に、前述のLED素子を作製する工程においてLED活性層3を成長させる際、井戸層の組成をIn0.15Ga0.85Nとし、井戸層1層のみからなる単一量子井戸構造の青色LEDを作製する。この青色LEDは、20mAにおける順方向電圧は3.4V、発光出力は7mWであった。このように構造が同じである場合、波長が長くなるに従って井戸層の数を増やすと出力が向上する。 In addition, apart from the above-mentioned green LED element, when the LED active layer 3 is grown in the step of manufacturing the above-mentioned LED element, the composition of the well layer is In0.15Ga0.85N, and a single well layer consisting of only one well layer is formed. A blue LED having a quantum well structure is manufactured. This blue LED had a forward voltage of 3.4 V at 20 mA and an emission output of 7 mW. As described above, when the structure is the same, the output is improved by increasing the number of well layers as the wavelength becomes longer.

 さらにまた、前述の緑色LED素子とは別に、前述の緑色LED素子を作製する工程においてLED活性層3を成長させる工程を次のように行う。つまり、Siを1×1018/cm3ドープしたn型In0.2Ga0.8N障壁層を100オングストロームの膜厚で成長させ、続いて750℃で、アンドープIn0.6Ga0.4Nよりなる井戸層を30オングストローム成長させる。次に温度を750℃に保持したままTMAを原料ガスに加え、アンドープAl0.2Ga0.8Nよりなる第2の窒化物半導体層を10オングストローム成長させる。次に温度を800℃に上昇してSiを1×1018/cm3ドープしたn型In0.2Ga0.8Nよりなる障壁層(第3の窒化物半導体層)を100オングストローム成長させ、障壁+(井戸+第2+障壁)×5とを積層した総膜厚800オングストロームの多重量子井戸構造(井戸層数5)からなる活性層3を成長させる。このLED素子は650nmの赤色発光を示し、20mAにおいて、順方向電圧3.2V、発光出力1.5mWであった。 {Furthermore, separately from the above-mentioned green LED element, the step of growing the LED active layer 3 in the step of manufacturing the above-mentioned green LED element is performed as follows. That is, an n-type In0.2Ga0.8N barrier layer doped with 1.times.10.sup.18 / cm3 of Si is grown to a thickness of 100 .ANG., And a well layer of undoped In0.6Ga0.4N is grown at 750.degree. Let it. Next, while maintaining the temperature at 750 ° C., TMA is added to the source gas, and a second nitride semiconductor layer made of undoped Al0.2Ga0.8N is grown to 10 Å. Next, the temperature was raised to 800 ° C., and a barrier layer (third nitride semiconductor layer) made of n-type In0.2Ga0.8N doped with 1 × 10 18 / cm 3 of Si was grown to 100 Å, and barrier + (well + The active layer 3 having a multiple quantum well structure (the number of well layers: 5) having a total film thickness of 800 Å in which (second + barrier) × 5 is stacked is grown. This LED element emitted red light of 650 nm, and had a forward voltage of 3.2 V and an emission output of 1.5 mW at 20 mA.

 それに対し、同一組成のInGaN井戸層を有する単一量子井戸構造から成る赤色LEDは、順方向電圧3.5Vで発光出力0.5mWであった。 On the other hand, a red LED having a single quantum well structure having the same composition of InGaN well layers had a forward voltage of 3.5 V and an emission output of 0.5 mW.

 以上のようにして得られた井戸層1の青色LEDと、井戸層3の緑色LEDと、井戸層5の赤色LEDとを用いてフルカラーLEDディスプレイを作製したところ、従来の単一量子井戸構造の青色LED、緑色LED、赤色LEDを用いたディスプレイに比較して白色輝度で1.2倍以上向上し、消費電力で10%以上の削減ができた。 A full-color LED display was manufactured using the blue LED of the well layer 1, the green LED of the well layer 3, and the red LED of the well layer 5 obtained as described above. Compared to a display using a blue LED, a green LED, and a red LED, white luminance was improved by 1.2 times or more, and power consumption was reduced by 10% or more.

 実施例1において、緑色LEDの活性層を成長させる際に次のような工程を行う。つまり、800℃で、Siを1×1018/cm3ドープしたn型GaNよりなる障壁層を100オングストロームの膜厚で成長させ、続いて750℃で、アンドープIn0.4Ga0.6Nよりなる井戸層(第1の窒化物半導体層)を30オングストロームの膜厚で成長させる。次に温度を750℃に保持したまま、アンドープGaNよりなる第2の窒化物半導体層を10オングストローム成長させる。次に温度を800℃に上昇してSiを1×1018/cm3ドープしたn型GaNよりなる障壁層(第3の窒化物半導体層)を100オングストローム成長させる。 In the first embodiment, the following steps are performed when growing the active layer of the green LED. That is, at 800 ° C., a barrier layer made of n-type GaN doped with 1 × 10 18 / cm 3 of Si is grown to a thickness of 100 Å, and then at 750 ° C., a well layer made of undoped In0.4Ga0.6N (the 1 nitride semiconductor layer) is grown to a thickness of 30 Å. Next, while maintaining the temperature at 750 ° C., a second nitride semiconductor layer made of undoped GaN is grown by 10 Å. Next, the temperature is raised to 800 ° C., and a barrier layer (third nitride semiconductor layer) made of n-type GaN doped with 1 × 10 18 / cm 3 of Si is grown to 100 Å.

 その他は実施例1と同様にして緑色LEDを得たところ、実施例1の緑色LEDとほぼ同等の特性を有する緑色LEDが得られた。 Others A green LED was obtained in the same manner as in Example 1, and a green LED having substantially the same characteristics as the green LED of Example 1 was obtained.

 また、この緑色LEDと、実施例1で得られた青色LEDと、出力5mWのAlInGaP系赤色LED等とを用いて、フルカラーLEDディスプレイを作製したこところ、実施例1のディスプレイに比較して、少ない赤色LEDの個数で、白色輝度は2倍に向上し、消費電力もさらに少なくなった。 Further, a full-color LED display was manufactured using this green LED, the blue LED obtained in Example 1, an AlInGaP-based red LED with an output of 5 mW, and the like. With a small number of red LEDs, the white luminance was doubled and the power consumption was further reduced.

 また、図2は本発明の他の実施例を示す模式断面図である。この図は同一素子内において多色が発光できる窒化物半導体素子であり、基板10の上にn型コンタクト層11が積層され、そのn型コンタクト層11の上に独立した青色発光部分12B、13B、14Bと、緑色発光部分12G、13G、14Gと、赤色発光部分12R、13R、14Rとが形成されている。12はn型クラッド層であり、13はInGaNを含む活性層、14はp型クラッド層であり、それぞれダブルへテロ構造を有している。なお15はp電極、16はn電極である。青色発光部分の活性層13BはInGaN井戸層を2層有する多重量子井戸構造から成り、緑色発光部分の活性層13GはInGaN井戸層を3層有する多重量子井戸構造から成り、赤色発光部分の活性層13RはInGaN井戸層を5層有する多重量子井戸構造から成っている。それぞれの井戸層のIn組成は長波長のものほど多く調整する。本発明では同一素子に活性層を複数有する多色発光素子にも適用できる。 FIG. 2 is a schematic sectional view showing another embodiment of the present invention. This figure shows a nitride semiconductor device capable of emitting multicolor light in the same device, in which an n-type contact layer 11 is laminated on a substrate 10, and independent blue light-emitting portions 12B, 13B are provided on the n-type contact layer 11. , 14B, green light emitting portions 12G, 13G, 14G and red light emitting portions 12R, 13R, 14R. Reference numeral 12 denotes an n-type cladding layer, 13 denotes an active layer containing InGaN, and 14 denotes a p-type cladding layer, each of which has a double hetero structure. Note that 15 is a p-electrode and 16 is an n-electrode. The blue light emitting portion active layer 13B has a multiple quantum well structure having two InGaN well layers, the green light emitting portion active layer 13G has a multiple quantum well structure having three InGaN well layers, and a red light emitting portion active layer. 13R has a multiple quantum well structure having five InGaN well layers. The In composition of each well layer is adjusted to be longer as the wavelength becomes longer. The present invention can be applied to a multicolor light emitting element having a plurality of active layers in the same element.

 なお、本明細書では主としてLED素子について説明したが、本発明はLEDだけでなく、レーザ素子、SLD素子等にも適用可能であることはいうまでもない。 In addition, although the LED element has been mainly described in this specification, it goes without saying that the present invention can be applied not only to an LED but also to a laser element, an SLD element, and the like.

本発明の一実施例に係るLED素子の構造を示す模式断面図。FIG. 1 is a schematic cross-sectional view showing the structure of an LED element according to one embodiment of the present invention. 本発明の他の実施例に係るLED素子の構造を示す模式断面図。FIG. 9 is a schematic cross-sectional view illustrating a structure of an LED element according to another embodiment of the present invention.

符号の説明Explanation of reference numerals

 1・・・窒化物半導体基板
 2・・・バッファ層
 3・・・活性層
 4・・・p側クラッド層
 5・・・p側コンタクト層
 6・・・p電極
 7・・・pパッド電極
 8・・・・・・n電極

DESCRIPTION OF SYMBOLS 1 ... Nitride semiconductor substrate 2 ... Buffer layer 3 ... Active layer 4 ... p-side cladding layer 5 ... p-side contact layer 6 ... p-electrode 7 ... p-pad electrode 8 ..... n electrode

Claims (1)

基板上に活性層を有する窒化物半導体発光素子において、
 前記活性層は、井戸層と障壁層を有すると共に、基板側から順に配置された井戸層と障壁層との間にさらに中間層を有し、
 前記井戸層はInを含み、かつ
 前記中間層は、前記障壁層とバンドギャップエネルギーが同じか、若しくはそれよりも大きいことを特徴とする窒化物半導体発光素子。
In a nitride semiconductor light emitting device having an active layer on a substrate,
The active layer has a well layer and a barrier layer, and further has an intermediate layer between the well layer and the barrier layer arranged in order from the substrate side,
The nitride semiconductor light emitting device, wherein the well layer contains In, and the intermediate layer has the same or larger band gap energy as that of the barrier layer.
JP2003334578A 2003-09-26 2003-09-26 Nitride semiconductor light emitting element Pending JP2004015072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334578A JP2004015072A (en) 2003-09-26 2003-09-26 Nitride semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334578A JP2004015072A (en) 2003-09-26 2003-09-26 Nitride semiconductor light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13482398A Division JPH11330552A (en) 1998-05-18 1998-05-18 Nitride semiconductor light-emitting element and light-emitting device

Publications (1)

Publication Number Publication Date
JP2004015072A true JP2004015072A (en) 2004-01-15

Family

ID=30439131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334578A Pending JP2004015072A (en) 2003-09-26 2003-09-26 Nitride semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2004015072A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258994A (en) * 2008-08-29 2011-12-22 Toshiba Corp Semiconductor device
US20140034902A1 (en) * 2012-08-06 2014-02-06 Jung Hyun Hwang Light emitting device and light emitting device package
WO2016129493A1 (en) * 2015-02-10 2016-08-18 ウシオ電機株式会社 Semiconductor light emitting element
CN111508937A (en) * 2018-01-03 2020-08-07 首尔伟傲世有限公司 Light emitting diode pixel for display and display device
CN112970127A (en) * 2018-11-02 2021-06-15 首尔伟傲世有限公司 Light emitting element
US12009466B2 (en) 2022-11-08 2024-06-11 Seoul Viosys Co., Ltd. Light emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258994A (en) * 2008-08-29 2011-12-22 Toshiba Corp Semiconductor device
US20140034902A1 (en) * 2012-08-06 2014-02-06 Jung Hyun Hwang Light emitting device and light emitting device package
US9349914B2 (en) * 2012-08-06 2016-05-24 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
WO2016129493A1 (en) * 2015-02-10 2016-08-18 ウシオ電機株式会社 Semiconductor light emitting element
JP2016149399A (en) * 2015-02-10 2016-08-18 ウシオ電機株式会社 Semiconductor light emitting element
CN111508937A (en) * 2018-01-03 2020-08-07 首尔伟傲世有限公司 Light emitting diode pixel for display and display device
US11923348B2 (en) 2018-01-03 2024-03-05 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
CN112970127A (en) * 2018-11-02 2021-06-15 首尔伟傲世有限公司 Light emitting element
JP2022509740A (en) * 2018-11-02 2022-01-24 ソウル バイオシス カンパニー リミテッド Light emitting device
JP7460615B2 (en) 2018-11-02 2024-04-02 ソウル バイオシス カンパニー リミテッド light emitting device
US12009466B2 (en) 2022-11-08 2024-06-11 Seoul Viosys Co., Ltd. Light emitting device

Similar Documents

Publication Publication Date Title
JP3719047B2 (en) Nitride semiconductor device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP3622562B2 (en) Nitride semiconductor light emitting diode
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP3135041B2 (en) Nitride semiconductor light emitting device
JPH11330552A (en) Nitride semiconductor light-emitting element and light-emitting device
WO2013015035A1 (en) Semiconductor light-emitting element
JP2001237457A (en) Light-emitting element
JP2003017746A (en) Nitride semiconductor element
JP3660446B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2001102629A (en) Nitride semiconductor element
JP2002033512A (en) Nitride semiconductor light emitting diode
JP3651260B2 (en) Nitride semiconductor device
JP3951973B2 (en) Nitride semiconductor device
JPH11191639A (en) Nitride semiconductor device
JP3448196B2 (en) Nitride semiconductor light emitting device
JP4622466B2 (en) Nitride semiconductor device
JP2004015072A (en) Nitride semiconductor light emitting element
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
JP3314671B2 (en) Nitride semiconductor device
JP3857417B2 (en) Nitride semiconductor device
JP2009026865A (en) Manufacturing method of group iii nitride-based compound semiconductor light emitting element