JP2004014707A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004014707A
JP2004014707A JP2002164576A JP2002164576A JP2004014707A JP 2004014707 A JP2004014707 A JP 2004014707A JP 2002164576 A JP2002164576 A JP 2002164576A JP 2002164576 A JP2002164576 A JP 2002164576A JP 2004014707 A JP2004014707 A JP 2004014707A
Authority
JP
Japan
Prior art keywords
electrode
gate
semiconductor device
region
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002164576A
Other languages
Japanese (ja)
Inventor
Masamitsu Haruyama
春山 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002164576A priority Critical patent/JP2004014707A/en
Publication of JP2004014707A publication Critical patent/JP2004014707A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique which realizes the reduction of a chip size and realizes easily changing of a pad size without increasing the chip size. <P>SOLUTION: In a semiconductor device having a plurality of electrodes which become pads formed on the main surface of a semiconductor substrate, one of the electrodes constituting a plurality of the electrodes is arranged partially on the other electrode constituting a plurality of the electrodes via an insulation film. As for the semiconductor device having a power MISFET of mesh gate structure, e.g., a gate electrode can be arranged superposed with a source electrode by arranging the gate electrode partially on a source electrode via an interlayer insulation film by the above means, thereby the chip size can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置に関し、特に、パワートランジスタを有する半導体装置に適用して有効な技術に関するものである。
【0002】
【従来の技術】
電力増幅回路、電源回路、コンバータ或は電源保護回路等にはパワートランジスタが用いられているが、これらのパワートランジスタには大電力を扱うために高耐圧化及び大電流化が要求される。
【0003】
MISFET(Metal Insulator Semiconductor Field Effect Transistor)の場合には、大電流化を達成する方法として、チャネル幅を増大させることによって容易に達成できる。そして、このようなチャネル幅の増大を行なうことによってチップ面積が増大するのを回避するために、例えばメッシュゲート構造が用いられている。メッシュゲート構造では、ゲートが平面的に格子状に配置されており、このため単位チップ面積当りのチャネル幅を大きくすることができる。
【0004】
このようなメッシュゲート構造のパワーFETには、セルの集積度を向上させることが可能であり、加えてオン抵抗を低減させることができる等の理由からトレンチゲート構造のFETが採用されており、トレンチゲート構造のFETでは、半導体基板主面に延設した溝に絶縁膜を介してゲートとなる導体層を設け、前記主面の深層部をドレイン領域とし、前記主面の表層部をソース領域とし、前記ドレイン領域及びソース領域間の半導体層をチャネル形成領域とする単位セルを複数並列に接続してある。
【0005】
隣接するセルのトレンチゲートは互いに接続されて、外周のセルの各トレンチゲートが、半導体チップの外周部近傍にて、ゲート配線によってボンディングを行なうためのゲート電極に接続され、各セルのソース領域は、半導体基板主面上に絶縁膜を介して形成されたソース電極によって電気的に並列接続されている。
【0006】
半導体基板主面の全面には、保護絶縁膜が形成され、この保護絶縁膜に、ゲート電極及びソース電極を部分的に露出させる開口を設け、この開口によるゲート電極及びソース電極の露出部分が、ゲートパッド及びソースパッドとなり、このゲートパッド及びソースパッドにワイヤボンディング等により電気的な接続が行なわれる。
【0007】
また、ドレインの接続領域としては、半導体基板裏面の全面に、ドレイン領域と導通するドレイン電極が形成され、このドレイン電極を例えば導電性の接着材によってリードフレームに接続することによって電気的な接続が行なわれる。
【0008】
【発明が解決しようとする課題】
このようなパワートランジスタについても、チップサイズの縮小が求められているが、ソース電極についてはソース領域を並列接続するためにセル形成領域の全域に形成する必要があり、ゲートパッドについてはボンディングを行なうために最低限必要な面積を確保する必要がある。これらの制約によってチップサイズの縮小が難しくなっている。
【0009】
また、メッシュゲート構造のFETでは、形成された複数のセルの一部を電流検出用のセンスセルとして用い、このセンスセルに流れる電流から、メインセルに流れる電流を推定し、過電流を検知する過電流保護等が行なわれており、このセンスセルと外部の電流検出回路とを接続するセンス電極が必要となる。
【0010】
他に、動作時のトランジスタの温度を検知するための温度センサが形成されている場合には、この温度センサと外部の温度測定回路とを接続するセンサ電極が必要となる。更に、裏面に設けられているドレイン電極を表面にて接続する場合があり、こうした接続のためにドレインパッドを表面に設ける場合がある。
【0011】
これらセンス電極、センサ電極或いはドレインパッド等のように半導体基板主面上に設けるパッドの種類が増加することによって、パッドを形成するために必要な領域が増加する。その結果として、パッド領域の増加によってチップサイズが増加する、或いはチップサイズを変えなければソース領域として利用できる面積が減少し、耐圧等が低下するという問題がある。
【0012】
また、顧客の希望によりパッドのサイズの拡大を求められる場合があり、パッドサイズを拡大するためにチップサイズを変えたのでは、全ての設計を改めなくてはならないので開発コストが増加してしまう。
【0013】
本発明の課題は、このような問題を解決し、チップサイズの縮小を可能とし、チップサイズを増加させることなく、パッドサイズを容易に変更することが可能な技術を提供することにある。
本発明の前記ならびにその他の課題と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。
【0014】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。
半導体基板主面上にパッドとなる複数の電極が形成される半導体装置において、前記複数の電極を構成する一方の電極が、前記複数の電極を構成する他方の電極の上に、絶縁膜を介して部分的に配置されている。
【0015】
上述した手段によれば、例えばメッシュゲート構造のパワーMISFETを有する半導体装置について、ゲート電極を部分的にソース電極の上に層間絶縁膜を介して配置して、ソース電極と重ねてゲート電極を配置することができるので、チップサイズを縮小することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
なお、実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0017】
(実施の形態1)
図1は、本発明の一実施の形態であるトレンチゲート構造のパワーMISFETを有する半導体装置の概略構成を示す平面図であり、図2は、図1中のa−a線に沿った部分拡大縦断面図である。
【0018】
本実施の形態のMISFETは、例えば単結晶珪素からなるn+型半導体基体1に、例えばエピタキシャル成長によってエピタキシャル層2を形成した半導体基板に形成される。このMISFETは、半導体基板の外周に沿って矩形環状に設けられるフィールド絶縁膜3によって囲まれたセル形成領域(図1中に破線にて示す)内に、平面形状が多角形となるトレンチゲート構造の単位セルを規則的に複数配置し、各セルを並列接続したメッシュゲート構造で構成されている。
【0019】
各セルでは、半導体基体1上に形成されたn−型の半導体層がドレイン領域2aとなり、ドレイン領域2a上に形成されたp型の半導体層がチャネルの形成されるベース領域2bとなり、ベース領域2b上に形成されたn+型の半導体層がソース領域2cとなる縦型FETとなっている。
【0020】
トレンチゲート4は、半導体基板主面からドレイン領域2aに達する溝にゲート絶縁膜5を介して形成される。トレンチゲート4としては、例えば不純物が導入された多結晶珪素を用い、ゲート絶縁膜5としては、例えば、酸化珪素膜で構成されている。
【0021】
隣接するセルのトレンチゲート4は互いに接続されて、平面的には格子状に一体化されており、外周のセルの各トレンチゲート4が半導体チップの外周部近傍にて、例えば多結晶珪素を用いたゲート配線6と接続されている。
【0022】
ゲート配線6は、層間絶縁膜7を介して半導体基板上に形成され、フィールド絶縁膜3上にて例えばシリコンを含有させたアルミニウムを用いたゲート接続配線8と電気的に接続されている。
【0023】
このゲート接続配線と同層の金属膜を用いてソース電極9が形成されており、このソース電極9は、半導体基板主面上に層間絶縁膜7を介して各セル形成領域の上層に形成され、コンタクト領域2dを介してソース電極9と各セルのソース領域2cとが接続されており、このソース電極9によって各セルのソース領域2cが並列に接続されている。また、このソース電極9は、ソースとなる第3半導体層2cの他に、ベース電位を一定とするために、ベース領域2bにも電気的に接続されている。
【0024】
ゲート接続配線8,ソース電極9は、例えば酸化珪素膜及びポリイミドを用いた保護絶縁膜10によって覆われており、この保護絶縁膜10に、ゲート接続配線8及びソース電極9を部分的に露出させる開口を設け、この開口によって露出する部分のソース電極9が、ソースの接続領域であるソースパッドとなる。
【0025】
本実施の形態ではこの開口によって露出するゲート接続配線8に、保護絶縁膜10上に延在するゲート電極11が接続されており、このゲート電極11がトレンチゲート4の接続領域であるゲートパッドとなる。ゲート電極11は部分的にソース電極9の上に層間絶縁膜7を介して配置されており、ソース電極9と重ねてゲート電極11を配置することができるので、ゲート電極11の下部領域をセル形成領域として活用しチップサイズを縮小することができる。
【0026】
こうしたゲート電極11及びソース電極9にボンディングワイヤ12が接続されるが、ソース電極9は各セルのソース領域2cを接続するためにセル形成領域の全面に形成されており、パッドとして露出するボンディングに必要な領域は充分に確保されるので、ソース電極9を部分的に層間絶縁膜7にて覆うことによる影響はない。
【0027】
これに対して従来の半導体装置では、図3に概略構成の平面図及び図4に図3中のa−a線に沿った部分拡大縦断面図を示すように、本実施の形態のゲート接続配線8に相当する金属膜がゲート電極11´となっているために、ソース電極9とゲート電極11´とが同層に形成され、ソース電極9上にゲート電極11´を配置することはできなかったので、ゲート電極11´の下部領域に破線にて示すセル形成領域を配置することができなかった。
【0028】
なお、フィールド絶縁膜3の外周には半導体基板主面に設けたn+型の半導体領域13aに、ゲート接続配線8と同層の金属膜を用いた配線13bを接続したソースガードリング13が設けられている。
【0029】
また、矩形環状のフィールド絶縁膜3に沿って、その下部にはp型ウエル14が形成されており、このp型ウエル14によって、フィールド絶縁膜3下に空乏層をなだらかに伸ばして空乏層の不連続を防止することができるので、トレンチゲート4終端部の電界を緩和する電界緩和部としてp型ウエル14が機能する。
【0030】
ドレインの接続領域としては、半導体基板裏面の全面に、n+型半導体基体1と導通するドレイン電極15が、例えばニッケル,チタン,ニッケル,金を積層した積層膜として形成され、このドレイン電極15を例えば導電性の接着材によってリードフレーム等に接続することによって電気的な接続が行なわれる。
【0031】
また、前述したように、センス電極16が必要となる場合、セル形成領域に設けられたダイオード等の温度センサ17と外部の温度測定回路とを接続するセンサ電極18,19を設ける場合、裏面に設けられているドレイン電極15を表面にて接続する接地電極20を半導体基板主面側に設ける場合であっても、これらのパッドをゲート電極11と同様に部分的にソース電極9の上に層間絶縁膜7を介して配置することによって、パッド領域の増加によってチップサイズが増加するのを回避することできる。
【0032】
また、本実施の形態の半導体装置では、顧客の希望によりパッドのサイズの拡大を求められた場合にも、保護絶縁膜10及びゲート電極11のパターニングを変更するだけで容易に対処することが可能である。加えて、高速化等のために容量の低減を求められる場合には、ゲート電極11のパターニングを変えることによって、図5中に破線にて示すように拡張されたゲート電極11を実線にて示すように縮小して寄生容量を低減させることも容易である。
【0033】
加えて、図6に縦断面図を示すように、ゲート電極11と同層の金属膜21をソース電極9上に部分的に形成し、この金属膜21をソースパッドとして用いてソース電極を二層化することによって、新たに工程を追加することなく、ソース抵抗を低減させることが可能となる。
【0034】
以上、本発明者によってなされた発明を、前記実施の形態に基づき具体的に説明したが、本発明は、前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
例えば本発明は、プレーナ型のセルを有するパワーMISFETを有する半導体装置にも適用が可能であり、更に、IGBT(Integrated Gate Bipolar Transistor)等を設けた半導体装置にも適用が可能である。
【0035】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
(1)本発明によれば、ソース電極と重ねてゲート電極を配置することができるという効果がある。
(2)本発明によれば、上記効果(1)により、ゲート電極の下に位置する領域をセル形成領域として活用し、チップサイズを縮小することができるという効果がある。
(3)本発明によれば、上記効果(1)により、センス電極、センサ電極、接地電極等を半導体基板主面側に設ける場合であっても、パッド領域の増加によってチップサイズが増加するのを回避することできるという効果がある。
(4)本発明によれば、上記効果(1)により、パッドのサイズの変更を求められた場合にも、容易に対処することができるという効果がある。
(5)本発明によれば、ソース電極を二層化することによって、新たに工程を追加することなく、ソース抵抗を低減させることが可能となるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施の形態であるトレンチゲート構造のパワーMISFETを有する半導体装置の概略構成を示す平面図である。
【図2】図1中のa−a線に沿った部分拡大縦断面図である。
【図3】従来のトレンチゲート構造のパワーMISFETを有する半導体装置の概略構成を示す平面図である。
【図4】図3中のa−a線に沿った部分拡大縦断面図である。
【図5】本発明の一実施の形態であるトレンチゲート構造のパワーMISFETを有する半導体装置の変形例を示す縦断面図である。
【図6】本発明の一実施の形態であるトレンチゲート構造のパワーMISFETを有する半導体装置の変形例を示す縦断面図である。
【符号の説明】
1…半導体基体、2…エピタキシャル層、2a…ドレイン領域、2b…ベース領域、2c…ソース領域、2d…コンタクト領域、3…フィールド絶縁膜、4…トレンチゲート、5…ゲート絶縁膜、6…ゲート配線、7…層間絶縁膜、8…ゲート接続配線、9…ソース電極、10…保護絶縁膜、11,11´…ゲート電極、12…ボンディングワイヤ、13…ソースガードリング、14…ウエル、15…ドレイン電極、16…センス電極、17…温度センサ、18,19…センサ電極、20…接地電極、21…金属膜。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly to a technique effective when applied to a semiconductor device having a power transistor.
[0002]
[Prior art]
Power transistors are used in power amplifier circuits, power supply circuits, converters, power supply protection circuits, and the like, and these power transistors are required to have a high breakdown voltage and a large current in order to handle large power.
[0003]
In the case of a MISFET (Metal Insulator Semiconductor Field Effect Transistor), it can be easily achieved by increasing the channel width as a method for achieving a large current. In order to avoid an increase in chip area due to such an increase in channel width, for example, a mesh gate structure is used. In the mesh gate structure, the gates are arranged in a lattice pattern in a plane, so that the channel width per unit chip area can be increased.
[0004]
In such a power FET having a mesh gate structure, an FET having a trench gate structure is employed because it is possible to improve the degree of integration of a cell, and also to reduce on-resistance. In an FET having a trench gate structure, a conductor layer serving as a gate is provided in a groove extending through a main surface of a semiconductor substrate via an insulating film, a deep portion of the main surface is used as a drain region, and a surface layer of the main surface is used as a source region. And a plurality of unit cells each having a semiconductor layer between the drain region and the source region as a channel formation region are connected in parallel.
[0005]
The trench gates of adjacent cells are connected to each other, and each trench gate of the outer cell is connected to a gate electrode for performing bonding by gate wiring near the outer periphery of the semiconductor chip, and the source region of each cell is Are electrically connected in parallel by a source electrode formed on the main surface of the semiconductor substrate via an insulating film.
[0006]
A protective insulating film is formed over the entire main surface of the semiconductor substrate, and an opening for partially exposing the gate electrode and the source electrode is provided in the protective insulating film. The gate pad and the source pad are electrically connected to the gate pad and the source pad by wire bonding or the like.
[0007]
In addition, as a drain connection region, a drain electrode that is electrically connected to the drain region is formed on the entire back surface of the semiconductor substrate, and the drain electrode is connected to a lead frame by, for example, a conductive adhesive to make electrical connection. Done.
[0008]
[Problems to be solved by the invention]
Such a power transistor is also required to be reduced in chip size. However, it is necessary to form a source electrode over the entire cell formation region in order to connect source regions in parallel, and to perform bonding for a gate pad. Therefore, it is necessary to secure the minimum required area. These restrictions make it difficult to reduce the chip size.
[0009]
Further, in the FET having the mesh gate structure, a part of a plurality of formed cells is used as a sense cell for current detection, a current flowing in the main cell is estimated from a current flowing in the sense cell, and an overcurrent for detecting an overcurrent is detected. Protection is performed, and a sense electrode for connecting this sense cell to an external current detection circuit is required.
[0010]
In addition, when a temperature sensor for detecting the temperature of the transistor during operation is formed, a sensor electrode for connecting the temperature sensor to an external temperature measurement circuit is required. Further, the drain electrode provided on the back surface may be connected on the front surface, and a drain pad may be provided on the front surface for such connection.
[0011]
As the types of pads provided on the main surface of the semiconductor substrate, such as the sense electrodes, the sensor electrodes, and the drain pads, increase, the area required for forming the pads increases. As a result, there is a problem that the chip size increases due to the increase in the pad region, or the area that can be used as the source region decreases if the chip size is not changed, and the breakdown voltage and the like decrease.
[0012]
In addition, there are cases where the size of the pad is required to be increased according to a customer's request. If the chip size is changed to increase the pad size, the development cost increases because all the designs must be changed. .
[0013]
An object of the present invention is to solve such a problem and to provide a technology that enables a reduction in chip size and that can easily change a pad size without increasing the chip size.
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
[0014]
[Means for Solving the Problems]
The following is a brief description of an outline of typical inventions disclosed in the present application.
In a semiconductor device in which a plurality of electrodes serving as pads are formed on a main surface of a semiconductor substrate, one electrode constituting the plurality of electrodes is provided with an insulating film interposed on the other electrode constituting the plurality of electrodes. Are partially arranged.
[0015]
According to the above-described means, for a semiconductor device having, for example, a power MISFET having a mesh gate structure, a gate electrode is partially disposed on a source electrode via an interlayer insulating film, and a gate electrode is disposed so as to overlap with the source electrode. Therefore, the chip size can be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
In all the drawings for describing the embodiments, components having the same function are denoted by the same reference numerals, and repeated description thereof will be omitted.
[0017]
(Embodiment 1)
FIG. 1 is a plan view showing a schematic configuration of a semiconductor device having a power MISFET having a trench gate structure according to an embodiment of the present invention. FIG. 2 is a partially enlarged view taken along line aa in FIG. It is a longitudinal cross-sectional view.
[0018]
The MISFET of the present embodiment is formed on an n + type semiconductor substrate 1 made of, for example, single crystal silicon, and on a semiconductor substrate on which an epitaxial layer 2 is formed by, for example, epitaxial growth. This MISFET has a trench gate structure having a polygonal planar shape in a cell formation region (indicated by a broken line in FIG. 1) surrounded by a field insulating film 3 provided in a rectangular ring along the outer periphery of a semiconductor substrate. Are arranged regularly and a mesh gate structure in which the cells are connected in parallel.
[0019]
In each cell, the n − type semiconductor layer formed on the semiconductor substrate 1 becomes the drain region 2a, the p type semiconductor layer formed on the drain region 2a becomes the base region 2b where the channel is formed, and the base region The n + -type semiconductor layer formed on 2b is a vertical FET serving as the source region 2c.
[0020]
Trench gate 4 is formed via a gate insulating film 5 in a groove extending from the main surface of the semiconductor substrate to drain region 2a. The trench gate 4 is made of, for example, polycrystalline silicon into which impurities are introduced, and the gate insulating film 5 is made of, for example, a silicon oxide film.
[0021]
The trench gates 4 of the adjacent cells are connected to each other and integrated in a lattice in a plan view. Each trench gate 4 of the outer peripheral cell is made of polycrystalline silicon in the vicinity of the outer peripheral portion of the semiconductor chip. The gate wiring 6 is connected to the gate wiring 6.
[0022]
The gate wiring 6 is formed on a semiconductor substrate via an interlayer insulating film 7 and is electrically connected on the field insulating film 3 to a gate connecting wiring 8 using, for example, aluminum containing silicon.
[0023]
A source electrode 9 is formed using a metal film of the same layer as the gate connection wiring. The source electrode 9 is formed on the main surface of the semiconductor substrate via an interlayer insulating film 7 and above each cell formation region. The source electrode 9 is connected to the source region 2c of each cell via the contact region 2d, and the source electrode 9 connects the source region 2c of each cell in parallel. The source electrode 9 is also electrically connected to the base region 2b to keep the base potential constant, in addition to the third semiconductor layer 2c serving as a source.
[0024]
The gate connection wiring 8 and the source electrode 9 are covered with a protective insulating film 10 using, for example, a silicon oxide film and polyimide, and the gate connecting wiring 8 and the source electrode 9 are partially exposed on the protective insulating film 10. An opening is provided, and a portion of the source electrode 9 exposed by the opening becomes a source pad which is a source connection region.
[0025]
In the present embodiment, the gate electrode 11 extending on the protective insulating film 10 is connected to the gate connection wiring 8 exposed by the opening, and the gate electrode 11 is connected to a gate pad which is a connection region of the trench gate 4. Become. The gate electrode 11 is partially disposed on the source electrode 9 with the interlayer insulating film 7 interposed therebetween, and the gate electrode 11 can be disposed so as to overlap the source electrode 9. The chip size can be reduced by utilizing it as a formation region.
[0026]
The bonding wire 12 is connected to the gate electrode 11 and the source electrode 9. The source electrode 9 is formed on the entire surface of the cell forming region to connect the source region 2 c of each cell. Since a necessary region is sufficiently secured, there is no influence of partially covering the source electrode 9 with the interlayer insulating film 7.
[0027]
On the other hand, in a conventional semiconductor device, as shown in a plan view of a schematic configuration in FIG. 3 and a partially enlarged longitudinal sectional view along an aa line in FIG. Since the metal film corresponding to the wiring 8 is the gate electrode 11 ′, the source electrode 9 and the gate electrode 11 ′ are formed in the same layer, and the gate electrode 11 ′ can be arranged on the source electrode 9. Therefore, the cell formation region shown by the broken line could not be arranged in the region below the gate electrode 11 '.
[0028]
Note that a source guard ring 13 is provided on the outer periphery of the field insulating film 3, in which an n + -type semiconductor region 13 a provided on the main surface of the semiconductor substrate is connected to a wiring 13 b using a metal film of the same layer as the gate connection wiring 8. ing.
[0029]
A p-type well 14 is formed below the rectangular ring-shaped field insulating film 3, and the depletion layer is gently extended under the field insulating film 3 by the p-type well 14. Since the discontinuity can be prevented, the p-type well 14 functions as an electric field relaxing portion for relaxing the electric field at the end of the trench gate 4.
[0030]
As a drain connection region, a drain electrode 15 that is electrically connected to the n + type semiconductor substrate 1 is formed on the entire back surface of the semiconductor substrate as a laminated film in which nickel, titanium, nickel, and gold are laminated, for example. Electrical connection is made by connecting to a lead frame or the like with a conductive adhesive.
[0031]
As described above, when the sense electrode 16 is required, when the sensor electrodes 18 and 19 for connecting the temperature sensor 17 such as a diode provided in the cell formation region to an external temperature measuring circuit are provided, Even when the ground electrode 20 for connecting the provided drain electrode 15 on the surface is provided on the main surface of the semiconductor substrate, these pads are partially formed on the source electrode 9 like the gate electrode 11. By arranging via the insulating film 7, an increase in chip size due to an increase in pad area can be avoided.
[0032]
Further, in the semiconductor device of the present embodiment, it is possible to easily cope with a case where the size of the pad is required to be increased by the customer's request only by changing the patterning of the protective insulating film 10 and the gate electrode 11. It is. In addition, when a reduction in capacitance is required for high-speed operation or the like, the extended gate electrode 11 is indicated by a solid line by changing the patterning of the gate electrode 11 as indicated by a broken line in FIG. It is also easy to reduce the parasitic capacitance by reducing the size as described above.
[0033]
In addition, as shown in the vertical cross-sectional view of FIG. 6, a metal film 21 of the same layer as the gate electrode 11 is partially formed on the source electrode 9, and this metal film 21 is used as a source pad to form a source electrode. By layering, the source resistance can be reduced without adding a new process.
[0034]
As described above, the invention made by the inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and can be variously modified without departing from the gist of the invention. Needless to say,
For example, the present invention can be applied to a semiconductor device having a power MISFET having a planar cell, and further to a semiconductor device provided with an IGBT (Integrated Gate Bipolar Transistor) or the like.
[0035]
【The invention's effect】
The effects obtained by the typical inventions among the inventions disclosed in the present application will be briefly described as follows.
(1) According to the present invention, there is an effect that a gate electrode can be arranged so as to overlap with a source electrode.
(2) According to the present invention, the effect (1) has an effect that a region located under a gate electrode can be used as a cell formation region and a chip size can be reduced.
(3) According to the present invention, due to the above-mentioned effect (1), even when the sense electrode, the sensor electrode, the ground electrode, and the like are provided on the main surface of the semiconductor substrate, the chip size increases due to the increase in the pad area. There is an effect that can be avoided.
(4) According to the present invention, according to the effect (1), there is an effect that it is possible to easily cope with a case where a change in pad size is required.
(5) According to the present invention, by forming the source electrode into two layers, there is an effect that the source resistance can be reduced without adding a new process.
[Brief description of the drawings]
FIG. 1 is a plan view illustrating a schematic configuration of a semiconductor device having a power MISFET having a trench gate structure according to an embodiment of the present invention.
FIG. 2 is a partially enlarged longitudinal sectional view taken along the line aa in FIG.
FIG. 3 is a plan view showing a schematic configuration of a conventional semiconductor device having a power MISFET having a trench gate structure.
FIG. 4 is a partially enlarged longitudinal sectional view taken along the line aa in FIG. 3;
FIG. 5 is a longitudinal sectional view showing a modified example of a semiconductor device having a power MISFET having a trench gate structure according to an embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a modified example of a semiconductor device having a power MISFET having a trench gate structure according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor base, 2 ... Epitaxial layer, 2a ... Drain region, 2b ... Base region, 2c ... Source region, 2d ... Contact region, 3 ... Field insulating film, 4 ... Trench gate, 5 ... Gate insulating film, 6 ... Gate Wiring, 7: interlayer insulating film, 8: gate connecting wiring, 9: source electrode, 10: protective insulating film, 11, 11 ': gate electrode, 12: bonding wire, 13: source guard ring, 14: well, 15 ... Drain electrode, 16: sense electrode, 17: temperature sensor, 18, 19: sensor electrode, 20: ground electrode, 21: metal film.

Claims (3)

半導体基板主面上にパッドとなる複数の電極が形成される半導体装置において、
前記複数の電極を構成する一方の電極が、前記複数の電極を構成する他方の電極の上に、絶縁膜を介して部分的に配置されていることを特徴とする半導体装置。
In a semiconductor device in which a plurality of electrodes serving as pads are formed on a main surface of a semiconductor substrate,
A semiconductor device, wherein one electrode constituting the plurality of electrodes is partially disposed on the other electrode constituting the plurality of electrodes via an insulating film.
前記半導体装置がメッシュゲート構造のパワーMISFETを有し、前記一方の電極が前記MISFETのゲート電極であり、前記他方の電極が前記MISFETのソース電極であることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the semiconductor device has a power MISFET having a mesh gate structure, the one electrode is a gate electrode of the MISFET, and the other electrode is a source electrode of the MISFET. Semiconductor device. 前記一方の電極がゲート電極に加えて、センス電極、センサ電極或いはドレイン電極の少なくとも何れかを含むことを特徴とする請求項2に記載の半導体装置。3. The semiconductor device according to claim 2, wherein the one electrode includes at least one of a sense electrode, a sensor electrode, and a drain electrode in addition to the gate electrode.
JP2002164576A 2002-06-05 2002-06-05 Semiconductor device Pending JP2004014707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164576A JP2004014707A (en) 2002-06-05 2002-06-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164576A JP2004014707A (en) 2002-06-05 2002-06-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2004014707A true JP2004014707A (en) 2004-01-15

Family

ID=30432682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164576A Pending JP2004014707A (en) 2002-06-05 2002-06-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2004014707A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087126A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087125A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087127A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087124A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2012134198A (en) * 2010-12-20 2012-07-12 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
US20140246790A1 (en) * 2013-03-04 2014-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
WO2020250869A1 (en) * 2019-06-14 2020-12-17 日立オートモティブシステムズ株式会社 Semiconductor device
EP4369393A1 (en) * 2022-11-10 2024-05-15 Siemens Aktiengesellschaft Semiconductor device comprising a switchable semiconductor element and method of obtaining the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087126A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087125A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087127A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087124A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2012134198A (en) * 2010-12-20 2012-07-12 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
US20140246790A1 (en) * 2013-03-04 2014-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
WO2014137622A1 (en) * 2013-03-04 2014-09-12 Cree, Inc. Bond pad arrangement for power semiconductor devices
EP2965352A1 (en) * 2013-03-04 2016-01-13 Cree, Inc. Bond pad arrangement for power semiconductor devices
US10068834B2 (en) * 2013-03-04 2018-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
WO2020250869A1 (en) * 2019-06-14 2020-12-17 日立オートモティブシステムズ株式会社 Semiconductor device
JP2020205298A (en) * 2019-06-14 2020-12-24 日立オートモティブシステムズ株式会社 Semiconductor device
JP7145817B2 (en) 2019-06-14 2022-10-03 日立Astemo株式会社 semiconductor equipment
US11855166B2 (en) 2019-06-14 2023-12-26 Hitachi Astemo, Ltd. Semiconductor device including sub-cell disposed at chip center
EP4369393A1 (en) * 2022-11-10 2024-05-15 Siemens Aktiengesellschaft Semiconductor device comprising a switchable semiconductor element and method of obtaining the same
WO2024099822A1 (en) * 2022-11-10 2024-05-16 Siemens Aktiengesellschaft Semiconductor arrangement with a switchable semiconductor element and method for producing same

Similar Documents

Publication Publication Date Title
JP6218462B2 (en) Wide gap semiconductor device
US20060289915A1 (en) Semiconductor device
JP2005005443A (en) High breakdown voltage semiconductor device
JP2973588B2 (en) MOS type semiconductor device
US11600540B2 (en) Semiconductor device
CN103165677B (en) Semiconductor device
JP7383917B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2020150179A (en) Semiconductor device
KR101236498B1 (en) Power semiconductor device
JP2004014707A (en) Semiconductor device
US20150295044A1 (en) Semiconductor device
JP2009164288A (en) Semiconductor element and semiconductor device
JP7371335B2 (en) semiconductor equipment
JP4292595B2 (en) Semiconductor device
JP4432332B2 (en) Semiconductor device and manufacturing method thereof
KR20120047763A (en) Semiconductor device
JP4577480B2 (en) Insulated gate semiconductor device
JP7346855B2 (en) semiconductor equipment
JP2004319861A (en) Semiconductor device
JP5401409B2 (en) Semiconductor device
JP4514389B2 (en) Semiconductor device
JP2009135354A (en) Method for manufacturing semiconductor device and semiconductor device
JPS5987828A (en) Semiconductor device
US20230106733A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2023166827A1 (en) Semiconductor device and semiconductor module