JP2004011188A - Flame-retardant thermal insulating material for building and method for forming heat insulating layer for wooden building - Google Patents

Flame-retardant thermal insulating material for building and method for forming heat insulating layer for wooden building Download PDF

Info

Publication number
JP2004011188A
JP2004011188A JP2002163320A JP2002163320A JP2004011188A JP 2004011188 A JP2004011188 A JP 2004011188A JP 2002163320 A JP2002163320 A JP 2002163320A JP 2002163320 A JP2002163320 A JP 2002163320A JP 2004011188 A JP2004011188 A JP 2004011188A
Authority
JP
Japan
Prior art keywords
flame
insulating material
retardant
heat
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163320A
Other languages
Japanese (ja)
Other versions
JP3670623B2 (en
Inventor
Akira Sato
佐藤 章
Yukio Muto
武藤 幸雄
Yasuo Tamura
田村 靖夫
Tomio Goshono
御所野 富雄
Yutaka Goshono
御所野 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dannetsu Kogyo Kk
GOSHONO KK
Original Assignee
Dannetsu Kogyo Kk
GOSHONO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dannetsu Kogyo Kk, GOSHONO KK filed Critical Dannetsu Kogyo Kk
Priority to JP2002163320A priority Critical patent/JP3670623B2/en
Publication of JP2004011188A publication Critical patent/JP2004011188A/en
Application granted granted Critical
Publication of JP3670623B2 publication Critical patent/JP3670623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To hold environmental safety by absorbing and removing a harmful gas to the human body by utilizing a natural substance as it is. <P>SOLUTION: A flame-retardant thermal insulating material for a building is formed by mixing bark fragments containing a fibrous substance with bulky plant pieces impregnated with flame-retardant chemicals and having specific gravity of 0.2 to 0.5 and comprises the bark fragments of 50 to 90 wt. % in the case of 100 wt. % in total and has apparent specific gravity of 0.05 to 0.30. The bulky plant pieces are impregnated with the flame-retardant chemicals in 10 to 50 wt. %. The bulky plant pieces are manufactured of either one or both of woody pieces in a tree or caules in herbage. In a method for forming a heat insulating layer using the flame-retardant thermal insulating material, the heat insulating layer is formed by blowing in the thermal insulating material for the building to a space between the interiorly-finished board material 22 and an external facing material 23 for a wooden building 10, a space between an underfloor board 12 and a floor face or the upper section of a ceiling board 32. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主に木造家屋などの建築物の壁面や天井や床下に充填又は敷設される建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法に関するものである。
【0002】
【従来の技術】
従来、木造建築物等における断熱材として、ガラスを原料にしたグラスウールや岩石を原料にしたロックウールなどの無機質系断熱資材、及び石油を原料にした発泡ポリスチレンフォームやウレタンフォームなどの有機質系断熱資材が知られている。グラスウールやロックウールは生産性及び断熱性には優れているが、吸放湿性が十分でないため、期待した断熱性能を確保できずに、ダニやのみなどの病害虫の巣窟となる不具合があった。また、ポリスチレンフォームやウレタンフォームなどの石油系有機質資材では、石油資源の枯渇の観点から問題があり、その処理に際しては産業廃棄物として扱われるためにコストがかかる不具合がある。
【0003】
これらの不具合を解消するために、近年では人体への影響を考慮して、上述した無機質系断熱資材及び有機質系断熱資材の使用に代えて、天然素材の使用に対する関心が高まってきている。具体的に、例えば木材繊維を板状に形成したインシュレーションボードや、杉檜などの粉砕樹皮などを通気性収納容器に収納した断熱用建築資材が知られている(特開2001−49757)。
しかし、上述したインシュレーションボードは柔軟性に乏しく変形し難いために、畳床や断熱材などとして使用することには適しているけれども、通常の建築物における壁構造では柱や間柱の間隔の寸法誤差が大きいため、上記従来のインシュレーションボードをそのまま建築物の断熱材として使用すると、このボードの幅が柱間より大きいとボードを柱間に挿入できなかったり、或いはボードの幅が柱間より小さいとボードと柱との間に隙間が生じる場合があり、ボードの周縁を切り落したり、或いは隙間に樹脂発泡体を押込むなどの手直しを行う必要があった。
【0004】
これに対して、上述した特開2001−49757号公報に示される杉や檜の粉砕樹皮などを通気性収納容器に収納した断熱用建築資材は、柔軟性を有し変形可能であるため、建築物の壁構造における間柱と間柱の中間に容易に設置でき、天井構造であればその天井板の上に比較的容易に敷設することが期待できる。また、杉や檜の樹皮破砕片が微視的に見ると空気を中に含む細かい多数の部屋に分かれているという、その細胞組織構造ゆえに空気の対流を防ぎ、また熱伝導と熱輻射も防ぐため、高い断熱性を発揮するうえ、前述の組織構造ゆえに吸放湿性の点でも優れた効果を発揮する。
【0005】
【発明が解決しようとする課題】
しかし、上述した特開2001−49757号公報に示される建築資材は、樹皮破砕片のみを通気性収納容器に収納しているため、見掛比重が0.1〜0.3と比較的高い値を示し、天井構造に使用する場合にはその建築資材を厚く敷設することができない不具合があった。また、この建築資材では、通気性収納容器の中で粉砕樹皮が移動することにより変形するために、この建築資材を用いた壁構造における間柱とその断熱資材の間に隙間を生じやすく、天井構造では天井板が打ち付けられる天井野縁による凹凸が生じ、その凹凸の上に敷設するとその建築資材同士の合せ目に隙間を生じやすく二重に敷設するなどの工夫が必要で、その建築資材の重みによりその天井板がたわむ不具合がある。
【0006】
また、樹皮にはホルムアルデヒドガスやアンモニアガス等の有害ガスを吸収して固定する特長があるけれども、特開2001−49757号公報に示される建築資材において、樹皮に難燃性薬剤を塗布含浸させた場合には、樹皮の有害ガスを吸収して固定する本来的能力が低下する不具合がある。
更に、主原料が粉砕樹皮のみではそれぞれの間における隙間が少なく、その粉砕樹皮を通気性収納容器に収納した建築資材の見掛比重は比較的高く、断熱材としての性能を示す熱伝導率は見掛比重と相関性を有し、見掛比重が大きくなると熱伝導率も大きくなり、熱伝導率の低い断熱資材が得られない。
【0007】
本発明の目的は、可能な限り天然物をそのまま利用し、人体に対する有害なガスを吸収除去することにより、環境安全性を保持することができる建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法を提供することにある。
本発明の別の目的は、比較的軽量であって天井構造にも使用し得る建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法を提供することにある。
本発明の更に別の目的は、比較的断熱効果が高い建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、繊維状物を含む樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とが混合されて形成され、樹皮細片と嵩高植物片との合計を100重量%とするとき樹皮細片を50〜90重量%含みかつ見掛比重が0.05〜0.30である建築物用難燃性断熱資材である。
従来の建築資材では粉砕樹皮を主原料にしているため、従来の建築資材は見掛比重が比較的大きく重いのに対して、この請求項1に記載された建築物用難燃性断熱資材では、樹皮細片に嵩高植物片を混合するので、その見掛比重を低下させることが可能となり、天井構造における断熱資材として比較的厚く使用することも可能になる。また、粉砕樹皮のみからなる従来の建築資材に比較してその見掛比重が小さくなることから、その断熱性を向上させることもできる。
また、請求項1に係る建築物用難燃性断熱資材は、自然素材の植物や樹皮を使用しているため有害物質が室内を汚染してアトピー症等のアレルギー障害を生じるシックハウス症候群などを発症させることはなく、室内中のホルムアルデヒドや、アンモニアなどの悪臭を吸収しかつそれらを分解して悪臭の吸収作用を持続する効果が認められる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、樹皮細片が、針葉樹又は広葉樹からなる群より選ばれて形成された建築物用難燃性断熱資材である。
この請求項2に示された群から成る樹皮細片は本来的に難燃性を有し、その樹皮細片に混合する嵩高植物片には難燃性薬剤が含浸されているため難燃性を有する。このため、この請求項2に係る断熱資材も全体として難燃性を有し、難燃性を必要とする熱源近傍における木質系断熱資材として使用することができる。
【0010】
請求項3に係る発明は、請求項1又は2に係る発明であって、嵩高植物片を100重量%とするとき、その嵩高植物片に難燃性薬剤が10〜50重量%含浸された建築物用難燃性断熱資材である。
この請求項3に記載された建築物用難燃性断熱資材では、嵩高直物片の難燃性を確保することができる。薬剤が10重量%未満であると嵩高植物片に必要とされる難燃性が確保されず、50重量%を超えると嵩高植物片が本来的に有する吸放湿性及び断熱性が劣化する。また、嵩高植物片に難燃性薬剤を10〜30重量%含浸することが更に好ましい。
【0011】
請求項4に係る発明は、嵩高植物片が樹木における木質片又は草本類における茎片のいずれか一方又は双方から作られた建築物用難燃性断熱資材である。
この請求項4に記載された建築物用難燃性断熱資材では、嵩高直物片として木質片又は茎片を用いるので、難燃化薬剤を含侵させることによりその難燃性を確実に確保することができる。
【0012】
請求項5に係る発明は、請求項4に係る発明であって、木質片が杉及びヒバ及び檜からなる群より選ばれて形成された木質チップ又は木質繊維のいずれか一方又は双方からなる建築物用難燃性断熱資材である。
杉やヒバ、檜の木質部には無数の仮導管があり、この細胞壁の中は中空になっていて、その細胞組織が一つ一つの空気を含む部屋になっている。このため、この請求項5に記載された建築物用難燃性断熱資材では、これらから形成された木質チップ及び木質繊維を嵩高植物片として用いることにより、輻射熱が少なく、吸放湿性が良く、更に高い断熱性を発揮する建築物用難燃性断熱資材を得ることができる。
また、杉やヒバにはテルペン類やセスキテルペン類を多く含み、木材の香りの成分利用として木香を与えるとともに、炭素固定に重要な役割を果たす。これにより、これらから成る木質チップ及び木質繊維を嵩高植物片とする請求項5に係る建築物用難燃性断熱資材は、消臭作用、防ダニ作用、殺虫作用、防カビ・抗菌作用も生じさせる。
【0013】
請求項6に係る発明は、請求項5に係る発明であって、木質チップは平均厚さが50μm〜3mmであって平均面積が10〜150mmであり、木質繊維は平均直径が10〜30μmであって平均長さが50μm〜50mmである建築物用難燃性断熱資材である。
この請求項6に記載された建築物用難燃性断熱資材では、見掛比重が0.05〜0.3である建築物用難燃性断熱資材を有効に得ることが可能になる。
請求項7に係る発明は、請求項4ないし6いずれかに係る発明であって、茎片が草本類の茎を破砕して得られた茎チップ又は茎繊維のいずれか一方又は双方からなる建築物用難燃性断熱資材である。
草本類の茎の細胞の中は中空になっており、この請求項7に記載された建築物用難燃性断熱資材では、これらから形成された茎チップ及び茎繊維を嵩高植物片として用いることにより、特に高い断熱性を発揮する建築物用難燃性断熱資材を得ることができる。
【0014】
請求項8に係る発明は、図1及び図2に示すように、木造建築物10の内装板材22と外装板材23の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層24を形成することを特徴とする木造建築物の断熱層の形成方法である。
請求項9に係る発明は、図1及び図3に示すように、木造建築物10の床下板12と床面の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層16を形成することを特徴とする木造建築物の断熱層の形成方法である。
請求項10に係る発明は、図1及び図4に示すように、木造建築物10の天井板32の上に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み厚さが10〜30cmの断熱層33を形成することを特徴とする木造建築物の断熱層の形成方法である。
【0015】
この請求項8ないし10に係る木造建築物の断熱層の形成方法は、請求項1ないし5いずれかに記載された建築物用難燃性断熱資材を吹込むことにより断熱層24,16,33を形成するので、その作業工程も早く、凹凸を有する部分であっても継ぎ目のない一体的な断熱層24,16,33を形成することができ、粉砕樹皮などを通気性収納容器に収納した従来の断熱用建築資材を用いた場合のような合せ目などの隙間も生じさせることはない。
なお、この明細書の「木質チップ」及び「木質繊維」における「木質」とは、樹皮の内側に存在する木質部、即ち、樹木における心材及び辺材のいずれか一方又は双方からなる木質部を言う。また、「木質チップ」並びに「茎チップ」及び「木質繊維」並びに「茎繊維」とは、木質部又は草本類における茎を粉砕又は破砕して得られたチップ状物及び繊維状物をいうものとする。
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明の建築物用難燃性断熱資材は、繊維状物を含む樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とが混合されて形成される。上記樹皮細片としては、木材工業の廃材や建築廃材から得ることができ、間伐や製材若しくはその製造時に発生する産業廃棄物を利用するため資源の有効利用が図られる。樹皮細片の原料として用いられる樹木にはスギ,ヒノキ,ヒバ,カラマツ,マツなどの針葉樹や、クリ,カバ,カシ,シイ,南洋材(ラワン等),ポプラ,ヤナギなどの広葉樹が挙げられ、これら全ての樹木の樹皮を単独で或いは2種以上の樹木の樹皮を混合して使用することができる。特に靭皮繊維(茎で形成層から外側に発達する繊維組織であり、師部繊維を含む。)を含む樹木の樹皮を用いることが好ましい。例えば靭皮繊維を含む杉の内樹皮及び外樹皮の化学的な組成は、木質部分に比較してセルロースが少なく、タンニン、リグニン、スベリンなど炭素を高い比率で含む成分に富むため、脱臭性を有する建築物用難燃性断熱資材を得ることが可能になる。
【0017】
嵩高植物片に含浸されるは難燃性薬剤としては、金属アンチモン、リン酸エステル、酸化アンモニウム、有機リン・窒素系高分子、塩化物及び臭化物等が挙げられる。そして、嵩高植物片における難燃性を確保するために、嵩高植物片を100重量%とするとき、嵩高植物片に難燃性薬剤が10〜50重量%含浸されることが好ましい。ここで、嵩高植物片は、樹木における木質片又は草本類における茎片の一方を単独で或いはそれらの双方を混合して使用することができる。この木質片及び茎片は、予め難燃性薬剤が含浸された樹木における木質部又は草本類における茎を粉砕又は破砕することにより得ることができる。ここで、その粉砕又は破砕に関してはリングフレーカーやハンマーミル等のチップ粉砕機が用いられる。
【0018】
木質片は、杉及びヒバ及び檜からなる群より選ばれて形成された木質チップ又は木質繊維のいずれか一方又は双方であることが好ましい。杉及びヒバ及び檜の木質部は大量に入手可能であり、抗菌性や脱臭効果に優れ、木香が他の樹木に比較して優れているからである。木質繊維にあっては、いわゆる従来のインシュレーションボード製造時に発生する破材を粉砕したものであっても良い。ここで、木質チップは平均厚さが50μm〜3mmであって平均面積が10〜150mmであることが好ましく、木質繊維は平均直径が10〜30μmであって平均長さが50μm〜50mmであることが好ましい。
また、茎片として用いられる草本類には一年草類、多年草類が挙げられ、一年草類としてケナフ、ハーブ、ワラ、高りゃん等の茎が用いられる。このような草本類の茎を破砕して得られた茎チップ又は茎繊維のいずれか一方又は双方を茎片として用いることが好ましい。なお、この茎チップ又は茎繊維は、草本類における茎をディファイブレーター、ハンマーミル、リングフレーカー等を用いて解繊することにより得られる。
【0019】
そして、本発明の建築物用難燃性断熱資材は、上述した樹皮細片と嵩高植物片との合計を100重量%とするとき、樹皮細片を50〜90重量%、好ましくは60〜80重量%含み、かつ見掛比重が0.05〜0.30、好ましくは0.05〜0.15、更に好ましくは0.08〜0.10である。樹皮細片を上記50〜90重量%の範囲に限定したのは、90重量%を越えると見掛比重が増して断熱性能が低下するとともにその施工作業が困難になる。一方、樹皮細片が50重量%未満であると、その樹皮細片が有するホルムアルデヒド等の有害ガスを吸収して固定する性能が低下するとともに、燃焼時における発煙性が増加する。更に見掛比重を0.05〜0.30に限定したのは、0.05未満では所定の難燃性が得られず、0.30を超えると断熱性能が低下するからである。
【0020】
次に、このように構成された建築物用難燃性断熱資材を用いた木造建築物の断熱層の形成方法を説明する。
図1に一般木造建築物10の断面を示し、図2にその床断面の拡大図を示す。この床構造は、根太11と、その根太11の下側に取付けられた防湿シートが上面に形成された床下板12と、その根太11の上側に張られた床下地合板13と床仕上げ材14を備え、床下板12と床面の間の空間、即ち、床下板12と床下地合板13との間の空間には、上述した建築物用難燃性断熱資材が吹込み充填されて断熱層16が形成される。断熱資材の吹込み充填は根太11の下側に床下板12が取付けられた段階で行われ、その吹込み厚さは根太11の高さ方向と略均一になるように行われる。その後、根太11の上側に床下地合板13と床仕上げ材14を張ることにより、床下板12と床面の間の空間に上述した建築物用難燃性断熱資材が吹込み充填された断熱層16が形成される。
【0021】
図3は図1における一般木造建築物10の壁断面の拡大図を示す。この壁構造は、木造建築物における間柱21の室内側に張られた内装板材22と、間柱21の室外側に張られた外装板材23を備え、内装板材22と外装板材23の間の空間に上述した建築物用難燃性断熱資材を吹込み充填することにより断熱層24が形成される。断熱資材の吹込み充填は、間柱21に内装板材22と外装板材23が張られた状態でその間の隙間の上端開口部から行われる。この場合、内装板材22と外装板材23が比較的高い場合には、内装板材22と外装板材23を2段、3段と分けて下側から間柱21に打ち付けて、その分けられた内装板材22と外装板材23が間柱21に打ち付けられる度に断熱資材を吹込んでいくことが好ましい。なお、図3における壁構造は外装板材23に幅方向に所定の間隔をあけて複数の木質棒26が互いに平行に鉛直方向に打ち付けられ、その複数の木質棒26に外壁仕上げ材27が打ち付けられ、外装板材23と外壁仕上げ材27との間に通気層が形成される。
【0022】
図4は図1における一般木造建築物10の天井の拡大図を示す。この天井構造は一般木造建築物10に組まれた天井野縁31の下側に天井板32を打ち付けることにより構成され、天井野縁31に天井板32を張り終えてから、その天井板32の上に上述した建築物用難燃性断熱資材が吹込まれて厚さが10〜30cmの断熱層33が形成される。
このような断熱層16,24,33の形成方法では、木造建築物10の床や壁の空隙に難燃性断熱資材を直接詰め込むため、断熱性能を低下させる隙間ができることはない。また、吹込み充填する断熱資材は難燃性薬剤による処理を行った嵩高植物片及び本来的に難燃性を有する樹皮細片を混合したものであるので本来的に難燃性を有し、熱源になる照明器具や台所の周辺にも使用することが可能になる。
【0023】
【発明の効果】
以上述べたように、本発明の建築物用難燃性断熱資材によれば、樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とを混合して形成するので、その見掛比重を0.05〜0.30に低下させることが可能となり、粉砕樹皮のみからなる断熱資材に比較してその断熱性を向上させることができる。一方、本来的に難燃性を有する樹皮細片に混合する嵩高植物片は難燃性薬剤が含浸されるので、全体として難燃性を有する建築物用難燃性断熱資材を得ることができる。ここで、嵩高植物片に難燃性薬剤を10〜50重量%含浸すれば、その難燃性を確実に確保することができ、嵩高植物片が樹木における木質片又は草本類における茎片のいずれか一方又は双方から作られたものであれば、見掛比重が0.05〜0.30である建築物用難燃性断熱資材を有効に得ることが可能になる。
【0024】
また、本発明の建築物用難燃性断熱資材を用いた木造建築物の断熱層の形成方法では、木造建築物の内装板材と外装板材の間の空間、床下板と床面の間の空間、又は天井板の上に建築物用難燃性断熱資材を吹込むことにより断熱層を形成するので、その作業工程も早く、凹凸を有する部分であっても継ぎ目のない一体的な断熱層を形成することができ、袋詰め断熱材のような合せ目などの隙間も生じさせない。
【図面の簡単な説明】
【図1】本発明実施形態の木質建築物を示す断面図。
【図2】木造建築物の床構造を示す図1のA部拡大断面図。
【図3】木造建築物の壁構造を示す図1のB−B線断面図。
【図4】木質建築物の天井構造を示す図1のC部拡大断面図。
【符号の説明】
10 木造建築物
12 床下板
22 内装板材
23 外装板材
32 天井板
16,24,33 断熱層
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a flame-retardant heat-insulating material for buildings mainly filled or laid under walls, ceilings and floors of buildings such as wooden houses, and a method for forming a heat-insulating layer of a wooden building using the same. .
[0002]
[Prior art]
Conventionally, as a heat insulating material for wooden buildings, etc., inorganic heat insulating materials such as glass wool made of glass and rock wool made of rock, and organic heat insulating materials such as expanded polystyrene foam and urethane foam made of petroleum. It has been known. Glass wool and rock wool are excellent in productivity and heat insulation, but have insufficient moisture absorption and release properties, so that the desired heat insulation performance cannot be ensured, and there is a problem that they become nests of pests such as mites and chisel. In addition, petroleum-based organic materials such as polystyrene foam and urethane foam have a problem from the viewpoint of depletion of petroleum resources, and there is a problem in that the treatment is treated as industrial waste and costs are increased.
[0003]
In order to solve these problems, in recent years, in consideration of the influence on the human body, interest in using natural materials instead of using the above-mentioned inorganic heat insulating materials and organic heat insulating materials has been increasing. Specifically, for example, an insulation board in which wood fiber is formed in a plate shape, and a building material for heat insulation in which crushed bark such as cedar cypress is stored in a breathable storage container (JP-A-2001-49757).
However, although the above-mentioned insulation board is poor in flexibility and hard to deform, it is suitable for use as a tatami floor or as a heat insulator, but in the wall structure of a normal building, there is a dimensional error in the spacing between columns and studs. Because the above conventional insulation board is used as it is as a heat insulating material of a building, if the width of the board is larger than the distance between the pillars, the board cannot be inserted between the pillars, or the width of the board is smaller than the distance between the pillars. In some cases, a gap may be formed between the board and the column, and it is necessary to perform a repair such as cutting off the peripheral edge of the board or pushing a resin foam into the gap.
[0004]
On the other hand, the building material for heat insulation disclosed in Japanese Patent Application Laid-Open No. 2001-49757, in which crushed bark of cedar or cypress is stored in a breathable storage container, is flexible and deformable. It can be easily installed between the studs in the wall structure of an object, and can be expected to be laid relatively easily on the ceiling plate in the case of a ceiling structure. In addition, cedar and cypress bark fragments are divided into a number of small rooms containing air when viewed microscopically. Due to their cell structure, convection of air is prevented, and heat conduction and heat radiation are also prevented. Therefore, in addition to exhibiting high heat insulating properties, it also exhibits excellent effects in terms of moisture absorption and desorption due to the above-described structure.
[0005]
[Problems to be solved by the invention]
However, since the building materials disclosed in JP-A-2001-49757 described above contain only bark crushed pieces in a breathable storage container, the apparent specific gravity is a relatively high value of 0.1 to 0.3. When used for a ceiling structure, there was a problem that the building material could not be laid thickly. In addition, in this building material, since the ground bark is deformed by moving in the air-permeable storage container, a gap is easily generated between the stud in the wall structure using this building material and the heat insulating material, and the ceiling structure In the case, unevenness is generated by the ceiling edge where the ceiling plate is struck, and when laying on the unevenness, it is easy to create a gap at the joint between the building materials, and it is necessary to devise such as laying double, and the weight of the building material There is a problem that the ceiling board is bent.
[0006]
Further, although the bark has a feature of absorbing and fixing harmful gases such as formaldehyde gas and ammonia gas, in the building materials disclosed in JP-A-2001-49757, the bark is impregnated with a flame-retardant chemical. In this case, there is a problem that the intrinsic ability of absorbing and fixing the harmful gas of the bark is reduced.
Furthermore, when the main raw material is only crushed bark, the gap between them is small, the apparent specific gravity of the building material in which the crushed bark is stored in the breathable storage container is relatively high, and the thermal conductivity indicating the performance as a heat insulating material is It has a correlation with the apparent specific gravity. When the apparent specific gravity increases, the thermal conductivity also increases, and a heat insulating material having a low thermal conductivity cannot be obtained.
[0007]
An object of the present invention is to use a flame-retardant heat-insulating material for buildings capable of maintaining environmental safety by utilizing natural products as much as possible and absorbing and removing harmful gases to the human body, and using the same. An object of the present invention is to provide a method for forming a heat insulating layer of a wooden building.
Another object of the present invention is to provide a flame-retardant heat-insulating material for a building which is relatively lightweight and can be used for a ceiling structure, and a method for forming a heat-insulating layer of a wooden building using the same.
Still another object of the present invention is to provide a flame-retardant heat-insulating material for buildings having a relatively high heat-insulating effect and a method for forming a heat-insulating layer of a wooden building using the same.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is formed by mixing a bark strip containing a fibrous material with a bulky plant piece having a specific gravity of 0.2 to 0.5 impregnated with a flame retardant, and forming a bark strip. It is a flame-retardant heat-insulating material for buildings containing 50 to 90% by weight of bark strips and an apparent specific gravity of 0.05 to 0.30 when the total amount of the bulky plant pieces is 100% by weight.
In the conventional building material, since the ground bark is used as a main raw material, the conventional building material has a relatively large apparent specific gravity, while the flame-retardant heat-insulating material for a building according to claim 1 described above. Since the bulky plant pieces are mixed with the bark strips, the apparent specific gravity can be reduced, and it can be used relatively thickly as a heat insulating material in the ceiling structure. Further, since the apparent specific gravity is smaller than that of a conventional building material composed of only crushed bark, the heat insulating property can be improved.
In addition, the flame-retardant heat-insulating material for buildings according to claim 1 uses a natural plant or bark, so that harmful substances contaminate the room and cause sick house syndrome which causes allergic disorders such as atopic disease. The effect of absorbing malodors such as formaldehyde and ammonia in the room and decomposing them to maintain the odor absorbing effect is recognized.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the bark strip is a flame-retardant heat-insulating material for buildings formed by being selected from the group consisting of conifers and hardwoods.
The bark strips comprising the group described in claim 2 are inherently flame retardant, and the bulky plant pieces mixed with the bark strips are impregnated with a flame retardant agent, so that the flame retardant properties are obtained. Having. Therefore, the heat insulating material according to claim 2 also has flame retardancy as a whole, and can be used as a wood-based heat insulating material in the vicinity of a heat source that requires flame retardancy.
[0010]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the bulky plant pieces are impregnated with 10 to 50% by weight of a flame retardant when the bulky plant pieces are 100% by weight. It is a flame-retardant insulation material for goods.
In the flame-retardant heat-insulating material for buildings according to the third aspect, the flame-retardant property of the bulky piece can be ensured. If the amount of the agent is less than 10% by weight, the flame retardancy required for the bulky plant pieces is not ensured, and if it exceeds 50% by weight, the moisture absorption / desorption properties and the heat insulating properties inherent to the bulky plant pieces deteriorate. Further, it is more preferable to impregnate the bulky plant pieces with 10 to 30% by weight of the flame retardant.
[0011]
The invention according to claim 4 is a flame-retardant heat-insulating material for buildings, in which a bulky plant piece is made of one or both of a woody piece of a tree and a stem piece of a herbaceous plant.
In the flame-retardant heat-insulating material for buildings described in claim 4, since the woody piece or the stem piece is used as the bulky piece, the flame-retardant property is ensured by impregnating the flame-retardant agent. can do.
[0012]
The invention according to claim 5 is the invention according to claim 4, wherein the wooden piece is made of one or both of a wood chip and a wood fiber formed by being selected from the group consisting of cedar, hiba and cypress. It is a flame-retardant insulation material for goods.
There are countless temporary conduits in the wood of cedar, hiba and cypress, and the inside of this cell wall is hollow, and the cell tissue is a room containing air. Therefore, in the flame-retardant heat-insulating material for buildings according to claim 5, by using the wood chips and wood fibers formed from these as bulky plant pieces, the radiant heat is small, and the moisture absorption and desorption properties are good, It is possible to obtain a flame-retardant heat-insulating material for buildings that exhibits higher heat insulating properties.
In addition, cedar and hiba contain a large amount of terpenes and sesquiterpenes, and give wood incense as a component of wood scent and play an important role in carbon fixation. Thus, the fire-resistant and heat-insulating material for buildings according to claim 5, wherein the wood chips and wood fibers composed of these are made into bulky plant pieces, also has a deodorizing action, an anti-mite action, an insecticidal action, an anti-fungal and antibacterial action. Let it.
[0013]
The invention according to claim 6 is the invention according to claim 5, wherein the wood chip has an average thickness of 50 μm to 3 mm and an average area of 10 to 150 mm 2 , and the wood fiber has an average diameter of 10 to 30 μm. It is a flame-retardant heat insulating material for buildings having an average length of 50 μm to 50 mm.
According to the flame-retardant heat-insulating material for buildings described in claim 6, it is possible to effectively obtain a fire-retardant heat-insulating material for buildings having an apparent specific gravity of 0.05 to 0.3.
The invention according to claim 7 is the invention according to any one of claims 4 to 6, wherein the stem pieces are made of one or both of stem chips and stem fibers obtained by crushing herbaceous stems. It is a flame-retardant insulation material for goods.
The stem cells of herbaceous plants are hollow, and in the flame-retardant heat-insulating material for buildings according to claim 7, the stem chips and stem fibers formed therefrom are used as bulky plant pieces. Thereby, a flame-retardant heat-insulating material for buildings exhibiting particularly high heat-insulating properties can be obtained.
[0014]
The invention according to claim 8 is, as shown in FIGS. 1 and 2, in the space between the interior plate material 22 and the exterior plate material 23 of the wooden building 10, the structure for a building according to any one of claims 1 to 7. This is a method for forming a heat insulating layer of a wooden building, wherein the heat insulating layer 24 is formed by blowing and filling a flammable heat insulating material.
According to a ninth aspect of the present invention, as shown in FIGS. 1 and 3, a flame retardant for a building according to any one of the first to seventh aspects is provided in a space between a floor plate 12 and a floor of a wooden building 10. A method for forming a heat insulating layer of a wooden building, wherein the heat insulating layer 16 is formed by blowing and filling a conductive heat insulating material.
As shown in FIGS. 1 and 4, the invention according to claim 10 blows the flame-retardant heat-insulating material for buildings according to any one of claims 1 to 7 on the ceiling plate 32 of the wooden building 10. This is a method for forming a heat insulating layer of a wooden building, wherein the heat insulating layer 33 has a thickness of 10 to 30 cm.
[0015]
According to the method for forming a heat insulating layer of a wooden building according to the eighth to tenth aspects, the heat insulating layers 24, 16, 33 are injected by blowing the flame-retardant heat insulating material for a building according to any one of the first to fifth aspects. Is formed, the work process is also quick, and even in the portion having irregularities, the integral heat-insulating layers 24, 16, and 33 can be formed seamlessly, and the crushed bark and the like are stored in the breathable storage container. A gap such as a seam unlike the case where a conventional heat insulating building material is used is not generated.
In this specification, the term “wood” in the “wood chips” and the “wood fibers” refers to a wood portion existing inside the bark, that is, a wood portion formed of one or both of a heartwood and a sapwood in a tree. In addition, "wood chips" and "stem chips" and "wood fibers" and "stem fibers" refer to chips and fibrous materials obtained by crushing or crushing stems in woody parts or herbs. I do.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
The flame-retardant heat-insulating material for buildings of the present invention is formed by mixing bark fragments containing fibrous materials and bulky plant fragments having a specific gravity of 0.2 to 0.5 impregnated with a flame-retardant agent. You. The bark flakes can be obtained from wood industry waste or construction waste, and effective use of resources is achieved by utilizing thinning, sawmilling, or industrial waste generated during its manufacture. Trees used as raw materials for bark strips include conifers such as cedar, hinoki, hiba, larch, and pine, and broadleaf trees such as chestnut, hippo, oak, shii, southern lumber (such as lauan), poplar, and willow. The bark of all these trees can be used alone or as a mixture of two or more barks. In particular, it is preferable to use a bark of a tree containing bast fiber (a fiber structure that develops outward from the cambium in the stem and includes phloem fibers). For example, the chemical composition of the inner bark and outer bark of cedar containing bast fiber is low in cellulose compared to the woody part, and rich in components containing a high ratio of carbon such as tannin, lignin, and suberin, so that deodorizing properties are improved. It is possible to obtain a flame-retardant heat-insulating material for buildings having the following.
[0017]
Examples of the flame retardant agent impregnated in the bulky plant pieces include antimony metal, phosphate ester, ammonium oxide, organic phosphorus / nitrogen-based polymer, chloride, and bromide. Then, in order to ensure the flame retardancy of the bulky plant piece, when the bulky plant piece is 100% by weight, it is preferable that the bulky plant piece is impregnated with 10 to 50% by weight of the flame retardant. Here, the bulky plant pieces can be used alone or in a mixture of both woody pieces of trees and stem pieces of herbs. The wood pieces and stem pieces can be obtained by crushing or crushing a wood part of a tree or a stem of a herbaceous plant which has been impregnated with a flame retardant in advance. Here, a chip crusher such as a ring flaker or a hammer mill is used for the crushing or crushing.
[0018]
The wood piece is preferably one or both of a wood chip and a wood fiber formed by being selected from the group consisting of cedar, hiba and cypress. The woody parts of cedar, hiba and cypress are available in large quantities, are excellent in antibacterial properties and deodorizing effects, and have incense that is superior to other trees. In the case of wood fibers, broken materials generated during the production of so-called conventional insulation boards may be crushed. Here, the wood chip preferably has an average thickness of 50 μm to 3 mm and an average area of 10 to 150 mm 2 , and the wood fiber has an average diameter of 10 to 30 μm and an average length of 50 μm to 50 mm. Is preferred.
In addition, the herbs used as stem pieces include annual grasses and perennial grasses, and kenaf, herb, straw, and high stalks are used as annual grasses. It is preferable to use one or both of stem chips and stem fibers obtained by crushing the stems of such herbs as stem pieces. The stem chips or stem fibers are obtained by fibrillating the stems of herbs using a defibrator, a hammer mill, a ring flaker, or the like.
[0019]
And the flame-retardant heat-insulating material for buildings of the present invention, when the total of the above-mentioned bark fragments and bulky plant fragments is 100% by weight, is 50 to 90% by weight, preferably 60 to 80% by weight. % By weight, and the apparent specific gravity is 0.05 to 0.30, preferably 0.05 to 0.15, more preferably 0.08 to 0.10. The reason for limiting the bark flakes to the range of 50 to 90% by weight is that if the bark flakes exceed 90% by weight, the apparent specific gravity increases, the heat insulation performance decreases, and the construction work becomes difficult. On the other hand, if the bark flakes are less than 50% by weight, the performance of absorbing and fixing harmful gases such as formaldehyde contained in the bark flakes is reduced, and the smoke emission during combustion is increased. The reason why the apparent specific gravity is limited to 0.05 to 0.30 is that if the specific gravity is less than 0.05, the predetermined flame retardancy cannot be obtained, and if the specific gravity exceeds 0.30, the heat insulating performance is reduced.
[0020]
Next, a method of forming a heat insulating layer of a wooden building using the flame-retardant heat-insulating material for a building configured as described above will be described.
FIG. 1 shows a cross section of a general wooden building 10, and FIG. 2 shows an enlarged view of the floor cross section. The floor structure includes a joist 11, a lower floor plate 12 having a moisture-proof sheet attached to the lower side of the joist 11 formed on the upper surface, a floor base plywood 13 stretched above the joist 11, and a floor finishing material 14. The space between the underfloor board 12 and the floor surface, that is, the space between the underfloor board 12 and the underfloor plywood 13 is blown and filled with the above-described flame-retardant heat-insulating material for buildings, and the heat-insulating layer is provided. 16 are formed. Blow-filling of the heat-insulating material is performed when the underfloor plate 12 is attached to the underside of the joist 11, and the blow-in thickness is performed so as to be substantially uniform in the height direction of the joist 11. Thereafter, a floor base plywood 13 and a floor finishing material 14 are stretched above the joists 11, so that a space between the floor underplate 12 and the floor surface is filled with the above-described flame-retardant heat-insulating material for a building and filled therein. 16 are formed.
[0021]
FIG. 3 is an enlarged view of a wall cross section of the general wooden building 10 in FIG. This wall structure includes an interior plate 22 extending on the indoor side of the stud 21 in the wooden building, and an exterior plate 23 extending on the outdoor side of the stud 21, and a space between the interior plate 22 and the exterior plate 23. The heat-insulating layer 24 is formed by blowing and filling the above-mentioned flame-retardant heat-insulating material for buildings. The blowing and filling of the heat insulating material is performed from the upper end opening of the gap between the interior plate 22 and the exterior plate 23 with the stud 21 being stretched. In this case, when the interior plate material 22 and the exterior plate material 23 are relatively high, the interior plate material 22 and the exterior plate material 23 are divided into two stages and three stages, and are struck onto the studs 21 from below, and the divided interior plate material 22 is It is preferable to blow the heat-insulating material each time the outer plate material 23 is struck against the stud 21. In the wall structure shown in FIG. 3, a plurality of wooden rods 26 are struck in parallel with each other in the vertical direction at predetermined intervals in the width direction on the exterior plate member 23, and an outer wall finishing material 27 is struck to the plurality of wooden rods 26. A ventilation layer is formed between the exterior plate material 23 and the outer wall finishing material 27.
[0022]
FIG. 4 is an enlarged view of the ceiling of the general wooden building 10 in FIG. This ceiling structure is configured by hitting a ceiling plate 32 below the ceiling edge 31 assembled in the general wooden building 10, and after the ceiling plate 32 has been attached to the ceiling edge 31, the ceiling plate 32 The above-mentioned flame-retardant heat-insulating material for buildings is blown into the heat-insulating layer 33 having a thickness of 10 to 30 cm.
In such a method of forming the heat insulating layers 16, 24, and 33, since the flame-retardant heat-insulating material is directly packed into the gaps of the floor and the wall of the wooden building 10, there is no gap that lowers the heat insulating performance. Also, the insulation material to be blow-filled is a mixture of a bulky plant piece treated with a flame retardant and a bark strip that originally has flame retardancy, so that it has inherent flame retardancy, It can also be used in lighting fixtures that become heat sources and around kitchens.
[0023]
【The invention's effect】
As described above, according to the flame-retardant heat-insulating material for buildings of the present invention, bark fragments are mixed with a bulky plant piece having a specific gravity of 0.2 to 0.5 impregnated with a flame-retardant agent. As a result, the apparent specific gravity can be reduced to 0.05 to 0.30, and the heat insulating property can be improved as compared with a heat insulating material consisting only of ground bark. On the other hand, the bulky plant pieces that are mixed with the inherently flame-retardant bark strips are impregnated with the flame-retardant agent, so that it is possible to obtain a flame-retardant heat-insulating material for buildings having flame retardancy as a whole. . Here, if the bulky plant pieces are impregnated with a flame retardant at 10 to 50% by weight, the flame retardancy can be reliably ensured, and the bulky plant pieces can be either woody pieces of trees or stem pieces of herbs. If it is made from one or both, it becomes possible to effectively obtain a flame-retardant heat-insulating material for buildings having an apparent specific gravity of 0.05 to 0.30.
[0024]
Further, in the method for forming a heat insulating layer of a wooden building using the flame-retardant heat-insulating material for a building according to the present invention, the space between the interior plate material and the exterior plate material of the wooden building, and the space between the underfloor plate and the floor surface are provided. Or, by blowing a flame-retardant heat-insulating material for buildings onto the ceiling plate, the heat-insulating layer is formed. It can be formed and does not create gaps such as seams as in bagged insulation.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a wooden building according to an embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a portion A in FIG. 1 showing a floor structure of a wooden building.
FIG. 3 is a sectional view taken along line BB of FIG. 1 showing a wall structure of the wooden building.
FIG. 4 is an enlarged sectional view of a portion C in FIG. 1 showing a ceiling structure of a wooden building.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Wooden building 12 Under-floor board 22 Interior board material 23 Exterior board material 32 Ceiling board 16,24,33 Heat insulation layer

Claims (10)

繊維状物を含む樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とが混合されて形成され、前記樹皮細片と前記嵩高植物片との合計を100重量%とするとき前記樹皮細片を50〜90重量%含みかつ見掛比重が0.05〜0.30である建築物用難燃性断熱資材。A bark strip containing a fibrous material and a bulky plant strip having a specific gravity of 0.2 to 0.5 impregnated with a flame retardant are formed as a mixture, and a total of the bark strip and the bulky plant strip is formed. Is 100% by weight, the flame-retardant heat-insulating material for buildings contains 50 to 90% by weight of the bark flakes and an apparent specific gravity of 0.05 to 0.30. 樹皮細片が、針葉樹及び広葉樹からなる群より選ばれて形成された請求項1記載の建築物用難燃性断熱資材。The flame-retardant heat-insulating material for buildings according to claim 1, wherein the bark strips are selected from the group consisting of conifers and hardwoods. 嵩高植物片を100重量%とするとき、前記嵩高植物片に難燃性薬剤が10〜50重量%含浸された請求項1又は2記載の建築物用難燃性断熱資材。The flame-retardant insulating material for a building according to claim 1 or 2, wherein the bulky plant pieces are impregnated with 10 to 50% by weight of the bulky plant pieces when the bulky plant pieces are 100% by weight. 嵩高植物片が樹木における木質片又は草本類における茎片のいずれか一方又は双方から作られた請求項1ないし3いずれか記載の建築物用難燃性断熱資材。The flame-retardant heat-insulating material for a building according to any one of claims 1 to 3, wherein the bulky plant piece is made from one or both of a woody piece of a tree and a stem piece of a herbaceous plant. 木質片が杉及びヒバ及び檜からなる群より選ばれて形成された木質チップ又は木質繊維のいずれか一方又は双方からなる請求項4記載の建築物用難燃性断熱資材。The flame-retardant heat-insulating material for a building according to claim 4, wherein the wood piece is made of one or both of a wood chip and a wood fiber formed by being selected from the group consisting of cedar, hiba and cypress. 木質チップは平均厚さが50μm〜3mmであって平均面積が10〜150mmであり、木質繊維は平均直径が10〜30μmであって平均長さが50μm〜50mmである請求項5記載の建築物用難燃性断熱資材。Wood chips average area average thickness of a 50μm~3mm is is 10 to 150 mm 2, the wood fibers architectural average length average diameter a 10~30μm of claim 5 wherein the 50μm~50mm Flame-retardant insulation material for goods. 茎片が草本類の茎を破砕して得られた茎チップ又は茎繊維のいずれか一方又は双方からなる請求項4ないし6いずれか記載の建築物用難燃性断熱資材。The flame-retardant heat-insulating material for buildings according to any one of claims 4 to 6, wherein the stem pieces are made of one or both of stem chips and stem fibers obtained by crushing a herbaceous stem. 木造建築物(10)の内装板材(22)と外装板材(23)の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層(24)を形成することを特徴とする木造建築物の断熱層の形成方法。The space between the interior board (22) and the exterior board (23) of the wooden building (10) is insulated by blowing and filling the flame-retardant heat-insulating material for a building according to any one of claims 1 to 7. A method for forming a heat insulating layer of a wooden building, comprising forming a layer (24). 木造建築物(10)の床下板(12)と床面の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層(16)を形成することを特徴とする木造建築物の断熱層の形成方法。A heat insulating layer (16) by blowing and filling the space between the under floor (12) and the floor of the wooden building (10) with the flame-retardant heat insulating material for a building according to any one of claims 1 to 7. A) forming a heat insulating layer of a wooden building. 木造建築物(10)の天井板(32)の上に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み厚さが10〜30cmの断熱層(33)を形成することを特徴とする木造建築物の断熱層の形成方法。The flame-retardant heat-insulating material for buildings according to any one of claims 1 to 7 is blown on the ceiling plate (32) of the wooden building (10) to form a heat-insulating layer (33) having a thickness of 10 to 30 cm. A method for forming a heat insulating layer of a wooden building, which is characterized by being formed.
JP2002163320A 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same Expired - Fee Related JP3670623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163320A JP3670623B2 (en) 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163320A JP3670623B2 (en) 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same

Publications (2)

Publication Number Publication Date
JP2004011188A true JP2004011188A (en) 2004-01-15
JP3670623B2 JP3670623B2 (en) 2005-07-13

Family

ID=30431836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163320A Expired - Fee Related JP3670623B2 (en) 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same

Country Status (1)

Country Link
JP (1) JP3670623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520738A (en) * 2013-04-22 2016-07-14 ユン インハクYOON, In Hak Ecological building structure, heat insulating structure thereof, and construction method of the heat insulating structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520738A (en) * 2013-04-22 2016-07-14 ユン インハクYOON, In Hak Ecological building structure, heat insulating structure thereof, and construction method of the heat insulating structure

Also Published As

Publication number Publication date
JP3670623B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
Reinprecht Wood deterioration, protection and maintenance
Asdrubali et al. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications
Ramage et al. The wood from the trees: The use of timber in construction
Taghiyari Fire-retarding properties of nano-silver in solid woods
White et al. Fire safety of wood construction
Elvira-León et al. Epsomite as flame retardant treatment for wood: Preliminary study
Rejeesh et al. Methods and materials for reducing flammability behaviour of coir fibre based composite boards: a review
WO2015169325A1 (en) A layered insulated construction element
JP4550609B2 (en) Soundproof humidity control ceiling structure
JP3670623B2 (en) Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same
JP4308877B1 (en) Method for wet-blowing organic fiber-based heat insulating material, building component constructed by the method, and method for manufacturing organic fiber-based heat insulating material
JP5170512B2 (en) Biodegradable heat insulating material, molded body thereof, production method thereof, plant growth material and fertilizer material using the production method
DE102019107982A1 (en) Flame, fire and glow-protected natural fiber insulation materials and their production and use, in particular for natural fiber insulation products
Fouladi et al. Enhancement of coir fiber fire retardant property
CN212078507U (en) High-strength moisture-proof sound-insulation composite board
JPH10237982A (en) Composite material
DE4339849A1 (en) Environmentally friendly, heat insulating building board suitable as plaster base
EP2360326A1 (en) Construction element for constructing the external shell of buildings
Dietenberger et al. Fire safety of wood construction
WO2018160112A1 (en) Structural element and method for its manufacture
Rojas-Herrera et al. Characterization and utilization of sawdust waste generated from advanced manufacture for its application as a thermal insulation in sustainable buildings using the blowing technique
JP2002079506A (en) Fire retardant bark board
KR102664261B1 (en) Antibacterial and antifungal interior finishing material and method of the same
KR101226805B1 (en) Incombustible building material board using wood sawdust and manufacturing method thereof
JP2000257179A (en) Charcoal bag, building structure using the same, and method for execution thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees