JP2004011608A - Steam valve controlling method and device - Google Patents

Steam valve controlling method and device Download PDF

Info

Publication number
JP2004011608A
JP2004011608A JP2002170197A JP2002170197A JP2004011608A JP 2004011608 A JP2004011608 A JP 2004011608A JP 2002170197 A JP2002170197 A JP 2002170197A JP 2002170197 A JP2002170197 A JP 2002170197A JP 2004011608 A JP2004011608 A JP 2004011608A
Authority
JP
Japan
Prior art keywords
steam
opening
valve
signal
request signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002170197A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
高橋 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002170197A priority Critical patent/JP2004011608A/en
Publication of JP2004011608A publication Critical patent/JP2004011608A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Flow Control (AREA)
  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a steam regulating valve to control for minimizing a pressure loss in all operation area. <P>SOLUTION: In order to control the opening of a plurality of steam regulating valves 3 provided in parallel in a steam supplying system from a steam generator to a steam turbine, the opening of each steam regulating valve 3 is fixed on the basis of a primary opening requesting signal decided by a steam flow rate request, and the inlet pressure, the actual opening, and the back-and-forth differential pressure of each steam regulating valve 3 is detected. An average pressure loss of the steam regulating valve is obtained on the basis of each detected value, the opening of each steam regulating valve is increased and decreased under a constant stream flow rate with reference to the detected maximum differential pressure. An operation point of each steam regulating valve opening making the average pressure loss minimum is obtained, and the primary opening requesting signal is corrected on the basis of each obtained steam regulating valve opening. The opening of each steam regulating valve 3 is controlled on the basis of a secondary opening requesting signal. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発電用蒸気タービンプラント等に適用される蒸気弁制御方法および装置に係り、特に複数の蒸気加減弁の開度を蒸気流量に対応して制御する場合に全ての流量域で圧力損失を低減することできる蒸気弁制御方法および装置に関するものである。
【0002】
【従来の技術】
図4は、発電用蒸気タービンプラントの蒸気系統を概略的に示す系統図であり、高圧タービン、中圧タービンおよび低圧タービンを備えた構成を例示している。
【0003】
この図4に示すように、蒸気発生器1で発生した蒸気は、蒸気供給配管1aにより主蒸気止め弁2、蒸気加減弁3および入口ノズル4を介して高圧タービン5に導かれる。
【0004】
高圧タービン5で仕事をした蒸気は再熱器6で再熱され、インターセプト弁7、再熱蒸気止め弁8を介して中圧タービン9に供給される。さらに中圧タービン9で仕事をした蒸気は低圧タービン10に導かれて仕事をした後、復水器11で復水とされ、図示しない給水ポンプ等を介して蒸気発生器1に戻される。
【0005】
上述した蒸気供給配管1aは、入口ノズル4に対応して複数の管路に分岐しており、主蒸気止め弁2および蒸気加減弁3は分岐した蒸気供給配管1aの管路にそれぞれ配置される。そして、各蒸気加減弁3は一般的に、出力の増加に伴う開信号により、これらの蒸気加減弁3を通過する流量が線形に増加するように予め設計された開度特性に従い、開動作するように制御される。
【0006】
図5は、このような蒸気加減弁3の弁開度特性の一例を示すグラフであり、縦軸に弁開度、横軸に流量要求をそれぞれ示している。この図5に示すように、例えば4基の蒸気加減弁(♯1弁〜♯4弁)の弁開度は、流量要求の増加に対応してこれらの蒸気加減弁からノズルに流入する蒸気流量が順次に線形に拡大する特性で制御される。通常、この特性は各プラント毎に出力等に応じた関数値によって予め定められている。
【0007】
【発明が解決しようとする課題】
ところで、従来の蒸気タービンプラントにおいては、各蒸気加減弁3をそれぞれ予め定められた開度特性で制御する場合、各蒸気加減弁3での流量の線形性のみに注目し、圧力損失については特に考慮がなされていない。
【0008】
このため、各蒸気加減弁3をすべての運転域で必ずしも最適な圧力損失のもとで運転することができるとは限らず、ある運転条件によっては、蒸気加減弁3での全体の圧力損失が最適ではなくなり、過度に大きくなる場合がある。そして、この圧力損失が必要以上に大きくなることにより、たとえ蒸気流量が要求された値になっていようとも、高圧タービン側では予定されている性能が達成できない不具合が生じるという問題があった。
【0009】
本発明はこのような事情に鑑みてなされたもので、蒸気加減弁が全ての運転域において圧力損失を最小にする制御を行うことができる蒸気弁制御方法および装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、請求項1に係る発明では、蒸気発生器から蒸気タービンへの蒸気供給系統に並列に設けられた複数の蒸気加減弁の開度を制御する蒸気弁制御方法であって、蒸気流量要求により定められる一次開度要求信号に基づいて前記各蒸気加減弁の開度を定める工程と、前記各蒸気加減弁の入口圧力、実開度および前後差圧を検出する工程と、前記各検出値に基づいて前記蒸気加減弁の平均圧力損失を求める工程と、検出した最大差圧を基準として一定の蒸気流量下で前記各蒸気加減弁の開度を増減し、前記平均圧力損失が最小となる前記各蒸気加減弁開度の運転点を求める工程と、求めた各蒸気加減弁開度に基づいて前記一次開度要求信号を補正する工程と、補正した二次開度要求信号に基づいて前記各蒸気加減弁の開度制御を行う工程とを備えることを特徴とする蒸気弁制御方法を提供する。
【0011】
請求項2に係る発明では、蒸気発生器から蒸気タービンの複数の入口ノズルに供給する蒸気を、複数の並列な蒸気加減弁により制御する蒸気弁制御装置であって、蒸気流量要求信号を入力値として前記各蒸気加減弁の開度を関数により求め一次開度要求信号を出力する開度信号関数発生手段と、前記一次開度要求信号に基づいて開閉制御される前記各蒸気加減弁の入口圧力、実開度および前後差圧を検出する検出手段と、これらの検出手段による各検出信号を入力し、前記蒸気加減弁についての平均圧力損失を求める演算手段と、前記検出手段によって検出した最大差圧を基準として前記各蒸気加減弁の開度を増減し、一定の蒸気流量下で前記平均圧力損失が最小となる各蒸気加減弁開度の運転点を求め、その求めた各蒸気加減弁開度に基づいて前記一次開度要求信号を補正し、補正後の二次開度要求信号を出力する開度要求信号補正手段と、補正した二次開度要求信号を入力して前記各蒸気加減弁の開度制御を行う開度制御手段とを備えたことを特徴とする蒸気弁制御装置を提供する。
【0012】
請求項3に係る発明では、前記開度信号関数発生手段は、前記一次開度要求信号を発生するための関数を、前記開度要求信号補正手段によって求められた平均圧力損失が最小となる運転点により補正し、記憶する手段を有することを特徴とする請求項2記載の蒸気弁制御装置を提供する。
【0013】
【発明の実施の形態】
以下、本発明に係る蒸気弁制御装置の一実施形態について、図1〜図3を参照して説明する。なお、従来例と同一構成分については、図4と同一の符号を使用して説明する。また、弁開度の特性については、図5を参照する。
【0014】
図1は、本実施形態による蒸気弁制御装置を適用する蒸気タービンプラントの系統全体を示す概略構成図である。この図1に示すように、本実施形態においても、高圧タービン、中圧タービンおよび低圧タービンを備えた構成を例として説明する。
【0015】
図1に示すように、蒸気発生器1で発生した蒸気は、蒸気供給配管1aにより主蒸気止め弁2、蒸気加減弁3および入口ノズル4を介して高圧タービン5に導かれる。
【0016】
高圧タービン5で仕事をした蒸気は再熱器6で再熱され、インターセプト弁7、再熱蒸気止め弁8を介して中圧タービン9に供給される。さらに中圧タービン9で仕事をした蒸気は低圧タービン10に導かれて仕事をした後、復水器11で復水とされ、図示しない給水ポンプ等を介して蒸気発生器1に戻される。
【0017】
上述した蒸気供給配管1aは、入口ノズル4に対応して複数の管路に分岐しており、主蒸気止め弁2および蒸気加減弁3は分岐した蒸気供給配管1aの管路にそれぞれ配置される。そして、各蒸気加減弁3(3a〜3d)は基本的に、図5に示したように、出力の増加に伴う開信号によって通過する流量が線形に増加するように開動作制御される。
【0018】
このような構成において、本実施形態では、蒸気供給系配管1aの分岐した複数の管路から各蒸気加減弁3(3a〜3d)の制御情報を得る検出手段としての信号検出部12と、この信号検出部12からの検出信号を入力し、これらの検出信号に基づいて各蒸気加減弁3を制御する制御装置13とを備えている。
【0019】
図2は、信号検出部12および制御装置13の構成および信号の流れを説明するためのシステム構成図である。
【0020】
この図2に示すように、信号検出部12は、各蒸気加減弁3(3a〜3d)の入口圧力Pf(Pf1〜Pf4)を検出する弁前圧力センサ14(14a〜14d)と、各蒸気加減弁3の前後差圧Ps(Ps1〜Ps4)を検出する前後差圧センサ15(15a〜15d)と、各蒸気加減弁3の実開度D(D1〜D4)を検出する開度センサ16(16a〜16d)とを備えている。
【0021】
一方、制御装置13は、蒸気流量要求信号を入力値として各蒸気加減弁3(3a〜3d)の開度を関数により求め一次開度要求信号を出力する開度信号関数発生手段として、開度信号関数発生器25を備えている。この開度信号関数発生器25は、外部からの蒸気流量要求信号Woを入力値として各蒸気加減弁3(3a〜3d)の開度を関数により求める機能を有する。すなわち、開度信号発生器25は、流量要求信号Woに対し、流量特性を線形にするために前述した図5に示す特性に基づいて、各蒸気加減弁3(3a〜3d)の一次開度要求信号Wi(W1〜W4)を発生する。これらの一次開度要求信号Wi(W1〜W4)により各蒸気加減弁3(3a〜3d)の一次的な開度が定められる。
【0022】
また、制御装置13は、信号検出部12による各検出信号を入力し、蒸気加減弁についての平均圧力損失を求める演算手段として、各蒸気加減弁3(3a〜3d)に対応する流量信号発生器17(17a〜17d)と、掛け算器18(18a〜18d)と、加算器19、20と、除算器21とを備えている。
【0023】
流量信号発生器17(17a〜17d)は、各弁前圧力センサ14(14a〜14d)から各蒸気加減弁3(3a〜3d)の入口圧力Pf(Pf1〜Pf4)の信号入力を受けるとともに、各開度センサ16(16a〜16d)から各蒸気加減弁3(3a〜3d)の実開度D(D1〜D4)の信号入力を受ける。そして、これらの圧力および開度に基づいて、各蒸気加減弁3(3a〜3d)を通過する蒸気流量Wi(W1〜W4)を求める機能を有する。
【0024】
掛け算器18(18a〜18d)は、前後差圧センサ15(15a〜15d)から前後差圧Ps(Ps1〜Ps4)の信号入力を受けるとともに、流量信号発生器17(17a〜17d)から蒸気流量Wi(Ws1〜Ws4)の信号入力受け、各蒸気加減弁3(3a〜3d)の前後差圧Psと蒸気流量Wsとの掛け算Ps×Wiにより各蒸気加減弁3(3a〜3d)での圧力損失Ri(R1,R2,R3,R4)を求める。
【0025】
加算器19は、各掛け算器18(18a〜18d)で求められた圧力損失Riの信号入力を受け、これらの総和ΣRiを求める機能を有する。
【0026】
また、別の加算器20では、各流量信号発生器17(17a〜17d)で求められた蒸気流量Wi(W1〜W4)の信号入力を受け、この蒸気流量Wiの総和ΣWiを求める機能を有する。
【0027】
除算器21は、加算器19,20から圧力損失の総和総和ΣRiおよび(蒸気流量の総和ΣWiの信号入力を受け、ΣRi/ΣWiの除算により、平均圧力損失Raを求める。
【0028】
さらに、制御装置13は、信号検出部12によって検出した最大差圧を基準として各蒸気加減弁の開度を増減し、一定の蒸気流量下で平均圧力損失が最小となる各蒸気加減弁開度の運転点を求め、その求めた各蒸気加減弁開度に基づいて一次開度要求信号を補正し、補正後の二次開度要求信号を出力する開度要求信号補正手段を備えている。この開度要求信号補正手段は、比較器22と、差圧比較演算器23と、加減算信号発生器24と、開度信号関数発生器25と、加算器26(26a〜26d)とにより構成される。
【0029】
比較器22は、除算器21から平均圧力損失Raの信号入力を受け、現在入力されている平均圧力損失Raと、後に入力される異なる平均圧力損失R’aとを比較し、常に最小の平均圧力損失Raminを保持する監視機能を有する。また、この比較器22は、下記の加減算信号発生器24に信号を送り、後述する加減算信号を振らせる指示を出す機能も有する。
【0030】
差圧比較演算器23は、各前後差圧センサ15(15a〜15d)から蒸気加減弁3の前後差圧Ps(Ps1〜Ps4)の信号入力を受け、差圧比較演算により、最大差圧Psmaxと、その最大差圧Psmaxを発生している蒸気加減弁3とを求める機能を有する。
【0031】
加減算信号発生器24は、比較器22から最小の平均圧力損失Raminの信号入力を受けるとともに、差圧比較演算器23からの最大差圧Psmaxと、その最大差圧Psmaxを発生している蒸気加減弁3との信号入力を受ける。これらの入力に基づき、加減算信号発生器24は各蒸気加減弁3の開度についての加減算信号Ki(K1〜K4)を発生する。すなわち、一定流量のもとで、かつ最小の平均圧力損失Raminのもとで、差圧が一番大きい蒸気加減弁3を基準に±の加減算信号Ki(K1〜K4)を発生するとともに、その信号に対して流量を補正するように他の蒸気加減弁3への加減算信号Ki(K1〜K4)を発生させる。これらの信号Ki(K1〜K4)は、比較器22からの指示により加算器26(26a〜26d)に送られる。
【0032】
開度信号関数発生器25は、前述したように外部からの蒸気流量要求信号Woを入力値として各蒸気加減弁の開度を関数により求める機能を有する。すなわち、開度信号発生器25は、流量要求信号Woに対し、流量特性を線形にするために例えば前述した図5に示す特性に基づいて、各蒸気加減弁3(3a〜3d)の一次開度要求信号Wi(W1〜W4)を発生する。
【0033】
加算器26(26a〜26d)は、開度信号関数発生器25の一次開度要求信号Wi(W1〜W4)と、加減算信号発生器24からの加減算信号Ki(K1〜K4)との入力を受け、これらを加算して開度要求信号Wk(Wk1〜Wk4)を発生し、各蒸気加減弁3(3a〜3d)に出力する機能を有する。
【0034】
次に、図2とともに図3を参照して、制御方法について説明する。図3は、この制御方法を実施する手順を示すフローチャートである。
【0035】
図2および図3に示すように、本実施形態では、蒸気タービン運転開始に際し、開度信号関数発生器25に蒸気流量要求Woが信号入力される(S101)。開度信号関数発生器25では、まず基準となる一次開度要求信号Wiが発生し(S102)、これに基づいて各蒸気加減弁3(3a〜3d)の一次的な開度制御運転が開始する(S103)。
【0036】
運転が開始すると、各蒸気加減弁3(3a〜3d)を通過する蒸気について、弁前圧力センサ14(14a〜14d)により入口圧力Pf(Pf1〜Pf4)が検出されるとともに、開度センサ16(16a〜16d)により実開度D(D1〜D4)が検出され(S104)、同時に前後差圧センサ15(15a〜15d)により各蒸気加減弁3の前後差圧Ps(Ps1〜Ps4)が検出される(S105)。
【0037】
ステップS104で検出された入口圧力Pf(Pf1〜Pf4)および実開度D(D1〜D4)は、各流量信号発生器17(17a〜17d)に信号入力される。そして、各流量信号発生器17(17a〜17d)では、これらの検出値に基づいて各蒸気加減弁3(3a〜3d)を通過する蒸気流量Wi(W1〜W4)が求められる(S106)。
【0038】
この蒸気流量Wi(W1〜W4)の信号は、加算器20と掛け算器18(18a〜18d)とに出力される。加算器20では、蒸気流量W1〜W4の総和が計算され、全ての蒸気加減弁3(3a〜3d)を通過する蒸気流量の合計値ΣWiが求められる(S107)。
【0039】
また、各掛け算器18(18a〜18d)には、蒸気流量Wi(Ws1〜Ws4)の信号とともに、前後差圧センサ15(15a〜15d)から前後差圧Ps(Ps1〜Ps4)の信号が入力される。そして、この各掛け算器18(18a〜18d)では、各蒸気加減弁3(3a〜3d)の前後差圧Psと蒸気流量Wsとの掛け算Ps×Wiにより各蒸気加減弁3(3a〜3d)での圧力損失Ri(R1,R2,R3,R4)が求められる(S108)。求められた圧力損失Ri(R1,R2,R3,R4)は加算器19に信号入力され、ここで圧力損失Riの総和ΣRiが求められる(S109)。
【0040】
そして、ステップS107およびS109で求められた蒸気流量の合計値ΣWiおよび圧力損失Riの総和ΣRiが、除算器21に信号入力され、この除算器21において、ΣRi/ΣWiの除算により、平均圧力損失Raが求められる(S110)。
【0041】
そして、ステップS110で求められた平均圧力損失Raが、比較器22に逐次、信号入力される。そして、この比較器22では、現在入力されている平均圧力損失Raと、後に入力される異なる平均圧力損失R’aとの比較が行われ、常に最小の平均圧力損失Raminが保持される。すなわち、比較器22は平均圧力損失Raを監視して、これが最小になる点を求め、それを確認して、その点で信号をホールドさせる。また、比較器22は加減算信号発生器24に信号を送り、各蒸気加減弁3(3a〜3d)への加減算信号加減算信号Ki(K1〜K4)を振らせる指示を出す。
【0042】
なお、ステップS111と平行して、差圧比較演算器23では、各前後差圧センサ15(15a〜15d)からの蒸気加減弁前後差圧Ps(Ps1〜Ps4)に基づく差圧比較演算が行われ、最大差圧Psmaxと、その最大差圧Psmaxを発生している蒸気加減弁3とが求められている(S112)。
【0043】
そこで、加減算信号発生器24に比較器22からの最小の平均圧力損失Raminと、差圧比較演算器23からの最大差圧Psmaxとそれを発生している蒸気加減弁3とが信号入力され、この加減算信号発生器24においては、入力値に基づき、各蒸気加減弁3の開度についての加減算信号Ki(K1〜K4)が発生される。この加減算信号Ki(K1〜K4)は、圧力損失を低減するために流量および弁差圧等の蓄積されたデータ等に基づいて発生される。そして、比較器22からの加減算信号を振らせる信号により、加減算信号発生器24から、各蒸気加減弁への開度に対応する加減算信号Ki(K1〜K4)が各加算器26(26a〜26d)に送られる。すなわち、差圧が最も大きい蒸気加減弁3を基準に±の信号が加算器26送られ、その信号に対し、流量を補正するように他の弁についての信号が他の加算器26に送られる。これにより、各加算器26(26a〜26d)では、各開度信号関数発生器25から入力されていた一次開度要求信号Wiが加減算信号Ki(K1〜K4)により補正される(S113)。
【0044】
そして、加算器26では、補正した二次開度に基づいて二次開度要求信号Wk1〜Wk4が発生し、この信号が各弁に送られる(S114)。
【0045】
以上の結果が繰返され、その都度比較器22において平均圧力損失26が監視され、この平均圧力損失26が最小になる弁開度の運転点が求められ、それを確認して、その運転点で信号がホールドされる。
【0046】
本実施形態によれば、以上の方法によって、予め決められた開度要求信号に対し、流量は変えずに最適な開度の運転点を見つけ出すことができる。
【0047】
なお、本発明では、上記実施形態に加え、開度信号関数発生器25が加減算信号発生器24からの補正信号に基づき、一次開度要求信号を発生するための関数を補正し、かつ記憶する機能を有する構成としてもよい。この場合には、図3に破線ルートで示すように(S115)、一次開度要求信号で使用した関数自体を補正して、応答速度の高い制御が可能となる。
【0048】
なお、本発明は前記実施形態で示した蒸気系統に限らず、種々の系統に適用することができる。
【0049】
【発明の効果】
以上のように、本発明によれば、加減弁の各通過差圧を計測し、その通過流量も算出して平均圧力損失を求め、その平均圧力損失を最小化する最適な運転配分を自動的に求めることにより、常に圧力損失が最も少なくなる運転を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態による蒸気系統を例示する構成図。
【図2】本発明の一実施形態による蒸気弁制御装置を示すシステム構成図。
【図3】本発明の一実施形態による蒸気弁制御方法を示すフローチャート。
【図4】従来技術を説明するための蒸気系統を示す構成図。
【図5】蒸気流量に対する弁開度の制御要求を例示するグラフ。
【符号の説明】
1 蒸気発生器
1a 蒸気供給配管
2 主蒸気止め弁
3 蒸気加減弁
4 入口ノズル
5 高圧タービン
6 再熱器
7 インターセプト弁
8 再熱蒸気止め弁
9 中圧タービン
10 低圧タービン
11 復水器
12 信号検出部
13 制御装置
14(14a〜14d) 弁前圧力センサ
15(15a〜15d) 前後差圧センサ
16(16a〜16d) 開度センサ
17(17a〜17d) 流量信号発生器
18(18a〜18d) 掛け算器
19、20 加算器
21 除算器
22 比較器
23 差圧比較演算器
24 加減算信号発生器
25 開度信号関数発生器
26(26a〜26d) 加算器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for controlling a steam valve applied to a steam turbine plant for power generation and the like, and in particular, when controlling the opening of a plurality of steam control valves in accordance with the steam flow rate, the pressure loss in all flow ranges. The present invention relates to a method and an apparatus for controlling a steam valve, which can reduce the pressure.
[0002]
[Prior art]
FIG. 4 is a system diagram schematically illustrating a steam system of a steam turbine plant for power generation, and illustrates a configuration including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine.
[0003]
As shown in FIG. 4, the steam generated by the steam generator 1 is guided to a high-pressure turbine 5 through a main steam stop valve 2, a steam control valve 3, and an inlet nozzle 4 by a steam supply pipe 1a.
[0004]
The steam that has worked in the high-pressure turbine 5 is reheated in the reheater 6, and is supplied to the medium-pressure turbine 9 via the intercept valve 7 and the reheat steam stop valve 8. Further, the steam that has worked in the medium-pressure turbine 9 is guided to the low-pressure turbine 10 and performs work, is condensed in the condenser 11, and is returned to the steam generator 1 via a water supply pump or the like (not shown).
[0005]
The above-mentioned steam supply pipe 1a is branched into a plurality of pipes corresponding to the inlet nozzle 4, and the main steam stop valve 2 and the steam control valve 3 are respectively arranged in the pipes of the branched steam supply pipe 1a. . Generally, each steam control valve 3 opens according to an opening degree characteristic designed in advance so that a flow rate passing through these steam control valves 3 linearly increases in response to an open signal accompanying an increase in output. Is controlled as follows.
[0006]
FIG. 5 is a graph showing an example of the valve opening characteristics of such a steam control valve 3, wherein the vertical axis indicates the valve opening and the horizontal axis indicates the flow rate requirement. As shown in FIG. 5, for example, the valve opening degree of four steam control valves (# 1 valve to # 4 valve) is determined by the flow rate of steam flowing from these steam control valves to the nozzles in response to an increase in flow rate demand. Are controlled by the characteristic of sequentially expanding linearly. Usually, this characteristic is determined in advance by a function value corresponding to the output or the like for each plant.
[0007]
[Problems to be solved by the invention]
By the way, in a conventional steam turbine plant, when each steam control valve 3 is controlled with a predetermined opening degree characteristic, attention is paid only to the linearity of the flow rate at each steam control valve 3, and the pressure loss is particularly reduced. No consideration has been given.
[0008]
For this reason, each steam control valve 3 cannot always be operated under an optimum pressure loss in all operation ranges, and depending on certain operating conditions, the total pressure loss at the steam control valve 3 is reduced. It may not be optimal and may become too large. If the pressure loss becomes unnecessarily large, there is a problem in that the scheduled performance cannot be achieved on the high-pressure turbine side even if the steam flow rate is the required value.
[0009]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method and an apparatus for controlling a steam valve in which a steam control valve can perform control to minimize pressure loss in all operation ranges. .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a steam valve control method for controlling an opening of a plurality of steam control valves provided in parallel with a steam supply system from a steam generator to a steam turbine. Determining the opening of each of the steam control valves based on a primary opening request signal determined by the steam flow request; and detecting the inlet pressure, the actual opening, and the front-back differential pressure of each of the steam control valves. Determining the average pressure loss of the steam control valve based on the detected values, and increasing or decreasing the opening of each steam control valve under a fixed steam flow rate based on the detected maximum differential pressure, A step of obtaining an operating point of each of the steam control valve openings at which a loss is minimized; a step of correcting the primary opening request signal based on the obtained steam control valve opening; and a corrected secondary opening request Opening of each steam control valve based on the signal To provide a steam valve control method characterized by comprising the step of performing a control.
[0011]
In the invention according to claim 2, there is provided a steam valve control device for controlling steam supplied from a steam generator to a plurality of inlet nozzles of a steam turbine by a plurality of parallel steam control valves. An opening signal function generating means for determining the opening of each of the steam control valves as a function and outputting a primary opening request signal, and an inlet pressure of each of the steam control valves controlled to open and close based on the primary opening request signal Detecting means for detecting the actual opening degree and the differential pressure between the front and rear; inputting each detection signal by these detecting means; calculating means for obtaining an average pressure loss for the steam control valve; and a maximum difference detected by the detecting means. The operating point of each steam control valve opening at which the average pressure loss is minimized under a constant steam flow rate is determined by increasing or decreasing the opening of each steam control valve based on the pressure. Based on degree An opening request signal correcting means for correcting the primary opening request signal and outputting a corrected secondary opening request signal, and inputting the corrected secondary opening request signal to open each of the steam control valves. And a steam valve control device, characterized by comprising an opening control means for controlling the temperature.
[0012]
In the invention according to claim 3, the opening degree signal function generating means sets the function for generating the primary opening degree request signal to an operation in which the average pressure loss obtained by the opening degree request signal correcting means becomes minimum. 3. A steam valve control device according to claim 2, further comprising a means for correcting and storing by a point.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a steam valve control device according to the present invention will be described with reference to FIGS. The same components as those in the conventional example will be described using the same reference numerals as those in FIG. FIG. 5 shows the characteristics of the valve opening degree.
[0014]
FIG. 1 is a schematic configuration diagram illustrating the entire system of a steam turbine plant to which the steam valve control device according to the present embodiment is applied. As shown in FIG. 1, also in the present embodiment, a configuration including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine will be described as an example.
[0015]
As shown in FIG. 1, the steam generated by the steam generator 1 is guided to a high-pressure turbine 5 via a main steam stop valve 2, a steam control valve 3 and an inlet nozzle 4 by a steam supply pipe 1a.
[0016]
The steam that has worked in the high-pressure turbine 5 is reheated in the reheater 6, and is supplied to the medium-pressure turbine 9 via the intercept valve 7 and the reheat steam stop valve 8. Further, the steam that has worked in the medium-pressure turbine 9 is guided to the low-pressure turbine 10 and performs work, is condensed in the condenser 11, and is returned to the steam generator 1 via a water supply pump or the like (not shown).
[0017]
The above-mentioned steam supply pipe 1a is branched into a plurality of pipes corresponding to the inlet nozzle 4, and the main steam stop valve 2 and the steam control valve 3 are respectively arranged in the pipes of the branched steam supply pipe 1a. . Opening control of each of the steam control valves 3 (3a to 3d) is basically performed such that the flow rate increases linearly by an open signal accompanying an increase in output, as shown in FIG.
[0018]
In such a configuration, in the present embodiment, a signal detection unit 12 as detection means for obtaining control information of each steam control valve 3 (3a to 3d) from a plurality of branched pipes of the steam supply system pipe 1a, The control device 13 receives a detection signal from the signal detection unit 12 and controls each steam control valve 3 based on the detection signal.
[0019]
FIG. 2 is a system configuration diagram for explaining the configuration of the signal detection unit 12 and the control device 13 and the flow of signals.
[0020]
As shown in FIG. 2, the signal detection unit 12 includes a valve front pressure sensor 14 (14a to 14d) for detecting the inlet pressure Pf (Pf1 to Pf4) of each of the steam control valves 3 (3a to 3d), A differential pressure sensor 15 (15a to 15d) for detecting the differential pressure Ps (Ps1 to Ps4) of the control valve 3 and an opening sensor 16 for detecting the actual opening D (D1 to D4) of each steam control valve 3. (16a to 16d).
[0021]
On the other hand, the control device 13 determines the opening of each of the steam control valves 3 (3a to 3d) as a function using the steam flow rate request signal as an input value, and outputs a primary opening request signal. A signal function generator 25 is provided. The opening degree signal function generator 25 has a function of obtaining the opening degree of each of the steam control valves 3 (3a to 3d) by using the steam flow rate request signal Wo from the outside as an input value. That is, the opening degree signal generator 25 responds to the flow rate request signal Wo based on the characteristic shown in FIG. 5 described above in order to make the flow rate characteristic linear, and the primary opening degree of each steam control valve 3 (3a to 3d). A request signal Wi (W1 to W4) is generated. The primary opening degree of each steam control valve 3 (3a to 3d) is determined by these primary opening degree request signals Wi (W1 to W4).
[0022]
Further, the control device 13 receives the respective detection signals from the signal detection unit 12 and calculates a flow rate signal generator corresponding to each of the steam control valves 3 (3a to 3d) as arithmetic means for calculating an average pressure loss of the steam control valve. 17 (17a to 17d), a multiplier 18 (18a to 18d), adders 19 and 20, and a divider 21.
[0023]
The flow signal generators 17 (17a to 17d) receive signal inputs of the inlet pressures Pf (Pf1 to Pf4) of the steam control valves 3 (3a to 3d) from the pre-valve pressure sensors 14 (14a to 14d), respectively. A signal input of the actual opening degree D (D1 to D4) of each steam control valve 3 (3a to 3d) is received from each opening degree sensor 16 (16a to 16d). And it has the function of calculating the steam flow rate Wi (W1 to W4) passing through each steam control valve 3 (3a to 3d) based on these pressures and opening degrees.
[0024]
The multiplier 18 (18a-18d) receives the signal input of the differential pressure Ps (Ps1-Ps4) from the differential pressure sensor 15 (15a-15d) and the steam flow rate from the flow signal generator 17 (17a-17d). Wi (Ws1 to Ws4) signal input, pressure at each steam control valve 3 (3a to 3d) by multiplying Ps × Wi by differential pressure Ps before and after each steam control valve 3 (3a to 3d) and steam flow rate Ws. The loss Ri (R1, R2, R3, R4) is obtained.
[0025]
The adder 19 has a function of receiving a signal input of the pressure loss Ri obtained by each of the multipliers 18 (18a to 18d) and obtaining a sum ΣRi of these.
[0026]
Further, another adder 20 has a function of receiving a signal input of the steam flow rate Wi (W1 to W4) obtained by each of the flow rate signal generators 17 (17a to 17d) and calculating a total sum ΣWi of the steam flow rates Wi. .
[0027]
The divider 21 receives a signal input of the sum total of pressure loss ΣRi and the sum total of steam flow ΣWi from the adders 19 and 20, and obtains an average pressure loss Ra by dividing ΣRi / ΣWi.
[0028]
Further, the control device 13 increases or decreases the opening of each steam control valve based on the maximum differential pressure detected by the signal detection unit 12, and controls each steam control valve opening at which the average pressure loss becomes minimum under a constant steam flow rate. And an opening request signal correcting means for correcting the primary opening request signal on the basis of the obtained steam control valve opening and outputting a corrected secondary opening request signal. The opening request signal correcting means includes a comparator 22, a differential pressure comparator 23, an addition / subtraction signal generator 24, an opening signal function generator 25, and adders 26 (26a to 26d). You.
[0029]
The comparator 22 receives the signal input of the average pressure loss Ra from the divider 21, compares the currently input average pressure loss Ra with a different average pressure loss R′a input later, and always obtains the minimum average value. It has a monitoring function for maintaining the pressure loss Ramin. The comparator 22 also has a function of sending a signal to the following addition / subtraction signal generator 24 and issuing an instruction to cause an addition / subtraction signal to be described later.
[0030]
The differential pressure comparator 23 receives a signal input of the differential pressure Ps (Ps1 to Ps4) of the steam control valve 3 from each of the differential pressure sensors 15 (15a to 15d), and performs a maximum differential pressure Psmax by a differential pressure comparison operation. And the steam control valve 3 which generates the maximum differential pressure Psmax.
[0031]
The addition / subtraction signal generator 24 receives the signal input of the minimum average pressure loss Ramin from the comparator 22, and generates the maximum differential pressure Psmax from the differential pressure comparison arithmetic unit 23 and the steam pressure generating the maximum differential pressure Psmax. Receives signal input to valve 3. Based on these inputs, the addition / subtraction signal generator 24 generates addition / subtraction signals Ki (K1 to K4) for the opening of each steam control valve 3. That is, under a constant flow rate and under the minimum average pressure loss Ramin, the addition / subtraction signal Ki (K1 to K4) of ± is generated based on the steam control valve 3 having the largest differential pressure. An addition / subtraction signal Ki (K1 to K4) to another steam control valve 3 is generated so as to correct the flow rate with respect to the signal. These signals Ki (K1 to K4) are sent to adders 26 (26a to 26d) according to an instruction from the comparator 22.
[0032]
The opening degree signal function generator 25 has a function of obtaining the opening degree of each steam control valve by using the steam flow rate request signal Wo from the outside as an input value as described above. That is, the opening degree signal generator 25 performs the primary opening of each steam control valve 3 (3a to 3d) on the basis of the characteristic shown in FIG. A request signal Wi (W1 to W4) is generated.
[0033]
The adders 26 (26a to 26d) input the primary opening request signals Wi (W1 to W4) of the opening signal function generator 25 and the addition and subtraction signals Ki (K1 to K4) from the addition and subtraction signal generator 24. Then, they have a function of adding these to generate an opening request signal Wk (Wk1 to Wk4) and outputting it to each of the steam control valves 3 (3a to 3d).
[0034]
Next, a control method will be described with reference to FIG. 3 together with FIG. FIG. 3 is a flowchart showing a procedure for implementing this control method.
[0035]
As shown in FIGS. 2 and 3, in the present embodiment, a steam flow request Wo is input to the opening signal function generator 25 at the start of the operation of the steam turbine (S101). In the opening signal function generator 25, a primary opening request signal Wi serving as a reference is first generated (S102), and based on this, a primary opening control operation of each steam control valve 3 (3a to 3d) is started. (S103).
[0036]
When the operation is started, the inlet pressure Pf (Pf1 to Pf4) of the steam passing through each steam control valve 3 (3a to 3d) is detected by the pre-valve pressure sensor 14 (14a to 14d), and the opening degree sensor 16 is detected. The actual opening degree D (D1 to D4) is detected by (16a to 16d) (S104), and at the same time, the differential pressure Ps (Ps1 to Ps4) of each steam control valve 3 is determined by the differential pressure sensor 15 (15a to 15d). It is detected (S105).
[0037]
The inlet pressure Pf (Pf1 to Pf4) and the actual opening degree D (D1 to D4) detected in step S104 are input to the flow signal generators 17 (17a to 17d). Then, in each of the flow signal generators 17 (17a to 17d), the steam flow rate Wi (W1 to W4) passing through each of the steam control valves 3 (3a to 3d) is obtained based on these detected values (S106).
[0038]
The signal of the steam flow rate Wi (W1 to W4) is output to the adder 20 and the multiplier 18 (18a to 18d). In the adder 20, the sum of the steam flow rates W1 to W4 is calculated, and the total value ΣWi of the steam flow rates passing through all the steam control valves 3 (3a to 3d) is obtained (S107).
[0039]
The multiplier 18 (18a to 18d) receives the steam flow rate Wi (Ws1 to Ws4) signal and the front and rear differential pressure Ps (Ps1 to Ps4) signal from the front and rear differential pressure sensor 15 (15a to 15d). Is done. Then, in each of the multipliers 18 (18a to 18d), each steam control valve 3 (3a to 3d) is obtained by multiplying Ps × Wi by the differential pressure Ps before and after the steam control valve 3 (3a to 3d) and the steam flow rate Ws. Pressure loss Ri (R1, R2, R3, R4) at step (S108). The obtained pressure loss Ri (R1, R2, R3, R4) is input to the adder 19 as a signal, where the sum ΣRi of the pressure loss Ri is obtained (S109).
[0040]
Then, the total value 流量 Wi of the steam flow rates and the total sum ΣRi of the pressure losses Ri obtained in steps S107 and S109 are input as a signal to a divider 21. In the divider 21, the average pressure loss Ra is obtained by dividing ΣRi / ΣWi. Is required (S110).
[0041]
Then, the average pressure loss Ra obtained in step S110 is sequentially input to the comparator 22 as a signal. The comparator 22 compares the currently input average pressure loss Ra with a later input different average pressure loss R′a, and always keeps the minimum average pressure loss Ramin. That is, the comparator 22 monitors the average pressure loss Ra, finds a point where the average pressure loss Ra is minimum, confirms the point, and holds the signal at that point. Further, the comparator 22 sends a signal to the addition / subtraction signal generator 24, and issues an instruction to swing the addition / subtraction signal addition / subtraction signal Ki (K1 to K4) to each of the steam control valves 3 (3a to 3d).
[0042]
In parallel with step S111, the differential pressure comparison calculator 23 performs a differential pressure comparison operation based on the differential pressure Ps (Ps1 to Ps4) before and after the steam control valve from each of the differential pressure sensors 15 (15a to 15d). The maximum differential pressure Psmax and the steam control valve 3 that generates the maximum differential pressure Psmax are determined (S112).
[0043]
Therefore, the minimum average pressure loss Ramin from the comparator 22, the maximum differential pressure Psmax from the differential pressure comparison calculator 23, and the steam control valve 3 generating the same are input to the addition / subtraction signal generator 24, The addition / subtraction signal generator 24 generates an addition / subtraction signal Ki (K1 to K4) for the opening degree of each steam control valve 3 based on the input value. The addition / subtraction signal Ki (K1 to K4) is generated based on accumulated data such as a flow rate and a valve differential pressure in order to reduce pressure loss. The addition / subtraction signal Ki (K1 to K4) corresponding to the degree of opening to each steam control valve is output from the addition / subtraction signal generator 24 to each of the adders 26 (26a to 26d) by the signal that causes the addition / subtraction signal from the comparator 22 to swing. ). That is, a ± signal is sent to the adder 26 based on the steam control valve 3 having the largest differential pressure, and a signal for the other valve is sent to the other adder 26 so as to correct the flow rate. . Thereby, in each of the adders 26 (26a to 26d), the primary opening request signal Wi input from each opening signal function generator 25 is corrected by the addition / subtraction signal Ki (K1 to K4) (S113).
[0044]
Then, in the adder 26, secondary opening degree request signals Wk1 to Wk4 are generated based on the corrected secondary opening degree, and this signal is sent to each valve (S114).
[0045]
The above result is repeated, and each time, the average pressure loss 26 is monitored by the comparator 22, and the operating point of the valve opening at which the average pressure loss 26 is minimized is determined. The signal is held.
[0046]
According to the present embodiment, the operating point of the optimal opening can be found by the above method without changing the flow rate for the predetermined opening request signal.
[0047]
In the present invention, in addition to the above embodiment, the opening signal function generator 25 corrects and stores a function for generating the primary opening request signal based on the correction signal from the addition / subtraction signal generator 24. A configuration having a function may be adopted. In this case, as shown by the broken line route in FIG. 3 (S115), the function itself used in the primary opening request signal is corrected, and control with a high response speed can be performed.
[0048]
The present invention is not limited to the steam system described in the above embodiment, and can be applied to various systems.
[0049]
【The invention's effect】
As described above, according to the present invention, each passage differential pressure of the control valve is measured, the passage flow rate is also calculated, an average pressure loss is obtained, and an optimal operation distribution for minimizing the average pressure loss is automatically determined. , It is possible to always perform the operation that minimizes the pressure loss.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a steam system according to an embodiment of the present invention.
FIG. 2 is a system configuration diagram showing a steam valve control device according to an embodiment of the present invention.
FIG. 3 is a flowchart illustrating a steam valve control method according to an embodiment of the present invention.
FIG. 4 is a configuration diagram showing a steam system for explaining a conventional technique.
FIG. 5 is a graph illustrating a control request for a valve opening degree with respect to a steam flow rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam generator 1a Steam supply pipe 2 Main steam stop valve 3 Steam control valve 4 Inlet nozzle 5 High pressure turbine 6 Reheater 7 Intercept valve 8 Reheat steam stop valve 9 Medium pressure turbine 10 Low pressure turbine 11 Condenser 12 Signal detection Unit 13 Controller 14 (14a to 14d) Pre-valve pressure sensor 15 (15a to 15d) Front and rear differential pressure sensor 16 (16a to 16d) Opening sensor 17 (17a to 17d) Flow rate signal generator 18 (18a to 18d) Multiplication Devices 19 and 20 adder 21 divider 22 comparator 23 differential pressure comparison calculator 24 addition / subtraction signal generator 25 opening signal function generator 26 (26a to 26d)

Claims (3)

蒸気発生器から蒸気タービンへの蒸気供給系統に並列に設けられた複数の蒸気加減弁の開度を制御する蒸気弁制御方法であって、蒸気流量要求により定められる一次開度要求信号に基づいて前記各蒸気加減弁の開度を定める工程と、前記各蒸気加減弁の入口圧力、実開度および前後差圧を検出する工程と、前記各検出値に基づいて前記蒸気加減弁の平均圧力損失を求める工程と、検出した最大差圧を基準として一定の蒸気流量下で前記各蒸気加減弁の開度を増減し、前記平均圧力損失が最小となる前記各蒸気加減弁開度の運転点を求める工程と、求めた各蒸気加減弁開度に基づいて前記一次開度要求信号を補正する工程と、補正した二次開度要求信号に基づいて前記各蒸気加減弁の開度制御を行う工程とを備えることを特徴とする蒸気弁制御方法。A steam valve control method for controlling the opening of a plurality of steam control valves provided in parallel to a steam supply system from a steam generator to a steam turbine, based on a primary opening request signal determined by a steam flow request. Determining the opening degree of each of the steam control valves, detecting the inlet pressure, the actual opening degree, and the front-back differential pressure of each of the steam control valves; and the average pressure loss of the steam control valve based on the detected values. And the step of increasing or decreasing the opening of each of the steam control valves under a constant steam flow rate based on the detected maximum differential pressure, and setting the operating point of each of the steam control valves at which the average pressure loss is minimized. A step of obtaining, a step of correcting the primary opening request signal based on the obtained opening degree of the steam control valve, and a step of controlling the opening degree of each steam control valve based on the corrected secondary opening request signal. Steam valve control characterized by comprising: Law. 蒸気発生器から蒸気タービンの複数の入口ノズルに供給する蒸気を、複数の並列な蒸気加減弁により制御する蒸気弁制御装置であって、蒸気流量要求信号を入力値として前記各蒸気加減弁の開度を関数により求め一次開度要求信号を出力する開度信号関数発生手段と、前記一次開度要求信号に基づいて開閉制御される前記各蒸気加減弁の入口圧力、実開度および前後差圧を検出する検出手段と、これらの検出手段による各検出信号を入力し、前記蒸気加減弁についての平均圧力損失を求める演算手段と、前記検出手段によって検出した最大差圧を基準として前記各蒸気加減弁の開度を増減し、一定の蒸気流量下で前記平均圧力損失が最小となる各蒸気加減弁開度の運転点を求め、その求めた各蒸気加減弁開度に基づいて前記一次開度要求信号を補正し、補正後の二次開度要求信号を出力する開度要求信号補正手段と、補正した二次開度要求信号を入力して前記各蒸気加減弁の開度制御を行う開度制御手段とを備えたことを特徴とする蒸気弁制御装置。A steam valve control device for controlling steam supplied from a steam generator to a plurality of inlet nozzles of a steam turbine by a plurality of parallel steam control valves, wherein the steam flow control signal is used as an input value to open the steam control valves. An opening signal function generating means for determining a degree by a function and outputting a primary opening request signal; and an inlet pressure, an actual opening and a front-back differential pressure of each of the steam control valves which are opened and closed based on the primary opening request signal. Detecting means for detecting the steam pressure, calculating means for inputting the respective detection signals from these detecting means to determine the average pressure loss of the steam control valve, and the steam control based on the maximum differential pressure detected by the detecting means. The operating point of each steam control valve opening at which the average pressure loss is minimized under a constant steam flow rate is determined by increasing or decreasing the valve opening, and the primary opening is determined based on the obtained steam control valve opening. Request signal Opening request signal correction means for correcting and outputting the corrected secondary opening request signal, and opening control means for inputting the corrected secondary opening request signal and controlling the opening of each of the steam control valves And a steam valve control device. 前記開度信号関数発生手段は、前記一次開度要求信号を発生するための関数を、前記開度要求信号補正手段によって求められた平均圧力損失が最小となる運転点により補正し、記憶する手段を有することを特徴とする請求項2記載の蒸気弁制御装置。The opening signal function generating means corrects and stores a function for generating the primary opening request signal by an operating point at which the average pressure loss obtained by the opening request signal correcting means is minimized. The steam valve control device according to claim 2, comprising:
JP2002170197A 2002-06-11 2002-06-11 Steam valve controlling method and device Pending JP2004011608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170197A JP2004011608A (en) 2002-06-11 2002-06-11 Steam valve controlling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170197A JP2004011608A (en) 2002-06-11 2002-06-11 Steam valve controlling method and device

Publications (1)

Publication Number Publication Date
JP2004011608A true JP2004011608A (en) 2004-01-15

Family

ID=30436537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170197A Pending JP2004011608A (en) 2002-06-11 2002-06-11 Steam valve controlling method and device

Country Status (1)

Country Link
JP (1) JP2004011608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661177A (en) * 2010-10-15 2012-09-12 华东电力试验研究院有限公司 Method for realizing primary frequency regulation function of steam turbine by restricting opening degree of governor valve
CN105134310A (en) * 2015-10-20 2015-12-09 国网新疆电力公司电力科学研究院 Primary frequency modulation method for correcting valve flow characteristic deviation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661177A (en) * 2010-10-15 2012-09-12 华东电力试验研究院有限公司 Method for realizing primary frequency regulation function of steam turbine by restricting opening degree of governor valve
CN105134310A (en) * 2015-10-20 2015-12-09 国网新疆电力公司电力科学研究院 Primary frequency modulation method for correcting valve flow characteristic deviation

Similar Documents

Publication Publication Date Title
CA2747950C (en) Dynamic tuning of dynamic matrix control of steam temperature
JP6077840B2 (en) Steam generation system and method for controlling operation of a steam generation system
CA2747921C (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
US9335042B2 (en) Steam temperature control using dynamic matrix control
US9841185B2 (en) Steam temperature control using model-based temperature balancing
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
JP4471106B2 (en) Steam turbine rapid power generation system and method
JP2004011608A (en) Steam valve controlling method and device
KR101501556B1 (en) Device for controlling main steam temperature of boiler
JPH09317405A (en) Cooling system for high-pressure, front stage rotor blade embedded part of steam turbine
JPH09250306A (en) Cooling device of steam turbine
CN111156834B (en) Noise-reducing steam temperature-reducing device and method
JP5881470B2 (en) Power generation system and control method thereof
JP6004533B2 (en) Steam turbine plant
EP4379194A1 (en) Combined power generation system and control method thereof
JP2003269702A (en) Deaerator level controller
JPH08284611A (en) Power generation control method for extraction steam turbine and device thereof
JP2004052695A (en) Load limiting method for steam turbine
JPH0861605A (en) Turbine bypass steam temperature controller
JPH11351504A (en) Boiler controlling device
JP2642389B2 (en) Steam turbine bypass device
JP2009068797A (en) Method and system for operating cogeneration power plant
JPS6237285B2 (en)
JPH06313505A (en) Spray cooler
JPH06117602A (en) Pressure controller