JP2004012246A - Insulation resistance measuring apparatus - Google Patents

Insulation resistance measuring apparatus Download PDF

Info

Publication number
JP2004012246A
JP2004012246A JP2002164798A JP2002164798A JP2004012246A JP 2004012246 A JP2004012246 A JP 2004012246A JP 2002164798 A JP2002164798 A JP 2002164798A JP 2002164798 A JP2002164798 A JP 2002164798A JP 2004012246 A JP2004012246 A JP 2004012246A
Authority
JP
Japan
Prior art keywords
voltage
fet
source
power supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164798A
Other languages
Japanese (ja)
Other versions
JP4062979B2 (en
Inventor
Hiroaki Oka
岡 博昭
Hiroshi Okubo
大久保 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002164798A priority Critical patent/JP4062979B2/en
Publication of JP2004012246A publication Critical patent/JP2004012246A/en
Application granted granted Critical
Publication of JP4062979B2 publication Critical patent/JP4062979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation resistance measuring apparatus for acquiring a constant current at all times even when a voltage of a measuring power source is changed and making noise of a constant current circuit low. <P>SOLUTION: A bias supply 9 includes a photoelectromotive circuit 10 (to be concrete, a combination of an infrared LED 27 and a photodiode array element 28, what is called a photovoltaic circuit). A DC current source 23 is connected to the primary side of the photoelectromotive circuit 10, and a resistor 14 is serially connected to the DC current source 23 for input protection of the photoelectromotive circuit 10. In addition, a contact 15 is serially connected to the DC current source 23 on the primary side of the photoelectromotive circuit 10. When the contact 15 is turned on, the infrared LED 27 emits light, and the light is received by the photodiode array element 28 to generate a voltage on the secondary side. The voltage on the secondary side is supplied for the gates (G) of EFT 51 and FET 52. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物の絶縁抵抗を測定するための絶縁抵抗測定装置に関する。
【0002】
【従来の技術】
一般に、絶縁抵抗測定装置を用いて、コンデンサなどの被測定物の絶縁抵抗を測定する場合、被測定物がショートした不良品であると、絶縁抵抗測定装置の測定回路が破壊されてしまう場合がある。そこで、従来は、複数の制限抵抗が並列接続された電流制限回路を備えた絶縁抵抗測定装置が用いられていた。この絶縁抵抗測定装置であれば、被測定物がショートしていても、測定回路が破壊されることを防止することができる。
【0003】
ところで、コンデンサの絶縁抵抗測定は耐圧試験も兼ねているため、コンデンサの種類によって印加測定電圧も異なる。ところが、従来の絶縁抵抗測定装置の場合、抵抗による電流制限回路を使用しているため、測定電源の電圧を変えると、充電電流が変化してしまうことになる。そのため、充電電流を一定にするために印加測定電圧値に応じて制限抵抗を何種類か用意して切り換える必要があり、回路が複雑化するとともに、切換えに手間がかかるという問題があった。
【0004】
また、被測定物のコンデンサの充電がCRの時定数によるexpカーブとなるため、充電に時間がかかり、測定効率が悪いという問題も抱えていた。
【0005】
このような問題を解決するため、本願発明の発明者の一人は、特開平4−131770号公報に示す絶縁抵抗測定装置を提案している。すなわち、この絶縁抵抗測定装置は、FETとバイアス電源(DC/DC変換器)とを組み合わせた定電流回路を備えている。この絶縁抵抗測定装置であれば、FETの定電流特性を利用して被測定物に流れる電流を一定化するので、測定電源の電圧を変えても常に一定の電流が得られ、多数の部品を必要とせず、かつ切換えの手間も必要としない。また、FETを使用しているので、充電時間を短縮でき、測定効率が良い。
【0006】
【発明が解決しようとする課題】
ところが、特開平4−131770号公報に示す絶縁抵抗測定装置の場合、定電流回路にはDC/DC変換器を使用している。DC/DC変換器は、1次側と2次側が電気的に絶縁されているものの、発振を利用して2次側電圧を生成しているため、発振ノイズが発生する。従って、このDC/DC変換器の発振ノイズが測定精度を悪化させる要因となっていた。
【0007】
そこで、本発明の目的は、測定電源の電圧を変えても常に一定の電流が得られるとともに、定電流回路の低ノイズ化を実現することができる絶縁抵抗測定装置を提供することにある。
【0008】
【課題を解決するための手段および作用】
前記目的を達成するため、本発明に係る絶縁抵抗測定装置は、被測定物に測定電圧を印加する測定電源と、測定電源から供給される電流を一定化する定電流回路と、定電流回路の出力端に接続された被測定物の漏れ電流を電圧に変換するI/V変換器とを備え、I/V変換器の出力電圧により被測定物の絶縁抵抗を測定する絶縁抵抗測定装置であって、定電流回路は、FETと、FETのゲート−ソース間に直流電圧を印加するバイアス電源と、FETのソースに直列接続された定電流負帰還用抵抗と、FETのバイアス電源の出力電圧を分圧してFETのゲート−ソース間に印加するゲート−ソース間電圧設定用抵抗とを備え、FETのバイアス電源が、光起電力回路およびチャージポンプ回路のいずれか一方の回路を含んでいることを特徴とする。
【0009】
また、本発明に係る絶縁抵抗測定装置は、被測定物に正負いずれか一方の測定電圧を印加する測定電源と、正負いずれか一方の測定電圧に選択的に切り替える切替器と、測定電源から供給される電流を一定化する定電流回路と、定電流回路の出力端に接続された被測定物の漏れ電流を電圧に変換するI/V変換器とを備え、I/V変換器の出力電圧により被測定物の絶縁抵抗を測定する絶縁抵抗測定装置であって、定電流回路は、ソース側同士およびドレイン側同士のいずれかが直列接続された二つのFETと、それぞれのFETのゲート−ソース間に直流電圧を印加するバイアス電源と、それぞれのFETのソースに直列接続された定電流負帰還用抵抗と、FETのバイアス電源の出力電圧を分圧してそれぞれのFETのゲート−ソース間に印加するゲート−ソース間電圧設定用抵抗とを備え、FETのバイアス電源が、光起電力回路およびチャージポンプ回路のいずれか一方の回路を含んでいることを特徴とする。
【0010】
以上の構成により、FETのバイアス電源は、ノイズを発生させにくい光起電力回路やチャージポンプ回路を含んでいるため、低ノイズの定電流回路が得られる。
【0011】
また、本発明に係る絶縁抵抗測定装置は、FETのゲート−ソース間に発生する寄生容量より大きい静電容量を有したコンデンサを、FETのゲート−ソース間に、FETのソースに接続された定電流負帰還用抵抗を介して接続している。これにより、定電流負帰還用抵抗とFETのゲート間に接続されたコンデンサは、突入電流防止用コンデンサとして機能する。
【0012】
また、光起電力回路の一次側に接点を設け、該接点で測定電圧の印加をON/OFF制御することにより、印加測定電圧にかかわらず、接点耐圧、開閉容量および接点容量の小さい接点が使用できる。
【0013】
【発明の実施の形態】
以下、本発明に係る絶縁抵抗測定装置の実施の形態について添付の図面を参照して説明する。各実施形態は、コンデンサの絶縁抵抗測定装置について説明するが、必ずしもコンデンサに限るものではない。
【0014】
[第1実施形態、図1]
図1に示すように、絶縁抵抗測定装置1は、直流測定電源2と、アース端子3と、切替器4と、直流測定電源2から供給される電流を一定化する定電流回路5と、定電流回路5の出力端子Bに接続される被測定物31の漏れ電流を電圧に変換するI/V変換器であるOPアンプ6と、OPアンプ6の出力電圧をデジタル化するA/D変換器7とを備えている。
【0015】
直流測定電源2は、正電圧源21と負電圧源22を有している。これらの電圧源21,22の一端は接地され、他端は切替器4を介して定電流回路5の入力端子Aに接続されている。また、アース端子3は切替器4を介して定電流回路5の入力端子Aに接続されている。従って、切替器4により、正電圧源21,負電圧源22およびアース端子3を択一的に切り替えることができる。
【0016】
定電流回路5の出力端子Bは、被測定物であるコンデンサ31の一端に接続され、コンデンサ31の他端は接点Cを介してOPアンプ6の負入力に接続されている。OPアンプ6の正入力は接地されている。OPアンプ6の出力端は、A/D変換器7に接続されている。なお、この絶縁抵抗測定装置1では、回路を簡素化するため、OPアンプ6の入力保護回路などは省略している。25は帰還抵抗である。
【0017】
次に、この絶縁抵抗測定装置1による、被測定物であるコンデンサ31の絶縁抵抗の測定方法について説明する。まず、コンデンサ31の種類に応じて、正負の電圧源21,22の出力電圧を設定する。
【0018】
次に、切替器4を正電圧源21に切り換える。これにより、正電圧源21から供給される電流は定電流回路5により一定化され、一定化された電流は、コンデンサ31に充電される。充電後、コンデンサ31の漏れ電流をOPアンプ6でI/V変換し、この出力電圧をA/D変換器7でデジタル化したものを解析し、電圧換算でコンデンサ31の絶縁抵抗を計算する。
【0019】
逆電圧を測定する場合、コンデンサ31の正充電電圧を一旦放電する必要があるため、切替器4をアース端子3へ切り替え、ついで負電圧源22に切り替える。その後、前述の正電圧による絶縁抵抗測定と同様にして、負電圧による絶縁抵抗測定が行なわれる。これにより、正電圧を印加した場合と、負電圧を印加した場合との両方の漏れ電流が確実に測定できる。
【0020】
次に、この絶縁抵抗測定装置1に用いられる定電流回路5について説明する。定電流回路5は、2つのFET(電界効果型トランジスタ)51,FET52と、各FET51,FET52のゲート(G)−ソース(S)間に直流電圧を印加するバイアス電源9と、バイアス電源9の出力電圧を安定化するための定電圧ダイオード11と、各FET51,FET52のゲート(G)−ソース(S)間の電圧を設定する可変抵抗器12と、測定電圧の印加開始直後に発生する突入電流を防止するコンデンサ13と、各FET51,FET52のソース(S)に直列接続された定電流負帰還用抵抗16,17とから構成されている。
【0021】
FET51は、FET52に対向するように、正逆直列に接続されている。すなわち、FET51のドレイン(D)側は入力端子Aに接続され、ソース(S)側はFET52のソース(S)側に接続されている。FET52のドレイン(D)側は出力端子Bに接続されている。FET51,FET52は、エンハンスメント型MOS−FETであり、高耐圧性に優れており、数百ボルトを印加するコンデンサ31の耐圧測定に適している。さらに、FET51,FET52は、コンデンサ31の充電時間を短縮でき、測定効率が良い。
【0022】
FET51,FET52のそれぞれのソース(S)−ドレイン(D)間にはソース(S)からドレイン(D)方向への流れを許容する保護ダイオード18,19が並列接続されている。
【0023】
定電圧ダイオード11は、FET51,FET52のそれぞれのゲート(G)−ソース(S)間に並列接続されている。可変抵抗器12も、FET51,FET52のそれぞれのゲート(G)−ソース(S)間に並列接続されている。この可変抵抗器12は、各FET51,FET52のドレイン(D)−ソース(S)間を流れる電流の増減に応じて、各FET51,FET52のゲート(G)−ソース(S)間に印加される電圧を調整するゲート−ソース間電圧設定用抵抗として機能する。
【0024】
バイアス電源9は、光起電力回路10(具体的には、赤外線LED27とフォトダイオードアレイ素子28を組み合わせたもの、いわゆるフォトボル)を含んでいる。
【0025】
光起電力回路10の一次側には直流電源23が接続されており、光起電力回路10の入力保護のために直流電源23と直列に抵抗14を接続している。また、光起電力回路10の一次側には直流電源23と直列に接点15を接続している。接点15がONすると、赤外線LED27が発光し、この光をフォトダイオードアレイ素子28が受光して2次側電圧が発生する。この2次側電圧はFET51,FET52のゲート(G)に供給される。なお、光起電力回路10の出力電圧が安定している場合には、定電圧ダイオード11を使用する必要はない。
【0026】
このような構成の定電流回路5において、被測定物であるコンデンサ31の正電圧による絶縁抵抗を測定する場合、または、負電圧印加後に放電する場合には、電流が入力端子Aから出力端子Bへと流れる。このとき、FET52側は、保護ダイオード19に電流が流れ、定電流作用はFET51で行なうことになる。
【0027】
より、具体的に説明する。FET51のドレイン(D)−ソース(S)間を流れる電流値は、FET51のゲート(G)−ソース(S)間の電位差により決まる。FET51のゲート(G)には、バイアス電源9から出力された電圧が印加される。この電圧は定電圧ダイオード11で安定化され、可変抵抗器12で分圧されている。そして、入力端子Aから出力端子Bへ流れる電流が増加した場合、つまり、FET51のドレイン(D)−ソース(S)間を流れる電流が増加した場合には、定電流負帰還用抵抗16の両端の電位差が上昇し、FET51のゲート(G)−ソース(S)間に加わる電圧を下げ、FET51のドレイン(D)−ソース(S)間を流れる電流(入力端子Aから出力端子Bへ流れる電流)を制限する。
【0028】
逆に、入力端子Aから出力端子Bへ流れる電流が減少した場合には、定電流負帰還用抵抗16の両端の電位差が低下し、FET51のゲート(G)−ソース(S)間に加わる電圧を上げ、FET51のドレイン(D)−ソース(S)間に流れる電流(入力端子Aから出力端子Bへ流れる電流)を増加させる。このように、正電圧源21の電圧を変えても、FET51の定電流特性を利用して、常に一定の電流をコンデンサ31に流すことができる。
【0029】
また、コンデンサ31の負電圧による絶縁抵抗を測定する場合、または、正電圧印加後に放電する場合には、電流が出力端子Bから入力端子Aへと流れる。このとき、FET51側は、保護ダイオード18に電流が流れ、定電流作用はFET52で行なうことになる。このように、FETを2個直列に接続することで、正負の電圧印加時と放電時の電流を一定化できる。
【0030】
ところで、一般に、FETのゲート(G)−ソース(S)間には寄生容量(以下ではFET寄生容量と称す)が存在する。従って、FETのドレイン(D)−ソース(S)間に流れる電流値の増減に対する、ゲート(G)−ソース(S)間電位差の増減動作の追従性(以下では、定電流動作の追従性と称す)は、このFET寄生容量の充/放電時間により決定される。この充/放電時間は、可変抵抗器12と定電流負帰還用抵抗16(または17)の合成抵抗値RとFET寄生容量の容量値Cの時定数CRで決定される。
【0031】
そして、FETのゲート(G)−ソース(S)間に印加される電圧を供給するバイアス電源9の駆動電流が十分大きい場合には、可変抵抗器12の抵抗値を小さくすることができ、定電流動作の追従性が良い。しかし、本第1実施形態で使用した光起電力回路10は駆動電流が小さく、可変抵抗器12の抵抗値を大きくする必要がある。このため、定電流動作の追従性が悪く、特に、測定電圧印加開始直後(電流値が急激に変化する場合)には数μs〜数ms程度の突入電流(設定した電流値より大きな電流)が流れる。
【0032】
コンデンサ13は、この突入電流を防止するためのものであり、FET寄生容量と定電流負帰還用抵抗16(または17)の間に接続されている。コンデンサ13を接続することで、FETのドレイン(D)−ソース(S)間に流れる電流が急激に変化した場合のFET寄生容量の充/放電を、コンデンサ13の放/充電により瞬時に行なうため、定電流動作の追従性が良くなり、突入電流の発生が防止される。この場合、定電流動作の追従性は、FET寄生容量と定電流負帰還用抵抗16(または17)により決定され、可変抵抗器12の抵抗値には依存しない。したがって、光起電力回路10の駆動電流の大小に関わらず、突入電流を防止でき、過電流による被測定物31や絶縁抵抗測定装置1の破損を防止できる。
【0033】
印加測定電圧は、被測定物31の種類に応じて様々であり、測定電圧の正負切替、充/放電切替や測定電圧印加ON/OFFを行なう切替器は接点耐圧、開閉容量、接点容量の大きなものを使用する必要があり、コストアップとなる。本第1実施形態では、FET51,FET52のそれぞれに、バイアス電源9から出力された電圧が印加されており、バイアス電源9の1次側の接点15をON/OFFすることにより、被測定物31への測定電圧の印加をON/OFF制御している。このため、接点耐圧、開閉容量、接点容量の小さな接点15で実現可能である。また、測定電圧の印加OFF時に切替器4を切り替えることで、印加測定電圧の大きさにかかわらず、切替器4は接点耐圧、開閉容量の小さな安価なものを使用できる。
【0034】
以上の構成からなる絶縁抵抗測定装置1は、FET51,FET52のバイアス電源9が光起電力回路10を含んでいる。従って、光起電力回路10の1次側と2次側は電気的に絶縁されており、しかも、2次側電圧は光電効果を利用して発生させているため、低ノイズな電源となる。この結果、定電流回路5の低ノイズ化が実現でき、精度の良い絶縁抵抗測定が実現できる。
【0035】
[第2実施形態、図2]
図2に示すように、絶縁抵抗測定装置1Aの定電流回路5Aは、各FET51,FET52毎にバイアス電源9a,9bと、定電圧ダイオード11a,11bと、可変抵抗器12a,12bと、突入電流防止コンデンサ13a,13bと、定電流負帰還用抵抗16,17とを備えている。FET51とFET52はドレイン(D)同士が直列に接続している。
【0036】
バイアス電源9a,9bは、それぞれ光起電力回路10a,10bを含んでいる。光起電力回路10a,10bの1次側には共通の直流電源23が接続され、入力保護用抵抗14a,14bが直流電源23に直列に接続している。また、光起電力回路10a,10bの1次側には、直流電源23と直列に接点15を接続している。
【0037】
以上の構成からなる絶縁抵抗測定装置1Aは、前記第1実施形態の装置1と同様の作用効果を奏する。さらに、二つのFET51,FET52間に個体差があっても、可変抵抗器12a,12bやバイアス電源9a,9bなどの電気定数を種々設定することにより、ゲート(G)に印加する電圧値をそれぞれ独立して設定することができる。
【0038】
[第3実施形態、図3]
図3に示す絶縁抵抗測定装置1Bは、正負の両電圧で絶縁抵抗測定を行なう必要がなく、かつ、被測定物31に充電された電圧を放電する必要がない場合に用いられる。この絶縁抵抗測定装置1Bは、FET51および定電流負帰還用抵抗16が一つですむため、部品点数が少なく、安価である。
【0039】
[第4実施形態、図4]
図4に示す絶縁抵抗測定装置1Cは、定電流回路5Cに、チャージポンプ回路を含んだバイアス電源40を使用したものである。バイアス電源40の1次側には、直流電源23と入力保護用抵抗14が接続している。一段目コンデンサ41は、一段目スイッチS1a,S1bを介して直流電源に並列接続され、二段目スイッチS2a,S2bを介して二段目コンデンサ42に並列接続されている。
【0040】
バイアス電源40による2次側電圧生成方法は以下の通りである。まず、一段目スイッチS1a,S1bをONするとともに、二段目スイッチS2a,S2bをOFFし、直流電源23によって一段目コンデンサ41を充電する。次に、一段目スイッチS1a,S1bをOFFするとともに、二段目スイッチS2a,S2bをONし、一段目コンデンサ41に充電された電荷によって二段目コンデンサ42を充電する。さらに、前述の充電動作を繰り返す。こうして、二段目コンデンサ42に生成した2次側電圧は、FET51,FET52のゲート(G)に供給される。
【0041】
以上の構成からなる絶縁抵抗測定装置1Cは、FET51,FET52のバイアス電源40がチャージポンプ回路を含んでいる。従って、チャージポンプ回路の1次側と2次側は、一段目スイッチS1a,S1bにより電気的に絶縁されており、しかも、2次側電圧は充電された二段目コンデンサ42(いわゆる電池と見做せる)にて発生させているため、低ノイズな電源となる。この結果、定電流回路5Cの低ノイズ化が実現でき、精度の良い絶縁抵抗測定が実現できる。
【0042】
[他の実施形態]
なお、本発明に係る絶縁抵抗測定装置は、前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。例えば、前記実施形態では、FETのゲート(G)−ソース(S)間に印加される電圧を調整するゲート−ソース間電圧設定用抵抗として可変抵抗器を使用したが、固定抵抗を使用して調整を不要化してもよい。
【0043】
【発明の効果】
以上の説明で明らかなように、本発明によれば、FETのバイアス電源は、ノイズを発生させにくい光起電力回路やチャージポンプ回路を含んでいるため、低ノイズの定電流回路が得られる。
【図面の簡単な説明】
【図1】本発明に係る絶縁抵抗測定装置の第1実施形態を示す電気回路図。
【図2】本発明に係る絶縁抵抗測定装置の第2実施形態を示す電気回路図。
【図3】本発明に係る絶縁抵抗測定装置の第3実施形態を示す電気回路図。
【図4】本発明に係る絶縁抵抗測定装置の第4実施形態を示す電気回路図。
【符号の説明】
1,1A,1B,1C…絶縁抵抗測定装置
2…直流測定電源
4…切替器
5,5A,5B,5C…定電流回路
6…OPアンプ(I/V変換器)
9,9a,9b,40…バイアス電源
10,10a,10b…光起電力回路
12,12a,12b…ゲート−ソース間電圧設定用抵抗
13,13a,13b…突入電流防止コンデンサ
15…接点
16,17…定電流負帰還用抵抗
51,52…FET
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulation resistance measuring device for measuring an insulation resistance of a device under test.
[0002]
[Prior art]
Generally, when measuring the insulation resistance of a device under test such as a capacitor using an insulation resistance measurement device, if the device under test is a defective product with a short circuit, the measurement circuit of the device may be destroyed. is there. Therefore, conventionally, an insulation resistance measuring device provided with a current limiting circuit in which a plurality of limiting resistors are connected in parallel has been used. With this insulation resistance measuring device, it is possible to prevent the measurement circuit from being destroyed even if the device under test is short-circuited.
[0003]
By the way, since the measurement of the insulation resistance of a capacitor also serves as a withstand voltage test, the applied measurement voltage differs depending on the type of capacitor. However, in the case of the conventional insulation resistance measuring device, since a current limiting circuit using a resistor is used, if the voltage of the measuring power supply is changed, the charging current will change. Therefore, in order to keep the charging current constant, it is necessary to prepare and switch several types of limiting resistors in accordance with the applied measured voltage value, and this has a problem that the circuit becomes complicated and the switching takes time.
[0004]
In addition, since the charging of the capacitor of the device under test becomes an exp curve based on the time constant of the CR, it takes a long time to charge the battery and the measurement efficiency is poor.
[0005]
In order to solve such a problem, one of the inventors of the present invention has proposed an insulation resistance measuring device disclosed in Japanese Patent Application Laid-Open No. 4-131770. That is, this insulation resistance measuring device includes a constant current circuit combining an FET and a bias power supply (DC / DC converter). With this insulation resistance measuring device, the constant current flowing through the device under test is made constant by utilizing the constant current characteristics of the FET, so that a constant current can always be obtained even when the voltage of the measurement power supply is changed. It is not required and does not require the trouble of switching. Further, since the FET is used, the charging time can be reduced, and the measurement efficiency is good.
[0006]
[Problems to be solved by the invention]
However, in the case of the insulation resistance measuring device disclosed in Japanese Patent Application Laid-Open No. 4-131770, a DC / DC converter is used for the constant current circuit. Although the DC / DC converter is electrically insulated on the primary side and the secondary side, oscillation noise is generated because the secondary side voltage is generated using oscillation. Therefore, the oscillation noise of the DC / DC converter is a factor that deteriorates the measurement accuracy.
[0007]
Therefore, an object of the present invention is to provide an insulation resistance measuring device that can always obtain a constant current even when the voltage of a measurement power supply is changed and can realize low noise of a constant current circuit.
[0008]
Means and action for solving the problem
In order to achieve the above object, an insulation resistance measuring device according to the present invention includes a measurement power supply for applying a measurement voltage to a device under test, a constant current circuit for stabilizing a current supplied from the measurement power supply, and a constant current circuit. An I / V converter connected to an output terminal for converting a leakage current of the device under test into a voltage, and measuring an insulation resistance of the device under test based on an output voltage of the I / V converter. The constant current circuit includes an FET, a bias power supply for applying a DC voltage between the gate and the source of the FET, a constant current negative feedback resistor connected in series to the source of the FET, and an output voltage of the bias power supply for the FET. A gate-source voltage setting resistor to be applied between the gate and the source of the FET by dividing the voltage, and that the bias power supply of the FET includes one of a photovoltaic circuit and a charge pump circuit. Special To.
[0009]
Further, the insulation resistance measuring apparatus according to the present invention includes a measurement power supply for applying one of the positive and negative measurement voltages to the device under test, a switch for selectively switching to one of the positive and negative measurement voltages, and a power supply from the measurement power supply. A constant current circuit for stabilizing the measured current, and an I / V converter connected to the output terminal of the constant current circuit for converting a leakage current of the device under test into a voltage. The output voltage of the I / V converter A constant current circuit comprising: two FETs each having one of source side and drain side connected in series; and a gate-source of each FET. A bias power supply for applying a direct-current voltage between them, a constant current negative feedback resistor connected in series to the source of each FET, and a voltage between the gate and source of each FET by dividing the output voltage of the bias power supply of the FET. It applied to the gate - a resistance for the source voltage setting, bias power FET, characterized in that it contains one of the circuits of the photovoltaic circuit and the charge pump circuit.
[0010]
With the above configuration, the bias power supply for the FET includes a photovoltaic circuit and a charge pump circuit that hardly generate noise, so that a low-noise constant current circuit can be obtained.
[0011]
In addition, the insulation resistance measuring device according to the present invention includes a capacitor having a capacitance larger than a parasitic capacitance generated between the gate and the source of the FET, connected between the gate and the source of the FET and connected to the source of the FET. Connected via a current negative feedback resistor. Thus, the capacitor connected between the constant current negative feedback resistor and the gate of the FET functions as a rush current preventing capacitor.
[0012]
Also, by providing a contact on the primary side of the photovoltaic circuit and controlling ON / OFF of the application of the measurement voltage at the contact, contacts with small contact withstand voltage, switching capacity and contact capacity can be used regardless of the applied measurement voltage. it can.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an insulation resistance measuring device according to the present invention will be described with reference to the accompanying drawings. Each embodiment describes an insulation resistance measuring device for a capacitor, but is not necessarily limited to a capacitor.
[0014]
[First Embodiment, FIG. 1]
As shown in FIG. 1, the insulation resistance measuring device 1 includes a DC measurement power supply 2, an earth terminal 3, a switch 4, a constant current circuit 5 for making the current supplied from the DC measurement power supply 2 constant, and a constant current circuit 5. An OP amplifier 6 which is an I / V converter for converting a leakage current of the DUT 31 connected to the output terminal B of the current circuit 5 into a voltage, and an A / D converter for digitizing an output voltage of the OP amplifier 6 7 is provided.
[0015]
The DC measurement power supply 2 has a positive voltage source 21 and a negative voltage source 22. One ends of these voltage sources 21 and 22 are grounded, and the other ends are connected to an input terminal A of a constant current circuit 5 via a switch 4. The ground terminal 3 is connected to the input terminal A of the constant current circuit 5 via the switch 4. Therefore, the switching device 4 can selectively switch the positive voltage source 21, the negative voltage source 22, and the ground terminal 3.
[0016]
The output terminal B of the constant current circuit 5 is connected to one end of a capacitor 31 which is a device under test, and the other end of the capacitor 31 is connected to a negative input of the OP amplifier 6 via a contact C. The positive input of the OP amplifier 6 is grounded. The output terminal of the OP amplifier 6 is connected to the A / D converter 7. In addition, in the insulation resistance measuring device 1, the input protection circuit of the OP amplifier 6 and the like are omitted to simplify the circuit. 25 is a feedback resistor.
[0017]
Next, a description will be given of a method of measuring the insulation resistance of the capacitor 31, which is the device under test, using the insulation resistance measurement device 1. First, the output voltages of the positive and negative voltage sources 21 and 22 are set according to the type of the capacitor 31.
[0018]
Next, the switch 4 is switched to the positive voltage source 21. As a result, the current supplied from the positive voltage source 21 is made constant by the constant current circuit 5, and the constant current is charged in the capacitor 31. After the charging, the leakage current of the capacitor 31 is subjected to I / V conversion by the OP amplifier 6, the output voltage digitized by the A / D converter 7 is analyzed, and the insulation resistance of the capacitor 31 is calculated in terms of voltage.
[0019]
When measuring the reverse voltage, it is necessary to discharge the positive charging voltage of the capacitor 31 once, so the switch 4 is switched to the ground terminal 3 and then to the negative voltage source 22. Thereafter, the insulation resistance measurement using a negative voltage is performed in the same manner as the insulation resistance measurement using a positive voltage described above. Thus, it is possible to reliably measure the leakage current both when the positive voltage is applied and when the negative voltage is applied.
[0020]
Next, the constant current circuit 5 used in the insulation resistance measuring device 1 will be described. The constant current circuit 5 includes two FETs (field effect transistors) 51 and 52, a bias power supply 9 for applying a DC voltage between the gate (G) and the source (S) of each FET 51 and FET 52, and a bias power supply 9. A constant voltage diode 11 for stabilizing an output voltage, a variable resistor 12 for setting a voltage between a gate (G) and a source (S) of each of the FETs 51 and 52, and an inrush generated immediately after the start of application of a measurement voltage. It comprises a capacitor 13 for preventing a current, and constant current negative feedback resistors 16 and 17 connected in series to the sources (S) of the FETs 51 and 52.
[0021]
The FET 51 is connected in forward and reverse series so as to face the FET 52. That is, the drain (D) side of the FET 51 is connected to the input terminal A, and the source (S) side is connected to the source (S) side of the FET 52. The drain (D) side of the FET 52 is connected to the output terminal B. The FETs 51 and 52 are enhancement-type MOS-FETs, have excellent withstand voltage, and are suitable for measuring the withstand voltage of the capacitor 31 to which several hundred volts are applied. Further, the FET 51 and the FET 52 can shorten the charging time of the capacitor 31 and have good measurement efficiency.
[0022]
Between the source (S) and the drain (D) of each of the FETs 51 and 52, protection diodes 18 and 19 that allow a flow from the source (S) to the drain (D) are connected in parallel.
[0023]
The constant voltage diode 11 is connected between the gate (G) and the source (S) of each of the FETs 51 and 52 in parallel. The variable resistor 12 is also connected between the gate (G) and the source (S) of each of the FETs 51 and 52 in parallel. The variable resistor 12 is applied between the gate (G) and the source (S) of each of the FETs 51 and 52 according to the increase and decrease of the current flowing between the drain (D) and the source (S) of each of the FETs 51 and 52. It functions as a gate-source voltage setting resistor for adjusting the voltage.
[0024]
The bias power supply 9 includes a photovoltaic circuit 10 (specifically, a combination of an infrared LED 27 and a photodiode array element 28, a so-called photovol).
[0025]
A DC power supply 23 is connected to the primary side of the photovoltaic circuit 10, and a resistor 14 is connected in series with the DC power supply 23 for input protection of the photovoltaic circuit 10. The contact 15 is connected to the primary side of the photovoltaic circuit 10 in series with the DC power supply 23. When the contact 15 is turned on, the infrared LED 27 emits light, and this light is received by the photodiode array element 28 to generate a secondary voltage. This secondary voltage is supplied to the gates (G) of the FETs 51 and 52. When the output voltage of the photovoltaic circuit 10 is stable, it is not necessary to use the constant voltage diode 11.
[0026]
In the constant current circuit 5 having such a configuration, when measuring the insulation resistance of the capacitor 31 which is the device under test by the positive voltage, or when discharging after applying the negative voltage, the current flows from the input terminal A to the output terminal B. Flows to At this time, a current flows through the protection diode 19 on the FET 52 side, and the constant current operation is performed by the FET 51.
[0027]
This will be described more specifically. The value of the current flowing between the drain (D) and the source (S) of the FET 51 is determined by the potential difference between the gate (G) and the source (S) of the FET 51. The voltage output from the bias power supply 9 is applied to the gate (G) of the FET 51. This voltage is stabilized by a constant voltage diode 11 and divided by a variable resistor 12. When the current flowing from the input terminal A to the output terminal B increases, that is, when the current flowing between the drain (D) and the source (S) of the FET 51 increases, both ends of the constant current negative feedback resistor 16 , The voltage applied between the gate (G) and the source (S) of the FET 51 decreases, and the current flowing between the drain (D) and the source (S) of the FET 51 (the current flowing from the input terminal A to the output terminal B) ).
[0028]
Conversely, when the current flowing from the input terminal A to the output terminal B decreases, the potential difference between both ends of the constant current negative feedback resistor 16 decreases, and the voltage applied between the gate (G) and the source (S) of the FET 51. And the current flowing between the drain (D) and the source (S) of the FET 51 (the current flowing from the input terminal A to the output terminal B) is increased. As described above, even if the voltage of the positive voltage source 21 is changed, a constant current can always flow through the capacitor 31 by utilizing the constant current characteristics of the FET 51.
[0029]
In addition, when the insulation resistance due to the negative voltage of the capacitor 31 is measured, or when the discharge is performed after the application of the positive voltage, the current flows from the output terminal B to the input terminal A. At this time, a current flows through the protection diode 18 on the FET 51 side, and the constant current operation is performed by the FET 52. In this way, by connecting two FETs in series, the current at the time of applying a positive and negative voltage and the current at the time of discharging can be made constant.
[0030]
In general, a parasitic capacitance (hereinafter referred to as an FET parasitic capacitance) exists between the gate (G) and the source (S) of the FET. Therefore, the follow-up property of the increase / decrease operation of the potential difference between the gate (G) and the source (S) with respect to the increase / decrease of the current value flowing between the drain (D) -source (S) of the FET (hereinafter, the follow-up property of the constant current operation and ) Is determined by the charge / discharge time of the FET parasitic capacitance. The charge / discharge time is determined by the time constant CR of the combined resistance value R of the variable resistor 12 and the constant current negative feedback resistor 16 (or 17) and the capacitance value C of the FET parasitic capacitance.
[0031]
When the driving current of the bias power supply 9 for supplying a voltage applied between the gate (G) and the source (S) of the FET is sufficiently large, the resistance value of the variable resistor 12 can be reduced, and Good follow-up of current operation. However, the photovoltaic circuit 10 used in the first embodiment has a small driving current and needs to increase the resistance value of the variable resistor 12. For this reason, the followability of the constant current operation is poor. In particular, immediately after the start of the application of the measurement voltage (when the current value changes suddenly), an inrush current of about several μs to several ms (current larger than the set current value) is generated. Flows.
[0032]
The capacitor 13 prevents this inrush current, and is connected between the FET parasitic capacitance and the constant current negative feedback resistor 16 (or 17). By connecting the capacitor 13, the charge / discharge of the FET parasitic capacitance when the current flowing between the drain (D) and the source (S) of the FET changes abruptly is performed by discharging / charging the capacitor 13 instantaneously. Therefore, the followability of the constant current operation is improved, and occurrence of an inrush current is prevented. In this case, the followability of the constant current operation is determined by the FET parasitic capacitance and the constant current negative feedback resistor 16 (or 17), and does not depend on the resistance value of the variable resistor 12. Therefore, regardless of the magnitude of the drive current of the photovoltaic circuit 10, inrush current can be prevented, and damage to the DUT 31 and the insulation resistance measuring device 1 due to overcurrent can be prevented.
[0033]
The applied measurement voltage varies depending on the type of the DUT 31. A switch for performing positive / negative switching of the measurement voltage, switching between charge / discharge, and ON / OFF of the application of the measurement voltage has a large contact withstand voltage, switching capacity, and contact capacity. It is necessary to use something, which increases the cost. In the first embodiment, the voltage output from the bias power supply 9 is applied to each of the FET 51 and the FET 52. By turning on / off the primary contact 15 of the bias power supply 9, the DUT 31 is measured. ON / OFF control of the application of the measurement voltage to the power supply is performed. Therefore, it can be realized with the contact 15 having a small contact withstand voltage, switching capacity, and contact capacity. Further, by switching the switch 4 when the application of the measurement voltage is OFF, an inexpensive switch 4 having a small contact withstand voltage and a small switching capacity can be used regardless of the magnitude of the applied measurement voltage.
[0034]
In the insulation resistance measuring device 1 having the above configuration, the bias power supply 9 of the FET 51 and the FET 52 includes the photovoltaic circuit 10. Therefore, the primary side and the secondary side of the photovoltaic circuit 10 are electrically insulated, and the secondary side voltage is generated by using the photoelectric effect, so that the power supply has low noise. As a result, low noise of the constant current circuit 5 can be realized, and accurate insulation resistance measurement can be realized.
[0035]
[Second embodiment, FIG. 2]
As shown in FIG. 2, the constant current circuit 5A of the insulation resistance measuring apparatus 1A includes a bias power supply 9a, 9b for each FET 51, 52, constant voltage diodes 11a, 11b, variable resistors 12a, 12b, and an inrush current. It comprises prevention capacitors 13a and 13b and constant current negative feedback resistors 16 and 17. The drains (D) of the FETs 51 and 52 are connected in series.
[0036]
The bias power supplies 9a and 9b include photovoltaic circuits 10a and 10b, respectively. A common DC power supply 23 is connected to the primary side of the photovoltaic circuits 10a and 10b, and input protection resistors 14a and 14b are connected in series to the DC power supply 23. A contact 15 is connected to the primary side of the photovoltaic circuits 10a and 10b in series with the DC power supply 23.
[0037]
The insulation resistance measuring device 1A having the above configuration has the same operation and effect as the device 1 of the first embodiment. Further, even if there is an individual difference between the two FETs 51 and 52, the voltage value applied to the gate (G) is set by setting various electric constants of the variable resistors 12a and 12b and the bias power supplies 9a and 9b. Can be set independently.
[0038]
[Third embodiment, FIG. 3]
The insulation resistance measuring apparatus 1B shown in FIG. 3 is used when it is not necessary to measure the insulation resistance with both positive and negative voltages and when it is not necessary to discharge the voltage charged in the DUT 31. Since the insulation resistance measuring device 1B requires only one FET 51 and the constant current negative feedback resistor 16, the number of components is small and the cost is low.
[0039]
[Fourth embodiment, FIG. 4]
An insulation resistance measuring apparatus 1C shown in FIG. 4 uses a bias power supply 40 including a charge pump circuit for a constant current circuit 5C. The DC power supply 23 and the input protection resistor 14 are connected to the primary side of the bias power supply 40. The first-stage capacitor 41 is connected in parallel to the DC power supply through first-stage switches S1a and S1b, and is connected in parallel to the second-stage capacitor 42 through second-stage switches S2a and S2b.
[0040]
The method of generating the secondary voltage by the bias power supply 40 is as follows. First, the first-stage switches S1a and S1b are turned on, the second-stage switches S2a and S2b are turned off, and the first-stage capacitor 41 is charged by the DC power supply 23. Next, the first-stage switches S1a and S1b are turned off, the second-stage switches S2a and S2b are turned on, and the second-stage capacitor 42 is charged by the electric charge charged in the first-stage capacitor 41. Further, the above-described charging operation is repeated. Thus, the secondary voltage generated in the second-stage capacitor 42 is supplied to the gates (G) of the FETs 51 and 52.
[0041]
In the insulation resistance measuring apparatus 1C having the above configuration, the bias power supply 40 for the FETs 51 and 52 includes a charge pump circuit. Therefore, the primary side and the secondary side of the charge pump circuit are electrically insulated by the first-stage switches S1a and S1b, and the secondary-side voltage is charged to the charged second-stage capacitor 42 (so-called battery). ), The power supply has low noise. As a result, low noise of the constant current circuit 5C can be realized, and accurate insulation resistance measurement can be realized.
[0042]
[Other Embodiments]
The insulation resistance measuring device according to the present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the gist. For example, in the above-described embodiment, the variable resistor is used as the gate-source voltage setting resistor for adjusting the voltage applied between the gate (G) and the source (S) of the FET. Adjustment may be unnecessary.
[0043]
【The invention's effect】
As apparent from the above description, according to the present invention, the bias power supply for the FET includes the photovoltaic circuit and the charge pump circuit that hardly generate noise, so that a low-noise constant current circuit can be obtained.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram showing a first embodiment of an insulation resistance measuring device according to the present invention.
FIG. 2 is an electric circuit diagram showing a second embodiment of the insulation resistance measuring device according to the present invention.
FIG. 3 is an electric circuit diagram showing a third embodiment of the insulation resistance measuring device according to the present invention.
FIG. 4 is an electric circuit diagram showing a fourth embodiment of the insulation resistance measuring device according to the present invention.
[Explanation of symbols]
1, 1A, 1B, 1C Insulation resistance measurement device 2 DC measurement power supply 4 Switchers 5, 5A, 5B, 5C Constant current circuit 6 OP amplifier (I / V converter)
9, 9a, 9b, 40 ... bias power supplies 10, 10a, 10b ... photovoltaic circuits 12, 12a, 12b ... gate-source voltage setting resistors 13, 13a, 13b ... inrush current prevention capacitors 15 ... contacts 16, 17 ... Constant current negative feedback resistors 51, 52 ... FET

Claims (4)

被測定物に測定電圧を印加する測定電源と、
前記測定電源から供給される電流を一定化する定電流回路と、
前記定電流回路の出力端に接続された被測定物の漏れ電流を電圧に変換するI/V変換器とを備え、
前記I/V変換器の出力電圧により被測定物の絶縁抵抗を測定する絶縁抵抗測定装置であって、
前記定電流回路は、FETと、
前記FETのゲート−ソース間に直流電圧を印加するバイアス電源と、
前記FETのソースに直列接続された定電流負帰還用抵抗と、
前記FETのバイアス電源の出力電圧を分圧してFETのゲート−ソース間に印加するゲート−ソース間電圧設定用抵抗とを備え、
前記FETのバイアス電源が、光起電力回路およびチャージポンプ回路のいずれか一方の回路を含んでいること、
を特徴とする絶縁抵抗測定装置。
A measurement power supply for applying a measurement voltage to the device under test,
A constant current circuit for stabilizing a current supplied from the measurement power supply,
An I / V converter connected to an output terminal of the constant current circuit and configured to convert a leakage current of the device under test into a voltage;
An insulation resistance measuring device for measuring an insulation resistance of an object to be measured based on an output voltage of the I / V converter,
The constant current circuit includes: an FET;
A bias power supply for applying a DC voltage between the gate and the source of the FET;
A constant current negative feedback resistor connected in series to the source of the FET;
A gate-source voltage setting resistor that divides an output voltage of a bias power supply of the FET and applies the divided voltage between a gate and a source of the FET;
The bias power supply of the FET includes one of a photovoltaic circuit and a charge pump circuit,
An insulation resistance measuring device characterized by the above-mentioned.
被測定物に正負いずれか一方の測定電圧を印加する測定電源と、
正負いずれか一方の測定電圧に選択的に切り替える切替器と、
前記測定電源から供給される電流を一定化する定電流回路と、
前記定電流回路の出力端に接続された被測定物の漏れ電流を電圧に変換するI/V変換器とを備え、
前記I/V変換器の出力電圧により被測定物の絶縁抵抗を測定する絶縁抵抗測定装置であって、
前記定電流回路は、ソース側同士およびドレイン側同士のいずれかが直列接続された二つのFETと、
それぞれの前記FETのゲート−ソース間に直流電圧を印加するバイアス電源と、
それぞれの前記FETのソースに直列接続された定電流負帰還用抵抗と、
前記FETのバイアス電源の出力電圧を分圧してそれぞれのFETのゲート−ソース間に印加するゲート−ソース間電圧設定用抵抗とを備え、
前記FETのバイアス電源が、光起電力回路およびチャージポンプ回路のいずれか一方の回路を含んでいること、
を特徴とする絶縁抵抗測定装置。
A measurement power supply for applying one of positive and negative measurement voltages to the device under test,
A switch for selectively switching to one of the positive and negative measurement voltages,
A constant current circuit for stabilizing a current supplied from the measurement power supply,
An I / V converter connected to an output terminal of the constant current circuit and configured to convert a leakage current of the device under test into a voltage;
An insulation resistance measuring device for measuring an insulation resistance of an object to be measured based on an output voltage of the I / V converter,
The constant current circuit includes two FETs in which either the source side or the drain side is connected in series,
A bias power supply for applying a DC voltage between the gate and the source of each of the FETs,
A constant current negative feedback resistor connected in series to the source of each of the FETs;
A gate-source voltage setting resistor that divides the output voltage of the bias power supply of the FET and applies the divided voltage between the gate and the source of each FET;
The bias power supply of the FET includes one of a photovoltaic circuit and a charge pump circuit,
An insulation resistance measuring device characterized by the above-mentioned.
前記FETのゲート−ソース間に発生する寄生容量より大きい静電容量を有したコンデンサを、前記FETのゲート−ソース間に、前記FETのソースに接続された定電流負帰還用抵抗を介して接続したことを特徴とする請求項1または請求項2に記載の絶縁抵抗測定装置。A capacitor having a capacitance larger than a parasitic capacitance generated between the gate and the source of the FET is connected between the gate and the source of the FET via a constant current negative feedback resistor connected to the source of the FET. The insulation resistance measuring device according to claim 1 or 2, wherein 前記光起電力回路の一次側に接点を設け、該接点で前記測定電圧の印加をON/OFF制御することを特徴とする請求項1〜請求項3のいずれかに記載の絶縁抵抗測定装置。4. The insulation resistance measuring device according to claim 1, wherein a contact is provided on a primary side of the photovoltaic circuit, and ON / OFF control of the application of the measurement voltage is performed at the contact.
JP2002164798A 2002-06-05 2002-06-05 Insulation resistance measuring device Expired - Lifetime JP4062979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164798A JP4062979B2 (en) 2002-06-05 2002-06-05 Insulation resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164798A JP4062979B2 (en) 2002-06-05 2002-06-05 Insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2004012246A true JP2004012246A (en) 2004-01-15
JP4062979B2 JP4062979B2 (en) 2008-03-19

Family

ID=30432851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164798A Expired - Lifetime JP4062979B2 (en) 2002-06-05 2002-06-05 Insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP4062979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217780A (en) * 2007-02-07 2008-09-18 Produce:Kk Current limiting circuit
WO2012036498A2 (en) * 2010-09-17 2012-03-22 Sk Innovation Co.,Ltd. Insulation resistance measurement circuit having self-test function without generating leakage current
JP2012255784A (en) * 2011-06-09 2012-12-27 Samsung Electro-Mechanics Co Ltd Protection circuit and insulation resistance measurement device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018572A (en) * 2012-12-20 2013-04-03 江苏宏宝电子有限公司 Photovoltaic grid-connected inverter insulation resistance monitoring circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217780A (en) * 2007-02-07 2008-09-18 Produce:Kk Current limiting circuit
JP2012226781A (en) * 2007-02-07 2012-11-15 Yd Mechatro Solutions Inc Current limit circuit
WO2012036498A2 (en) * 2010-09-17 2012-03-22 Sk Innovation Co.,Ltd. Insulation resistance measurement circuit having self-test function without generating leakage current
WO2012036498A3 (en) * 2010-09-17 2012-05-10 Sk Innovation Co.,Ltd. Insulation resistance measurement circuit having self-test function without generating leakage current
CN103250061A (en) * 2010-09-17 2013-08-14 Sk新技术株式会社 Insulation resistance measurement circuit having self-est function without generating leakage current
US9069024B2 (en) 2010-09-17 2015-06-30 Sk Innovation Co., Ltd. Insulation resistance measurement circuit having self-test function without generating leakage current
JP2012255784A (en) * 2011-06-09 2012-12-27 Samsung Electro-Mechanics Co Ltd Protection circuit and insulation resistance measurement device including the same

Also Published As

Publication number Publication date
JP4062979B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
KR100971056B1 (en) Bi-directional mos current sense circuit
US6977513B2 (en) Current detection circuit of bidirectional switch
US20070108949A1 (en) Constant voltage generating apparatus with simple overcurrent/short-circuit protection circuit
US20070139839A1 (en) Overcurrent detection circuit and switching circuit
US10254781B2 (en) Voltage source
US20090179687A1 (en) Protected power devices
US9531259B2 (en) Power supply circuit
US7463087B2 (en) Operational amplifier with zero offset
JP2009075957A (en) Power circuit and semiconductor device
US20080246519A1 (en) Gate drive circuit
JP4894865B2 (en) Bidirectional switch current detection circuit
KR100627000B1 (en) Fuel gauge power switch with current sense
JP2004012246A (en) Insulation resistance measuring apparatus
EP3476046B1 (en) Power switching device and method to operate said power switching device
CN216670106U (en) Power switch overcurrent detection circuit and current detection circuit
JP3233037B2 (en) Insulation resistance measuring device
US11309705B2 (en) Semiconductor device
CN112114257B (en) Voltage-current conversion circuit and charge-discharge control device
US11056977B2 (en) Highly integrated switching power supply and control circuit
JP5942331B2 (en) Current detection circuit and projector apparatus including the same
JP2949242B2 (en) Capacitor insulation resistance measuring device
US9667243B2 (en) High speed tracking current sense system
JP4705724B2 (en) Auto zero correction circuit
JPH11252909A (en) Current detecting circuit
CN116260107B (en) Buck circuit and DC-DC chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

EXPY Cancellation because of completion of term