JP2004011683A - Stainless steel belt for continuously variable transmission, and its manufacturing method - Google Patents

Stainless steel belt for continuously variable transmission, and its manufacturing method Download PDF

Info

Publication number
JP2004011683A
JP2004011683A JP2002162717A JP2002162717A JP2004011683A JP 2004011683 A JP2004011683 A JP 2004011683A JP 2002162717 A JP2002162717 A JP 2002162717A JP 2002162717 A JP2002162717 A JP 2002162717A JP 2004011683 A JP2004011683 A JP 2004011683A
Authority
JP
Japan
Prior art keywords
rolling
ring
stainless steel
work
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162717A
Other languages
Japanese (ja)
Inventor
Katsuhide Nishio
西尾 克秀
Masahito Sakaki
榊 正仁
Kenji Hara
原 健治
Hiroki Tomimura
冨村 宏紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002162717A priority Critical patent/JP2004011683A/en
Publication of JP2004011683A publication Critical patent/JP2004011683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B5/00Extending closed shapes of metal bands by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a belt for a continuously variable transmission made of highly strengthened metastable austenite stainless steel. <P>SOLUTION: A ring-like band plate 1 prepared by welding a front end and a rear end of a metastable austenite stainless steel band is wound on a lower work roll 2b and a tension roll 3. When the band plate 1 is run along an endless track and rolled to a target thickness, the band plate 1 is rolled while it is cooled by spraying a refrigerant 7 to the ring-like band plate 1 during the rolling in the cooling box 8. Thus, the stainless steel made belt for the continuously variable transmission of which fabrication inducing martensite amount is 70 vol% or more is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、ステンレス鋼帯を素材とした高強度化した無段変速機用ベルトと、準安定オーステナイト系ステンレス鋼板のリング圧延により高強度無段変速機用ベルトを製造する方法に関する。
【0002】
【従来の技術】
無段変速機用金属ベルトの素材には、強度レベルの高い材料として18Niマルエージ鋼が使用されている。また、静的強度,疲労特性に優れている準安定オーステナイト系ステンレス鋼板の使用が一部で検討されている(特開2000−63998号公報)。無段変速機用金属ベルトは、通常、プラズマ溶接又はレーザー溶接で帯状素材をベルト状にする溶接工程,リング状帯状素材の母材部と溶接部との温度差を解消する熱処理工程,ベルト端面を平滑化するバレル研磨工程,目標板厚に調整するリング圧延工程,ベルト周長を微調整するストレッチ工程,表層の硬度を高めるために時効処理を兼ねた窒化処理工程を経て製造される。これらの工程を経た金属ベルトは、回転−引張り疲労試験等により疲労特性が評価される。
【0003】
18Niマルエージ鋼やステンレス鋼は、リング圧延などの冷間加工により加工硬化や歪み時効によって、素材の耐力や引張り強さといった強度が上昇する性質があるので、この材料強度の上昇と、窒化処理によるベルト表層の硬度上昇の相乗効果によって疲労特性を向上させている。準安定オーステナイト系ステンレス鋼は冷間加工により加工誘起マルテンサイトを生成するが、加工誘起マルテンサイトの生成量は圧延率や材料温度に応じて変化する。そして、加工誘起マルテンサイト生成量が多くなるほど強度が高くなる。
【0004】
ところで、加工誘起マルテンサイトの生成はリング圧延時の加工発熱や放熱等の影響を受けやすいため、作製された無段変速機用ベルトの強度は、圧延率や圧延温度といった圧延条件に大きな影響を受ける。本発明者等は、圧延条件が無段変速機用ベルトの強度に及ぼす影響を種々調査・検討した結果、圧延中の材料温度を適正に管理することにより加工誘起マルテンサイトの生成及び残留オーステナイトの効果をコントロールするとき、強度が安定した無段変速機用ベルトを製造できることを見出した(特願2001−117699)。
【0005】
材料温度の適正管理は品質安定化に有効であるものの、リング圧延で強度を一層向上させた無段変速機用ベルトを製造しようとすると単に材料温度の管理だけでは限界がある。より直接的な圧延条件である圧延率を制御することにより、加工誘起マルテンサイトの生成量を適正に制御できると、強度が一層向上し且つ品質安定性に優れた無段変速機用ベルトが製造される。
すなわち、準安定オーステナイト系ステンレス鋼を素材として高強度の無段変速機用ベルトを得るには、リング圧延前の素材板厚を厚くして圧延率を大きくし、生成する加工誘起マルテンサイト量を多くすることが効果的である。
【0006】
【発明が解決しようとする課題】
高強度化するために素材板厚を厚くする方法では、圧延率の増加に伴って大きな圧延荷重が必要となり、圧延機への負担が大きくなる。このため、過度の圧延率増加による高強度化は、圧延能力の面から限界があった。また、準安定オーステナイト系ステンレス鋼を加工した際の加工誘起マルテンサイト生成量は加工温度依存性を有し、加工の時期によって加工誘起マルテンサイト量が変動する。例えば、夏季など、雰囲気温度が高い時期に加工すると、圧延率を大きくしても温度の影響により加工誘起マルテンサイト生成量が少なく、所望の強度が得られないことがある。
本発明は、このような問題を解消すべく案出されたものであり、準安定オーステナイト系ステンレス鋼を素材として、被圧延素材を積極的に冷却した状態でリング圧延することで、生成する加工誘起マルテンサイト量を多くし、高強度の無段変速機用ベルトを得ることを目的とする。
【0007】
【課題を解決するための手段】
本発明のステンレス鋼製無段変速機用ベルトは、その目的を達成するため、組織中、加工誘起マルテンサイト量が70体積%以上を占めることを特徴とする。
準安定オーステナイト系ステンレス鋼帯の前端,後端を溶接することにより用意したリング状帯板を無限軌道に沿って走行させながら目標板厚まで圧延する際、圧延中のリング状帯板を冷却することにより得られる。
冷却は、圧延入り側で、リング状帯板に冷媒を吹き付けることにより行うことが好ましい。
【0008】
【作用】
準安定オーステナイト系ステンレス鋼板を冷間圧延すると加工誘起マルテンサイトが生成するが、加工誘起マルテンサイトの生成量は冷間圧延時の圧延率及び材料温度に応じて変化し(図1)。加工誘起マルテンサイトの生成量が多くなるほど強度が高くなる(図2)。加工誘起マルテンサイトの生成量が圧延率,材料温度に依存することは、同じ圧延率で準安定オーステナイト系ステンレス鋼板を圧延した場合でも他の圧延条件の影響を受けて材料温度が上昇すると、加工誘起マルテンサイトが生成しがたくなることを意味する。
材料温度の変動要因には圧延時の加工発熱,放熱,素材の加工履歴等があり、単に圧下率の制御だけでは材料温度を適正に管理できない。そこで、本発明においては、準安定オーステナイト系ステンレス鋼板をリング圧延して無段変速機用ベルトを製造する際、圧延素材であるリング状帯板を積極的に冷却している。低温下で圧延することにより、加工誘起マルテンサイト生成量を多くしている。
【0009】
ところで、現行の無段変速機用の18Niマルエージ鋼は2000MPa以上の強度を有しており、これと同等以上の機械的性質を有するものを準安定オーステナイト組成のステンレス鋼で得ようとすると、図2からもわかるように、加工誘起マルテンサイト量を65体積%程度以上にする必要がある。現行の18Niマルエージ鋼に代わって準安定オーステナイト組成のステンレス鋼が無段変速機用ベルトに使用されるためには、2000MPaを超えるような強度が発揮され、しかも18Niマルエージ鋼よりも優れた疲労強度を有する準安定オーステナイト系ステンレス鋼が必要となる。
図3に示す各種ステンレス鋼の疲労特性からわかるように、18Niマルエージ鋼に対して明らかに優れた疲労特性を発揮させるには、準安定オーステナイト系ステンレス鋼の加工誘起マルテンサイト量を70体積%以上にすることが必要である。加工誘起マルテンサイト量が65体積%程度であれば、その疲労特性は18Niマルエージ鋼と同等である。18Niマルエージ鋼よりも優位性をもたせるためには、準安定オーステナイト系ステンレス鋼の加工誘起マルテンサイト量は70体積%以上とすべきである。
【0010】
しかしながら、準安定オーステナイト組成のステンレス鋼を、特に温度制御せずに常温下で、通常の圧延率40%程度で圧延しても加工誘起マルテンサイト量が70体積%に届くようなことはない。70体積%以上の加工誘起マルテンサイト量を得るには、圧延率を特に大きくする必要がある。しかしながら、圧延率の増加は、圧延負荷の著しい増加を必要とするばかりでなく、圧延能率の面でも大幅に悪化する。
そこで、圧延中に被圧延材に、例えば液体窒素を気化させたような冷風を吹付けて、被圧延材を冷却し、積極的に被圧延材のマルテンサイト変態を促して加工誘起マルテンサイト量を増加するものである。
なお、加工誘起マルテンサイト量は、振動型試料磁力計で磁気的性質である飽和磁化を求め、マルテンサイト量と飽和磁化量が比例することを利用して、その比率より算出した。
【0011】
【実施の態様】
リング圧延には、例えば上下一組のワークロール2a,2bと、それぞれにバックアップロール4a,4bを対向配置した4段圧延機が使用される(図4)。上バックアップロール4aは、圧下装置で上ワークロール2aに押し付けられ、被圧延材であるリング状帯板1に加工圧力を加える。下バックアップロール4bとしては、下ワークロール2bに当接するフランジ部が軸方向両端部に設けられ、フランジ部間がリング状帯板1通過用の溝となるロールが使用される。ワークロール2a,2bは、図4の配置に限らず、テンションロール,リターンロールの間を周回するリング状帯板1のパスラインに沿って配置することも可能である。
【0012】
リング状帯板1は、所定板幅に裁断された準安定オーステナイト系ステンレス鋼帯板をレーザー溶接,プラズマ溶接等でリング状に溶接することにより用意される。準安定オーステナイト系ステンレス鋼としては、式Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−300N−10Moで定義されるMd(N)値が20〜100の範囲に調整された鋼種が好ましい。具体的には、C:0.15質量%以下,Si:1.0〜4.0質量%,Mn:5.0質量%以下,N:0.15質量%以下,Cr:12.0〜18.0質量%,Ni:4.0〜10.0質量%,Mo:1.0〜5.0質量%,Cu:0〜3.5質量%を含み、C+N≧0.1質量%,Si+Mo≧3.5質量%を満足する準安定オーステナイト系ステンレス鋼板が使用される。
【0013】
リング状帯板1は、下ワークロール2bとテンションロール3に巻きかけられ、テンションロール3を引っ張ることによって張力が付与される。リング状帯板1に加えられる張力は、ロードセル6で検出される。テンションロール3を引っ張り、バックアップロール4a,4bを駆動すると、リング状帯板1がワークロール2a,2bのロールバイトに送り込まれ、リング状帯板1が圧延される。ワークロールやテンションロールに作用する圧延荷重はロードセル6により制御できる。圧延条件として、圧延荷重,張力,ワークロール周速を設定し、一定の張力をテンションロールで与えながら、ワークロールでベルトの板厚を円周方向に順次減じていく。
【0014】
圧下に応じてリング状帯板1の周長が長くなるので、周長増加に応じてテンションロール3をワークロール2a,2bから離れる方向に移動させる。リング状帯板1の周長は、下ワークロール2bとテンションロール3との軸心間距離を距離計5で測定し、軸心間距離の測定値及び下ワークロール2b,テンションロール3の径から算出される。
圧延形式としては、上下を一組とした一対のワークロールと、テンションロールからなる2段等のロール構成でも良い。
【0015】
リング状帯板1の冷却方法としては、図5に示すように、テンションロール3から下ワークロール2bに向けて走行するリング状帯板1のパスラインの圧延ロール入り側に配置した冷却ボックス8、冷却ボックス内に冷媒を吹き付けるノズル9と液体窒素などの冷媒7によりリング圧延中にリング状帯板1に直接冷媒を吹き付けて冷却することが好ましい。
また、圧延そのものを特定の温度に冷却した雰囲気中で行っても良い。
【0016】
【実施例】
C:0.086質量%,Si:2.63質量%,Mn:0.31質量%,Cr:13.73質量%,Ni:8.25質量%,Mo:2.24質量%,Cu:0.17質量%,N:0.064質量%を含み、Md(N):74.03で、加工誘起マルテンサイト+オーステナイトの時効処理された複相組織を有した準安定オーステナイト系ステンレス鋼を素材に使用した。リング圧延装置は、直径30mmのテンションロール3および上下ワークロール2a,2b、直径55mmの上下バックアップロール4a,4bを基本構成とした4段圧延機を使用した。
表1に示したような素材の寸法と圧延条件で、冷却の有無と圧延率の関係を調査した。
【0017】

Figure 2004011683
【0018】
リング状帯板1をテンションロール3および下ワークロール2bに掛け、5kgf程度の張力を付与した状態でワークロール2a,2bに挟持させた形でセットし、圧延加工を行った。圧延条件として、圧延荷重を最大3ton,ワークロール間の周速を2m/分,テンションロールの張力を200kgfに設定し、圧延中は圧延荷重,張力を制御した。
リング状帯板1のパスラインに沿った穴を有し、かつ直接リング状帯板に冷媒を吹き付けるためのノズル9を設けた冷却ボックス8を、ワークロール2a,2bの入り側直前の位置に配置し、冷媒として液体窒素をリング圧延中のリング状帯板1に直接吹き付けた。その際、非接触赤外線温度計10により、圧延の入り側で測定したリング状帯板の表面温度は、約−190℃であり、圧延の開始から終了までほぼ一定の温度推移を示していた。
圧延後の、リング状帯板の加工誘起マルテンサイト量と断面硬度を測定した。その結果は表2に示す通りである。なお、加工誘起マルテンサイト量の測定は振動型試料磁力計を用いた磁気的方法により行い、断面硬度の測定はリング状帯板の長手方向に沿った箇所について行ったものである。
【0019】
Figure 2004011683
【0020】
表2に示すように、リング圧延中に冷却しない条件No.1では、加工誘起マルテンサイト量は65体積%であるのに対して、No.1と同じ圧延率で液体窒素の吹き付けによる冷却を行った条件No.2では、加工誘起マルテンサイト量は88体積%になっていた。すなわち、冷却することにより、冷却しない場合の1.5倍の量の加工誘起マルテンサイトが生成されることが確認できた。また、冷却するとNo.1より圧延率の小さい条件であるNo.3でも、75体積%の加工誘起マルテンサイト量が得られ、冷却が有効であることが確認できた。
なお、リング圧延されたリング状帯板に、ベルト作製時に通常実施する窒化処理を施し、機械的特性を調査したところ、表3に示すように、冷却を行うと、冷却を行わない場合と比べて高い強度が得られていた。
【0021】
Figure 2004011683
【0022】
【発明の効果】
以上に説明したように、本発明により、準安定オーステナイト系ステンレス鋼を素材としてリング圧延して無段変速機用ベルトを製造する際、リング状帯板を積極的に冷却した状態で圧延することにより、加工誘起マルテンサイト量を70体積%以上生成することができ、高強度な準安定オーステナイト系ステンレス鋼製金属ベルトを製造することが可能になる。
【図面の簡単な説明】
【図1】準安定オーステナイト系ステンレス鋼板の圧延によって生成する加工誘起マルテンサイト量に及ぼす圧下率,材料温度の影響を表したグラフ
【図2】加工誘起マルテンサイト量と強度との関係を示すグラフ
【図3】各種ステンレス鋼の疲労特性を示すグラフ
【図4】本発明で使用するリング圧延機の概略を説明する図
【図5】リング状帯板を冷却しながらリング圧延する態様を説明する図
【符号の説明】
1:リング状帯板  2a,2b:ワークロール  3:テンションロール
4a,4b:バックアップロール  5:距離計  6:ロードセル
7:冷媒  8:冷却ボックス  9:ノズル  10:温度計[0001]
[Industrial applications]
The present invention relates to a belt for a continuously variable transmission having a high strength made of a stainless steel strip and a method for producing a belt for a high strength continuously variable transmission by ring rolling a metastable austenitic stainless steel plate.
[0002]
[Prior art]
As a material of the metal belt for the continuously variable transmission, 18Ni maraging steel is used as a material having a high strength level. Further, the use of a metastable austenitic stainless steel sheet having excellent static strength and fatigue properties has been studied in part (Japanese Patent Application Laid-Open No. 2000-63998). Metal belts for continuously variable transmissions are usually welded to form a belt-like material by plasma welding or laser welding, a heat treatment process to eliminate the temperature difference between the base material of the ring-shaped material and the weld, and a belt end face. It is manufactured through a barrel polishing process to smooth the surface, a ring rolling process to adjust the target plate thickness, a stretching process to finely adjust the belt circumference, and a nitriding process that also serves as an aging process to increase the hardness of the surface layer. The fatigue properties of the metal belt that has gone through these steps are evaluated by a rotation-tensile fatigue test or the like.
[0003]
18Ni maraging steel and stainless steel have the property that the strength such as proof stress and tensile strength of the material increases due to work hardening and strain aging due to cold working such as ring rolling. The fatigue characteristics are improved by the synergistic effect of the increase in hardness of the belt surface layer. Metastable austenitic stainless steel generates work-induced martensite by cold working, but the amount of work-induced martensite changes according to the rolling ratio and the material temperature. And the strength increases as the amount of work-induced martensite generation increases.
[0004]
By the way, since the generation of processing-induced martensite is easily affected by processing heat and heat radiation during ring rolling, the strength of the produced continuously variable transmission belt has a great influence on rolling conditions such as rolling ratio and rolling temperature. receive. The present inventors have conducted various investigations and studies on the effects of rolling conditions on the strength of the belt for a continuously variable transmission, and as a result, by appropriately controlling the material temperature during rolling, the generation of work-induced martensite and the generation of retained austenite It has been found that when controlling the effect, a belt for a continuously variable transmission having a stable strength can be manufactured (Japanese Patent Application No. 2001-117699).
[0005]
Although the proper management of the material temperature is effective for stabilizing the quality, there is a limit in simply manufacturing the belt for a continuously variable transmission in which the strength is further improved by ring rolling. By controlling the rolling rate, which is a more direct rolling condition, the amount of generation of work-induced martensite can be appropriately controlled, and a belt for a continuously variable transmission with further improved strength and excellent quality stability can be manufactured. Is done.
That is, in order to obtain a high-strength continuously variable transmission belt using a metastable austenitic stainless steel as a material, the material thickness before ring rolling is increased to increase the rolling rate, and the amount of work-induced martensite generated is reduced. More is effective.
[0006]
[Problems to be solved by the invention]
In the method of increasing the thickness of the material to increase the strength, a large rolling load is required as the rolling ratio increases, and the load on the rolling mill increases. For this reason, there is a limit to the increase in strength due to an excessive increase in the rolling rate in terms of rolling capacity. Further, the amount of work-induced martensite generated when a metastable austenitic stainless steel is worked has a working temperature dependency, and the amount of work-induced martensite varies depending on the working time. For example, when processing is performed at a time when the ambient temperature is high, such as in summer, even if the rolling reduction is increased, the amount of work-induced martensite generation is small due to the effect of temperature, and a desired strength may not be obtained.
The present invention has been devised in order to solve such a problem, and uses a metastable austenitic stainless steel as a material, and performs ring rolling in a state where a material to be rolled is actively cooled, thereby producing a process. An object is to increase the amount of induced martensite and obtain a high-strength belt for a continuously variable transmission.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the stainless steel continuously variable transmission belt of the present invention is characterized in that the amount of work-induced martensite accounts for 70% by volume or more in the structure.
When rolling to the target thickness while running a ring-shaped strip prepared by welding the front and rear ends of a metastable austenitic stainless steel strip along an endless track, the ring-shaped strip being rolled is cooled. It can be obtained by:
Cooling is preferably performed by spraying a coolant on the ring-shaped strip on the rolling-in side.
[0008]
[Action]
When a metastable austenitic stainless steel sheet is cold-rolled, work-induced martensite is generated, but the amount of work-induced martensite changes according to the rolling rate and the material temperature during cold rolling (FIG. 1). The strength increases as the amount of work-induced martensite increases (FIG. 2). The dependence of the amount of work-induced martensite formation on the rolling rate and material temperature is that even when a metastable austenitic stainless steel sheet is rolled at the same rolling rate, the material temperature rises under the influence of other rolling conditions. It means that induced martensite is difficult to form.
Factors that change the material temperature include the heat generated during processing during rolling, heat radiation, and the processing history of the material, and the material temperature cannot be properly managed by simply controlling the rolling reduction. Therefore, in the present invention, when a metastable austenitic stainless steel plate is subjected to ring rolling to manufacture a belt for a continuously variable transmission, a ring-shaped strip as a rolling material is actively cooled. Rolling at a low temperature increases the amount of work-induced martensite formation.
[0009]
By the way, the current 18Ni maraging steel for a continuously variable transmission has a strength of 2000 MPa or more, and if it is desired to obtain a material having mechanical properties equivalent to or higher than this using a metastable austenitic stainless steel, FIG. As can be seen from FIG. 2, the amount of work-induced martensite needs to be about 65% by volume or more. In order for a stainless steel having a metastable austenitic composition to be used for a belt for a continuously variable transmission instead of the current 18Ni maraging steel, the strength exceeding 2000 MPa is exhibited, and the fatigue strength is superior to that of 18Ni maraging steel. A metastable austenitic stainless steel having
As can be seen from the fatigue characteristics of the various stainless steels shown in FIG. 3, in order to exhibit clearly excellent fatigue characteristics with respect to 18Ni maraging steel, the amount of work-induced martensite of the metastable austenitic stainless steel must be 70% by volume or more. It is necessary to If the amount of work-induced martensite is about 65% by volume, its fatigue properties are equivalent to 18Ni maraging steel. In order to give an advantage over 18Ni maraging steel, the amount of work-induced martensite of metastable austenitic stainless steel should be 70% by volume or more.
[0010]
However, even if stainless steel having a metastable austenite composition is rolled at a normal rolling reduction of about 40% at room temperature without particularly controlling the temperature, the amount of work-induced martensite does not reach 70% by volume. In order to obtain a work-induced martensite amount of 70% by volume or more, it is necessary to particularly increase the rolling reduction. However, an increase in the rolling reduction not only requires a remarkable increase in the rolling load, but also greatly deteriorates the rolling efficiency.
Therefore, during rolling, the material to be rolled is blown with cold air such as vaporized liquid nitrogen to cool the material to be rolled and actively promote the martensitic transformation of the material to be rolled, thereby increasing the amount of work-induced martensite. Is to increase.
The amount of work-induced martensite was calculated from the ratio of the amount of martensite and the amount of saturation magnetization, using the fact that the amount of martensite was proportional to the amount of saturation magnetization.
[0011]
Embodiment
For the ring rolling, for example, a four-high rolling mill in which a pair of upper and lower work rolls 2a and 2b and backup rolls 4a and 4b are arranged to face each other is used (FIG. 4). The upper backup roll 4a is pressed against the upper work roll 2a by a rolling device, and applies a processing pressure to the ring-shaped strip 1 as a material to be rolled. As the lower backup roll 4b, a roll is used in which flange portions abutting on the lower work roll 2b are provided at both ends in the axial direction, and a gap between the flange portions serves as a groove for passing the ring-shaped strip 1. The work rolls 2a and 2b are not limited to the arrangement shown in FIG. 4, but may be arranged along the pass line of the ring-shaped strip 1 that goes around between the tension roll and the return roll.
[0012]
The ring-shaped strip 1 is prepared by welding a metastable austenitic stainless steel strip cut to a predetermined width in a ring shape by laser welding, plasma welding, or the like. As the metastable austenitic stainless steel, a steel type whose Md (N) value defined by the formula Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-300N-10Mo has been adjusted to a range of 20 to 100. Is preferred. Specifically, C: 0.15% by mass or less, Si: 1.0 to 4.0% by mass, Mn: 5.0% by mass or less, N: 0.15% by mass or less, Cr: 12.0% or less 18.0% by mass, Ni: 4.0 to 10.0% by mass, Mo: 1.0 to 5.0% by mass, Cu: 0 to 3.5% by mass, C + N ≧ 0.1% by mass, A metastable austenitic stainless steel sheet satisfying Si + Mo ≧ 3.5% by mass is used.
[0013]
The ring-shaped strip 1 is wound around the lower work roll 2 b and the tension roll 3, and tension is applied by pulling the tension roll 3. The tension applied to the ring-shaped strip 1 is detected by the load cell 6. When the tension roll 3 is pulled and the backup rolls 4a and 4b are driven, the ring-shaped strip 1 is fed into the roll bite of the work rolls 2a and 2b, and the ring-shaped strip 1 is rolled. The rolling load acting on the work roll and the tension roll can be controlled by the load cell 6. As rolling conditions, a rolling load, a tension, and a peripheral speed of a work roll are set, and while a constant tension is applied by the tension roll, the thickness of the belt is gradually reduced in the circumferential direction by the work roll.
[0014]
Since the circumferential length of the ring-shaped strip 1 increases in accordance with the reduction, the tension roll 3 is moved in a direction away from the work rolls 2a and 2b as the circumferential length increases. The circumference of the ring-shaped strip 1 is measured by measuring the distance between the axes of the lower work roll 2b and the tension roll 3 with the distance meter 5, and measuring the distance between the axes and the diameters of the lower work roll 2b and the tension roll 3. Is calculated from
As a rolling type, a roll configuration such as a two-stage roll composed of a pair of work rolls each having a pair of upper and lower portions and a tension roll may be used.
[0015]
As a method for cooling the ring-shaped strip 1, as shown in FIG. 5, a cooling box 8 arranged on the side of the pass line of the ring-shaped strip 1 running from the tension roll 3 toward the lower work roll 2 b into the rolling roll. It is preferable that the cooling is performed by directly spraying the coolant on the ring-shaped strip 1 during the ring rolling by the nozzle 9 for spraying the coolant into the cooling box and the coolant 7 such as liquid nitrogen.
Further, the rolling itself may be performed in an atmosphere cooled to a specific temperature.
[0016]
【Example】
C: 0.086% by mass, Si: 2.63% by mass, Mn: 0.31% by mass, Cr: 13.73% by mass, Ni: 8.25% by mass, Mo: 2.24% by mass, Cu: A metastable austenitic stainless steel containing 0.17% by mass, N: 0.064% by mass, Md (N): 74.03, and having an aged dual-phase structure of work-induced martensite + austenite. Used for material. The ring rolling device used was a four-high rolling mill having a basic configuration of a tension roll 3 having a diameter of 30 mm, upper and lower work rolls 2a and 2b, and upper and lower backup rolls 4a and 4b having a diameter of 55 mm.
The relationship between the presence / absence of cooling and the rolling ratio was investigated under the dimensions and rolling conditions of the raw materials shown in Table 1.
[0017]
Figure 2004011683
[0018]
The ring-shaped strip 1 was hung on the tension roll 3 and the lower work roll 2b, and was set while being clamped between the work rolls 2a and 2b while applying a tension of about 5 kgf, and was subjected to rolling. As rolling conditions, the rolling load was set at a maximum of 3 tons, the peripheral speed between the work rolls was set at 2 m / min, the tension of the tension roll was set at 200 kgf, and the rolling load and the tension were controlled during rolling.
A cooling box 8 having a hole along the pass line of the ring-shaped strip 1 and provided with a nozzle 9 for spraying a refrigerant directly to the ring-shaped strip is placed at a position immediately before the entry side of the work rolls 2a and 2b. Then, liquid nitrogen was directly sprayed on the ring-shaped strip 1 during ring rolling as a refrigerant. At this time, the surface temperature of the ring-shaped strip measured at the entry side of the rolling by the non-contact infrared thermometer 10 was about -190 ° C, and showed a substantially constant temperature transition from the start to the end of the rolling.
After rolling, the amount of work-induced martensite and the cross-sectional hardness of the ring-shaped strip were measured. The results are as shown in Table 2. Note that the measurement of the amount of work-induced martensite was performed by a magnetic method using a vibrating sample magnetometer, and the measurement of the cross-sectional hardness was performed at a location along the longitudinal direction of the ring-shaped strip.
[0019]
Figure 2004011683
[0020]
As shown in Table 2, the conditions No. In No. 1, the amount of work-induced martensite was 65% by volume, whereas Condition No. 1 in which cooling was performed by spraying liquid nitrogen at the same rolling ratio as in Example 1. In No. 2, the amount of work-induced martensite was 88% by volume. That is, it has been confirmed that the cooling produces 1.5 times the amount of work-induced martensite as compared with the case without cooling. In addition, when cooled, no. No. 1, which is a condition in which the rolling reduction is smaller than No. 1. Also in No. 3, a work-induced martensite amount of 75% by volume was obtained, and it was confirmed that cooling was effective.
The ring-rolled ring-shaped strip was subjected to a nitriding treatment usually performed at the time of producing the belt, and the mechanical properties were examined. As shown in Table 3, when the cooling was performed, the cooling was compared with the case without cooling. And high strength was obtained.
[0021]
Figure 2004011683
[0022]
【The invention's effect】
As described above, according to the present invention, when manufacturing a belt for a continuously variable transmission by performing ring rolling using a metastable austenitic stainless steel as a material, rolling is performed while the ring-shaped strip is actively cooled. Thereby, the amount of work-induced martensite can be generated at 70% by volume or more, and a high-strength metastable austenitic stainless steel metal belt can be manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the rolling reduction and the material temperature on the amount of work-induced martensite generated by rolling a metastable austenitic stainless steel sheet. FIG. 2 is a graph showing the relationship between the amount of work-induced martensite and strength. FIG. 3 is a graph showing the fatigue characteristics of various stainless steels. FIG. 4 is a diagram illustrating an outline of a ring rolling mill used in the present invention. FIG. 5 is a diagram illustrating an embodiment in which ring rolling is performed while cooling a ring-shaped strip. Figure [Explanation of symbols]
1: Ring-shaped strip 2a, 2b: Work roll 3: Tension roll 4a, 4b: Backup roll 5: Distance meter 6: Load cell 7: Refrigerant 8: Cooling box 9: Nozzle 10: Thermometer

Claims (3)

組織中、加工誘起マルテンサイト量が70体積%以上を占めることを特徴とするステンレス鋼製無段変速機用ベルト。A belt for a continuously variable transmission made of stainless steel, wherein the amount of work-induced martensite accounts for 70% by volume or more in the structure. 準安定オーステナイト系ステンレス鋼帯の前端,後端を溶接することにより用意したリング状帯板を無限軌道に沿って走行させながら目標板厚まで圧延する際、圧延中のリング状帯板を冷却することを特徴とするステンレス鋼製無段変速機用ベルトの製造方法。When rolling to the target thickness while running a ring-shaped strip prepared by welding the front and rear ends of a metastable austenitic stainless steel strip along an endless track, the ring-shaped strip being rolled is cooled. A method for producing a stainless steel continuously variable transmission belt. リング状帯板の冷却が、圧延入り側でのリング状帯板への冷媒吹き付けにより行われる請求項2に記載のステンレス鋼製無段変速機用ベルトの製造方法。The method for manufacturing a stainless steel continuously variable transmission belt according to claim 2, wherein the cooling of the ring-shaped strip is performed by spraying a refrigerant to the ring-shaped strip on the rolling-in side.
JP2002162717A 2002-06-04 2002-06-04 Stainless steel belt for continuously variable transmission, and its manufacturing method Pending JP2004011683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162717A JP2004011683A (en) 2002-06-04 2002-06-04 Stainless steel belt for continuously variable transmission, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162717A JP2004011683A (en) 2002-06-04 2002-06-04 Stainless steel belt for continuously variable transmission, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004011683A true JP2004011683A (en) 2004-01-15

Family

ID=30431385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162717A Pending JP2004011683A (en) 2002-06-04 2002-06-04 Stainless steel belt for continuously variable transmission, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004011683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145502A1 (en) * 2006-06-12 2007-12-21 Robert Bosch Gmbh Manufacturing method for making thin metal rings
WO2016173956A1 (en) * 2015-04-27 2016-11-03 Sandvik Intellectual Property Ab A method and device for generating deformation twinning in a metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145502A1 (en) * 2006-06-12 2007-12-21 Robert Bosch Gmbh Manufacturing method for making thin metal rings
WO2016173956A1 (en) * 2015-04-27 2016-11-03 Sandvik Intellectual Property Ab A method and device for generating deformation twinning in a metal

Similar Documents

Publication Publication Date Title
CN105829561B (en) Hot rolled sheet component, its manufacturing method and hot pressing steel plate
JP5454738B2 (en) Hot rolled steel sheet for gas soft nitriding and method for producing the same
KR101776242B1 (en) High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath
EP1396552B1 (en) Double phase stainless steel strip for steel belt
CN105814226B (en) CVT ring components and its manufacture method
US10323293B2 (en) High-carbon hot rolled steel sheet with excellent hardenability and small in-plane anistropy and method for manufacturing the same
JP2007111708A (en) Hot-rolled steel strip for cold-rolled high-tensile strength steel sheet having reduced variation in sheet thickness after cold rolling and its production method
JP2004011683A (en) Stainless steel belt for continuously variable transmission, and its manufacturing method
JP2020510135A (en) Ferritic stainless steel excellent in ridging property and surface quality and manufacturing method thereof
JPH04154920A (en) Manufacture of high strength steel belt
CN104662181B (en) The manufacture method of Maraging steel coiled material
US20040244873A1 (en) Steel belt comprising martensitic steel and method for manufacturing hoop for continuously variable transmission using said steel belt
JP3473589B2 (en) ERW steel pipe and manufacturing method thereof
JP3475788B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent workability
JP2003266106A (en) Method for manufacturing belt made of stainless steel for continuously variable transmission
JP2003321747A (en) High tensile strength welded steel tube having excellent workability and material uniformity in weld zone, production method thereof and steel strip for welded steel tube stock
TW531457B (en) Manufacturing method of a belt for a non-stage speed-variable machine made from stainless steel
Jing et al. The evolution of the surface morphologies and microstructures of an unleveled hot-rolled steel strip during cold rolling after hydrogen reduction
WO2012128272A1 (en) Method for winding hot-rolled maraging steel strip
JPS60200913A (en) Manufacture of high tensile invert superior in weldability
US5690757A (en) Method for continuous recrystallization annealing of a steel strip
JP2003033803A (en) Production method of metastable austenite stainless steel belt for stepless transmission
JPS63169335A (en) Production of chromium stainless steel strip of double phase structure having small ntra-surface anisotropy and high ductility and high strength
WO2020054522A1 (en) High surface-pressure resistant component and production method therefor
JP6325869B2 (en) Manufacturing method of steel plate for heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304