JP2004012806A - Method for eliminating defect in levenson type phase shifting mask - Google Patents

Method for eliminating defect in levenson type phase shifting mask Download PDF

Info

Publication number
JP2004012806A
JP2004012806A JP2002166088A JP2002166088A JP2004012806A JP 2004012806 A JP2004012806 A JP 2004012806A JP 2002166088 A JP2002166088 A JP 2002166088A JP 2002166088 A JP2002166088 A JP 2002166088A JP 2004012806 A JP2004012806 A JP 2004012806A
Authority
JP
Japan
Prior art keywords
defect
undercut
levenson
shielding film
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166088A
Other languages
Japanese (ja)
Other versions
JP4308480B2 (en
Inventor
Osamu Takaoka
高岡 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002166088A priority Critical patent/JP4308480B2/en
Publication of JP2004012806A publication Critical patent/JP2004012806A/en
Application granted granted Critical
Publication of JP4308480B2 publication Critical patent/JP4308480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately eliminate a defect in a Levenson type phase shifting mask having an undercut structure in such a way as not to cause lowering of light intensity. <P>SOLUTION: When a black or white defect is eliminated, a Cr pattern 1 on the defect is removed with focused ion beams 4, a quartz or glass substrate 3 including undercut width is shaved with the beams while feeding assist gas which does not lower transmittance from a gas gun 5, and then the undercut structure or a similar structure is accurately reproduced with a shielding film 8 formed by CVD using electron or ion beams 6 while feeding source gas for the shielding film from a gas gun 7, whereby the defect is accurately eliminated while maintaining light intensity even in the defect eliminated region. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はバイナリマスクの一部分のガラスを掘り込んだレベンソンマスク型位相シフトマスクの欠陥修正方法に関するものである。
【0002】
【従来の技術】
近年のSi半導体集積回路の一層の微細化に伴い、レチクル上のパターンも微細化に対応することが求められている。縮小投影露光装置はこの要請に対して高NA化と短波長化で対応してきた。微細化の前倒しが求められる現在では、縮小投影露光装置はそのままで、解像力と焦点深度を向上させるために、超解像技術の一種である位相シフトマスクが用いられるようになってきている。位相シフトマスクにはレベンソン型とハーフトーン型があり、レベンソン型の方が解像力の向上効果が大きいことが知られている。しかし、レベンソン型は位相シフターの配置の最適化が難しいため、解像力向上効果は少ないが、遮蔽膜をハーフトーン膜に置き換えるハーフトーン型の方がバイナリマスク技術からの変更点も少なく導入しやすいため、広く用いられるようになってきている。しかし、更なる解像度の向上のために、上記設計技術の課題を克服してでも、解像力向上効果が大きいレベンソン型を用いたマスク作製の事例が増えてきている。レベンソン型位相シフトマスクには透明な位相シフター膜を配置するものと、位相が反転する深さまでガラスまたは石英の基板を掘り込むタイプのものが存在する。現在主に実用化されているのは、ガラスまたは石英の基板を掘り込むタイプのもので、バイナリマスクで微細なパターンが要求される部分のみガラスまたは石英基板を位相が反転する深さまで掘り込んでレベンソン型位相マスクとしたものである。
【0003】
最近のガラス掘り込みレベンソンマスクでは、光量の低下を補うために図5(a)に示すような位相シフター側のCrパターン1の下にアンダーカットを加えた構造(片掘り込み型)が取り入れられるようになってきている。ガラスまたは石英基板3の掘り込みも片掘り込み型だけではなく、図5(b)に示すような最適化の自由度の大きい、位相シフターでない側もアンダーカット構造にした両掘り込み型も用いられるようになってきている。
【0004】
バイナリマスクの欠陥修正に標準的に用いられている液体金属Gaイオン源を用いた集束イオンビーム装置でガラスを削る方法として、弗化キセノン(XeF)(SPIE 3873, p127(1999))や沃素ガス(SPIE 4409, p563(2001))雰囲気下でイオンビームの照射してGaの注入を抑えガラスまたは石英基板を高い透過率を維持したままエッチングする方法が知られている。片掘り込み型もしくは両掘り込み型のアンダーカットを加えた構造をもつレベンソンマスクに対して、従来のガラス掘り込みレベンソンマスクの修正方法をそのまま適応すると、欠陥修正部分の光量の低下してしまう。片掘り込み型もしくは両掘り込み型のアンダーカットを加えた構造をもつレベンソンマスクに対しても、光量の低下を伴うことなく高精度かつ高品位な欠陥修正が行えることが求められている。
【0005】
【発明が解決しようとする課題】
アンダーカット構造を持つレベンソン型位相シフトマスクの欠陥に対して、光量の低下が起こらないような欠陥修正を行う。
【0006】
【課題を解決するための手段】
黒欠陥領域に対しては、黒欠陥領域を認識後、欠陥の上にあるCrパターンを除去し、引き続き黒欠陥領域をアンダーカット幅も含めてGaの注入による透過率の低下が起こらないように沃素または弗化キセノンを流しながら集束イオンビームで除去する。アンダーカット幅分後退したCr膜に対して電子ビームCVDで遮蔽膜をアンダーカット構造を再現するように成長させて黒欠陥を修正する。
【0007】
白欠陥領域に対して、白欠陥領域を認識後、欠陥の上にあるCrパターンを除去し、引き続き白欠陥領域を更に180度の位相に相当する深さまでGaの注入による透過率の低下が起こらないように沃素または弗化キセノンを流しながら、アンダーカット幅も含めて集束イオンビームで除去する。アンダーカット幅分後退したCrパターンに対して電子ビームCVDで遮蔽膜をアンダーカット構造を再現するように成長させて白欠陥を修正する。
【0008】
また、アンダーカット幅分後退したCrパターンに対して電子ビームCVDで遮蔽膜をアンダーカット構造を再現するように成長させる代わりに、FIB−CVDでアンダーカット幅分後退したCr膜上に遮蔽膜で庇を形成し、アンダーカットと同等な構造を再現することでも欠陥を修正できる。
【0009】
【作用】
黒欠陥、白欠陥修正とも、集束イオンビームでアンダーカット幅も含めたガラス基板の削りこみを行っており、電子ビームCVDまたはFIB−CVDにより形成した遮蔽膜で正常部分と同じアンダーカット構造もしくは同等な構造を再現できるので、欠陥修正領域も光量の大きさを維持した高精度な欠陥修正が可能である。
【0010】
【発明の実施の形態】
以下に、本発明の実施形態について説明する。
図4に示すようなマスク平面に対して垂直にイオン光学系11を持ち、斜め方向に電子光学系12を有する集束イオンビーム−電子ビーム複合装置に欠陥を有するアンダーカット構造のガラス掘り込みレベンソン型位相シフトマスク13を導入し、欠陥検査装置で欠陥が検出された位置まで回転機構を有するX−Yステージ14で移動する。欠陥領域を認識するためにイオン光学系11で欠陥を含む領域を、20  ̄30kVまで加速され、0.1μm程度に集束されたイオンビーム4を走査し、二次イオン検出器もしくは二次電子検出器15でイオンビーム4の照射によって発生した二次イオンもしくは二次電子を取りこむ。二次イオン検出器もしくは二次電子検出器15の信号強度をCRT上の1ピクセルの色合いもしくは階調に対応させ、イオン光学系11の偏向電極の走査と同期させて表示することにより二次イオン像または二次電子像を形成する。この二次イオン像または二次電子像から欠陥領域を決定する。イオンビーム4の照射と同時に、絶縁物であるガラス掘り込みレベンソン型位相シフトマスク13のチャージアップを防止するために電子光学系12で適当なビーム径に調整された数100Vの電子ビーム6を照射し電荷の中和を行う。
【0011】
図1に示すように、黒欠陥に対しては、黒欠陥領域2を認識(図1(a))後、欠陥の上にあるCrパターン1を集束イオンビーム4で除去し(図1(b))、引き続き黒欠陥領域をアンダーカット幅も含めてGaの注入による石英もしくはガラス基板3の透過率の低下が起こらないように、ガス銃5から沃素または弗化キセノン5を流しながら集束イオンビーム4で石英もしくはガラス基板3を削り欠陥を除去する(図1(c))。Crパターンや石英もしくはガラス基板除去加工中はチャージアップを防止するために電子光学系12で適当なビーム径に調整された数100Vの電子ビーム6を照射し電荷の中和を行う。マスクに対して斜めに取りつけられた電子光学系にアンダーカット幅分後退したCrパターン1が向くように回転機構を有するX−Yステージ14を回転させる。集束した電子ビーム6を走査してアンダーカット幅分後退したCrパターン1を含む領域の二次電子像を取得し、電子ビームCVDが必要な領域を決定する。電子ビームCVDが必要な領域に対してガス銃7から遮蔽膜原料ガスを流しながら高プローブ電流の集束した斜め入射電子ビーム6で遮蔽膜8をアンダーカット構造を精度良く再現するように水平方向に成長させて黒欠陥を修正する(図1(d))。二次電子像取得および電子ビームCVD時にはチャージアップを防止するために、電子ビーム6は600V ̄1000V程度の低加速電圧で使用する。
【0012】
図2に示すように、白欠陥に対しては、白欠陥領域9を認識(図2(a))後、欠陥の上にあるCrパターン1を集束イオンビーム4で除去し(図2( b))、引き続き白欠陥領域を更に180度の位相に相当する深さまで黒欠陥修正同様Gaの注入による透過率の低下が起こらないようにガス銃5から沃素または弗化キセノンを流しながら、アンダーカット幅も含めて集束イオンビーム4で石英もしくはガラス基板3を削り欠陥を除去する(図2(c))。このときもCr膜や石英もしくはガラス基板除去加工中はチャージアップを防止するために電子光学系12で適当なビーム径に調整された数100Vの電子ビーム6を照射し電荷の中和を行う。黒欠陥修正時と同様にマスクに対して斜めに取りつけられた電子光学系にアンダーカット幅分後退したCrパターン1が向くように回転機構を有するX−Yステージ14を回転させる。集束した電子ビーム6を走査してアンダーカット幅分後退したCrパターン1を含む領域の二次電子像を取得し、電子ビームCVDが必要な領域を決定する。電子ビームCVDが必要な領域に対してガス銃7から遮蔽膜原料ガスを流しながら高プローブ電流の集束した斜め入射電子ビーム6を選択走査し遮蔽膜8をアンダーカット構造を精度良く再現できるように水平方向に成長させて白欠陥を修正する(図2(d))。二次電子像取得および電子ビームCVD時にはチャージアップを防止するために電子ビーム6は600V ̄1000V程度の低加速電圧で使用する。
【0013】
黒欠陥修正、白欠陥修正とも、アンダーカット幅分後退したCrパターン1に対して電子ビーム6で遮蔽膜8をアンダーカット構造を再現するように水平方向に成長させる代わりに、ガス銃7から遮蔽膜原料ガスを流しながら、石英もしくはガラス基板3に垂直に配置されたイオン光学系12で集束したイオンビーム4でアンダーカット幅分後退したCrパターン1上に集束イオンビーム装置で、図3に示すようなステンシルマスクの白欠陥を修正するときのような遮蔽膜8の庇(例えば、J. Vac. Sci. Technol. B18, p3254(2000))を形成し、アンダーカット構造と同等な構造を精度良く再現することで欠陥を修正することも可能である。もちろんイオンビーム4で遮蔽膜8形成中はチャージアップを防止するために電子光学系12で適当なビーム径に調整された数100Vの電子ビーム6を照射して電荷の中和を行う。
【0014】
アンダーカット構造を持つレベンソン型位相シフトマスクの黒欠陥修正、白欠陥修正とも、集束イオンビーム4で高い透過率を維持したままアンダーカット幅も含めた石英またはガラス基板13の削りこみを行っており、電子ビームCVDまたはFIB−CVDにより形成した遮蔽膜8で正常部分と同じアンダーカット構造もしくは同等な構造を精度良く再現できるので、欠陥修正領域も光量の大きさを維持した高精度な欠陥修正が可能である。
【0015】
【発明の効果】
以上説明したように、この発明によれば、バイナリマスクのガラスを掘り込んだアンダーカット構造を持つレベンソン型位相シフトマスクの黒欠陥、白欠陥とも、集束イオンビームによるアンダーカット幅も含めたガラス基板の削りこみと電子ビームCVDまたはFIB−CVDにより形成した遮蔽膜でアンダーカット構造もしくは同等な構造を精度良く再現することにより、欠陥修正領域も光量の大きさを維持した高精度な欠陥修正が実現できる。
【図面の簡単な説明】
【図1】本発明の特徴を最も良く表す欠陥修正過程(黒欠陥修正)の概略断面図である。
【図2】本発明で白欠陥を修正する場合を説明する概略断面図である。
【図3】電子ビームCVDでアンダーカット構造を形成するかわりにFIB−CVDで庇を形成する場合を説明する概略断面図である。
【図4】本発明を用いてアンダーカット構造を持つレベンソンマスクの欠陥を修正するときに用いる集束イオンビーム−電子ビーム複合加工装置の概略図である。
【図5】片掘り込み型レベンソンマスクと両掘り込み型レベンソンマスクを説明する図である。
【符号の説明】
1 Crパターン
2 黒欠陥領域
3 石英またはガラス基板
4 イオンビーム
5 透過率を維持するためのアシストガス用ガス銃
6 電子ビーム
7 遮蔽膜原料ガス用ガス銃
8 遮蔽膜
9 白欠陥領域
10 位相を180°反転させるためにガラス基板を掘り込んだ領域
11 イオン光学系
12 電子光学系
13 アンダーカット構造をもつレベンソン型位相シフトマスク
14 回転機構付X−Yステージ
15 二次イオン検出器もしくは二次電子検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a defect correction method for a Levenson mask type phase shift mask in which a part of a glass of a binary mask is dug.
[0002]
[Prior art]
With further miniaturization of Si semiconductor integrated circuits in recent years, it is required that patterns on a reticle also correspond to miniaturization. Reduction projection exposure apparatuses have responded to this demand by increasing the NA and shortening the wavelength. At the present time when it is required to advance the miniaturization, a phase shift mask, which is a kind of super-resolution technology, has been used to improve the resolution and the depth of focus without changing the size of the reduction projection exposure apparatus. There are two types of phase shift masks, the Levenson type and the halftone type, and it is known that the Levenson type has a greater effect of improving the resolution. However, it is difficult to optimize the arrangement of the phase shifter in the Levenson type, so there is little effect of improving the resolution.However, the halftone type, in which the shielding film is replaced with a halftone film, has fewer changes from the binary mask technology and is easier to introduce. , Is becoming widely used. However, even if the problems of the above design technique are overcome to further improve the resolution, the number of cases of producing a mask using a Levenson type having a large effect of improving the resolution is increasing. There are Levenson-type phase shift masks in which a transparent phase shifter film is disposed and those in which a glass or quartz substrate is dug to a depth where the phase is inverted. Currently, the type that is mainly put into practical use is a type in which a glass or quartz substrate is dug, and only a portion where a fine pattern is required with a binary mask is dug into a glass or quartz substrate to the depth where the phase is inverted. This is a Levenson type phase mask.
[0003]
In recent glass digging Levenson masks, a structure (single digging type) in which an undercut is added below the Cr pattern 1 on the phase shifter side as shown in FIG. It is becoming. The glass or quartz substrate 3 is not limited to the single engraving type, but also employs a double engraving type in which the non-phase shifter has an undercut structure on the non-phase shifter side as shown in FIG. It is becoming possible.
[0004]
As a method of shaving glass with a focused ion beam apparatus using a liquid metal Ga ion source which is typically used for defect correction of a binary mask, xenon fluoride (XeF 2 ) (SPIE 3873, p127 (1999)) or iodine There is known a method in which an ion beam is irradiated in a gas (SPIE 4409, p563 (2001)) atmosphere to suppress the injection of Ga and etch a glass or quartz substrate while maintaining a high transmittance. If the conventional method of repairing a glass digging Levenson mask is directly applied to a Levenson mask having a structure in which a single digging type or a double digging type undercut is added, the light amount of a defect correction portion is reduced. There is also a demand for a Levenson mask having a structure in which an undercut of a single digging type or a double digging type is added so that high-accuracy and high-quality defect correction can be performed without a decrease in light amount.
[0005]
[Problems to be solved by the invention]
The defect correction of the Levenson type phase shift mask having the undercut structure is performed so that the light quantity does not decrease.
[0006]
[Means for Solving the Problems]
For the black defect region, after recognizing the black defect region, the Cr pattern on the defect is removed, and the black defect region is continuously removed including the undercut width so that the transmittance does not decrease due to the implantation of Ga. Removal is performed with a focused ion beam while flowing iodine or xenon fluoride. A black film is corrected by growing a shielding film on the Cr film receded by the undercut width by electron beam CVD so as to reproduce the undercut structure.
[0007]
After recognizing the white defect area with respect to the white defect area, the Cr pattern on the defect is removed, and the transmittance of the white defect area is further reduced by Ga implantation to a depth corresponding to a phase of 180 degrees. While removing iodine or xenon fluoride so as not to cause the removal, the focused ion beam including the undercut width is removed. For the Cr pattern receded by the undercut width, a shielding film is grown by electron beam CVD so as to reproduce the undercut structure, thereby correcting a white defect.
[0008]
Also, instead of growing a shielding film by electron beam CVD to reproduce the undercut structure for the Cr pattern recessed by the undercut width, a shielding film is formed on the Cr film recessed by the undercut width by FIB-CVD. Defects can also be corrected by forming an eaves and reproducing a structure equivalent to an undercut.
[0009]
[Action]
For both black defect and white defect repair, the focused ion beam is used to cut the glass substrate including the undercut width, and the shielding film formed by electron beam CVD or FIB-CVD has the same undercut structure as the normal portion or equivalent Since a simple structure can be reproduced, it is possible to perform defect correction with high accuracy while maintaining the amount of light in the defect correction region.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
An undercut glass digging Levenson type having a defect in a focused ion beam-electron beam combined device having an ion optical system 11 perpendicular to a mask plane as shown in FIG. 4 and having an electron optical system 12 in an oblique direction. The phase shift mask 13 is introduced, and is moved by the XY stage 14 having a rotation mechanism to a position where a defect is detected by the defect inspection apparatus. In order to recognize the defect region, the ion optical system 11 scans the region including the defect with the ion beam 4 accelerated to 20 ̄30 kV and focused to about 0.1 μm, and detects the secondary ion detector or the secondary electron. The secondary ions or secondary electrons generated by the irradiation of the ion beam 4 are taken in by the vessel 15. The signal intensity of the secondary ion detector or the secondary electron detector 15 is made to correspond to the color or gradation of one pixel on the CRT, and is displayed in synchronization with the scanning of the deflection electrode of the ion optical system 11, thereby displaying the secondary ions. An image or a secondary electron image is formed. A defect region is determined from the secondary ion image or the secondary electron image. Simultaneously with the irradiation of the ion beam 4, the electron beam 6 of several hundred volts adjusted to an appropriate beam diameter by the electron optical system 12 in order to prevent charge-up of the glass-digging Levenson type phase shift mask 13 as an insulator is irradiated. To neutralize the charge.
[0011]
As shown in FIG. 1, for a black defect, after recognizing a black defect region 2 (FIG. 1A), a Cr pattern 1 on the defect is removed by a focused ion beam 4 (FIG. 1B). )) Concentrated ion beam while flowing iodine or xenon fluoride 5 from a gas gun 5 so that the transmittance of the quartz or glass substrate 3 is not reduced by the implantation of Ga including the undercut width in the black defect region. In step 4, the quartz or glass substrate 3 is shaved to remove defects (FIG. 1 (c)). During the Cr pattern or quartz or glass substrate removal processing, the electron beam 6 of several hundred volts adjusted to an appropriate beam diameter by the electron optical system 12 is irradiated to prevent charge-up, thereby neutralizing charges. The XY stage 14 having a rotating mechanism is rotated so that the Cr pattern 1 retreated by an undercut width faces the electron optical system mounted obliquely with respect to the mask. The focused electron beam 6 is scanned to obtain a secondary electron image of a region including the Cr pattern 1 receded by the undercut width, and a region requiring electron beam CVD is determined. The shielding film 8 is horizontally oriented so that the undercut structure can be accurately reproduced with the focused obliquely incident electron beam 6 of the high probe current while flowing the shielding film source gas from the gas gun 7 to the region where electron beam CVD is required. The black defect is corrected by growth (FIG. 1D). In order to prevent charge-up during secondary electron image acquisition and electron beam CVD, the electron beam 6 is used at a low acceleration voltage of about 600V ̄1000V.
[0012]
As shown in FIG. 2, for the white defect, after recognizing the white defect region 9 (FIG. 2A), the Cr pattern 1 on the defect is removed by the focused ion beam 4 (FIG. 2B). )) Then, as in the case of correcting the black defect, the white defect region is further cut to a depth corresponding to a phase of 180 degrees while flowing iodine or xenon fluoride from the gas gun 5 so that the transmittance does not decrease due to the implantation of Ga. The focused ion beam 4 including the width is used to cut the quartz or glass substrate 3 to remove defects (FIG. 2C). At this time, during the removal processing of the Cr film, quartz or glass substrate, the electron beam 6 of several hundred volts adjusted to an appropriate beam diameter by the electron optical system 12 is applied to prevent charge-up, thereby neutralizing the charge. The XY stage 14 having a rotation mechanism is rotated so that the Cr pattern 1 receded by the undercut width faces the electron optical system obliquely attached to the mask as in the case of the black defect correction. The focused electron beam 6 is scanned to obtain a secondary electron image of a region including the Cr pattern 1 receded by the undercut width, and a region requiring electron beam CVD is determined. The undercut structure of the shielding film 8 can be accurately reproduced by selectively scanning the focused obliquely incident electron beam 6 with a high probe current while flowing the shielding film source gas from the gas gun 7 to the region where electron beam CVD is required. The white defect is corrected by growing in the horizontal direction (FIG. 2D). At the time of secondary electron image acquisition and electron beam CVD, the electron beam 6 is used at a low acceleration voltage of about 600V6001000V in order to prevent charge-up.
[0013]
For both black defect correction and white defect correction, the shielding film 8 is shielded from the gas gun 7 by the electron beam 6 instead of growing the shielding film 8 in the horizontal direction so as to reproduce the undercut structure with respect to the Cr pattern 1 receded by the undercut width. While flowing the film raw material gas, the focused ion beam apparatus is focused on the Cr pattern 1 receded by the undercut width with the ion beam 4 focused by the ion optical system 12 vertically arranged on the quartz or glass substrate 3, as shown in FIG. The eaves (for example, J. Vac. Sci. Technol. B18, p3254 (2000)) of the shielding film 8 are formed when correcting a white defect of such a stencil mask, and a structure equivalent to the undercut structure is precisely formed. Defects can be corrected by reproducing well. Of course, while the shielding film 8 is being formed by the ion beam 4, the electron beam is irradiated with the electron beam 6 of several hundred volts adjusted to an appropriate beam diameter by the electron optical system 12 in order to prevent charge-up, thereby neutralizing the charge.
[0014]
For both the black defect correction and the white defect correction of the Levenson type phase shift mask having the undercut structure, the quartz or glass substrate 13 including the undercut width is cut while maintaining the high transmittance with the focused ion beam 4. Since the same undercut structure as a normal portion or a similar structure can be accurately reproduced by the shielding film 8 formed by the electron beam CVD or FIB-CVD, the defect correction area can perform high-precision defect correction while maintaining the magnitude of the light amount. It is possible.
[0015]
【The invention's effect】
As described above, according to the present invention, both the black defect and the white defect of the Levenson-type phase shift mask having the undercut structure in which the binary mask glass is dug, and the glass substrate including the undercut width by the focused ion beam By accurately reproducing the undercut structure or equivalent structure with the shaving film and the shielding film formed by electron beam CVD or FIB-CVD, the defect correction area realizes high-precision defect correction while maintaining the amount of light. it can.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a defect repair process (black defect repair) that best illustrates the features of the present invention.
FIG. 2 is a schematic sectional view illustrating a case where a white defect is corrected in the present invention.
FIG. 3 is a schematic sectional view illustrating a case where an eave is formed by FIB-CVD instead of forming an undercut structure by electron beam CVD.
FIG. 4 is a schematic diagram of a focused ion beam-electron beam combined processing apparatus used when correcting a defect of a Levenson mask having an undercut structure using the present invention.
FIG. 5 is a view for explaining a one-side engraving type Levenson mask and a two-side engraving type Levenson mask.
[Explanation of symbols]
Reference Signs List 1 Cr pattern 2 Black defect region 3 Quartz or glass substrate 4 Ion beam 5 Assist gas gas gun 6 for maintaining transmittance 6 Electron beam 7 Shielding film material gas gas gun 8 Shielding film 9 White defect region 10 Phase 180 A region in which a glass substrate is dug for inversion 11 An ion optical system 12 An electron optical system 13 A Levenson-type phase shift mask having an undercut structure 14 XY stage with a rotating mechanism 15 Secondary ion detector or secondary electron detection vessel

Claims (4)

アンダーカット幅分後退したCrパターンに対して電子ビームCVDで遮蔽膜をアンダーカット構造を再現するように成長させて黒欠陥を修正することを特徴とするレベンソン型位相シフトマスクの欠陥修正方法。A defect correction method for a Levenson-type phase shift mask, comprising growing a shielding film by electron beam CVD on a Cr pattern receded by an undercut width so as to reproduce an undercut structure, thereby correcting a black defect. アンダーカット構造を持つレベンソンマスクの白欠陥領域に対して、まず白欠陥領域を更に180度の位相に相当する深さまでアンダーカット幅も含めて集束イオンビームで除去し、アンダーカット幅分後退したCrパターンに対して電子ビームCVDで遮蔽膜をアンダーカット構造を再現するように成長させて白欠陥を修正することを特徴とするレベンソン型位相シフトマスクの欠陥修正方法。With respect to the white defect region of the Levenson mask having the undercut structure, the white defect region is further removed by a focused ion beam including the undercut width to a depth corresponding to a phase of 180 degrees, and the Cr receded by the undercut width. A defect correction method for a Levenson-type phase shift mask, which comprises growing a shielding film on a pattern by electron beam CVD so as to reproduce an undercut structure and correcting a white defect. アンダーカット構造を持つレベンソンマスクの黒欠陥領域に対して、まず黒欠陥領域をアンダーカット幅も含めて集束イオンビームで除去した後、FIB−CVDによりアンダーカット幅分後退したCrパターン上に遮蔽膜で庇を形成し、アンダーカットと同等な構造を再現することにより黒欠陥を修正することを特徴とするレベンソン型位相シフトマスクの欠陥修正方法。For the black defect region of the Levenson mask having an undercut structure, first, the black defect region including the undercut width is removed by a focused ion beam, and then a shielding film is formed on the Cr pattern receded by the undercut width by FIB-CVD. A defect correction method for a Levenson-type phase shift mask, wherein a black defect is corrected by forming an eaves with the same and reproducing a structure equivalent to an undercut. アンダーカット構造を持つレベンソンマスクの白欠陥領域に対して、まず白欠陥領域を更に180度の位相に相当する深さまでアンダーカット幅も含めて集束イオンビームで除去した後、FIB−CVDによりアンダーカット幅分後退したCrパターン上に遮蔽膜で庇を形成し、アンダーカットと同等な構造を再現することにより白欠陥を修正することを特徴とするレベンソン型位相シフトマスクの欠陥修正方法。With respect to the white defect area of the Levenson mask having the undercut structure, the white defect area is further removed by a focused ion beam including the undercut width to a depth corresponding to a phase of 180 degrees, and then undercut by FIB-CVD. A defect correction method for a Levenson-type phase shift mask, comprising forming an eave with a shielding film on a Cr pattern receded by a width, and correcting a white defect by reproducing a structure equivalent to an undercut.
JP2002166088A 2002-06-06 2002-06-06 Defect correction method for Levenson type phase shift mask Expired - Fee Related JP4308480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166088A JP4308480B2 (en) 2002-06-06 2002-06-06 Defect correction method for Levenson type phase shift mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166088A JP4308480B2 (en) 2002-06-06 2002-06-06 Defect correction method for Levenson type phase shift mask

Publications (2)

Publication Number Publication Date
JP2004012806A true JP2004012806A (en) 2004-01-15
JP4308480B2 JP4308480B2 (en) 2009-08-05

Family

ID=30433767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166088A Expired - Fee Related JP4308480B2 (en) 2002-06-06 2002-06-06 Defect correction method for Levenson type phase shift mask

Country Status (1)

Country Link
JP (1) JP4308480B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352048A (en) * 2004-06-09 2005-12-22 Sii Nanotechnology Inc Method for photomask defect correction using composite apparatus of convergence electron beam device and atomic force microscope
JP2007034219A (en) * 2005-07-29 2007-02-08 Sii Nanotechnology Inc Method for correcting defect of photomask and atomic force microscope microprocessing device used therefor
JP2008527428A (en) * 2005-01-03 2008-07-24 インテル・コーポレーション Method for repairing alternating phase shift mask
US8675549B2 (en) 2005-10-27 2014-03-18 Qualcomm Incorporated Method of serving sector maintenance in a wireless communication systems
JP2015210327A (en) * 2014-04-24 2015-11-24 大日本印刷株式会社 Large photomask

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352048A (en) * 2004-06-09 2005-12-22 Sii Nanotechnology Inc Method for photomask defect correction using composite apparatus of convergence electron beam device and atomic force microscope
JP4652725B2 (en) * 2004-06-09 2011-03-16 エスアイアイ・ナノテクノロジー株式会社 Photomask defect correction method
JP2008527428A (en) * 2005-01-03 2008-07-24 インテル・コーポレーション Method for repairing alternating phase shift mask
JP4742105B2 (en) * 2005-01-03 2011-08-10 インテル・コーポレーション Method for repairing alternating phase shift mask
JP2007034219A (en) * 2005-07-29 2007-02-08 Sii Nanotechnology Inc Method for correcting defect of photomask and atomic force microscope microprocessing device used therefor
US8675549B2 (en) 2005-10-27 2014-03-18 Qualcomm Incorporated Method of serving sector maintenance in a wireless communication systems
JP2015210327A (en) * 2014-04-24 2015-11-24 大日本印刷株式会社 Large photomask

Also Published As

Publication number Publication date
JP4308480B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
TWI278024B (en) Method of checking and repairing a defect in a graytone mask
KR101242328B1 (en) Defect modifying method of gray tone mask, manufacturing method of gray tone mask, and gray tone mask
JPH06118627A (en) Method for correcting pattern defect of phase shift mask
JP2004177682A (en) Method for repairing photomask by compound charged particle beam and apparatus therefor
JP4339106B2 (en) Defect correction method for phase shift mask
JP4219715B2 (en) Defect correction method for photomask
JP4308480B2 (en) Defect correction method for Levenson type phase shift mask
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP4426730B2 (en) Mask black defect correction method
JP2009086428A (en) Method and apparatus for photomask defect correction using charged particle beam
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP2004309605A (en) Method of correcting defect in photomask
JP3350095B2 (en) How to fix the mask
JP3706055B2 (en) Method for correcting white defect of mask for EUV lithography
JP4318839B2 (en) Defect correction device for phase shift mask
JP2004287321A (en) Method for correcting defect in photomask
JP3908516B2 (en) Photomask defect repair device using ion beam
JP3761681B2 (en) Photomask defect repair method
KR100314128B1 (en) Method for repairing a defect of photomask
JP4313694B2 (en) Binary mask halftone defect correction method
JPH04288542A (en) Phase shift mask and its correcting method
TWI388923B (en) Defect repairing method for a gray tone mask and gray tone mask
JPH06347994A (en) Halftone system phase shift mask and its correcting method and production of semiconductor device
JPH0588347A (en) Reticle and its manufacture
JP2003133203A (en) Method of correcting defect of stencil mask

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4308480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees