JP5942331B2 - Current detection circuit and projector apparatus including the same - Google Patents

Current detection circuit and projector apparatus including the same Download PDF

Info

Publication number
JP5942331B2
JP5942331B2 JP2010222537A JP2010222537A JP5942331B2 JP 5942331 B2 JP5942331 B2 JP 5942331B2 JP 2010222537 A JP2010222537 A JP 2010222537A JP 2010222537 A JP2010222537 A JP 2010222537A JP 5942331 B2 JP5942331 B2 JP 5942331B2
Authority
JP
Japan
Prior art keywords
terminal
diode
voltage
capacitor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010222537A
Other languages
Japanese (ja)
Other versions
JP2012078169A (en
Inventor
英男 鈴木
英男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010222537A priority Critical patent/JP5942331B2/en
Publication of JP2012078169A publication Critical patent/JP2012078169A/en
Application granted granted Critical
Publication of JP5942331B2 publication Critical patent/JP5942331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、パルス電流に対する電流の検出を行なう電流検出回路及びそれを備えるプロジェクタ装置に関する。 The present invention relates to a current detection circuit that detects a current with respect to a pulse current and a projector apparatus including the current detection circuit.

電気回路中の任意のラインを流れる電流値を測定する手段として、当該ラインに抵抗を挿入し、その抵抗の両端に生じる電圧の大きさに変換して測定する電圧降下法が広く一般に採用されている。   As a means of measuring the current value flowing through an arbitrary line in an electric circuit, a voltage drop method is widely used in which a resistance is inserted into the line and converted into the magnitude of the voltage generated at both ends of the resistance. Yes.

上記電圧降下法を例えばマイクロコンピュータなどで実施し、A/D変換により電圧値を読取って処理を行なう場合を考える。この場合、電流経路が高速に開閉されるラインの電流、例えばスイッチングレギュレータのスイッチングトランジスタに流れる電流等を測定するためには、測定値を処理する間、一時的に測定すべき変換した電圧値を記憶する必要がある。   Consider a case where the voltage drop method is performed by, for example, a microcomputer, and processing is performed by reading a voltage value by A / D conversion. In this case, in order to measure the current of the line whose current path is opened and closed at high speed, for example, the current flowing through the switching transistor of the switching regulator, the converted voltage value to be temporarily measured while processing the measured value is used. I need to remember.

図3はそのような回路の一例を示す。同図で、入力端子INがNチャネルのFETQ1のドレインに接続され、同FETQ1のゲートにオン/オフスイッチング制御のためのPWM(パルス幅変調)信号が与えられる。同FETQ1のソースが、点cを介して、電圧降下法で電流を電圧に変換するための電流検出抵抗RSの一端に接続され、同抵抗RSの他端が接地される。   FIG. 3 shows an example of such a circuit. In the figure, an input terminal IN is connected to the drain of an N-channel FET Q1, and a PWM (pulse width modulation) signal for on / off switching control is applied to the gate of the FET Q1. The source of the FET Q1 is connected to one end of a current detection resistor RS for converting a current into a voltage by a voltage drop method via a point c, and the other end of the resistor RS is grounded.

上記電流検出抵抗RSを含んで、過電流の検出対象となる電流ラインを図中に矢印CL1で示す。上記FETQ1のソース及び上記抵抗RSの一端に電流検出抵抗Rの一端が接続され、同抵抗Rの他端が、点eを介して、一端を接地したコンデンサC3の他端に接続されると共に、検出用の出力端子OUTとされる。上記図3の回路では、抵抗RとコンデンサC3とで積分回路を構成し、その積分出力を出力端子OUTより取り出すものとしている。   A current line that includes the current detection resistor RS and becomes an overcurrent detection target is indicated by an arrow CL1 in the figure. One end of a current detection resistor R is connected to the source of the FET Q1 and one end of the resistor RS, and the other end of the resistor R is connected to the other end of the capacitor C3 whose one end is grounded via a point e. The output terminal OUT is used for detection. In the circuit of FIG. 3, the resistor R and the capacitor C3 constitute an integrating circuit, and the integrated output is taken out from the output terminal OUT.

上記のような回路構成では、抵抗R及びコンデンサC3の値により適切な積分定数を設定することで、簡単な回路構成ながら安定した電圧出力を得ることができる。しかしながら、測定できる電圧値は電流ラインCL1に流れる電流の大きさだけではなく、FETQ1のオン/オフのデューティの影響も受けて大きく変化するため、使用できる条件が制限される。   In the circuit configuration as described above, a stable voltage output can be obtained with a simple circuit configuration by setting an appropriate integration constant according to the values of the resistor R and the capacitor C3. However, since the voltage value that can be measured varies greatly depending not only on the magnitude of the current flowing through the current line CL1, but also on / off duty of the FET Q1, the conditions that can be used are limited.

デューティの影響を受けずに電流値の大きさを測定する手段として、図4に示すような回路が考えられる。この図4では、上記図3の回路構成における抵抗RをダイオードD1に置換することにより、積分回路に代えてピークホールド回路として機能するようにしている。   As a means for measuring the magnitude of the current value without being affected by the duty, a circuit as shown in FIG. 4 can be considered. In FIG. 4, the resistor R in the circuit configuration of FIG. 3 is replaced with a diode D1, thereby functioning as a peak hold circuit in place of the integrating circuit.

上記図4の回路構成でも、各定数を最適化すれば、簡単な回路構成ながら電流検出抵抗RSに発生する電圧のピーク値をある程度正確に出力させることができる。   In the circuit configuration of FIG. 4 as well, if each constant is optimized, the peak value of the voltage generated in the current detection resistor RS can be output to some extent with a simple circuit configuration.

しかしながら上記図4の構成では、ダイオードD1が回路に直列に接続されているため、点cでの電圧がダイオードD1の動作電圧VFを超える電圧となるように高めに設定する必要がある。このように発生電圧を大きくすると、電流検出抵抗RSに発生する電力損失も大きくなるため、結果として発生電圧と電力損失が許容できる範囲内でしか、この図4のような回路構成を採用することができない。   However, in the configuration shown in FIG. 4, the diode D1 is connected in series with the circuit. Therefore, the voltage at the point c needs to be set higher so that the voltage exceeds the operating voltage VF of the diode D1. When the generated voltage is increased in this way, the power loss generated in the current detection resistor RS also increases. As a result, the circuit configuration as shown in FIG. 4 should be adopted only within the allowable range of the generated voltage and the power loss. I can't.

さらに同様の技術として、電流を検出するピークホールド回路を電流制御に用いるようにしたものや(例えば、特許文献1)、過電流検出抵抗の出力を加工した後のピークホールド回路として過電流検出回路に採用したもの(例えば、特許文献2)などが考えられている。   Further, as a similar technique, a peak hold circuit for detecting current is used for current control (for example, Patent Document 1), or an overcurrent detection circuit as a peak hold circuit after processing the output of the overcurrent detection resistor. (For example, patent document 2) etc. which are employ | adopted for are considered.

特開2001−103741号公報JP 2001-103741 A 特開平05−211715号公報Japanese Patent Laid-Open No. 05-211715

上記各特許文献に記載された技術も上記図3、図4で示した回路と同様に、回路構成は簡易なものとしながら、挿入する回路形態が特殊であったり、電流検出抵抗に発生する電圧値を通常より高く設定しているなど、それぞれに使用環境が限定されるため、設計上の自由度が低いという不具合がある。   Similarly to the circuits shown in FIGS. 3 and 4, the techniques described in each of the above patent documents have a simple circuit configuration, a special circuit form to be inserted, and a voltage generated in the current detection resistor. There is a problem that the degree of freedom in design is low because the use environment is limited to each such as setting the value higher than usual.

本発明は上記のような実情に鑑みてなされたもので、その目的とするところは、できる限り簡易な構成として回路規模を小さくしながら、使用環境に対する設計上の自由度が高い電流検出回路及びそれを備えるプロジェクタ装置を提供することにある。 The present invention has been made in view of the circumstances described above, and an object, while reducing the circuit scale as a simple structure as possible, the current detection circuit is a high degree of freedom in design for the use environment and It is to provide a projector apparatus provided with the same.

本願発明は、ゲート端子にパルス幅変調信号が入力され、ソース端子が電気的に接地される第一の電界効果トランジスタと、一方の端子が前記第一の電界効果トランジスタのドレイン端子と接続され、他方の端子が電源電圧と接続される第一の抵抗と、カソード端子が電気的に接地される第一のダイオードと、一方の端子が前記第一の電界効果トランジスタのドレイン端子と接続され、他方の端子が前記第一のダイオードのアノード端子と接続される第二の抵抗と、一方の端子が前記第一の電界効果トランジスタのドレイン端子と接続され、他方の端子が前記第一のダイオードのアノード端子と接続される第一のコンデンサと、ドレイン端子に被検出電流が入力され、ゲート端子に前記パルス幅変調信号が入力される第二の電界効果トランジスタと、一方の端子が前記第二の電界効果トランジスタのソース端子と接続され、他方の端子が電気的に接地される第三の抵抗と、アノード端子が前記第二の電界効果トランジスタのソース端子と接続される第二のダイオードと、一方の端子が前記第一のダイオードのアノード端子と接続され、他方の端子が前記第二のダイオードのカソード端子と接続される第二のコンデンサと、アノード端子が前記第二のダイオードのカソード端子と接続される第三のダイオードと、一方の端子が前記第三のダイオードのカソード端子と接続され、他方の端子が電気的に接地される第三のコンデンサと、を備え、前記第三のダイオードのカソード端子と前記第三のコンデンサの一方の端子との接続点が検出用の出力端子とされ、前記電源電圧を前記第一の抵抗、前記第二の抵抗及び前記第一のダイオードで分圧した分圧比は、前記パルス幅変調信号がローレベルのときの前記第一のコンデンサの両端電圧が、前記第二のダイオードの順方向効果電圧VFより高くなる分圧比であって、前記第二のコンデンサの前記第一のダイオードのアノード端子と接続される端子の電位が前記パルス幅変調信号に応じて負電位に変化することを特徴とする。 The present invention has a first field effect transistor in which a pulse width modulation signal is input to a gate terminal and a source terminal is electrically grounded , and one terminal is connected to a drain terminal of the first field effect transistor, A first resistor whose other terminal is connected to the power supply voltage, a first diode whose cathode terminal is electrically grounded, one terminal connected to the drain terminal of the first field effect transistor, and the other A second resistor connected to the anode terminal of the first diode, one terminal connected to the drain terminal of the first field effect transistor, and the other terminal connected to the anode of the first diode. A first capacitor connected to the terminal; a second field-effect transistor in which the current to be detected is input to the drain terminal and the pulse width modulation signal is input to the gate terminal; A third resistor whose one terminal is connected to the source terminal of the second field effect transistor and whose other terminal is electrically grounded, and whose anode terminal is the source terminal of the second field effect transistor A second diode connected to the second diode; one terminal connected to the anode terminal of the first diode; the other terminal connected to the cathode terminal of the second diode; and an anode terminal A third diode connected to the cathode terminal of the second diode, a third capacitor having one terminal connected to the cathode terminal of the third diode and the other terminal electrically grounded; The connection point between the cathode terminal of the third diode and one terminal of the third capacitor is an output terminal for detection, and the power supply voltage is The voltage dividing ratio divided by the second resistor and the first diode is such that the voltage across the first capacitor when the pulse width modulation signal is at a low level is the forward direction of the second diode. The voltage dividing ratio is higher than the effective voltage VF, and the potential of the terminal connected to the anode terminal of the first diode of the second capacitor changes to a negative potential according to the pulse width modulation signal. And

本発明によれば、できる限り簡易な構成として回路規模を小さくしながら、使用環境に対する設計上の自由度を高めることが可能となる。   According to the present invention, it is possible to increase the degree of design freedom with respect to the usage environment while reducing the circuit scale as a simple configuration as much as possible.

本発明の一実施形態に係る電流検出回路の構成を示す図。The figure which shows the structure of the current detection circuit which concerns on one Embodiment of this invention. 同実施形態に係る図1の回路の各部位における動作信号波形を示すタイミングチャート。The timing chart which shows the operation signal waveform in each site | part of the circuit of FIG. 1 which concerns on the embodiment. 一般的な電流検出の回路構成を示す図。The figure which shows the circuit structure of a general electric current detection. 一般的な電流のピークホールド回路の構成を示す図。The figure which shows the structure of the general peak hold circuit of an electric current.

以下、本発明の一実施形態について、スイッチングレギュレータのスイッチングトランジスタに流れる様なパルス状電流を測定する方法を一例として、図面を元に詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings, taking as an example a method for measuring a pulsed current flowing in a switching transistor of a switching regulator.

図1は、本実施形態に係る電流検出回路10の構成を示す。同図で、入力端子INがNチャネルのFETQ1のドレインに接続され、同FETQ1のゲートにオン/オフ制御のためのPWM(パルス幅変調)信号が与えられる。同FETQ1のソースが、点cを介して、電圧降下法で電流を電圧に変換するための電流検出抵抗RSの一端に接続され、同抵抗RSの他端が接地される。   FIG. 1 shows a configuration of a current detection circuit 10 according to the present embodiment. In the figure, an input terminal IN is connected to the drain of an N-channel FET Q1, and a PWM (pulse width modulation) signal for on / off control is applied to the gate of the FET Q1. The source of the FET Q1 is connected to one end of a current detection resistor RS for converting a current into a voltage by a voltage drop method via a point c, and the other end of the resistor RS is grounded.

上記点cがダイオードD1のアノードと接続され、同ダイオードD1のカソードが、点dを介して、ダイオードD2のアノード及び第2の補助コンデンサであるコンデンサC2の一端にそれぞれ接続される。コンデンサC2の他端は、点bを介して第1の補助コンデンサであるコンデンサC1の一端、抵抗R1の一端、及びダイオードD3のアノードに接続される。   The point c is connected to the anode of the diode D1, and the cathode of the diode D1 is connected to the anode of the diode D2 and one end of the capacitor C2, which is a second auxiliary capacitor, through the point d. The other end of the capacitor C2 is connected to one end of the capacitor C1, which is the first auxiliary capacitor, one end of the resistor R1, and the anode of the diode D3 via the point b.

コンデンサC1の他端及び抵抗R1の他端が点aとなり、同点aに抵抗R2の一端及びNチャネルのFETQ2のドレインに接続される。抵抗R2の他端に電源電圧VCCが印加される。   The other end of the capacitor C1 and the other end of the resistor R1 become a point a, and the same point a is connected to one end of the resistor R2 and the drain of the N-channel FET Q2. The power supply voltage VCC is applied to the other end of the resistor R2.

ダイオードD3のカソードと、FETQ2のソースとがそれぞれ接地される。FETQ2のゲートには、上記FETQ1と同様にPWM信号が与えられる。   The cathode of the diode D3 and the source of the FET Q2 are grounded. A PWM signal is applied to the gate of the FET Q2 in the same manner as the FET Q1.

上記ダイオードD2のカソードは、点eを介して、他端が接地されたコンデンサC3の一端と接続されると共に、検出用の出力端子OUTとされる。
上記FETQ2と抵抗R1,R2、ダイオードD3、及び第1,2の補助コンデンサC1,C2で負電位発生回路MP1を構成する。
The cathode of the diode D2 is connected to one end of a capacitor C3, the other end of which is grounded, via a point e, and serves as a detection output terminal OUT.
The FET Q2, resistors R1 and R2, diode D3, and first and second auxiliary capacitors C1 and C2 constitute a negative potential generation circuit MP1.

次に上記実施形態の動作を説明する。
図2は、上記図1の回路中の各部位における信号波形を示すタイミングチャートである。
Next, the operation of the above embodiment will be described.
FIG. 2 is a timing chart showing signal waveforms at various points in the circuit of FIG.

図2(A)に示すようにFETQ1,Q2の各ゲートに与えられるPWM信号が“L(ロー)”レベルのとき、FETQ1,Q2は共にオフとなり、第1の補助コンデンサであるコンデンサC1の両端電圧は、電源電圧VCCを抵抗R2,R1、及びダイオードD3で分圧した結果生じる電圧、すなわち抵抗R1の両端電圧となる。この分圧比は、コンデンサC1の両端電圧が、ダイオードD1の順方向降下電圧VFより高くなるように予め選定しておく。   As shown in FIG. 2A, when the PWM signal applied to the gates of the FETs Q1 and Q2 is at the “L (low)” level, both the FETs Q1 and Q2 are turned off, and both ends of the capacitor C1, which is the first auxiliary capacitor. The voltage is a voltage generated as a result of dividing the power supply voltage VCC by the resistors R2 and R1 and the diode D3, that is, a voltage across the resistor R1. This voltage division ratio is selected in advance so that the voltage across the capacitor C1 is higher than the forward drop voltage VF of the diode D1.

次にPWM信号が“H(ハイ)”レベルとなり、FETQ1がオンすると、電流検出抵抗RSの電圧降下により、図2(D)に示すように点cでは測定電流ラインCL2の電流に応じた電圧が発生する。   Next, when the PWM signal becomes the “H (high)” level and the FET Q1 is turned on, the voltage corresponding to the current of the measurement current line CL2 at the point c as shown in FIG. 2D due to the voltage drop of the current detection resistor RS. Will occur.

FETQ1と同時にFETQ2もオンすることにより、図2(B)に示すように点aはGND電位となる。そのため、図2(C)に示すように点bでは上記コンデンサC1に保持された電圧値分だけGNDより低い負の電位となる。   By turning on the FET Q2 simultaneously with the FET Q1, the point a becomes the GND potential as shown in FIG. Therefore, as shown in FIG. 2C, the point b becomes a negative potential lower than GND by the voltage value held in the capacitor C1.

この掃引動作により、電流検出抵抗RSの両端に発生する電位差がダイオードD1の順方向降下電圧VF以下であっても、図2(D),(C)にも示すように、点cと点bとの間の電位差は上記電圧VF以上となる。そのため、ダイオードD1を介して第2の補助コンデンサであるコンデンサC2を充電することができる。   Even if the potential difference generated at both ends of the current detection resistor RS is less than or equal to the forward drop voltage VF of the diode D1 by this sweep operation, as shown in FIGS. 2D and 2C, the points c and b The potential difference between the first and second voltages becomes equal to or higher than the voltage VF. Therefore, the capacitor C2, which is the second auxiliary capacitor, can be charged via the diode D1.

コンデンサC1の両端電圧をV1、電流検出抵抗RSの両端電圧をVRS、コンデンサC2の両端電圧をV2とすると、コンデンサC2に充電される電圧V2は、
V2=VRS+V1−VF …(1)
なる式で表すことができる。
When the voltage across the capacitor C1 is V1, the voltage across the current detection resistor RS is VRS, and the voltage across the capacitor C2 is V2, the voltage V2 charged to the capacitor C2 is:
V2 = VRS + V1-VF (1)
It can be expressed by the following formula.

次にPWM信号が“L”レベルとなると、FETQ1,Q2はオフとなり、点bでの電位は前回オフであった位置にまで戻る。そのため、図2(E)に示すように点dでの電位は、PWM信号が“L”レベル時の点bでの電位に、PWM信号が“H”レベル時にコンデンサC2に充電された電圧が加算された値となる。   Next, when the PWM signal becomes “L” level, the FETs Q1 and Q2 are turned off, and the potential at the point b returns to the position where it was previously turned off. Therefore, as shown in FIG. 2E, the potential at the point d is the potential at the point b when the PWM signal is “L” level, and the voltage charged in the capacitor C2 when the PWM signal is “H” level. The added value.

いずれのダイオードD1〜D3も順方向降下電圧VFが等しいとした場合、PWM信号が“L”レベルの時のGND電位に対する点bでの電位をVFとすると、GND電位に対する点dでの電位は、
V2+VF=VRS+V1−VF+VF
=VRS+V1 …(2)
となる。
If all the diodes D1 to D3 have the same forward voltage drop VF, the potential at the point b with respect to the GND potential when the PWM signal is “L” level is VF, the potential at the point d with respect to the GND potential is ,
V2 + VF = VRS + V1-VF + VF
= VRS + V1 (2)
It becomes.

この電圧がPWM信号が“L”レベルの時にダイオードD2を通して出力端子OUTに接続されたコンデンサC3を充電する。このとき、図2(F)に示す点eでの電位をVEとすると、GND電位に対して
VE=VRS+V1−VF …(3)
となる。
This voltage charges the capacitor C3 connected to the output terminal OUT through the diode D2 when the PWM signal is at “L” level. At this time, when the potential at a point e shown in FIG.
VE = VRS + V1-VF (3)
It becomes.

この結果から、コンデンサC1の両端電圧V1、及び各ダイオードの順方向降下電圧VFは既知であるため、電流検出抵抗RSの両端に発生した電流に比例した測定電圧を容易に分離して検出することが可能となる。   From this result, since the voltage V1 across the capacitor C1 and the forward voltage drop VF of each diode are known, the measurement voltage proportional to the current generated across the current detection resistor RS can be easily separated and detected. Is possible.

以上詳記した如く本実施形態によれば、できる限り簡易な構成として回路規模を小さくしながら、電流ラインCL1に流れる電流の大きさやPWM信号のデューティ比などの使用環境に対する設計上の自由度を高めることが可能となる。   As described above in detail, according to the present embodiment, the degree of design freedom with respect to the usage environment such as the magnitude of the current flowing through the current line CL1 and the duty ratio of the PWM signal is reduced while reducing the circuit scale as simple as possible. It becomes possible to raise.

上記実施形態で説明した回路は、例えばLD(レーザダイオード)やLED(発光ダイオード)など、緻密な電流値制御が必要となる半導体光源素子を光源部に用いるプロジェクタ装置に好適である。   The circuit described in the above embodiment is suitable for a projector apparatus that uses a semiconductor light source element that requires precise current value control, such as an LD (laser diode) or an LED (light emitting diode), for the light source unit.

なお、上記負電位発生回路MP1の具体的な回路構成に関し、本発明は上記図1に示した構成に限定するものではない。   It should be noted that the present invention is not limited to the configuration shown in FIG. 1 with respect to the specific circuit configuration of the negative potential generating circuit MP1.

その他、本発明は上述した実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上述した実施形態で実行される機能は可能な限り適宜組み合わせて実施しても良い。上述した実施形態には種々の段階が含まれており、開示される複数の構成要件による適宜の組み合せにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、効果が得られるのであれば、この構成要件が削除された構成が発明として抽出され得る。   In addition, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention in the implementation stage. Further, the functions executed in the above-described embodiments may be combined as appropriate as possible. The above-described embodiment includes various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the effect is obtained, a configuration from which the constituent requirements are deleted can be extracted as an invention.

10…電流検出回路、Q1,Q2…(Nチャネル)FET、C1…(第1の補助用)コンデンサ、C2…(第2の補助用)コンデンサ、MP1…負電位発生回路。   DESCRIPTION OF SYMBOLS 10 ... Current detection circuit, Q1, Q2 ... (N channel) FET, C1 ... (first auxiliary) capacitor, C2 ... (second auxiliary) capacitor, MP1 ... Negative potential generation circuit.

Claims (2)

ゲート端子にパルス幅変調信号が入力され、ソース端子が電気的に接地される第一の電界効果トランジスタと、
一方の端子が前記第一の電界効果トランジスタのドレイン端子と接続され、他方の端子が電源電圧と接続される第一の抵抗と、
カソード端子が電気的に接地される第一のダイオードと、
一方の端子が前記第一の電界効果トランジスタのドレイン端子と接続され、他方の端子が前記第一のダイオードのアノード端子と接続される第二の抵抗と、
一方の端子が前記第一の電界効果トランジスタのドレイン端子と接続され、他方の端子が前記第一のダイオードのアノード端子と接続される第一のコンデンサと、
ドレイン端子に被検出電流が入力され、ゲート端子に前記パルス幅変調信号が入力される第二の電界効果トランジスタと、
一方の端子が前記第二の電界効果トランジスタのソース端子と接続され、他方の端子が電気的に接地される第三の抵抗と、
アノード端子が前記第二の電界効果トランジスタのソース端子と接続される第二のダイオードと、
一方の端子が前記第一のダイオードのアノード端子と接続され、他方の端子が前記第二のダイオードのカソード端子と接続される第二のコンデンサと、
アノード端子が前記第二のダイオードのカソード端子と接続される第三のダイオードと、
一方の端子が前記第三のダイオードのカソード端子と接続され、他方の端子が電気的に接地される第三のコンデンサと、
を備え、
前記第三のダイオードのカソード端子と前記第三のコンデンサの一方の端子との接続点が検出用の出力端子とされ、
前記電源電圧を前記第一の抵抗、前記第二の抵抗及び前記第一のダイオードで分圧した分圧比は、前記パルス幅変調信号がローレベルのときの前記第一のコンデンサの両端電圧が、前記第二のダイオードの順方向効果電圧VFより高くなる分圧比であって、
前記第二のコンデンサの前記第一のダイオードのアノード端子と接続される端子の電位が前記パルス幅変調信号に応じて負電位に変化することを特徴とする電流検出回路。
A first field effect transistor having a pulse width modulation signal input to a gate terminal and a source terminal electrically grounded ;
A first resistor having one terminal connected to the drain terminal of the first field effect transistor and the other terminal connected to a power supply voltage;
A first diode whose cathode terminal is electrically grounded;
A second resistor having one terminal connected to the drain terminal of the first field effect transistor and the other terminal connected to the anode terminal of the first diode;
A first capacitor having one terminal connected to the drain terminal of the first field effect transistor and the other terminal connected to the anode terminal of the first diode;
A second field effect transistor in which a current to be detected is input to a drain terminal and the pulse width modulation signal is input to a gate terminal;
A third resistor having one terminal connected to the source terminal of the second field effect transistor and the other terminal electrically grounded;
A second diode having an anode terminal connected to a source terminal of the second field effect transistor;
A second capacitor having one terminal connected to the anode terminal of the first diode and the other terminal connected to the cathode terminal of the second diode;
A third diode having an anode terminal connected to the cathode terminal of the second diode;
A third capacitor having one terminal connected to the cathode terminal of the third diode and the other terminal electrically grounded;
With
The connection point between the cathode terminal of the third diode and one terminal of the third capacitor is an output terminal for detection.
The voltage dividing ratio obtained by dividing the power supply voltage by the first resistor, the second resistor, and the first diode is the voltage across the first capacitor when the pulse width modulation signal is at a low level. A voltage division ratio higher than the forward effect voltage VF of the second diode,
A current detection circuit, wherein a potential of a terminal connected to an anode terminal of the first diode of the second capacitor changes to a negative potential according to the pulse width modulation signal.
前記請求項1に記載の電流検出回路と、
前記電流検出回路を用いて制御される被制御回路部と
を備えることを特徴とするプロジェクタ。
A current detection circuit according to claim 1;
A projector comprising: a controlled circuit unit controlled using the current detection circuit.
JP2010222537A 2010-09-30 2010-09-30 Current detection circuit and projector apparatus including the same Active JP5942331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222537A JP5942331B2 (en) 2010-09-30 2010-09-30 Current detection circuit and projector apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222537A JP5942331B2 (en) 2010-09-30 2010-09-30 Current detection circuit and projector apparatus including the same

Publications (2)

Publication Number Publication Date
JP2012078169A JP2012078169A (en) 2012-04-19
JP5942331B2 true JP5942331B2 (en) 2016-06-29

Family

ID=46238590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222537A Active JP5942331B2 (en) 2010-09-30 2010-09-30 Current detection circuit and projector apparatus including the same

Country Status (1)

Country Link
JP (1) JP5942331B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257911B2 (en) 2012-07-27 2019-04-09 Signify Holding B.V. Methods and apparatus for lighting unit configure for presence detection
JP2015530695A (en) * 2012-07-27 2015-10-15 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for a lighting unit for presence detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197566U (en) * 1985-05-30 1986-12-10

Also Published As

Publication number Publication date
JP2012078169A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
KR101017656B1 (en) Synchronous rectification switching regulator
KR101158651B1 (en) Current sensing circuit and switching regulator including the same
JP6070841B2 (en) Overcurrent detection circuit
US9024678B2 (en) Current sensing circuit arrangement for output voltage regulation
US9030126B2 (en) LED driving device
JP5029056B2 (en) Detection circuit and power supply system
TW201308037A (en) Hysteresis LED driver with improved ILED accuracy
JP4542972B2 (en) Overcurrent detection circuit and power supply device using the same
JP2012147552A (en) Dc-dc converter
JP2009075957A (en) Power circuit and semiconductor device
US9531259B2 (en) Power supply circuit
US9772647B2 (en) Powering of a charge with a floating node
JP5942331B2 (en) Current detection circuit and projector apparatus including the same
US9806613B2 (en) Combined high side and low side current sensing
JP6165929B2 (en) Power circuit
JP2009303313A (en) Inversion-type dc/dc converter
JP2018102023A (en) Overcurrent detection circuit, semiconductor device, and power supply device
ATE282903T1 (en) POWER SOURCE MOUNTED ON A CHIP
JP2009065809A (en) Power conversion apparatus, and current detecting method thereof
JP4720209B2 (en) Reference voltage generation circuit and drive circuit
KR20130014977A (en) Signal transfer circuit
JP2008011001A (en) Current/voltage conversion circuit and conversion method
JP5682336B2 (en) Integrated circuit for power supply control, switching power supply, and control method for integrated circuit for power supply control
JP5594526B2 (en) Switching power supply circuit
JP6213381B2 (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5942331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150