JP2004011714A - Running vehicle for working - Google Patents

Running vehicle for working Download PDF

Info

Publication number
JP2004011714A
JP2004011714A JP2002164315A JP2002164315A JP2004011714A JP 2004011714 A JP2004011714 A JP 2004011714A JP 2002164315 A JP2002164315 A JP 2002164315A JP 2002164315 A JP2002164315 A JP 2002164315A JP 2004011714 A JP2004011714 A JP 2004011714A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
transmission
hydraulic
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164315A
Other languages
Japanese (ja)
Other versions
JP3891885B2 (en
Inventor
Shinichi Koyama
小山 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Agricultural Machinery Co Ltd
Original Assignee
Mitsubishi Agricultural Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Agricultural Machinery Co Ltd filed Critical Mitsubishi Agricultural Machinery Co Ltd
Priority to JP2002164315A priority Critical patent/JP3891885B2/en
Publication of JP2004011714A publication Critical patent/JP2004011714A/en
Application granted granted Critical
Publication of JP3891885B2 publication Critical patent/JP3891885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a transmission case with a built-in hydraulic/mechanical type continuously variable transmission compact in design and flat at the upper surface of the case. <P>SOLUTION: The hydraulic/mechanical type continuously variable transmission 9 for speed change during driving is comprised of a combination of a hydrostatic continuously variable transmission 24 and planetary gear mechanism 25, and output rotary motion of the hydraulic/mechanical type continuously variable transmission 9 is conveyed to a front wheel 3 and rear wheel 4. An input shaft row 8 for inputting rotary power in the hydraulic/mechanical type continuously variable transmission 9 is arranged on an upper side within the transmission case 7, and a front wheel transmission shaft 14 transmitting output rotary motion of the hydraulic/mechanical type continuously variable transmission 9 to the front wheel 3 is also arranged at a lower side within the transmission case 7. The planetary gear mechanism 25 is further arranged between the input shaft row 8 and the front wheel transmission shaft 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、油圧・機械式無段変速機構(HMT)を備えるトラクタ等の作業用走行車の技術分野に属するものである。
【0002】
【従来の技術】
近年、トラクタ等の作業用走行車においては、機械式変速機構に比べて変速時の操作性に優れ、静油圧式無段変速機構(HST)に比べてエネルギー効率に優れる油圧・機械式無段変速機構(HMT)を搭載したものが知られている。この種の油圧・機械式無段変速機構は、静油圧式無段変速機構と遊星ギヤ機構とを組み合せて入力動力を無段変速するにあたり、入力動力を静油圧式無段変速機構の入力側で分割する入力分割型と、入力動力を静油圧式無段変速機構の出力側で分割する出力分割型との2形式があり、さらに、遊星ギヤ機構の各構成要素に対する入力軸および静油圧式無段変速機構の結合パターンにより、各形式がそれぞれ6タイプに分類される。
【0003】
上記油圧・機械式無段変速機構は、タイプによって特性や配置が異なることから、搭載する作業用走行車の走行動力特性、作業動力特性、配置等を考慮した上で、油圧・機械式無段変速機構のタイプを選択する必要があり、特に、トラクタにおいては、トランスミッションケースの上方にステップ(フロア)を形成し、また、トランスミッションケースの下端位置で最低地上高が決るため、上面がフラットで、かつ、上下方向にコンパクトなトランスミッションケースを構成することが要請される。
【0004】
【発明が解決しようとする課題】
しかしながら、上記油圧・機械式無段変速機構を備える従来の作業用走行車では、例えば特開2001−315538号公報で開示される如く、静油圧式無段変速機構のポンプ部および遊星ギヤ機構を入力軸(PTO伝動軸)上に配置しているため、トランスミッションケースの上面に、遊星ギヤ機構を覆う凸部が必要になり、その結果、フラットなステップを形成しにくくなる許りでなく、トランスミッションケースが上下方向に大型化し、最低地上高が低くなる等の不都合がある。
【0005】
【課題を解決するための手段】
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、トランスミッションケース内に、静油圧式無段変速機構と遊星ギヤ機構との組み合せで走行変速を行う油圧・機械式無段変速機構を構成すると共に、該油圧・機械式無段変速機構の出力回転を前輪および後輪に伝動する作業用走行車において、前記トランスミッションケース内の上側に、前記油圧・機械式無段変速機構に回転動力を入力する入力軸を配置すると共に、前記トランスミッションケース内の下側に、前記油圧・機械式無段変速機構の出力回転を前輪に伝動する前輪伝動軸を配置し、さらに、前記入力軸と前輪伝動軸との間に、前記遊星ギヤ機構を配置したことを特徴とする。つまり、トランスミッションケース内に油圧・機械式無段変速機構を構成するものでありながら、遊星ギヤ機構が入力軸(PTO伝動軸)よりも下側に配置されるため、上面がフラットで、かつ、コンパクトなトランスミッションケースを構成することが可能になり、その結果、トランスミッションケースの上方に形成されるステップに凸部が生じたり、最低地上高が低くなる等の不都合を回避することができる。
また、前記油圧・機械式無段変速機構は、前記入力軸の回転動力を、前記静油圧式無段変速機構のポンプ部および前記遊星ギヤ機構のサンギヤに入力すると共に、前記静油圧式無段変速機構のモータ部から出力される回転動力を、前記遊星ギヤ機構のリングギヤに入力し、さらに、前記遊星ギヤ機構で合成された回転動力を、前記遊星ギヤ機構のキャリアから出力することを特徴とする。この場合においては、油圧・機械式無段変速機構の形式が出力分割型になるため、トラクタ等の作業用走行車が作業時に主に使用する低速域のエネルギー効率を向上させることができる許りでなく、エネルギー損失となる動力循環を、作業時に殆ど使用しない領域(超低速前進域および後進域)で生じさせることができる。また、遊星ギヤ機構の結合パターンを上記のようにすれば、速度比を減速型とし、変速領域を比較的狭くすることができるため、低速領域を主に使用するトラクタ等の作業用走行車においては、精度の高い変速操作を行うことが可能になる。
また、前記入力軸の回転動力を、同方向の回転動力として前記サンギヤに入力すると共に、正転時に前記入力軸と同方向に回転する前記モータ部の出力回転を、同方向の回転動力として前記リングギヤに入力するにあたり、前記入力軸の回転動力を、カウンタギヤを介して前記サンギヤに入力し、前記モータ部の出力回転を、迂回伝動軸を介して前記リングギヤに入力することを特徴とする。この場合においては、入力動力およびモータ出力を上記のパターンで遊星ギヤ機構に伝動するものでありながら、伝動部品の配置効率を高めてトランスミッションを小型化することができる。
【0006】
【発明の実施の形態】
次に、本発明の実施の形態の一つを図面に基づいて説明する。図面において、1はトラクタの走行機体であって、該走行機体1は、走行動力および作業動力を発生するエンジン(図示せず)と、エンジン動力を変速するトランスミッション2と、該トランスミッション2から出力される走行動力で回転駆動する前輪3および後輪4と、トランスミッション2から出力される作業動力で動作される作業部5と、該作業部5を昇降自在に支持する昇降リンク機構6とを備えている。
【0007】
トランスミッション2は、トランスミッションケース7内に、エンジン動力を入力する入力軸列(入力軸)8と、主変速機構として機能する油圧・機械式無段変速機構(HMT)9と、副変速機構として機能する摩擦クラッチ式変速機構10と、後輪動力をリヤアクスルケース(図示せず)に伝動する後輪伝動軸11と、該後輪伝動軸11から取り出した前輪動力を断続する2駆・4駆切換機構12と、機体旋回時に前輪動力を増速する前輪増速用変速機構13と、前輪動力をフロントアクスルケース(図示せず)に伝動する前輪伝動軸14と、入力軸列8から取り出した作業動力を断続するPTOクラッチ機構15と、作業動力の正転・逆転を切換えるPTO逆転機構16と、作業動力を変速するPTO変速機構17と、作業動力を出力するPTO軸18とを備える。トランスミッションケース7は、油圧・機械式無段変速機構9等を内装する前部ミッションケース19と、PTOクラッチ機構15等を内装するセンターミッションケース20と、摩擦クラッチ式変速機構10等を内装する後部ミッションケース21とを結合して構成される。
【0008】
油圧・機械式無段変速機構9は、静油圧式無段変速機構(HST)24と遊星ギヤ機構25とを組み合せて構成される。静油圧式無段変速機構24は、斜板角度に応じて吐出量が変化するポンプ部(可変容量油圧ポンプ)26と、該ポンプ部26の吐出油で回転駆動するモータ部(固定容量油圧モータ)27とを組み合せたもので、ポンプ部26に入力される動力を無段階的に変速し、モータ部27から出力する。静油圧式無段変速機構24の変速操作は、ポンプ部26の斜板に連繋されるトラニオン軸(図示せず)によって行われる。上記ポンプ部26とモータ部27は、上下に重なるように配置され、縦型の静油圧式無段変速機構24を構成している。ポンプ部26にエンジン動力を入力する入力軸列8は、静油圧式無段変速機構24の上部を前後に貫通し、その後端部は、PTOクラッチ機構15に結合される。ここで、入力軸列8は、ポンプ部26のポンプ軸26aを含む複数の直列軸で構成され、トランスミッションケース7内の上側に配置される。また、静油圧式無段変速機構24の下部後面には、モータ出力軸27aが後方に向けて突設されており、ここからモータ部27のモータ動力が出力される。
【0009】
遊星ギヤ機構25は、同心上に回転支持されたサンギヤ28、リングギヤ29およびキャリア30を備える。キャリア30は、複数のプラネタリギヤ31を支持しており、これらのプラネタリギヤ31が、サンギヤ28とリングギヤ29との間に介在し、両ギヤ28、29に同時噛合する。本実施形態の油圧・機械式無段変速機構9は、入力軸列8の回転動力を、静油圧式無段変速機構24のポンプ部26および遊星ギヤ機構25のサンギヤ28に入力すると共に、静油圧式無段変速機構24のモータ部27から出力される回転動力を、遊星ギヤ機構25のリングギヤ29に入力し、遊星ギヤ機構25で合成された回転動力を、遊星ギヤ機構25のキャリア30から出力するように構成される。これにより、油圧・機械式無段変速機構9は、その形式が出力分割型、タイプが減速タイプ(機械入力をサンギヤ、油圧入力をリングギヤ、出力をキャリアにする結合パターン)となり、図8に示す動作特性を示す。
【0010】
つまり、トラクタにおいては、大きい牽引力を要求する低速作業(ローダー、プラウ耕、サブソイラによる心土破砕作業等)がときに必要となるため、油圧・機械式無段変速機構9の形式は、低速域で油圧パワーが小さな比を占めてエネルギー効率が良く、また、エネルギーロスに繋がる動力循環が、作業時に使用しない前進超低速域と後進域で生じる出力分割型が適している。また、トラクタにおいては、自動車のように低速から高速に至る幅広い変速比を必要とせず、低速作業を主体とした比較的幅の狭い変速比で足りることから、出力分割型の6タイプのうち、変速比が減速型となる上記のタイプを採用している。
【0011】
また、トラクタにおいては、居住性の面で操作部32のステップ(床面)33が可及的にフラットであることが要求されると共に、作業性の面で最低地上高が高いことが要求される。そして、ステップ33は、トランスミッションケース7の上方に形成され、最低地上高を規定するトランスミッションケース7の下面は、前輪伝動軸14の存在により決定される。従って、油圧・機械式無段変速機構9を内装するトランスミッションケース7としては、ケース上面が上方に突出せず、ケース下面の位置が高く、しかも、上下方向にコンパクトなものであることが望まれる。
【0012】
そこで、トランスミッション2においては、トランスミッションケース7内の上側位置(O1)に、静油圧式無段変速機構24の上部(ポンプ部26)にエンジン動力を入力する入力軸列8を配置し、また、静油圧式無段変速機構24のモータ出力軸27aを、入力軸列8(O1)と前輪伝動軸14(O2)との中間位置(O3)に配置し、また、モータ出力軸27aと同心上に遊星ギヤ機構25を配置し、また、入力軸列8の動力を、入力動力伝動経路34を介して遊星ギヤ機構25のサンギヤ28に伝動し、さらに、モータ出力軸27aの動力を、モータ動力伝動経路35を介して遊星ギヤ機構25のリングギヤ29に伝動することにより、遊星ギヤ機構25、入力動力伝動経路34およびモータ動力伝動経路35を、入力軸列8と前輪伝動軸14との間に配置する。これにより、トランスミッションケース7内に油圧・機械式無段変速機構9を構成するものでありながら、トランスミッションケース7の上方への突出を抑えてフラットなステップ33を構成でき、また、十分な最低地上高を確保できるコンパクトなトランスミッションケース7を構成することが可能になる。
【0013】
また、上記トランスミッション2においては、前述した変速特性を得るために、入力軸列8の回転動力を、同方向の回転動力として遊星ギヤ機構25のサンギヤ28に入力すると共に、正転時に入力軸列8と同方向に回転するモータ出力軸27aの回転動力を、同方向の回転動力として遊星ギヤ機構25のリングギヤ29に入力することが要求される。そこで、本実施形態では、モータ出力軸27aと遊星ギヤ機構25とを同軸上(O3)に配置した上で、入力軸列8の回転動力を、カウンタギヤ36を含む入力動力伝動経路34を介してサンギヤ28に入力し、モータ出力軸27aの回転動力を、迂回伝動軸37を含むモータ動力伝動経路35を介してリングギヤ29に入力する。そして、入力軸列8上の伝動ギヤ38と、中間軸39で回転自在に支持されたカウンタギヤ36と、サンギヤ28を支持するサンギヤ軸40とにより構成される入力動力伝動経路34には、カウンタギヤ36が含まれるので、入力軸列8上の伝動ギヤ38を小径にし、トランスミッションケース7の上方突出量をさらに抑制することが可能になる。また、モータ動力伝動経路35は、モータ出力軸27a上の伝動ギヤ41と、迂回伝動軸37上の二つの伝動ギヤ42、43と、リングギヤ29に設けられる伝動ギヤ44とにより構成されるが、迂回伝動軸37は、前記カウンタギヤ36(中間軸39)と左右に位置をずらして配置できるので、例えば、本実施形態の如く、入力軸列8とサンギヤ軸40(モータ出力軸27a)との間に、迂回伝動軸37(O4)とカウンタギヤ36(O5)が左右に並ぶ正面視菱形の配置構成を採用できる。これにより、トランスミッションケース7内の配置効率が高まり、トランスミッションケース7のさらなるコンパクト化が可能になる。
【0014】
尚、本実施形態のトランスミッション2は、油圧・機械式無段変速機構9を搭載しないギヤ変速式または静油圧無段変速式のトランスミッションとの間で可及的に部品を共通化するように構成されている。例えば、油圧・機械式無段変速機構9を内装する前部ミッションケース19を除き、センターミッションケース20および後部ミッションケース21は、基本的にギヤ変速式または静油圧無段変速式のトランスミッションと共通化でき、また、これらに組み込まれる機構や部品も、ギヤ比等の設定を除いて共通化することができる。そして、従来のギヤ変速式または静油圧無段変速式のトランスミッションでは、センターミッションケース20に入力される動力の回転方向が統一されており、しかも、その回転方向が、前記トランスミッション2における回転方向と同じであるため、部品の共通化する観点から、極めて好都合となる。
【0015】
叙述の如く構成されたものにおいて、トラクタの走行機体1は、トランスミッションケース7内に、静油圧式無段変速機構24と遊星ギヤ機構25との組み合せで走行変速を行う油圧・機械式無段変速機構9を構成すると共に、該油圧・機械式無段変速機構9の出力回転を前輪3および後輪4に伝動するにあたり、トランスミッションケース7内の上側に、油圧・機械式無段変速機構9に回転動力を入力する入力軸列8を配置すると共に、トランスミッションケース7内の下側に、油圧・機械式無段変速機構9の出力回転を前輪3に伝動する前輪伝動軸14を配置し、さらに、入力軸列8と前輪伝動軸14との間に、遊星ギヤ機構25を配置する。これにより、トランスミッションケース7内に油圧・機械式無段変速機構9を構成するものでありながら、遊星ギヤ機構25が入力軸列8よりも下側に配置されるため、上面がフラットで、かつ、コンパクトなトランスミッションケース7を構成することが可能になり、その結果、トランスミッションケース7の上方に形成されるステップ33に凸部が生じたり、最低地上高が低くなる等の不都合を回避することができる。
【0016】
また、油圧・機械式無段変速機構9は、入力軸列8の回転動力を、静油圧式無段変速機構24のポンプ部26および遊星ギヤ機構25のサンギヤ28に入力すると共に、静油圧式無段変速機構24のモータ部27から出力される回転動力を、遊星ギヤ機構25のリングギヤ29に入力し、さらに、遊星ギヤ機構25で合成された回転動力を、遊星ギヤ機構25のキャリア30から出力する。これにより、油圧・機械式無段変速機構9の形式が出力分割型になるため、トラクタが作業時に主に使用する低速域のエネルギー効率を向上させることができる許りでなく、エネルギー損失となる動力循環を、作業時に殆ど使用しない領域(超低速前進域および後進域)で生じさせることができる。また、遊星ギヤ機構25の結合パターンを上記のようにすれば、速度比を減速型とし、変速領域を比較的狭くすることができるため、低速領域を主に使用するトラクタにおいては、精度の高い変速操作を行うことが可能になる。
【0017】
また、入力軸列8の回転動力を、同方向の回転動力としてサンギヤ28に入力すると共に、正転時に入力軸列8と同方向に回転するモータ部27の出力回転を、同方向の回転動力としてリングギヤ29に入力するにあたり、入力軸列8の回転動力を、カウンタギヤ36を介してサンギヤ28に入力し、モータ部27の出力回転を、迂回伝動軸37を介してリングギヤ29に入力するため、伝動部品の配置の自由度が高まる許りでなく、配置効率を高めてトランスミッションケース7を小型化することができる。
【図面の簡単な説明】
【図1】トラクタの側面図である。
【図2】トランスミッションの側断面図である。
【図3】油圧・機械式無段変速機構を示すトランスミッションの要部側断面図である。
【図4】トランスミッションケースの正面図である。
【図5】トランスミッションケースのA−A断面図である。
【図6】トランスミッションケースのB−B断面図である。
【図7】トランスミッションケースのC−C断面図である。
【図8】油圧・機械式無段変速機構(出力分割型)の特性を示すグラフである。
【符号の説明】
1   走行機体
2   トランスミッション
3   前輪
4   後輪
5   作業部
7   トランスミッションケース
8   入力軸列
9   油圧・機械式無段変速機構
14  前輪伝動軸
19  前部ミッションケース
20  センターミッションケース
21  後部ミッションケース
24  静油圧式無段変速機構
25  遊星ギヤ機構
26  ポンプ部
27  モータ部
27a モータ出力軸
28  サンギヤ
29  リングギヤ
30  キャリア
31  プラネタリギヤ
33  ステップ
36  カウンタギヤ
37  迂回伝動軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of a working vehicle such as a tractor having a hydraulic / mechanical continuously variable transmission (HMT).
[0002]
[Prior art]
2. Description of the Related Art In recent years, a working vehicle such as a tractor has a hydraulic / mechanical continuously variable transmission which is superior in operability at the time of shifting as compared with a mechanical transmission mechanism and which is more energy efficient than a hydrostatic continuously variable transmission mechanism (HST). One equipped with a transmission mechanism (HMT) is known. This type of hydraulic / mechanical continuously variable transmission mechanism employs a combination of a hydrostatic continuously variable transmission mechanism and a planetary gear mechanism to perform continuously variable transmission of input power. And an output split type in which the input power is split on the output side of a hydrostatic continuously variable transmission mechanism. Further, an input shaft and a hydrostatic type for each component of the planetary gear mechanism are provided. Each type is classified into six types according to the coupling pattern of the continuously variable transmission mechanism.
[0003]
Since the characteristics and arrangement of the hydraulic / mechanical continuously variable transmission mechanism differ depending on the type, the hydraulic / mechanical continuously variable transmission mechanism should be considered in consideration of the running power characteristics, work power characteristics, and layout of the work vehicle to be mounted. It is necessary to select the type of transmission mechanism, especially in a tractor, where a step (floor) is formed above the transmission case, and the minimum ground clearance is determined at the lower end position of the transmission case, so the top surface is flat, In addition, it is required to configure a transmission case that is compact in the vertical direction.
[0004]
[Problems to be solved by the invention]
However, in a conventional working vehicle equipped with the above-mentioned hydraulic / mechanical continuously variable transmission mechanism, as disclosed in, for example, JP-A-2001-315538, a pump portion and a planetary gear mechanism of a hydrostatic continuously variable transmission mechanism are used. Since it is arranged on the input shaft (PTO transmission shaft), a convex portion that covers the planetary gear mechanism is required on the upper surface of the transmission case. As a result, it is difficult to form a flat step. There are inconveniences such as the case becoming large in the vertical direction and the minimum ground clearance being low.
[0005]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has been made in order to solve these problems. In the transmission case, the traveling speed is changed by a combination of a hydrostatic continuously variable transmission mechanism and a planetary gear mechanism. And a working vehicle that transmits the output rotation of the hydraulic / mechanical continuously variable transmission mechanism to the front wheels and the rear wheels, on the upper side in the transmission case, An input shaft for inputting rotational power to the hydraulic / mechanical continuously variable transmission mechanism is arranged, and a front wheel transmission shaft for transmitting the output rotation of the hydraulic / mechanical continuously variable transmission mechanism to the front wheels below the transmission case. And the planetary gear mechanism is disposed between the input shaft and the front wheel transmission shaft. That is, since the planetary gear mechanism is disposed below the input shaft (PTO transmission shaft) while forming the hydraulic / mechanical continuously variable transmission mechanism in the transmission case, the upper surface is flat and It is possible to configure a compact transmission case, and as a result, it is possible to avoid inconveniences such as a projection formed on a step formed above the transmission case and a decrease in minimum ground clearance.
Further, the hydraulic / mechanical continuously variable transmission mechanism inputs the rotational power of the input shaft to a pump section of the hydrostatic continuously variable transmission mechanism and a sun gear of the planetary gear mechanism, and further includes the hydrostatic continuously variable transmission mechanism. The rotational power output from the motor unit of the transmission mechanism is input to the ring gear of the planetary gear mechanism, and the rotational power combined by the planetary gear mechanism is output from the carrier of the planetary gear mechanism. I do. In this case, since the type of the hydraulic / mechanical continuously variable transmission mechanism is a split output type, it is possible to improve the energy efficiency in the low-speed range mainly used by a traveling vehicle such as a tractor at the time of work. Instead, power circulation that results in energy loss can be generated in the areas that are hardly used during work (the ultra-low speed forward area and the reverse area). Further, if the coupling pattern of the planetary gear mechanism is as described above, the speed ratio can be reduced, and the speed change range can be made relatively narrow. Therefore, in a working vehicle such as a tractor that mainly uses the low speed range. Can perform a high-accuracy shift operation.
In addition, the rotational power of the input shaft is input to the sun gear as rotational power in the same direction, and the output rotation of the motor unit that rotates in the same direction as the input shaft during forward rotation is the rotational power in the same direction. When input to the ring gear, the rotational power of the input shaft is input to the sun gear via a counter gear, and the output rotation of the motor unit is input to the ring gear via a bypass transmission shaft. In this case, while the input power and the motor output are transmitted to the planetary gear mechanism in the above-described pattern, the transmission components can be arranged more efficiently and the transmission can be reduced in size.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, one embodiment of the present invention will be described with reference to the drawings. In the drawings, reference numeral 1 denotes a traveling body of a tractor. The traveling body 1 includes an engine (not shown) for generating traveling power and working power, a transmission 2 for shifting engine power, and an output from the transmission 2. A front wheel 3 and a rear wheel 4 that are driven to rotate by running power, a working unit 5 that is operated by working power output from the transmission 2, and a lifting link mechanism 6 that supports the working unit 5 so as to be able to move up and down. I have.
[0007]
The transmission 2 has, in a transmission case 7, an input shaft train (input shaft) 8 for inputting engine power, a hydraulic and mechanical continuously variable transmission (HMT) 9 functioning as a main transmission mechanism, and a subtransmission mechanism. Friction transmission system 10, a rear wheel transmission shaft 11 for transmitting rear wheel power to a rear axle case (not shown), and a two-wheel drive / four-wheel drive switching between front wheel power taken out from the rear wheel transmission shaft 11 A mechanism 12, a front wheel speed change mechanism 13 for increasing front wheel power when the vehicle turns, a front wheel transmission shaft 14 for transmitting front wheel power to a front axle case (not shown), and work taken out from the input shaft train 8. A PTO clutch mechanism 15 for interrupting the power, a PTO reverse rotation mechanism 16 for switching between forward and reverse rotation of the working power, a PTO speed change mechanism 17 for shifting the working power, and outputting the working power. And a PTO shaft 18. The transmission case 7 includes a front transmission case 19 containing the hydraulic / mechanical continuously variable transmission mechanism 9 and the like, a center transmission case 20 containing the PTO clutch mechanism 15 and the like, and a rear part containing the friction clutch type transmission mechanism 10 and the like. The transmission case 21 is combined with the transmission case 21.
[0008]
The hydraulic / mechanical continuously variable transmission mechanism 9 is configured by combining a hydrostatic continuously variable transmission mechanism (HST) 24 and a planetary gear mechanism 25. The hydrostatic continuously variable transmission mechanism 24 includes a pump section (variable displacement hydraulic pump) 26 whose discharge amount changes according to the swash plate angle, and a motor section (fixed displacement hydraulic motor) which is driven to rotate by the discharge oil of the pump section 26. ) 27, and the power input to the pump section 26 is steplessly changed and output from the motor section 27. The shift operation of the hydrostatic continuously variable transmission mechanism 24 is performed by a trunnion shaft (not shown) connected to the swash plate of the pump unit 26. The pump section 26 and the motor section 27 are arranged so as to overlap vertically, and constitute a vertical hydrostatic stepless speed change mechanism 24. The input shaft train 8 for inputting engine power to the pump unit 26 penetrates an upper part of the hydrostatic continuously variable transmission mechanism 24 back and forth, and a rear end thereof is connected to the PTO clutch mechanism 15. Here, the input shaft row 8 is composed of a plurality of serial shafts including the pump shaft 26 a of the pump section 26, and is arranged on the upper side in the transmission case 7. A motor output shaft 27a projects rearward from a lower rear surface of the hydrostatic continuously variable transmission mechanism 24, from which motor power of the motor unit 27 is output.
[0009]
The planetary gear mechanism 25 includes a sun gear 28, a ring gear 29, and a carrier 30 that are rotatably supported concentrically. The carrier 30 supports a plurality of planetary gears 31. These planetary gears 31 are interposed between the sun gear 28 and the ring gear 29, and mesh with both gears 28, 29 at the same time. The hydraulic / mechanical continuously variable transmission mechanism 9 of the present embodiment inputs the rotational power of the input shaft train 8 to the pump section 26 of the hydrostatic continuously variable transmission mechanism 24 and the sun gear 28 of the planetary gear mechanism 25, and The rotational power output from the motor 27 of the hydraulic continuously variable transmission mechanism 24 is input to the ring gear 29 of the planetary gear mechanism 25, and the rotational power combined by the planetary gear mechanism 25 is transmitted from the carrier 30 of the planetary gear mechanism 25. It is configured to output. As a result, the hydraulic / mechanical continuously variable transmission mechanism 9 has a split output type and a reduction type (a coupling pattern in which the mechanical input is a sun gear, the hydraulic input is a ring gear, and the output is a carrier), as shown in FIG. The operation characteristics are shown.
[0010]
That is, the tractor requires low-speed work (loader, plowing, subsoil crushing work, etc.) that requires a large traction force. The hydraulic power occupies a small ratio, and the energy efficiency is good. Also, the power split type in which the power circulation leading to energy loss occurs in the forward ultra-low speed range and the reverse speed range not used during work is suitable. Also, the tractor does not require a wide speed ratio from low speed to high speed as in a car, and requires a relatively narrow speed ratio mainly for low speed work. The above-mentioned type in which the speed ratio is a deceleration type is adopted.
[0011]
In the tractor, the steps (floor surface) 33 of the operation unit 32 are required to be as flat as possible in terms of livability, and the ground clearance is required to be high in terms of workability. You. The step 33 is formed above the transmission case 7, and the lower surface of the transmission case 7 that defines the minimum ground clearance is determined by the presence of the front wheel transmission shaft 14. Therefore, it is desired that the transmission case 7 in which the hydraulic / mechanical continuously variable transmission mechanism 9 is mounted has a case upper surface which does not protrude upward, a case lower position is high, and a vertically compact structure. .
[0012]
Therefore, in the transmission 2, the input shaft row 8 for inputting engine power to the upper part (pump part 26) of the hydrostatic stepless transmission mechanism 24 is arranged at the upper position (O 1) in the transmission case 7. The motor output shaft 27a of the hydrostatic continuously variable transmission mechanism 24 is disposed at an intermediate position (O3) between the input shaft row 8 (O1) and the front wheel transmission shaft 14 (O2), and is concentric with the motor output shaft 27a. The power of the input shaft train 8 is transmitted to the sun gear 28 of the planetary gear mechanism 25 via the input power transmission path 34, and the power of the motor output shaft 27a is By transmitting the power to the ring gear 29 of the planetary gear mechanism 25 via the power transmission path 35, the planetary gear mechanism 25, the input power transmission path 34, and the motor power transmission path 35 are transmitted to the input shaft train 8 and the front wheels. Disposed between the shaft 14. Thus, while the hydraulic / mechanical continuously variable transmission mechanism 9 is formed in the transmission case 7, the upward step of the transmission case 7 can be suppressed to form a flat step 33, and a sufficient minimum ground level can be obtained. It is possible to configure a compact transmission case 7 that can secure a high height.
[0013]
In the transmission 2, the rotational power of the input shaft train 8 is input to the sun gear 28 of the planetary gear mechanism 25 as the rotational power in the same direction, and the input shaft train 8 is required to be input to the ring gear 29 of the planetary gear mechanism 25 as rotational power in the same direction. Therefore, in the present embodiment, after the motor output shaft 27a and the planetary gear mechanism 25 are arranged coaxially (O3), the rotational power of the input shaft train 8 is transmitted via the input power transmission path 34 including the counter gear 36. The rotation power of the motor output shaft 27 a is input to the ring gear 29 via the motor power transmission path 35 including the bypass transmission shaft 37. An input power transmission path 34 constituted by a transmission gear 38 on the input shaft train 8, a counter gear 36 rotatably supported by the intermediate shaft 39, and a sun gear shaft 40 supporting the sun gear 28 has a counter Since the gear 36 is included, the diameter of the transmission gear 38 on the input shaft row 8 can be reduced, and the upward projection amount of the transmission case 7 can be further suppressed. The motor power transmission path 35 includes a transmission gear 41 on the motor output shaft 27a, two transmission gears 42 and 43 on the bypass transmission shaft 37, and a transmission gear 44 provided on the ring gear 29. Since the bypass transmission shaft 37 can be disposed so as to be shifted left and right with respect to the counter gear 36 (intermediate shaft 39), for example, as shown in this embodiment, the input shaft train 8 and the sun gear shaft 40 (motor output shaft 27a) In between, a diamond-shaped arrangement in front view in which the bypass transmission shaft 37 (O4) and the counter gear 36 (O5) are arranged side by side can be adopted. Thereby, the arrangement efficiency in the transmission case 7 is increased, and the transmission case 7 can be made more compact.
[0014]
The transmission 2 of the present embodiment is configured so that parts can be shared as much as possible with a gear transmission type or a hydrostatic stepless transmission in which the hydraulic / mechanical stepless transmission mechanism 9 is not mounted. Have been. For example, except for the front transmission case 19 in which the hydraulic / mechanical continuously variable transmission mechanism 9 is installed, the center transmission case 20 and the rear transmission case 21 are basically the same as a gear transmission or a hydrostatic continuously variable transmission. Also, the mechanisms and components incorporated therein can be shared except for the setting of the gear ratio and the like. In a conventional gear transmission or hydrostatic continuously variable transmission, the rotation direction of the power input to the center transmission case 20 is unified, and the rotation direction is the same as the rotation direction of the transmission 2. Since they are the same, it is extremely convenient from the viewpoint of sharing parts.
[0015]
In the vehicle constructed as described above, the traveling body 1 of the tractor includes a hydraulic / mechanical continuously variable transmission that performs a traveling speed change in a transmission case 7 by a combination of a hydrostatic continuously variable transmission mechanism 24 and a planetary gear mechanism 25. When the output rotation of the hydraulic / mechanical continuously variable transmission mechanism 9 is transmitted to the front wheels 3 and the rear wheels 4, the hydraulic / mechanical continuously variable transmission mechanism 9 is disposed above the transmission case 7. An input shaft train 8 for inputting rotational power is arranged, and a front wheel transmission shaft 14 for transmitting the output rotation of the hydraulic / mechanical continuously variable transmission mechanism 9 to the front wheels 3 is arranged below the transmission case 7. , A planetary gear mechanism 25 is arranged between the input shaft train 8 and the front wheel transmission shaft 14. As a result, the planetary gear mechanism 25 is disposed below the input shaft train 8 while constituting the hydraulic / mechanical continuously variable transmission mechanism 9 in the transmission case 7, so that the upper surface is flat and As a result, it is possible to configure a compact transmission case 7, and as a result, it is possible to avoid inconveniences such as the occurrence of a convex portion in the step 33 formed above the transmission case 7 and a decrease in the minimum ground clearance. it can.
[0016]
In addition, the hydraulic / mechanical continuously variable transmission mechanism 9 inputs the rotational power of the input shaft train 8 to the pump section 26 of the hydrostatic continuously variable transmission mechanism 24 and the sun gear 28 of the planetary gear mechanism 25, The rotational power output from the motor unit 27 of the continuously variable transmission mechanism 24 is input to the ring gear 29 of the planetary gear mechanism 25, and the rotational power combined by the planetary gear mechanism 25 is further transmitted from the carrier 30 of the planetary gear mechanism 25. Output. As a result, since the type of the hydraulic / mechanical continuously variable transmission mechanism 9 is a split output type, it is not permissible to improve the energy efficiency in the low speed range mainly used by the tractor at the time of work, and energy loss occurs. Power circulation can occur in areas that are rarely used during work (extremely low-speed forward and reverse ranges). Further, if the coupling pattern of the planetary gear mechanism 25 is set as described above, the speed ratio can be reduced, and the speed change range can be relatively narrowed. Therefore, in a tractor mainly used in the low speed range, high accuracy is achieved. A shift operation can be performed.
[0017]
In addition, the rotational power of the input shaft train 8 is input to the sun gear 28 as the rotational power in the same direction, and the output rotation of the motor unit 27 that rotates in the same direction as the input shaft train 8 at the time of forward rotation is changed to the rotational power in the same direction. To input the rotational power of the input shaft train 8 to the sun gear 28 via the counter gear 36 and to input the output rotation of the motor unit 27 to the ring gear 29 via the bypass transmission shaft 37. In addition, the transmission case 7 can be reduced in size by increasing the arrangement efficiency without increasing the degree of freedom in arranging the transmission components.
[Brief description of the drawings]
FIG. 1 is a side view of a tractor.
FIG. 2 is a side sectional view of a transmission.
FIG. 3 is a sectional side view of a main part of a transmission showing a hydraulic / mechanical continuously variable transmission mechanism.
FIG. 4 is a front view of a transmission case.
FIG. 5 is a sectional view of the transmission case taken along line AA.
FIG. 6 is a sectional view taken along line BB of the transmission case.
FIG. 7 is a cross-sectional view taken along the line CC of the transmission case.
FIG. 8 is a graph showing characteristics of a hydraulic / mechanical continuously variable transmission (split output type).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Traveling body 2 Transmission 3 Front wheel 4 Rear wheel 5 Working part 7 Transmission case 8 Input shaft train 9 Hydraulic / mechanical continuously variable transmission mechanism 14 Front wheel transmission shaft 19 Front transmission case 20 Center transmission case 21 Rear transmission case 24 Hydrostatic type Continuously variable transmission mechanism 25 planetary gear mechanism 26 pump section 27 motor section 27a motor output shaft 28 sun gear 29 ring gear 30 carrier 31 planetary gear 33 step 36 counter gear 37 bypass transmission shaft

Claims (3)

トランスミッションケース内に、静油圧式無段変速機構と遊星ギヤ機構との組み合せで走行変速を行う油圧・機械式無段変速機構を構成すると共に、該油圧・機械式無段変速機構の出力回転を前輪および後輪に伝動する作業用走行車において、前記トランスミッションケース内の上側に、前記油圧・機械式無段変速機構に回転動力を入力する入力軸を配置すると共に、前記トランスミッションケース内の下側に、前記油圧・機械式無段変速機構の出力回転を前輪に伝動する前輪伝動軸を配置し、さらに、前記入力軸と前輪伝動軸との間に、前記遊星ギヤ機構を配置したことを特徴とする作業用走行車。In the transmission case, a hydraulic / mechanical continuously variable transmission mechanism that performs a traveling shift by combining a hydrostatic continuously variable transmission mechanism and a planetary gear mechanism is configured, and the output rotation of the hydraulic / mechanically continuously variable transmission mechanism is controlled. In a working vehicle that transmits power to a front wheel and a rear wheel, an input shaft for inputting rotational power to the hydraulic / mechanical continuously variable transmission mechanism is disposed on an upper side in the transmission case, and a lower side in the transmission case. A front wheel transmission shaft for transmitting the output rotation of the hydraulic / mechanical continuously variable transmission mechanism to the front wheels, and further, the planetary gear mechanism is disposed between the input shaft and the front wheel transmission shaft. And working traveling vehicles. 請求項1において、前記油圧・機械式無段変速機構は、前記入力軸の回転動力を、前記静油圧式無段変速機構のポンプ部および前記遊星ギヤ機構のサンギヤに入力すると共に、前記静油圧式無段変速機構のモータ部から出力される回転動力を、前記遊星ギヤ機構のリングギヤに入力し、さらに、前記遊星ギヤ機構で合成された回転動力を、前記遊星ギヤ機構のキャリアから出力することを特徴とする作業用走行車。2. The hydraulic / mechanical continuously variable transmission mechanism according to claim 1, wherein the rotational power of the input shaft is input to a pump unit of the hydrostatic continuously variable transmission mechanism and a sun gear of the planetary gear mechanism, and the static hydraulic pressure is changed. The rotational power output from the motor section of the continuously variable transmission is input to the ring gear of the planetary gear mechanism, and the rotational power combined by the planetary gear mechanism is output from the carrier of the planetary gear mechanism. A traveling vehicle for operation. 請求項2において、前記入力軸の回転動力を、同方向の回転動力として前記サンギヤに入力すると共に、正転時に前記入力軸と同方向に回転する前記モータ部の出力回転を、同方向の回転動力として前記リングギヤに入力するにあたり、前記入力軸の回転動力を、カウンタギヤを介して前記サンギヤに入力し、前記モータ部の出力回転を、迂回伝動軸を介して前記リングギヤに入力することを特徴とする作業用走行車。3. The motor according to claim 2, wherein the rotational power of the input shaft is input to the sun gear as rotational power in the same direction, and the output rotation of the motor unit that rotates in the same direction as the input shaft during normal rotation is rotated in the same direction. When the power is input to the ring gear, the rotational power of the input shaft is input to the sun gear via a counter gear, and the output rotation of the motor unit is input to the ring gear via a bypass transmission shaft. And working traveling vehicles.
JP2002164315A 2002-06-05 2002-06-05 Working vehicle Expired - Fee Related JP3891885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164315A JP3891885B2 (en) 2002-06-05 2002-06-05 Working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164315A JP3891885B2 (en) 2002-06-05 2002-06-05 Working vehicle

Publications (2)

Publication Number Publication Date
JP2004011714A true JP2004011714A (en) 2004-01-15
JP3891885B2 JP3891885B2 (en) 2007-03-14

Family

ID=30432490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164315A Expired - Fee Related JP3891885B2 (en) 2002-06-05 2002-06-05 Working vehicle

Country Status (1)

Country Link
JP (1) JP3891885B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010883A1 (en) * 2005-07-19 2007-01-25 Yanmar Co., Ltd. Transmission
JP2008189144A (en) * 2007-02-05 2008-08-21 Kubota Corp Gear shift transmission device
US20090280944A1 (en) * 2007-02-05 2009-11-12 Kubota Corporation Speed Change Transmission Apparatus
JP2012040944A (en) * 2010-08-19 2012-03-01 Kubota Corp Transmission device for tractor
CN101223385B (en) * 2005-07-19 2012-05-09 洋马株式会社 Transmission
CN107339393A (en) * 2017-05-23 2017-11-10 浙江云洲科技有限公司 A kind of dual-purpose gearbox of track type tractor machines/variable speed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653628U (en) * 1979-10-01 1981-05-11
JPH08240255A (en) * 1994-12-05 1996-09-17 Claas Kg Aa Power transmission with planet gear device of five shaft
JP2000018367A (en) * 1998-07-02 2000-01-18 Kubota Corp Hydro-mechanical continuously variable transmission
JP2000127785A (en) * 1998-10-27 2000-05-09 Yanmar Diesel Engine Co Ltd Hydromechanical transmission
JP2001315538A (en) * 2000-05-09 2001-11-13 Ishikawajima Shibaura Mach Co Ltd Hydraulic-mechanical continuously variable transmission
JP2001317611A (en) * 2000-05-10 2001-11-16 Ishikawajima Shibaura Mach Co Ltd Hydro-mechanical continuously variable transmission
JP2002098217A (en) * 2000-09-26 2002-04-05 Ishikawajima Shibaura Mach Co Ltd Hydraulic/mechanical continuously variable transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653628U (en) * 1979-10-01 1981-05-11
JPH08240255A (en) * 1994-12-05 1996-09-17 Claas Kg Aa Power transmission with planet gear device of five shaft
JP2000018367A (en) * 1998-07-02 2000-01-18 Kubota Corp Hydro-mechanical continuously variable transmission
JP2000127785A (en) * 1998-10-27 2000-05-09 Yanmar Diesel Engine Co Ltd Hydromechanical transmission
JP2001315538A (en) * 2000-05-09 2001-11-13 Ishikawajima Shibaura Mach Co Ltd Hydraulic-mechanical continuously variable transmission
JP2001317611A (en) * 2000-05-10 2001-11-16 Ishikawajima Shibaura Mach Co Ltd Hydro-mechanical continuously variable transmission
JP2002098217A (en) * 2000-09-26 2002-04-05 Ishikawajima Shibaura Mach Co Ltd Hydraulic/mechanical continuously variable transmission

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010883A1 (en) * 2005-07-19 2007-01-25 Yanmar Co., Ltd. Transmission
US7841430B2 (en) 2005-07-19 2010-11-30 Yanmar Co., Ltd. Transmission
CN101223385B (en) * 2005-07-19 2012-05-09 洋马株式会社 Transmission
AU2006270912B2 (en) * 2005-07-19 2012-05-17 Yanmar Co., Ltd. Transmission
JP2008189144A (en) * 2007-02-05 2008-08-21 Kubota Corp Gear shift transmission device
US20090280944A1 (en) * 2007-02-05 2009-11-12 Kubota Corporation Speed Change Transmission Apparatus
US8303448B2 (en) 2007-02-05 2012-11-06 Kubota Corporation Speed change transmission apparatus
KR101240817B1 (en) * 2007-02-05 2013-03-07 가부시끼 가이샤 구보다 Speed change power transmission device
JP2012040944A (en) * 2010-08-19 2012-03-01 Kubota Corp Transmission device for tractor
CN107339393A (en) * 2017-05-23 2017-11-10 浙江云洲科技有限公司 A kind of dual-purpose gearbox of track type tractor machines/variable speed
CN107339393B (en) * 2017-05-23 2023-08-22 浙江云洲科技有限公司 Mechanical/stepless speed change dual-purpose gearbox of crawler tractor

Also Published As

Publication number Publication date
JP3891885B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
CN110520651B (en) Speed-changing transmission device of tractor and tractor
JP6396841B2 (en) Transmission device provided in the tractor
US20100285913A1 (en) Transmission With Dual IVT&#39;s And Planetary Gear Set
KR20080026624A (en) Transmission
JP4157658B2 (en) Hydraulic-mechanical transmission
JP5331569B2 (en) Transmission device for work vehicle
US11261951B2 (en) Shift power transmission apparatus of a tractor and tractor
JP2004011714A (en) Running vehicle for working
JP4261944B2 (en) Hydraulic and mechanical continuously variable transmission
US6336886B1 (en) Drive unit for crawler working vehicles
JPH08338506A (en) Hydraulic machine type change gear
JP3562965B2 (en) Hydraulic and mechanical continuously variable transmission
JP3964995B2 (en) Hydraulic-mechanical transmission
JP2008025630A (en) Transmission having hydraulic continuously-variable transmission apparatus
EP2990692B1 (en) Wheel loader
JP4605567B2 (en) Hydraulic-mechanical continuously variable transmission
JP3562962B2 (en) Hydraulic and mechanical continuously variable transmission
JP3897780B2 (en) Work vehicle
JP2004251399A (en) Continuously variable transmission for work vehicle
JP7213683B2 (en) work vehicle
JP2000016102A (en) Hydraulic/mechanical type continuously variable transmission device
JP3686602B2 (en) Work vehicle
JP4184491B2 (en) Work vehicle with crawler type traveling device
JP2004251400A (en) Continuously variable transmission for work vehicle
JP2004011713A (en) Running vehicle for working

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees