JP2004014149A - Liquid fuel cell - Google Patents

Liquid fuel cell Download PDF

Info

Publication number
JP2004014149A
JP2004014149A JP2002162005A JP2002162005A JP2004014149A JP 2004014149 A JP2004014149 A JP 2004014149A JP 2002162005 A JP2002162005 A JP 2002162005A JP 2002162005 A JP2002162005 A JP 2002162005A JP 2004014149 A JP2004014149 A JP 2004014149A
Authority
JP
Japan
Prior art keywords
liquid fuel
electrode
negative electrode
fuel cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162005A
Other languages
Japanese (ja)
Other versions
JP2004014149A5 (en
JP4044372B2 (en
Inventor
Toshihiro Nakai
中井 敏浩
Hiroshi Kayano
柏野 博志
Susumu Ishi
石 軍
Shingo Nakamura
中村 新吾
Shoji Nishihara
西原 昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002162005A priority Critical patent/JP4044372B2/en
Publication of JP2004014149A publication Critical patent/JP2004014149A/en
Publication of JP2004014149A5 publication Critical patent/JP2004014149A5/ja
Application granted granted Critical
Publication of JP4044372B2 publication Critical patent/JP4044372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid fuel cell which is small and can generate electricity stably. <P>SOLUTION: Provided is the liquid fuel cell comprising a positive electrode 8 which reduces oxygen, a negative electrode 10 which comprises a hydrogen storage material, an electrolytic layer 9 provided between the positive electrode 8 and the negative electrode 10, liquid fuel 4 which has a metal hydride dissolved therein, and a liquid fuel storing portion 3 which stores the liquid fuel 4, the positive electrode 8, the negative electrode 10 and the electrolytic layer 9 constituting an electrode/electrolyte integrated product, a plurality of the electrode/electrolyte integrated products being arranged on the same plane and electrically connected to each other in series, the liquid fuel storing portion 3 being separated by a partition 12 for each electrode/electrolyte integrated product. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料として液体を用いた液体燃料電池に関する。
【0002】
【従来の技術】
近年、パソコン、携帯電話などのコードレス機器の普及に伴い、その電源である二次電池はますます小型化、高容量化が要望されている。現在、エネルギー密度が高く、小型軽量化が図れる二次電池としてリチウムイオン二次電池が実用化されており、ポータブル電源として需要が増大している。しかし、使用されるコードレス機器の種類によっては、このリチウム二次電池では未だ十分な連続使用時間を保証する程度までには至っていない。
【0003】
このような状況の中で、上記要望に応え得る電池の一例として、空気電池、燃料電池などが考えられる。空気電池は、空気中の酸素を正極の活物質として利用する電池であり、電池内容積の大半を負極の充填に費やすことが可能であることから、エネルギー密度を増加させるためには好適な電池であると考えられる。しかし、この空気電池には、電解液として使用するアルカリ溶液が空気中の二酸化炭素と反応して劣化してしまうために自己放電が大きいという問題がある。
【0004】
また、燃料電池については、用いる燃料に関していくつかの候補が挙げられているが、それぞれ種々の問題点を有しており、最終的な決定がいまだなされていない。例えば、燃料として純水素を用いる場合には、水素スタンド等の燃料供給設備の整備に時間と膨大な資金が必要である。また、水素は非常に軽い可燃性ガスであるためその取り扱いが難しく、安全性の面でも問題がある。さらに、燃料としてガソリンを用い、ガソリンを改質して水素を取り出す場合には改質装置が必要となり、また改質の効率があまり高くない等の問題もある。また、燃料としてメタノールを用いる場合には、改質メタノールを使用するときにはガソリンと同じような問題が生じ、改質せずにそのままメタノールを燃料として使用すると、出力や効率等が低くなり、燃料であるメタノールが電解質膜を透過してしまう量も大きいという問題がある。
【0005】
【発明が解決しようとする課題】
一方、燃料にNaBH、KBH、LiAlH、KH、NaHなどの金属水素化物を用い、水素吸蔵合金を負極に用いたアルカリ燃料電池は、負極に燃料が供給されて反応し、正極では酸素が反応する。したがって、燃料および酸素の供給さえ行えば連続的に使用することができる。しかし、従来の燃料電池は、複数の単電池を積層して構成されているため、電池全体が嵩高くなってしまう。また、酸素および燃料をそれぞれの正極および負極へ流通させて供給しなければならず、そのための補器を必要とする。このため、従来の燃料電池はリチウムイオン電池などの小型二次電池に比べてはるかに大きくなってしまい、小型ポータブル電源として用いるには問題があった。
【0006】
ここで、酸素および燃料を強制的に流通させる補器を除去することで出力は低下するものの、燃料電池の小型化を図ることができる。しかし、この場合、酸素は外気を利用するとしても、燃料が自動的に流通しないために、単電池のそれぞれの負極へ燃料が供給できる構造が必要である。
【0007】
本発明は前記従来の問題を解決するためになされたものであり、小型で且つ安定的に発電することのできる液体燃料電池を提供する。
【0008】
【課題を解決するための手段】
本発明の液体燃料電池は、酸素を還元する正極と、水素吸蔵材料を備えた負極と、前記正極と前記負極との間に設けられた電解質層とを備えると共に、金属水素化物を溶解させた液体燃料と、前記液体燃料を貯蔵する液体燃料貯蔵部とを備えた液体燃料電池であって、前記正極と、前記負極と、前記電解質層とが電極・電解質一体化物を構成し、前記電極・電解質一体化物が同一平面上に複数個配置され、各電極・電解質一体化物が電気的に直列に接続され、前記液体燃料貯蔵部が前記電極・電解質一体化物毎に隔壁により分離されていることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0010】
本発明の液体燃料電池は、酸素を還元する正極と、水素吸蔵材料を備えた負極と、前記正極と前記負極との間に設けられた電解質層とを備えると共に、金属水素化物を溶解させた液体燃料と、前記液体燃料を貯蔵する液体燃料貯蔵部とを備えた液体燃料電池であって、前記正極と、前記負極と、前記電解質層とが電極・電解質一体化物を構成し、前記電極・電解質一体化物が同一平面上に複数個配置され、各電極・電解質一体化物が電気的に直列に接続され、前記液体燃料貯蔵部が前記電極・電解質一体化物毎に隔壁により分離されている。
【0011】
本発明の液体燃料電池では、正極と、負極と、電解質層とが電極・電解質一体化物を構成し、電極・電解質一体化物が同一平面上に複数個配置されているため、電池の厚みを薄くすることが可能である。また、各電極・電解質一体化物が電気的に直列に接続されているため、小型でも高出力を発揮できる。さらに、液体燃料貯蔵部が電極・電解質一体化物毎に隔壁により分離されているため、金属水素化物を溶解させた液体燃料を用いても、各セル間で短絡が発生しない。
【0012】
また、前記液体燃料貯蔵部の隔壁には、分離された液体燃料貯蔵部をそれぞれ連通させることができる開閉弁を設けることが好ましい。燃料を補充する際に一つの燃料充填口から各液体燃料貯蔵部へ連続的に燃料を供給できるからである。
【0013】
また、前記液体燃料貯蔵部は、気液分離膜を配置した気液分離孔を備えていることが好ましい。液体燃料を漏液させることなく、燃料電池の使用時に発生する不要なガスを排出するためである。
【0014】
また、前記液体燃料を含浸して保持し且つ前記負極に前記液体燃料を供給する液体燃料含浸部を備え、前記液体燃料含浸部が前記負極と接する部分に配置されていることが好ましい。燃料が消費されても、燃料と負極との接触が維持されるため、燃料を最後まで使い切ることができるからである。
【0015】
また、前記水素吸蔵材料は、水素吸蔵合金およびカーボンナノチューブよりなる群から選択された1つであることが好ましい。これらは、水素の吸蔵能力に優れているからである。
【0016】
また、前記金属水素化物は、NaBH、KBH、LiAlH、KHおよびNaHよりなる群から選択された少なくとも1種であることが好ましい。これらは、水に容易に溶解でき、また単位質量当たりの水素供給量が多いからである。
【0017】
また、前記電解質層は、KOH、NaOHおよびLiOHよりなる群から選択された少なくとも1種を溶解したアルカリ水溶液を含んでいることが好ましい。高いイオン伝導性を付与できるからである。
【0018】
次に、本発明の実施形態を図面に基づき説明する。
【0019】
(実施形態1)
図1に本発明の実施形態1の液体燃料電池の断面図を示す。正極8は、例えば、多孔質性炭素粉末および触媒を担持した炭素粉末からなるカーボン層8bと、ポリテトラフルオロエチレン(PTFE)からなる気液分離シート8aとを積層して構成される。正極8は酸素を還元する機能を有しており、カーボンに触媒を担持することによりその性能を向上させることができる。その触媒には、銀、白金、ルテニウム、酸化イリジウム、希土類酸化物、酸化マンガン、もしくは銀、白金、ルテニウムを少なくとも含む合金などが用いられる。また、正極8には、PTFE樹脂粒子を含む。
【0020】
本発明の電解質としては、液状のものであればいずれも用い得るが、特にアルカリ水溶液が好適に用いられる。電解質としてのアルカリ水溶液としては、例えば、KOH、NaOHおよびLiOHなどのアルカリ金属の水酸化物を濃度20〜40質量%程度水に溶解したものが好ましく、複数のアルカリ金属の水酸化物を含んでいる混合電解質も用いることができる。
【0021】
上記電解質を保持して電解質層を構成するため、正極8と負極10との間にセパレータ9を配置する。セパレータ9の材質は電解質に対して安定であれば特に限定されず、例えば、ポリプロピレン、ポリエチレン等の不織布などが用いられる。さらに、電解質溶媒に水を用いる場合、セパレータ9の表面を親水化処理することが好ましい。
【0022】
本発明の液体燃料の水素供給源としては金属水素化物が用いられるが、その金属水素化物としては、例えば、NaBH、KBH、LiAlH、KH、NaHなどが好適に用いられ、特にNaBHが好適に用いられる。NaBHは、水あるいはアルカリ水溶液中で他の金属水素化物より安定であり、また、水素吸蔵合金との反応も穏やかだからである。水素供給源である金属水素化物は、液体電解質に溶解もしくは混合された状態で用いることができる。
【0023】
負極10は、水素吸蔵材料を導電性基体に固着して形成され、燃料を酸化する機能を有している。水素吸蔵材料としては、水素吸蔵合金やカーボンナノチューブなどの炭素材料を用いることができ、特に水素吸蔵合金が適している。その水素吸蔵合金としては特に限定されることはないが、例えば、LaNiで代表されるAB型水素吸蔵合金、ZnMnもしくはその置換体で代表されるAB型水素吸蔵合金、MgNiもしくはその置換体で代表されるマグネシウム系のAB型水素吸蔵合金、固溶体型バナジウム系水素吸蔵合金などを用い得る。それらの中でも、希土類元素の混合物であるミッシュメタル(Mm)を用い、且つNiの一部をCoなどで置換したMmNi系のAB型水素吸蔵合金が特に好適に用いられる。水素の吸蔵・放出能力に優れているからである。
【0024】
負極10の導電性基体としては、電解質に対して耐食性を持つ材料からなり、水素吸蔵材料から電気的な接触が得られる基体であればよく、例えば、ニッケル製もしくはニッケルメッキした鉄製のパンチングメタル、発泡金属体などが用いられる。
【0025】
負極10の水素吸蔵材料を導電性基体に固着させるための結着剤としては、電解質中で化学的に安定で粘着性を有する材料であればよく、例えば、ポリテトラフルオロエチレン、ラテックスなどを用いることができる。
【0026】
上記正極8、上記電解質層を構成するセパレータ9およびは上記負極10は、空気孔1側から正極8、セパレータ9、負極10の順に積層されて、電極・電解質一体化物を構成している。また、この電極・電解質一体化物は、同一平面上に複数個配置されている。
【0027】
負極10のセパレータ9と反対側には液体燃料4を貯蔵する燃料タンク3が隣接して設けられている。燃料タンク3は、例えば、ポリテトラフルオロエチレン、硬質ポリ塩化ビニル、ポリプロピレン、ポリエチレンなどのプラスチックや、ステンレス鋼などの耐食性金属から構成されている。ただし、燃料タンク3を金属で構成する場合には、同一平面上に配置されているそれぞれの負極同士が電気的に短絡しないように絶縁体を導入する必要がある。燃料タンク3の負極10と接する部分には燃料供給孔3aが設けられており、この部分から液体燃料4が負極10へと供給される。また、液体燃料4を含浸して保持し且つ負極10に液体燃料4を供給する燃料吸い上げ材5が、負極10と接する部分を含む燃料タンク3の内部に配置されている。これにより、液体燃料4が消費されても、液体燃料4と負極10との接触が維持されるため、液体燃料4を最後まで使い切ることができる。燃料吸い上げ材5としては、ガラス繊維、液体燃料に対して安定なプラスチックなどからなる不織布を用いることができるが、液体燃料の含浸によって寸法が余り変化せず、化学的にも安定なものであれば他の材料を用いてもよい。
【0028】
本発明では水素供給源にアルカリ水溶液に溶解した金属水素化物を用いるが、アルカリ水溶液は電気伝導性を有するため、各電極・電解質一体化物毎に設置された燃料タンク3は電気的に絶縁して、液体燃料4による各セル同士の短絡を防ぐ必要がある。そのため、各電極・電解質一体化物毎に設置された燃料タンク3は各電極・電解質一体化物毎に隔壁12により分離されている。ただし、燃料供給時は一つの燃料充填口6bより各燃料タンク3へ燃料を供給できるように、各燃料タンク3の間には開閉弁11を設けてある。
【0029】
正極8のセパレータ9と反対側にはカバー板2が設けられており、カバー板2の正極8と接する部分には空気孔1が設けられている。これにより、空気孔1を通して大気中の酸素が正極8と接することになる。カバー板2の端部には、カバー板2と燃料タンク3を貫通する構造を持つ気液分離孔兼燃料充填口6bが設けられている。この気液分離孔兼燃料充填口6bの燃料タンク3と反対側には脱着可能な気液分離膜6aが設けられている。この気液分離膜6aは細孔を持つPTFE製シートからなり、負極と金属水素化物が反応して放電した後に使用されなかった水素などを、燃料を漏液させることなく燃料タンク3から放出させることができる。また、気液分離膜6aを脱着可能とすることで、気液分離孔兼燃料充填孔口6bから燃料を補充することができる。気液分離孔兼燃料充填口6b、カバー板2、および空気孔1は、例えば、燃料タンク3と同様の材料から構成されている。
【0030】
正極8から、隣接する電極・電解質一体化物の負極10までの間には集電体7が設置されており、正極8と隣接する電極・電解質一体化物の負極10とは電気的に接続されている。集電体7は隣接する電極・電解質一体化物を電気的に直列に接続する役割を持ち、同一平面上に並べられた全ての電極・電解質一体化物は集電体7によって電気的に直列に接続される。集電体7は、例えば、白金、金などの貴金属や、ニッケルまたはニッケルメッキをした耐食性金属、またはカーボンなどから構成されている。
【0031】
(実施形態2)
図2に本発明の実施形態2の液体燃料電池の断面図を示す。本実施形態は、燃料タンク3の上部および下部を対称に形成したこと以外は、実施形態1と同様の構造である。
【0032】
(実施形態3)
図3に本発明の実施形態3の液体燃料電池の断面図を示す。本実施形態は、実施形態1の液体燃料電池を空気孔1およびカバー板2が向かい合うように2つ重ねた構造である。向かい合う空気孔1およびカバー板2の間には空気が拡散するための隙間を設けてある。集電体7はすべての電極・電解質一体化物が電気的に直列になるように接続されている。また、すべての燃料タンク3の間も開閉弁11を備えたバイパスにより接続され、開閉弁11を開くことにより液体燃料4の流通が可能になっている。本実施形態の他の構成は実施形態1とほぼ同様である。
【0033】
【発明の効果】
以上説明したように本発明は、酸素を還元する正極と、水素吸蔵材料を備えた負極と、前記正極と前記負極との間に設けられた電解質層とを備えると共に、金属水素化物を溶解させた液体燃料と、前記液体燃料を貯蔵する液体燃料貯蔵部とを備えた液体燃料電池であって、前記正極と、前記負極と、前記電解質層とが電極・電解質一体化物を構成し、前記電極・電解質一体化物を同一平面上に複数個配置し、各電極・電解質一体化物を電気的に直列に接続し、前記液体燃料貯蔵部を前記電極・電解質一体化物毎に隔壁により分離することによって、小型で且つ安定的に発電することのできる液体燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1の液体燃料電池の断面図である。
【図2】本発明の実施形態2の液体燃料電池の断面図である。
【図3】本発明の実施形態3の液体燃料電池の断面図である。
【符号の説明】
1  空気孔
2  カバー板
3  燃料タンク
3a 燃料供給孔
4  液体燃料
5  燃料吸い上げ材
6a 気液分離膜
6b 気液分離孔兼燃料充填口
7  集電体
8  正極
8a 気液分離シート
8b カーボン層
9  セパレータ
10  負極
11  開閉弁
12  隔壁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid fuel cell using a liquid as fuel.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the spread of cordless devices such as personal computers and mobile phones, there is a demand for smaller and higher capacity secondary batteries as power sources. At present, lithium ion secondary batteries have been put to practical use as secondary batteries having a high energy density and can be reduced in size and weight, and demand for portable power sources is increasing. However, depending on the type of cordless device used, this lithium secondary battery has not yet reached a level where sufficient continuous use time is guaranteed.
[0003]
Under such circumstances, an air battery, a fuel cell, or the like can be considered as an example of a battery that can meet the above demand. An air battery is a battery that uses oxygen in the air as an active material of a positive electrode. Since most of the internal volume of the battery can be used for filling the negative electrode, a battery suitable for increasing the energy density is used. It is considered to be. However, this air battery has a problem that the self-discharge is large because an alkaline solution used as an electrolyte reacts with carbon dioxide in the air and deteriorates.
[0004]
In addition, some candidates for the fuel cell to be used are listed as fuel cells, but each has various problems, and a final decision has not been made yet. For example, when pure hydrogen is used as a fuel, it takes time and a huge amount of money to prepare a fuel supply facility such as a hydrogen station. Further, hydrogen is a very light combustible gas, so its handling is difficult, and there is a problem in terms of safety. Further, when gasoline is used as fuel and reforming gasoline to extract hydrogen requires a reformer, there are also problems such as the efficiency of reforming being not very high. Also, when methanol is used as a fuel, the same problem as gasoline occurs when reformed methanol is used.If methanol is used as fuel without reforming, the output, efficiency, etc. will be reduced, and There is a problem that a certain amount of methanol permeates the electrolyte membrane.
[0005]
[Problems to be solved by the invention]
On the other hand, an alkaline fuel cell using a metal hydride such as NaBH 4 , KBH 4 , LiAlH 4 , KH, and NaH as a fuel and using a hydrogen storage alloy as a negative electrode is supplied with fuel to the negative electrode and reacts with the positive electrode. Reacts. Therefore, it can be used continuously as long as fuel and oxygen are supplied. However, since the conventional fuel cell is configured by stacking a plurality of unit cells, the whole cell becomes bulky. In addition, oxygen and fuel must be circulated and supplied to the respective positive electrode and negative electrode, and an auxiliary device for that purpose is required. For this reason, the conventional fuel cell is much larger than a small secondary battery such as a lithium ion battery, and there is a problem in using it as a small portable power supply.
[0006]
Here, although the output is reduced by removing the auxiliary device for forcibly flowing the oxygen and the fuel, the size of the fuel cell can be reduced. However, in this case, a structure that can supply the fuel to each negative electrode of the unit cell is required because the fuel does not automatically flow even if outside air is used for oxygen.
[0007]
The present invention has been made to solve the above-mentioned conventional problems, and provides a liquid fuel cell which is small and capable of stably generating power.
[0008]
[Means for Solving the Problems]
The liquid fuel cell of the present invention has a positive electrode for reducing oxygen, a negative electrode provided with a hydrogen storage material, and an electrolyte layer provided between the positive electrode and the negative electrode, and has a metal hydride dissolved therein. A liquid fuel cell comprising a liquid fuel and a liquid fuel storage unit for storing the liquid fuel, wherein the positive electrode, the negative electrode, and the electrolyte layer constitute an electrode-electrolyte integrated body, A plurality of electrolyte monoliths are arranged on the same plane, each electrode / electrolyte monolith is electrically connected in series, and the liquid fuel storage unit is separated by a partition wall for each electrode / electrolyte monolith. Features.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0010]
The liquid fuel cell of the present invention has a positive electrode for reducing oxygen, a negative electrode provided with a hydrogen storage material, and an electrolyte layer provided between the positive electrode and the negative electrode, and has a metal hydride dissolved therein. A liquid fuel cell comprising a liquid fuel and a liquid fuel storage unit for storing the liquid fuel, wherein the positive electrode, the negative electrode, and the electrolyte layer constitute an electrode-electrolyte integrated body, A plurality of the electrolyte integrated materials are arranged on the same plane, the respective electrode / electrolyte integrated materials are electrically connected in series, and the liquid fuel storage unit is separated by a partition wall for each of the electrode / electrolyte integrated materials.
[0011]
In the liquid fuel cell of the present invention, the positive electrode, the negative electrode, and the electrolyte layer constitute an electrode-electrolyte integrated body, and a plurality of the electrode-electrolyte integrated bodies are arranged on the same plane. It is possible to do. In addition, since each electrode / electrolyte integrated body is electrically connected in series, high output can be exhibited even with a small size. Further, since the liquid fuel storage section is separated by the partition wall for each electrode / electrolyte integrated material, no short circuit occurs between cells even when using liquid fuel in which metal hydride is dissolved.
[0012]
In addition, it is preferable that an on-off valve that can communicate the separated liquid fuel storage units is provided on the partition wall of the liquid fuel storage unit. This is because when replenishing the fuel, the fuel can be continuously supplied from one fuel filling port to each liquid fuel storage unit.
[0013]
Preferably, the liquid fuel storage unit includes a gas-liquid separation hole in which a gas-liquid separation membrane is disposed. This is because unnecessary gas generated when the fuel cell is used is discharged without causing the liquid fuel to leak.
[0014]
Further, it is preferable that a liquid fuel impregnated portion that impregnates and holds the liquid fuel and supplies the liquid fuel to the negative electrode is provided, and the liquid fuel impregnated portion is disposed at a portion in contact with the negative electrode. This is because even if the fuel is consumed, the contact between the fuel and the negative electrode is maintained, so that the fuel can be completely used up.
[0015]
Further, it is preferable that the hydrogen storage material is one selected from the group consisting of a hydrogen storage alloy and a carbon nanotube. This is because they have excellent hydrogen storage capacity.
[0016]
Preferably, the metal hydride is at least one selected from the group consisting of NaBH 4 , KBH 4 , LiAlH 4 , KH and NaH. This is because they can be easily dissolved in water and supply a large amount of hydrogen per unit mass.
[0017]
The electrolyte layer preferably contains an alkaline aqueous solution in which at least one selected from the group consisting of KOH, NaOH and LiOH is dissolved. This is because high ionic conductivity can be imparted.
[0018]
Next, an embodiment of the present invention will be described with reference to the drawings.
[0019]
(Embodiment 1)
FIG. 1 shows a sectional view of a liquid fuel cell according to Embodiment 1 of the present invention. The positive electrode 8 is formed, for example, by laminating a carbon layer 8b made of porous carbon powder and carbon powder carrying a catalyst, and a gas-liquid separation sheet 8a made of polytetrafluoroethylene (PTFE). The positive electrode 8 has a function of reducing oxygen, and its performance can be improved by supporting a catalyst on carbon. As the catalyst, silver, platinum, ruthenium, iridium oxide, rare earth oxide, manganese oxide, or an alloy containing at least silver, platinum, or ruthenium is used. Further, the positive electrode 8 contains PTFE resin particles.
[0020]
As the electrolyte of the present invention, any electrolyte may be used as long as it is in a liquid state, but an aqueous alkali solution is particularly preferably used. As the alkaline aqueous solution as the electrolyte, for example, a solution in which a hydroxide of an alkali metal such as KOH, NaOH and LiOH is dissolved in water at a concentration of about 20 to 40% by mass is preferable, and includes a plurality of hydroxides of an alkali metal. Some mixed electrolytes can also be used.
[0021]
In order to form the electrolyte layer while holding the above electrolyte, a separator 9 is disposed between the positive electrode 8 and the negative electrode 10. The material of the separator 9 is not particularly limited as long as it is stable with respect to the electrolyte. For example, a nonwoven fabric such as polypropylene and polyethylene is used. Furthermore, when water is used as the electrolyte solvent, it is preferable to subject the surface of the separator 9 to a hydrophilic treatment.
[0022]
As the hydrogen supply source of the liquid fuel of the present invention, a metal hydride is used. As the metal hydride, for example, NaBH 4 , KBH 4 , LiAlH 4 , KH, NaH and the like are preferably used, and particularly, NaBH 4 Is preferably used. This is because NaBH 4 is more stable than other metal hydrides in water or an aqueous alkali solution, and has a mild reaction with a hydrogen storage alloy. The metal hydride as a hydrogen supply source can be used in a state of being dissolved or mixed in a liquid electrolyte.
[0023]
The negative electrode 10 is formed by fixing a hydrogen storage material to a conductive substrate, and has a function of oxidizing fuel. As the hydrogen storage material, a carbon material such as a hydrogen storage alloy or a carbon nanotube can be used, and a hydrogen storage alloy is particularly suitable. Although the hydrogen storage alloy is not particularly limited, for example, an AB 5- type hydrogen storage alloy represented by LaNi 5 , an AB 2- type hydrogen storage alloy represented by ZnMn 2 or a substitute thereof, Mg 2 Ni Alternatively, a magnesium-based A 2 B-type hydrogen storage alloy, a solid solution-type vanadium-based hydrogen storage alloy, or the like represented by a substitute thereof may be used. Among them, use of a misch metal (Mm) which is a mixture of rare earth elements, and AB 5 type hydrogen storage alloy part of MmNi 5 system was replaced with such as Co and Ni are particularly preferably used. This is because they have excellent hydrogen storage / release capabilities.
[0024]
The conductive substrate of the negative electrode 10 may be any substrate made of a material having corrosion resistance to the electrolyte and capable of obtaining electrical contact from the hydrogen storage material. For example, a punching metal made of nickel or nickel-plated iron, A foamed metal body or the like is used.
[0025]
As the binder for fixing the hydrogen storage material of the negative electrode 10 to the conductive substrate, any material may be used as long as it is chemically stable and sticky in the electrolyte. For example, polytetrafluoroethylene, latex, or the like is used. be able to.
[0026]
The positive electrode 8, the separator 9 constituting the electrolyte layer, and the negative electrode 10 are laminated in this order from the air hole 1 side to the positive electrode 8, the separator 9, and the negative electrode 10 to form an integrated electrode / electrolyte. Further, a plurality of the electrode / electrolyte integrated materials are arranged on the same plane.
[0027]
A fuel tank 3 for storing the liquid fuel 4 is provided adjacent to the side of the negative electrode 10 opposite to the separator 9. The fuel tank 3 is made of, for example, a plastic such as polytetrafluoroethylene, hard polyvinyl chloride, polypropylene, or polyethylene, or a corrosion-resistant metal such as stainless steel. However, when the fuel tank 3 is made of metal, it is necessary to introduce an insulator so that the respective negative electrodes arranged on the same plane do not short-circuit electrically. A fuel supply hole 3a is provided in a portion of the fuel tank 3 in contact with the negative electrode 10, and the liquid fuel 4 is supplied to the negative electrode 10 from this portion. Further, a fuel wicking material 5 which impregnates and holds the liquid fuel 4 and supplies the liquid fuel 4 to the negative electrode 10 is disposed inside the fuel tank 3 including a portion in contact with the negative electrode 10. Thereby, even if the liquid fuel 4 is consumed, the contact between the liquid fuel 4 and the negative electrode 10 is maintained, so that the liquid fuel 4 can be completely used up. As the fuel wicking material 5, a nonwoven fabric made of glass fiber, plastic stable against liquid fuel, or the like can be used. However, the material does not change much due to impregnation with liquid fuel and is chemically stable. Any other material may be used.
[0028]
In the present invention, a metal hydride dissolved in an alkaline aqueous solution is used as a hydrogen supply source. However, since the alkaline aqueous solution has electric conductivity, the fuel tank 3 installed for each electrode / electrolyte integrated body is electrically insulated. In addition, it is necessary to prevent a short circuit between the cells due to the liquid fuel 4. Therefore, the fuel tank 3 installed for each electrode / electrolyte integrated material is separated by the partition 12 for each electrode / electrolyte integrated material. However, an on-off valve 11 is provided between each fuel tank 3 so that fuel can be supplied to each fuel tank 3 from one fuel filling port 6b during fuel supply.
[0029]
A cover plate 2 is provided on the side of the positive electrode 8 opposite to the separator 9, and an air hole 1 is provided in a portion of the cover plate 2 that contacts the positive electrode 8. Thereby, oxygen in the atmosphere comes into contact with the positive electrode 8 through the air hole 1. At the end of the cover plate 2, a gas-liquid separation hole / fuel filling port 6 b having a structure penetrating the cover plate 2 and the fuel tank 3 is provided. A detachable gas-liquid separation film 6a is provided on the opposite side of the fuel tank 3 from the gas-liquid separation hole / fuel filling port 6b. The gas-liquid separation membrane 6a is made of a PTFE sheet having pores, and discharges hydrogen and the like that have not been used after the anode and the metal hydride have reacted and discharged from the fuel tank 3 without leaking the fuel. be able to. Further, by making the gas-liquid separation film 6a detachable, fuel can be replenished from the gas-liquid separation hole / fuel filling hole 6b. The gas-liquid separation hole / fuel filling port 6b, the cover plate 2, and the air hole 1 are made of, for example, the same material as the fuel tank 3.
[0030]
A current collector 7 is provided between the positive electrode 8 and the adjacent electrode / electrolyte integrated material negative electrode 10, and the positive electrode 8 is electrically connected to the adjacent electrode / electrolyte integrated material negative electrode 10. I have. The current collector 7 has a role of electrically connecting adjacent electrode / electrolyte integrated bodies in series, and all the electrode / electrolyte integrated bodies arranged on the same plane are electrically connected in series by the current collector 7. Is done. The current collector 7 is made of, for example, a noble metal such as platinum or gold, a corrosion-resistant metal plated with nickel or nickel, or carbon.
[0031]
(Embodiment 2)
FIG. 2 shows a sectional view of a liquid fuel cell according to Embodiment 2 of the present invention. This embodiment has the same structure as the first embodiment except that the upper and lower parts of the fuel tank 3 are formed symmetrically.
[0032]
(Embodiment 3)
FIG. 3 shows a sectional view of a liquid fuel cell according to Embodiment 3 of the present invention. This embodiment has a structure in which two liquid fuel cells of the first embodiment are stacked so that an air hole 1 and a cover plate 2 face each other. A gap is provided between the facing air holes 1 and the cover plate 2 to diffuse air. The current collector 7 is connected so that all the electrode / electrolyte integrated bodies are electrically connected in series. Further, all the fuel tanks 3 are also connected by a bypass having an on-off valve 11, and the liquid fuel 4 can be circulated by opening the on-off valve 11. Other configurations of the present embodiment are almost the same as those of the first embodiment.
[0033]
【The invention's effect】
As described above, the present invention includes a positive electrode for reducing oxygen, a negative electrode including a hydrogen storage material, and an electrolyte layer provided between the positive electrode and the negative electrode, and dissolving a metal hydride. A liquid fuel, and a liquid fuel storage unit for storing the liquid fuel, wherein the positive electrode, the negative electrode, and the electrolyte layer constitute an electrode-electrolyte integrated body, the electrode・ By arranging a plurality of the electrolyte integrated bodies on the same plane, electrically connecting each electrode / electrolyte integrated body in series, and separating the liquid fuel storage unit by the partition wall for each of the electrode / electrolyte integrated bodies, It is possible to provide a liquid fuel cell that is small and capable of stably generating power.
[Brief description of the drawings]
FIG. 1 is a sectional view of a liquid fuel cell according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view of a liquid fuel cell according to Embodiment 2 of the present invention.
FIG. 3 is a sectional view of a liquid fuel cell according to Embodiment 3 of the present invention.
[Explanation of symbols]
Reference Signs List 1 air hole 2 cover plate 3 fuel tank 3a fuel supply hole 4 liquid fuel 5 fuel sucking material 6a gas-liquid separation film 6b gas-liquid separation hole and fuel filling port 7 current collector 8 positive electrode 8a gas-liquid separation sheet 8b carbon layer 9 separator 10 Negative electrode 11 Open / close valve 12 Partition wall

Claims (7)

酸素を還元する正極と、水素吸蔵材料を備えた負極と、前記正極と前記負極との間に設けられた電解質層とを備えると共に、金属水素化物を溶解させた液体燃料と、前記液体燃料を貯蔵する液体燃料貯蔵部とを備えた液体燃料電池であって、前記正極と、前記負極と、前記電解質層とが電極・電解質一体化物を構成し、前記電極・電解質一体化物が同一平面上に複数個配置され、各電極・電解質一体化物が電気的に直列に接続され、前記液体燃料貯蔵部が前記電極・電解質一体化物毎に隔壁により分離されていることを特徴とする液体燃料電池。A positive electrode for reducing oxygen, a negative electrode provided with a hydrogen storage material, and an electrolyte layer provided between the positive electrode and the negative electrode, a liquid fuel in which metal hydride is dissolved, and the liquid fuel A liquid fuel cell comprising a liquid fuel storage unit for storing, wherein the positive electrode, the negative electrode, and the electrolyte layer constitute an electrode-electrolyte integrated body, and the electrode-electrolyte integrated body is on the same plane. A liquid fuel cell, wherein a plurality of the electrode / electrolyte integrated bodies are electrically connected in series, and the liquid fuel storage unit is separated by a partition wall for each of the electrode / electrolyte integrated bodies. 前記液体燃料貯蔵部の隔壁には、分離された液体燃料貯蔵部をそれぞれ連通させることができる開閉弁が設けられている請求項1に記載の液体燃料電池。2. The liquid fuel cell according to claim 1, wherein an on-off valve capable of communicating the separated liquid fuel storage units is provided on a partition wall of the liquid fuel storage unit. 3. 前記液体燃料貯蔵部が、気液分離膜を配置した気液分離孔を備えている請求項1に記載の液体燃料電池。The liquid fuel cell according to claim 1, wherein the liquid fuel storage unit includes a gas-liquid separation hole in which a gas-liquid separation membrane is disposed. 前記液体燃料を含浸して保持し且つ前記負極に前記液体燃料を供給する液体燃料含浸部を備え、前記液体燃料含浸部が前記負極と接する部分に配置されている請求項1に記載の液体燃料電池。2. The liquid fuel according to claim 1, further comprising a liquid fuel impregnating section that impregnates and holds the liquid fuel and supplies the liquid fuel to the negative electrode, wherein the liquid fuel impregnating section is disposed at a portion in contact with the negative electrode. 3. battery. 前記水素吸蔵材料が、水素吸蔵合金およびカーボンナノチューブよりなる群から選択された1つである請求項1に記載の液体燃料電池。The liquid fuel cell according to claim 1, wherein the hydrogen storage material is one selected from the group consisting of a hydrogen storage alloy and a carbon nanotube. 前記金属水素化物が、NaBH、KBH、LiAlH、KHおよびNaHよりなる群から選択された少なくとも1種である請求項1に記載の液体燃料電池。The metal hydride, NaBH 4, KBH 4, LiAlH 4, liquid fuel cell according to claim 1 from the group consisting of KH and NaH at least one selected. 前記電解質層が、KOH、NaOHおよびLiOHよりなる群から選択された少なくとも1種を溶解したアルカリ水溶液を含んでいる請求項1に記載の液体燃料電池。The liquid fuel cell according to claim 1, wherein the electrolyte layer includes an alkaline aqueous solution in which at least one selected from the group consisting of KOH, NaOH, and LiOH is dissolved.
JP2002162005A 2002-06-03 2002-06-03 Liquid fuel cell Expired - Fee Related JP4044372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162005A JP4044372B2 (en) 2002-06-03 2002-06-03 Liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162005A JP4044372B2 (en) 2002-06-03 2002-06-03 Liquid fuel cell

Publications (3)

Publication Number Publication Date
JP2004014149A true JP2004014149A (en) 2004-01-15
JP2004014149A5 JP2004014149A5 (en) 2005-10-20
JP4044372B2 JP4044372B2 (en) 2008-02-06

Family

ID=30430904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162005A Expired - Fee Related JP4044372B2 (en) 2002-06-03 2002-06-03 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JP4044372B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081353A1 (en) * 2004-02-24 2005-09-01 Fujitsu Limited Fuel cell unit
WO2005091410A1 (en) * 2004-03-19 2005-09-29 Nec Corporation Solid electrolyte fuel cell
JP2006093119A (en) * 2004-08-26 2006-04-06 Hitachi Ltd Fuel cell, and information terminal mounting fuel cell
JP2006156034A (en) * 2004-11-26 2006-06-15 Hitachi Maxell Ltd Liquid fuel battery
US8277987B2 (en) 2006-03-06 2012-10-02 Nec Corporation Fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081353A1 (en) * 2004-02-24 2005-09-01 Fujitsu Limited Fuel cell unit
KR100795495B1 (en) * 2004-02-24 2008-01-16 후지쯔 가부시끼가이샤 Fuel cell unit
JPWO2005081353A1 (en) * 2004-02-24 2008-01-17 富士通株式会社 Fuel cell
WO2005091410A1 (en) * 2004-03-19 2005-09-29 Nec Corporation Solid electrolyte fuel cell
JP2006093119A (en) * 2004-08-26 2006-04-06 Hitachi Ltd Fuel cell, and information terminal mounting fuel cell
JP2006156034A (en) * 2004-11-26 2006-06-15 Hitachi Maxell Ltd Liquid fuel battery
US8277987B2 (en) 2006-03-06 2012-10-02 Nec Corporation Fuel cell system

Also Published As

Publication number Publication date
JP4044372B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
EP1357627B1 (en) Air breathing direct methanol fuel cell pack
Sapkota et al. Zinc–air fuel cell, a potential candidate for alternative energy
TW503598B (en) Catalytic air cathode for air-metal batteries
US20070141440A1 (en) Cylindrical structure fuel cell
TW533619B (en) Fuel cell, fuel cell generator, and equipment using the same
US20070141431A1 (en) Fuel cell closed structure
US7887944B2 (en) Integrated membrane electrode assembly and method related thereto
JP2000268835A (en) Power generating device
JP4781626B2 (en) Fuel cell
JP2004055307A (en) Fuel cell mounting apparatus
JP3866534B2 (en) Fuel cell
JP2003317791A (en) Liquid fuel cell
JP2008179893A (en) Hydrogen-generating apparatus having porous electrode plate
JP4044372B2 (en) Liquid fuel cell
JP3846727B2 (en) Liquid fuel cell and power generator using the same
US10090552B2 (en) Liquid fuel battery
JP3746047B2 (en) Liquid fuel cell and power generator using the same
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
JP4007883B2 (en) Liquid fuel cell
JP2003308869A (en) Fuel cell
JP2004158304A (en) Fuel cell
JP2004014148A (en) Liquid fuel cell
JP2004095208A (en) Fuel cell
JP2004186097A (en) Fuel cell
JP2004139860A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees