JP2004011234A - Moving method of structure - Google Patents

Moving method of structure Download PDF

Info

Publication number
JP2004011234A
JP2004011234A JP2002165381A JP2002165381A JP2004011234A JP 2004011234 A JP2004011234 A JP 2004011234A JP 2002165381 A JP2002165381 A JP 2002165381A JP 2002165381 A JP2002165381 A JP 2002165381A JP 2004011234 A JP2004011234 A JP 2004011234A
Authority
JP
Japan
Prior art keywords
ice
hole
rock
sliding
bedrock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002165381A
Other languages
Japanese (ja)
Other versions
JP3967966B2 (en
Inventor
Kenji Hagio
萩尾 堅治
Akira Ito
伊東 章
Masao Arai
荒井 政男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2002165381A priority Critical patent/JP3967966B2/en
Publication of JP2004011234A publication Critical patent/JP2004011234A/en
Application granted granted Critical
Publication of JP3967966B2 publication Critical patent/JP3967966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for moving a structure, which cuts off the structure from a bedrock to move the same. <P>SOLUTION: According to the method, a plurality of holes 2 forming a hollow portion are drilled in the bedrock at under the structure 1. Then, by filling water 7 in the holes 2 and freezing the same, the structure 1 is separated from the bedrock and supported by ice 8 and further, the structure 1 is slid by using the ice 8, to move the structure 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、岩盤や地盤(以下の説明では、単に岩盤と呼ぶ)の上に構築されている原子炉施設などの大型構造物の移設や撤去のために、当該構造物を、支持岩盤から縁切りして移動させる構造物の移動方法に関する。
【0002】
【従来の技術】
構造物の底を岩盤から縁切りして移動させる従来の方法としては、例えば特公平4−21784号公報に記載されているものがある。
この従来の方法は、まず、構造物の外周の岩盤を掘削すると共に、当該構築物の移動方向に向けて延びる複数条の横溝を、当該構造物の底面の直下に開設する。次に、当該横溝の底と構造物の底面との間に滑り支承装置を取り付け、当該滑り支承装置で構造物の荷重を受ける。次に、横溝間の岩盤を掘削、つまり構造物の底面と接触している残りの岩盤を掘削することで、構造物の底を岩盤から切り離す、つまり縁切りする。
【0003】
なお、構造物の移動方向に沿って掘削した溝内にも、移動してくる構造物を案内・支持するための滑り板、及びその滑り板を支持する堅固な受け台を設置しておく。
そして、上述のように縁切りが完了した後、構造物を引いたり押したりすることで、上記滑り支承装置及び滑り板を利用して、当該構造物を横溝の延びる方向に横移動させる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来方法による縁切りでは、重機を使用して機械的に、縁切り面全体を掘削して撤去する作業が必要があり、手間が掛かる。しかも、縁切り時に構造物の荷重を受ける堅固な支持装置の設置が必要となる。
また、開設した複数条の横溝内に、それぞれ構造物の荷重を支持するための堅固な基礎及び移動時の摩擦低減するための滑り支承装置を設置する作業が要求され、手間が掛かる。
【0005】
本発明は、上記のような点に着目してなされたもので、簡便な方法で岩盤から構造物を縁切りして当該構造物を移動可能とする構造物の移動方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は、地盤や岩盤の上に構築されている構造物を移動させる方法であって、少なくとも上記構造物の下方に位置する地盤や岩盤に対し、複数の中空部を形成すると共に、各中空部に水を充填し凍結させることによる氷の膨張力によって上記地盤や岩盤にひび割れを発生させて上記構造物を地盤や岩盤から縁切りさせた後に、当該構造物を移動させることを特徴とするものである。
【0007】
上記中空部は、例えば、少なくとも上記構造物の下方に位置する地盤や岩盤に対し、横方向に延びる孔で形成すれば良い。
本発明によれば、中空部に充填した水が凍結する際の膨張力によって中空部と中空部との間の岩盤にもひび割れが発生することで、構造物の底が支持岩盤から切り離され縁切りされる。また膨張した氷によって、構造物は支持される。
【0008】
その後、例えば、凍結した氷上を若しくは氷自体を滑らせることで、構造物を移動させる。
ここで、水を剛性の高い容器に封入して凍結冷却させた場合における、氷の膨張圧力と冷却温度と計測例を、図11に示す。ここで、図11中、黒点が計測値を、破線がBridgmanの水−氷の平衡曲線を示す。
【0009】
この図11から分かるように、拘束された水を−25℃まで冷却した場合には氷の膨張圧力は約220MPaに達し、−30℃まで冷却すると、氷の膨張圧力は約250MPaに達することが確認されている。したがって、氷の膨張圧力を利用して構造物の縁切りは可能である。
【0010】
【発明の実施の形態】
次に、本発明の実施形態について図面を参照しつつ説明する。
まず、構造物1を岩盤から切り離すために、周辺岩盤、及び構造物1の下方に位置する支持岩盤に対し、図1に示すような、破断面H1,H2を想定する。上記破断面H1,H2は、構造物1の下方を通過する第1破断面H1と、該第1破断面H1の外周から上方に立ち上がる第2破断面H2とから構成される。
【0011】
この実施形態では、上記第1破断面H1は、構造物1の移動方向に沿って若干の昇り勾配をもった傾斜面に設定され、当該第1破断面H1よりも上方に位置する構造物1及び構造物1と一体になっている岩盤部分4(以下、単に構造物1等と呼ぶ場合もある。)が移動する際の滑り面を形成する。なお、上記破断面H1,H2は、必ずしも平面である必要はない。
【0012】
そして、図2〜図4に示すように、その破断面H1,H2に沿って、複数条の孔2,3を適当な間隔毎で穿孔する。
第1破断面H1に設ける複数条の孔2は、好ましくは、構造物1の移動方向に向けて延びるように穿孔する。
また、第2破断面H2に設ける孔3の穿孔方向は、特に限定されないが、例えば、上下に延びるように穿孔すればよい。ここで、第2破断面H2については、後述のような穿孔及び氷の膨張力を利用する代わりに、従来と同様に全面を掘削して縁切りをしても良い。
【0013】
次に、各孔2,3に水を充填し当該水を凍結させて、縁切り、及び破断面H1,H2に沿った滑り面の形成を行う。
まず、図5に示すように、各孔2内に対し冷却用配管6を挿入して設置し、また、各孔2の端部開口部を蓋などで閉じると共に当該孔2内に水7を注入し充填する。なお、符号4は、破断面H1よりも上部の岩盤であって構造物1と一緒に移動する部分であり、符号5は、破断面H1よりも下部の岩盤である。
【0014】
次に、上記冷却用配管6内に液体窒素などの冷媒を通して、各孔2に充填した水7を凍結させる。孔2内の水7を凍結させることで孔2内の水が氷8となり当該氷8が膨張し、その膨張力によって、図6に示すように、孔2間の岩盤にひび割れが発生、すなわち、孔2同士をつなぐように岩盤にひび割れを発生させる。これによって、想定した破断面H1,H2に沿って岩盤が破断される。
【0015】
また、凍結した氷8は、破断後に、第1破断面H1よりも上方に位置する構造物1等(上部岩盤4及び構造物1)を支持すると共に、滑り面としての役割を持たせ。
ここで、上下の破断面H1の隙間を広げる必要がある場合は、孔2間の破断面H1の隙間(図6中符号9の部分)にも水9を注いで凍結させる。なお、この凍結も、上記冷却用配管6を通じて行えば良い。このようにすると、氷の膨張力によって、上下の破断面H1の間隙を広げるとともに、孔2間にも、氷のすべり面を作ることが可能となる。
【0016】
このとき、上記冷媒を調節して、破断面H1の上側または下側の岩盤に接触する部分の氷8を積極的に溶かして、破断面H1を滑り易くするようにしても良い。
上記のように構造物1を岩盤から縁切りすると共に、破断面H1,H2に沿って滑り面を形成したら、図7に示すように、第1破断面H1に沿って構造物1を押し又は引いて当該構造物1を移動させる。
【0017】
次に、上記構造物1の移動方法の効果について説明する。
本実施形態にあっては、穿孔、注水、凍結という比較的容易な手間で、構造物1を岩盤から切り離すことができる。
すなわち、構造物1を岩盤から縁切りする際に、構造物1の周辺部全面及び下方全面について、つまり縁切り面全面について掘削する必要が無く、孔2の穿孔だけでよいので、工事の手間が低減する。
【0018】
しかも、凍結した氷8で構造物1を支持させるので、上記縁切り面に沿った掘削をする場合にあっても、構造物1の底面に仮受け台などの設置作業が不要となる。
さらに、氷8の膨張力によって破断するので、発破のような危険物を使用した破断が不要であるばかりか、破断に伴う騒音や振動も小さなレベルに抑えることができる。
【0019】
また、縁切りした後の移動も、構造物1を支持する上記氷8による滑り面を利用して構造物1を移動させるので、構造物1を移動させるために、別途、滑り面の形成作業や、滑り材・潤滑材・コロ・台車などの摩擦低減を図りつつ移動させる部材の設置作業などを行うことなく、構造物1の移動作業を簡易となる。また、移動後の氷8の撤去も不要である。
【0020】
ここで、上記実施形態では、第1破断面H1として、構造物1の移動方向に沿って昇り勾配を持った仮想面を想定しているが、これに限定されない。例えば、構図物1が高台などに存在すれば、第1破断面H1を、水平面若しくは下り勾配を持った傾斜面などに設定しても良い。
また、穿孔する孔2の断面を円形としているが、此に限定されず、四角形形状や三角形形状などであってもよい。また、構造物1の下方に形成される孔は、孔の上面を構造物1の底面で構成するように設定、つまり、溝状に形成してもよい。要は、水を充填可能な密閉空間となっていれば良い。
【0021】
また、冷媒を通す冷却用配管6は、必ずしも上記孔2内に挿入する必要はなく、孔2の近傍に配置し、地盤を介して孔2内の水7を凍結されるようにしても良い。なお、この場合には、冷却用配管6は、凍結させた氷のうち表面を溶かす側にあることが好ましい。例えば、氷の下面側を溶かす場合には、下部の岩盤5側に冷却用配管6を設置する。
【0022】
また、確実な滑りを確保するために、上記孔2の全て、若しくは、一部の孔2に対し、次のような滑り治具を設置しても良い。
すなわち、上記滑り治具10は、孔2の延在方向に沿って延びる部材である。その断面形状は、図8に示すように、上面及び下面が孔2の断面形状に沿った円弧状となっている。すなわち、円筒を軸方向に沿って半分に割ったような形状となっている。
【0023】
その滑り治具10内には、電熱線などの溶解熱発生装置11が収容されている。
そして、上記図8に示すように、上記滑り治具10を孔2に挿入し、上部に密着させる。その状態で孔2に水7を充填し凍結させる。その後、溶解熱発生装置11を作動させて、滑り治具10に熱を持たせることで、滑り治具10の下面と接触する氷表面が溶けて滑り面となる。
【0024】
上記滑り治具10は、構造物1側に固定され、構造物1を移動させる際に、氷の上面に案内されるように滑る。
ここで、上記滑り治具10は、上記のような円弧状の形状でなくても良い。要は、上面が孔2の上側面に固定され、また、氷と接触する下面が孔2の延在方向に沿って真っ直ぐ延びていれば、下面の断面が三角形状などであっても構わない。
【0025】
なお、上記溶解熱発生装置11は、滑り治具10における氷との接触面(図8では下面)側を加熱するものであるので、当該接触面側に近づけて配置することが好ましい。
また、上記滑り治具10を図9に示すように、孔2の下側に取り付けるようにしても良い。この場合には、滑り治具10は、下部の岩盤5に固定され、当該滑り治具10に沿って氷8が滑ることとなる。なお、この場合には、氷8の上側は構造物1等の下面と一体的となっている。
【0026】
また、孔2内の水7の凍結によって破断面H1,H2に沿ってひび割れを生じさせて縁切りを行った後に、上記ひび割れに沿って孔2間を繋ぐように小口径の連続穿孔等を行って、確実に構造物1と岩盤の縁を縁切りしても良い。破断面H1,H2の全面を穿孔することとなるが、孔2内の氷8で構造物1等を支持しているので、仮受け台の設置などが不要である。
【0027】
また、上記実施形態では、第1破断面H1を、構造物1下面よりも下側の岩盤中に設定しているが、構造物1の下面直下に第1破断面H1を設置し、孔2内の氷8の上部を直接構造物1の下面に直接接触するように設定しても良い。
また、上記実施形態では、凍結させた氷8の面を滑り面として利用して構造物1を移動させているが、縁切り後の構造物1の移動を、別の手段で行うようにしても良い。
【0028】
また、上記実施形態では、上記第1破断面H1に沿って設ける孔2の軸を、構造物1の移動方向に向けているが、これに限定されない。孔2の軸と構造物1の移動方向とが一致していなくても構わない。ただし、この場合には、氷8の上部を滑り面とする必要がある。
【0029】
【実施例】
図10に示すように、構造物1の底版と岩盤との境界面に対して、直径2mの円柱形状の孔2を、構造物1の移動方向に延びるように穿孔する。上記孔2を、構造物1の移動方向に対し直交する方向に、6m間隔毎に沿って複数条開設する。
【0030】
さらに、上記各孔2に連続して下面が半円状の溝20を移動方向に沿って掘削する。なお、溝20の掘削は、水7を凍結させている最中や凍結後であっても良い。
次に、図9のように、孔2の下部に滑り治具10を設置すると共に、孔2内に冷却用配管6を設置し、孔2の開口端部に蓋をした後、孔2内に水7を充填すると共に、液体窒素を冷却用配管6に通して水7を凍らせて、縁切りを実施する。
【0031】
その後、溶融熱発生装置11を作動させて滑り治具10の上面と接触する円柱状の氷8の下面側を溶解させて滑り易くする。円柱状の氷8の上面側は構造物1の底版側と一体的となっている。
この状態で、構造物1に対し、移動方向への外力を加えると、氷8の下面が滑り治具10の上面に案内されながら溝20側に移動し、続けて溝20に沿って滑っていくことで、構造物1は移動する。
【0032】
【発明の効果】
以上説明してきように、本発明を採用すると、機械的な支持装置を使用することなく、簡便に構造物を岩盤から縁切りすることができて、構造物の移動が簡便となる。
【図面の簡単な説明】
【図1】本発明に基づく実施形態に係る破断面を示す模式図である。
【図2】本発明に基づく実施形態に係る孔の位置を示す平面図である。
【図3】図2のA−A断面図である。
【図4】図2のB−B断面図である。
【図5】本発明に基づく実施形態に係る、破断面と孔と冷却用配管との関係を示す図である。
【図6】本発明に基づく実施形態に係る破断状態を示す図である。
【図7】本発明に基づく実施形態に係る構造物等の移動を示す図である。
【図8】滑り治具及びその設置を説明する図である。
【図9】滑り治具及びその設置を説明する図である。
【図10】実施例における構造物の移動方法を説明する図である。
【図11】氷の膨張圧力と冷却温度との関係を示す図である。
【符号の説明】
H1、H2 破断面
1 構造物
2、3 孔
4 上部の岩盤
5 下部の岩盤
6 冷却用配管
7 水
8 氷
10 滑り治具
11 溶解熱発生装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention separates a large-scale structure such as a nuclear reactor facility constructed on rock or ground (hereinafter simply referred to as rock) from a supporting rock in order to transfer or remove the structure. The present invention relates to a method of moving a structure to be moved.
[0002]
[Prior art]
As a conventional method of moving the bottom of a structure by cutting it off from rock, there is a method described in Japanese Patent Publication No. 4-21784, for example.
In this conventional method, first, a rock around an outer periphery of a structure is excavated, and a plurality of lateral grooves extending in a moving direction of the structure are opened directly below a bottom surface of the structure. Next, a sliding bearing device is mounted between the bottom of the lateral groove and the bottom surface of the structure, and the load of the structure is received by the sliding bearing device. Next, the bottom of the structure is separated from the bedrock, that is, cut off by excavating the bedrock between the lateral grooves, that is, excavating the remaining bedrock in contact with the bottom surface of the structure.
[0003]
In addition, a sliding plate for guiding and supporting the moving structure, and a solid receiving stand for supporting the sliding plate are also installed in the groove excavated along the moving direction of the structure.
Then, after the edge cutting is completed as described above, by pulling or pushing the structure, the structure is laterally moved in the direction in which the lateral groove extends by using the slide bearing device and the slide plate.
[0004]
[Problems to be solved by the invention]
However, in the edging according to the conventional method as described above, it is necessary to mechanically excavate and remove the entire edging surface using a heavy machine, which is troublesome. In addition, it is necessary to install a solid support device that receives the load of the structure at the time of edging.
In addition, it is required to install a solid foundation for supporting the load of the structure and a slide bearing device for reducing friction during movement in the plurality of opened lateral grooves, which is troublesome.
[0005]
The present invention has been made in view of the above points, and it is an object of the present invention to provide a method of moving a structure in which a structure can be moved from a bedrock by a simple method and the structure can be moved. I have.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a method for moving a structure built on the ground or rock, comprising a plurality of hollows with respect to the ground or rock located at least below the structure. After forming the part, each hollow part is filled with water and frozen, and the expansion force of the ice caused by freezing causes cracks to be generated in the ground and the bedrock, and after the structure is cut off from the ground and the bedrock, the structure is removed. It is characterized by being moved.
[0007]
The hollow portion may be formed, for example, by a hole extending in a lateral direction with respect to at least the ground or the rock located below the structure.
According to the present invention, the bottom of the structure is cut off from the supporting bedrock by cracking also generated in the bedrock between the hollow sections due to the expansion force when the water filled in the hollow section freezes due to expansion force. Is done. The structure is supported by the expanded ice.
[0008]
Thereafter, the structure is moved, for example, by sliding on the frozen ice or on the ice itself.
Here, FIG. 11 shows a measurement example of the expansion pressure, the cooling temperature, and the cooling temperature of ice when water is sealed in a highly rigid container and frozen and cooled. Here, in FIG. 11, black points indicate measured values, and broken lines indicate the Bridgman water-ice equilibrium curves.
[0009]
As can be seen from FIG. 11, when the restrained water is cooled to −25 ° C., the expansion pressure of the ice reaches about 220 MPa, and when cooled to −30 ° C., the expansion pressure of the ice reaches about 250 MPa. Has been confirmed. Therefore, it is possible to cut off the structure using the expansion pressure of ice.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
First, in order to separate the structure 1 from the rock, fracture surfaces H1 and H2 as shown in FIG. 1 are assumed for the surrounding rock and the supporting rock located below the structure 1. The fracture surfaces H1 and H2 include a first fracture surface H1 passing below the structure 1 and a second fracture surface H2 rising upward from the outer periphery of the first fracture surface H1.
[0011]
In this embodiment, the first fractured surface H1 is set as an inclined surface having a slight ascending gradient along the moving direction of the structure 1, and the structure 1 located above the first fractured surface H1. In addition, a rock surface 4 (hereinafter, may be simply referred to as the structure 1 or the like) integrated with the structure 1 forms a sliding surface when moving. The fracture surfaces H1 and H2 do not necessarily need to be plane.
[0012]
Then, as shown in FIGS. 2 to 4, a plurality of holes 2 and 3 are formed at appropriate intervals along the fractured surfaces H1 and H2.
The plurality of holes 2 provided in the first fractured surface H1 are preferably perforated so as to extend in the moving direction of the structure 1.
The direction in which the holes 3 provided in the second fracture surface H2 are pierced is not particularly limited, but may be, for example, pierced so as to extend vertically. Here, the second fracture surface H2 may be excavated and trimmed in the same manner as in the related art, instead of using the piercing and the expanding force of ice as described below.
[0013]
Next, the holes 2 and 3 are filled with water, and the water is frozen to form edges and form sliding surfaces along the fracture surfaces H1 and H2.
First, as shown in FIG. 5, a cooling pipe 6 is inserted into and installed in each hole 2, and an opening at the end of each hole 2 is closed with a lid or the like, and water 7 is poured into the hole 2. Inject and fill. Reference numeral 4 denotes a bedrock located above the fractured surface H1 and moves together with the structure 1. Reference numeral 5 denotes a bedrock located below the fractured surface H1.
[0014]
Next, water 7 filled in each hole 2 is frozen by passing a coolant such as liquid nitrogen through the cooling pipe 6. By freezing the water 7 in the hole 2, the water in the hole 2 becomes ice 8 and the ice 8 expands, and as a result of the expansion force, cracks are generated in the rock between the holes 2 as shown in FIG. Then, cracks are generated in the bedrock so as to connect the holes 2 to each other. Thereby, the rock is broken along the assumed fracture surfaces H1 and H2.
[0015]
Further, the frozen ice 8 supports the structure 1 and the like (the upper rock 4 and the structure 1) located above the first fractured surface H1 after the fracture, and has a role as a sliding surface.
Here, when it is necessary to widen the gap between the upper and lower fracture surfaces H1, the water 9 is also poured into the gap between the holes 2 (the portion indicated by reference numeral 9 in FIG. 6) to freeze. This freezing may be performed through the cooling pipe 6. In this way, the gap between the upper and lower fracture surfaces H1 can be widened by the expanding force of the ice, and a slip surface of the ice can be formed between the holes 2.
[0016]
At this time, the above-mentioned refrigerant may be adjusted to positively melt the ice 8 at the portion in contact with the bedrock on the upper side or the lower side of the fractured surface H1 to make the fractured surface H1 slippery.
When the structure 1 is cut off from the bedrock and a sliding surface is formed along the fracture surfaces H1 and H2 as described above, the structure 1 is pushed or pulled along the first fracture surface H1, as shown in FIG. To move the structure 1.
[0017]
Next, the effect of the method of moving the structure 1 will be described.
In the present embodiment, the structure 1 can be separated from the bedrock with relatively easy labor such as perforation, water injection, and freezing.
That is, when the structure 1 is cut off from the bedrock, it is not necessary to excavate the entire peripheral portion and the entire lower portion of the structure 1, that is, it is only necessary to drill the hole 2, and the labor for the construction is reduced. I do.
[0018]
In addition, since the structure 1 is supported by the frozen ice 8, even when excavating along the edge cut surface, there is no need to install a temporary cradle or the like on the bottom surface of the structure 1.
Furthermore, since the rupture is caused by the expanding force of the ice 8, rupture using dangerous substances such as blasting is not only unnecessary, but also noise and vibration accompanying the rupture can be suppressed to a small level.
[0019]
In addition, the movement after the edge cutting is also performed by moving the structure 1 by using the sliding surface of the ice 8 supporting the structure 1. In addition, the operation of moving the structure 1 can be simplified without performing an operation of installing a member to be moved while reducing friction such as a sliding material, a lubricant, a roller, and a bogie. Further, it is not necessary to remove the ice 8 after the movement.
[0020]
Here, in the above-described embodiment, a virtual surface having an ascending gradient along the moving direction of the structure 1 is assumed as the first fractured surface H1, but is not limited thereto. For example, if the composition 1 exists on a hill or the like, the first fractured surface H1 may be set to a horizontal plane or an inclined surface having a downward slope.
In addition, although the cross section of the hole 2 to be bored is circular, the shape is not limited to this, and may be a square shape, a triangular shape, or the like. The hole formed below the structure 1 may be set so that the upper surface of the hole is formed by the bottom surface of the structure 1, that is, may be formed in a groove shape. In short, it is only necessary that the closed space be filled with water.
[0021]
Further, the cooling pipe 6 through which the refrigerant passes does not necessarily need to be inserted into the hole 2 and may be arranged near the hole 2 so that the water 7 in the hole 2 is frozen via the ground. . In this case, it is preferable that the cooling pipe 6 is on the side of the frozen ice that melts the surface. For example, when melting the lower surface side of ice, a cooling pipe 6 is installed on the lower rock 5 side.
[0022]
In order to ensure reliable sliding, the following sliding jigs may be installed in all or some of the holes 2.
That is, the sliding jig 10 is a member extending along the extending direction of the hole 2. As shown in FIG. 8, the cross-sectional shape of the upper surface and the lower surface is an arc along the cross-sectional shape of the hole 2. That is, the shape is such that the cylinder is divided in half along the axial direction.
[0023]
The sliding jig 10 accommodates a melting heat generating device 11 such as a heating wire.
Then, as shown in FIG. 8, the sliding jig 10 is inserted into the hole 2 and is brought into close contact with the upper part. In this state, the hole 2 is filled with water 7 and frozen. Thereafter, the melting heat generator 11 is operated to give heat to the sliding jig 10, so that the ice surface in contact with the lower surface of the sliding jig 10 melts and becomes a sliding surface.
[0024]
The sliding jig 10 is fixed to the structure 1 side, and slides so as to be guided on the upper surface of the ice when moving the structure 1.
Here, the sliding jig 10 does not need to have the arc shape as described above. In short, if the upper surface is fixed to the upper surface of the hole 2 and the lower surface in contact with ice extends straight along the extending direction of the hole 2, the cross section of the lower surface may be triangular. .
[0025]
Since the melting heat generating device 11 heats the side of the sliding jig 10 that comes into contact with the ice (the lower surface in FIG. 8), it is preferable to dispose it closer to the contact surface.
Further, the sliding jig 10 may be attached below the hole 2 as shown in FIG. In this case, the sliding jig 10 is fixed to the lower rock 5, and the ice 8 slides along the sliding jig 10. In this case, the upper side of the ice 8 is integrated with the lower surface of the structure 1 or the like.
[0026]
Further, after the water 7 in the hole 2 is frozen and cracks are generated along the fracture surfaces H1 and H2 to perform edging, continuous small-diameter drilling or the like is performed along the cracks so as to connect the holes 2 to each other. Thus, the edges of the structure 1 and the rock may be surely cut off. Although the entire surfaces of the fractured surfaces H1 and H2 are to be pierced, since the structures 1 and the like are supported by the ice 8 in the holes 2, it is not necessary to set up a temporary receiving stand or the like.
[0027]
Further, in the above embodiment, the first fracture surface H1 is set in the rock below the lower surface of the structure 1, but the first fracture surface H1 is installed immediately below the lower surface of the structure 1, and the hole 2 The upper part of the ice 8 inside may be set so as to directly contact the lower surface of the structure 1.
Further, in the above embodiment, the structure 1 is moved by using the surface of the frozen ice 8 as a sliding surface, but the structure 1 after the edge cutting may be moved by another means. good.
[0028]
Further, in the above embodiment, the axis of the hole 2 provided along the first fractured surface H1 is oriented in the moving direction of the structure 1, but is not limited to this. The axis of the hole 2 and the moving direction of the structure 1 do not have to match. However, in this case, it is necessary to make the upper part of the ice 8 a sliding surface.
[0029]
【Example】
As shown in FIG. 10, a cylindrical hole 2 having a diameter of 2 m is formed in the boundary surface between the bottom plate of the structure 1 and the bedrock so as to extend in the moving direction of the structure 1. A plurality of holes 2 are formed in the direction orthogonal to the moving direction of the structure 1 at intervals of 6 m.
[0030]
Further, a groove 20 having a semicircular lower surface is excavated along the moving direction continuously from the holes 2. The excavation of the groove 20 may be performed during or after the water 7 is frozen.
Next, as shown in FIG. 9, the sliding jig 10 is installed below the hole 2, the cooling pipe 6 is installed in the hole 2, and the opening end of the hole 2 is covered. Is filled with water 7 and liquid nitrogen is passed through a cooling pipe 6 to freeze the water 7 and cut off.
[0031]
Thereafter, the melting heat generating device 11 is operated to melt the lower surface of the columnar ice 8 which is in contact with the upper surface of the sliding jig 10 to make it slippery. The upper surface of the columnar ice 8 is integrated with the bottom plate of the structure 1.
In this state, when an external force is applied to the structure 1 in the moving direction, the lower surface of the ice 8 moves toward the groove 20 while being guided by the upper surface of the sliding jig 10, and then slides along the groove 20. By moving, the structure 1 moves.
[0032]
【The invention's effect】
As described above, when the present invention is adopted, the structure can be easily cut off from the rock without using a mechanical support device, and the movement of the structure is simplified.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a fractured surface according to an embodiment according to the present invention.
FIG. 2 is a plan view showing positions of holes according to the embodiment according to the present invention.
FIG. 3 is a sectional view taken along line AA of FIG. 2;
FIG. 4 is a sectional view taken along line BB of FIG. 2;
FIG. 5 is a diagram showing a relationship between a fracture surface, a hole, and a cooling pipe according to an embodiment of the present invention.
FIG. 6 is a diagram showing a broken state according to the embodiment based on the present invention.
FIG. 7 is a diagram showing movement of a structure or the like according to the embodiment based on the present invention.
FIG. 8 is a diagram illustrating a sliding jig and its installation.
FIG. 9 is a diagram illustrating a sliding jig and its installation.
FIG. 10 is a diagram illustrating a method of moving a structure according to the embodiment.
FIG. 11 is a diagram showing the relationship between the expansion pressure of ice and the cooling temperature.
[Explanation of symbols]
H1, H2 Fracture surface 1 Structure 2, 3 Hole 4 Upper rock 5 Lower rock 6 Cooling pipe 7 Water 8 Ice 10 Sliding jig 11 Melting heat generator

Claims (1)

地盤や岩盤の上に構築されている構造物を移動させる方法であって、少なくとも上記構造物の下方に位置する地盤や岩盤に対し、複数の中空部を形成すると共に、各中空部に水を充填し凍結させることによる氷の膨張力によって上記地盤や岩盤にひび割れを発生させて上記構造物を地盤や岩盤から縁切りさせた後に、当該構造物を移動させることを特徴とする構造物の移動方法。A method of moving a structure built on the ground or rock mass, comprising forming a plurality of hollow portions at least on the ground or rock mass located below the structure, and supplying water to each hollow portion. A method for moving a structure, comprising: generating cracks in the ground or the rock by the expansion force of ice caused by filling and freezing to cut off the structure from the ground or the rock, and then moving the structure. .
JP2002165381A 2002-06-06 2002-06-06 How to move the structure Expired - Fee Related JP3967966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165381A JP3967966B2 (en) 2002-06-06 2002-06-06 How to move the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165381A JP3967966B2 (en) 2002-06-06 2002-06-06 How to move the structure

Publications (2)

Publication Number Publication Date
JP2004011234A true JP2004011234A (en) 2004-01-15
JP3967966B2 JP3967966B2 (en) 2007-08-29

Family

ID=30433235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165381A Expired - Fee Related JP3967966B2 (en) 2002-06-06 2002-06-06 How to move the structure

Country Status (1)

Country Link
JP (1) JP3967966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009635A (en) * 2005-07-04 2007-01-18 Tomoe Corp Run-off prevention device in sliding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009635A (en) * 2005-07-04 2007-01-18 Tomoe Corp Run-off prevention device in sliding system
JP4657835B2 (en) * 2005-07-04 2011-03-23 株式会社巴コーポレーション Escape prevention mechanism in slide device

Also Published As

Publication number Publication date
JP3967966B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US3720065A (en) Making holes in the ground and freezing the surrounding soil
US20200040681A1 (en) Undisturbed sampler for granular soil
Vasiliev et al. Deep drilling at Vostok station, Antarctica: history and recent events
KR101478741B1 (en) rock breaking apparatus with U-type pipe
KR100614795B1 (en) Vibrationless rock breaking apparatus and method
Kudryashov et al. Deep ice coring at Vostok Station (East Antarctica) by an electromechanical drill
CN105436155B (en) A kind of special resonance for removing tunneling drain calcium and magnesium crystalline solid removes brilliant device and its application method
JP2004011234A (en) Moving method of structure
JPS5846403B2 (en) How to seal rocks around a rock chamber
RU2295608C2 (en) Method for pile driving in permafrost ground (variants)
CN113944194A (en) Pile foundation isolation anti-freezing measure adapting to underground water level
KR101487422B1 (en) Freezimg pipe and ground freezing method using freezimg pipe
JP2017043982A (en) Underground structure, and construction method of underground structure
GB2075089A (en) Drilling method
KR101415124B1 (en) rock breaking apparatus with ice-bomb
CN108265769A (en) A kind of thin-walled diaphragm wall is seamless chute forming machine and its construction technology
JP2015013394A (en) Cutting device, sample collection system, and sample collection method
JP2004332295A (en) Freezing method of starting/arrival part of jacking pipe and segment for freezing work
JP7107774B2 (en) Ground sample sampling method and sampling device
JP2670990B2 (en) Ground frozen sampling method and device
Auld et al. Application of artificial ground freezing
JP6284135B2 (en) How to bury underground heat exchange pipes
JPH0452803B2 (en)
US20220388119A1 (en) A system and method for cutting of offshore structures
JPH09126353A (en) Method for laying pipe under ground in arc-shape by utilizing buoyancy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

RD02 Notification of acceptance of power of attorney

Effective date: 20070105

Free format text: JAPANESE INTERMEDIATE CODE: A7422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110608

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120608

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees