JP3670623B2 - Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same - Google Patents

Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same Download PDF

Info

Publication number
JP3670623B2
JP3670623B2 JP2002163320A JP2002163320A JP3670623B2 JP 3670623 B2 JP3670623 B2 JP 3670623B2 JP 2002163320 A JP2002163320 A JP 2002163320A JP 2002163320 A JP2002163320 A JP 2002163320A JP 3670623 B2 JP3670623 B2 JP 3670623B2
Authority
JP
Japan
Prior art keywords
flame
heat insulating
retardant
insulating material
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163320A
Other languages
Japanese (ja)
Other versions
JP2004011188A (en
Inventor
章 佐藤
幸雄 武藤
靖夫 田村
富雄 御所野
豊 御所野
Original Assignee
株式会社ゴショノ
有限会社 だんねつ工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ゴショノ, 有限会社 だんねつ工業 filed Critical 株式会社ゴショノ
Priority to JP2002163320A priority Critical patent/JP3670623B2/en
Publication of JP2004011188A publication Critical patent/JP2004011188A/en
Application granted granted Critical
Publication of JP3670623B2 publication Critical patent/JP3670623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に木造家屋などの建築物の壁面や天井や床下に充填又は敷設される建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法に関するものである。
【0002】
【従来の技術】
従来、木造建築物等における断熱材として、ガラスを原料にしたグラスウールや岩石を原料にしたロックウールなどの無機質系断熱資材、及び石油を原料にした発泡ポリスチレンフォームやウレタンフォームなどの有機質系断熱資材が知られている。グラスウールやロックウールは生産性及び断熱性には優れているが、吸放湿性が十分でないため、期待した断熱性能を確保できずに、ダニやのみなどの病害虫の巣窟となる不具合があった。また、ポリスチレンフォームやウレタンフォームなどの石油系有機質資材では、石油資源の枯渇の観点から問題があり、その処理に際しては産業廃棄物として扱われるためにコストがかかる不具合がある。
【0003】
これらの不具合を解消するために、近年では人体への影響を考慮して、上述した無機質系断熱資材及び有機質系断熱資材の使用に代えて、天然素材の使用に対する関心が高まってきている。具体的に、例えば木材繊維を板状に形成したインシュレーションボードや、杉檜などの粉砕樹皮などを通気性収納容器に収納した断熱用建築資材が知られている(特開2001−49757)。
しかし、上述したインシュレーションボードは柔軟性に乏しく変形し難いために、畳床や断熱材などとして使用することには適しているけれども、通常の建築物における壁構造では柱や間柱の間隔の寸法誤差が大きいため、上記従来のインシュレーションボードをそのまま建築物の断熱材として使用すると、このボードの幅が柱間より大きいとボードを柱間に挿入できなかったり、或いはボードの幅が柱間より小さいとボードと柱との間に隙間が生じる場合があり、ボードの周縁を切り落したり、或いは隙間に樹脂発泡体を押込むなどの手直しを行う必要があった。
【0004】
これに対して、上述した特開2001−49757号公報に示される杉や檜の粉砕樹皮などを通気性収納容器に収納した断熱用建築資材は、柔軟性を有し変形可能であるため、建築物の壁構造における間柱と間柱の中間に容易に設置でき、天井構造であればその天井板の上に比較的容易に敷設することが期待できる。また、杉や檜の樹皮破砕片が微視的に見ると空気を中に含む細かい多数の部屋に分かれているという、その細胞組織構造ゆえに空気の対流を防ぎ、また熱伝導と熱輻射も防ぐため、高い断熱性を発揮するうえ、前述の組織構造ゆえに吸放湿性の点でも優れた効果を発揮する。
【0005】
【発明が解決しようとする課題】
しかし、上述した特開2001−49757号公報に示される建築資材は、樹皮破砕片のみを通気性収納容器に収納しているため、見掛比重が0.1〜0.3と比較的高い値を示し、天井構造に使用する場合にはその建築資材を厚く敷設することができない不具合があった。また、この建築資材では、通気性収納容器の中で粉砕樹皮が移動することにより変形するために、この建築資材を用いた壁構造における間柱とその断熱資材の間に隙間を生じやすく、天井構造では天井板が打ち付けられる天井野縁による凹凸が生じ、その凹凸の上に敷設するとその建築資材同士の合せ目に隙間を生じやすく二重に敷設するなどの工夫が必要で、その建築資材の重みによりその天井板がたわむ不具合がある。
【0006】
また、樹皮にはホルムアルデヒドガスやアンモニアガス等の有害ガスを吸収して固定する特長があるけれども、特開2001−49757号公報に示される建築資材において、樹皮に難燃性薬剤を塗布含浸させた場合には、樹皮の有害ガスを吸収して固定する本来的能力が低下する不具合がある。
更に、主原料が粉砕樹皮のみではそれぞれの間における隙間が少なく、その粉砕樹皮を通気性収納容器に収納した建築資材の見掛比重は比較的高く、断熱材としての性能を示す熱伝導率は見掛比重と相関性を有し、見掛比重が大きくなると熱伝導率も大きくなり、熱伝導率の低い断熱資材が得られない。
【0007】
本発明の目的は、可能な限り天然物をそのまま利用し、人体に対する有害なガスを吸収除去することにより、環境安全性を保持することができる建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法を提供することにある。
本発明の別の目的は、比較的軽量であって天井構造にも使用し得る建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法を提供することにある。
本発明の更に別の目的は、比較的断熱効果が高い建築物用難燃性断熱資材及びそれを用いた木造建築物の断熱層の形成方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、繊維状物を含む樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とが混合されて形成され、樹皮細片と嵩高植物片との合計を100重量%とするとき樹皮細片を50〜90重量%含みかつ見掛比重が0.05〜0.30である建築物用難燃性断熱資材である。
従来の建築資材では粉砕樹皮を主原料にしているため、従来の建築資材は見掛比重が比較的大きく重いのに対して、この請求項1に記載された建築物用難燃性断熱資材では、樹皮細片に嵩高植物片を混合するので、その見掛比重を低下させることが可能となり、天井構造における断熱資材として比較的厚く使用することも可能になる。また、粉砕樹皮のみからなる従来の建築資材に比較してその見掛比重が小さくなることから、その断熱性を向上させることもできる。
また、請求項1に係る建築物用難燃性断熱資材は、自然素材の植物や樹皮を使用しているため有害物質が室内を汚染してアトピー症等のアレルギー障害を生じるシックハウス症候群などを発症させることはなく、室内中のホルムアルデヒドや、アンモニアなどの悪臭を吸収しかつそれらを分解して悪臭の吸収作用を持続する効果が認められる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、樹皮細片が、針葉樹又は広葉樹からなる群より選ばれて形成された建築物用難燃性断熱資材である。
この請求項2に示された群から成る樹皮細片は本来的に難燃性を有し、その樹皮細片に混合する嵩高植物片には難燃性薬剤が含浸されているため難燃性を有する。このため、この請求項2に係る断熱資材も全体として難燃性を有し、難燃性を必要とする熱源近傍における木質系断熱資材として使用することができる。
【0010】
請求項3に係る発明は、請求項1又は2に係る発明であって、嵩高植物片を100重量%とするとき、その嵩高植物片に難燃性薬剤が10〜50重量%含浸された建築物用難燃性断熱資材である。
この請求項3に記載された建築物用難燃性断熱資材では、嵩高直物片の難燃性を確保することができる。薬剤が10重量%未満であると嵩高植物片に必要とされる難燃性が確保されず、50重量%を超えると嵩高植物片が本来的に有する吸放湿性及び断熱性が劣化する。また、嵩高植物片に難燃性薬剤を10〜30重量%含浸することが更に好ましい。
【0011】
請求項4に係る発明は、嵩高植物片が樹木における木質片又は草本類における茎片のいずれか一方又は双方から作られた建築物用難燃性断熱資材である。
この請求項4に記載された建築物用難燃性断熱資材では、嵩高直物片として木質片又は茎片を用いるので、難燃化薬剤を含侵させることによりその難燃性を確実に確保することができる。
【0012】
請求項5に係る発明は、請求項4に係る発明であって、木質片が杉及びヒバ及び檜からなる群より選ばれて形成された木質チップ又は木質繊維のいずれか一方又は双方からなる建築物用難燃性断熱資材である。
杉やヒバ、檜の木質部には無数の仮導管があり、この細胞壁の中は中空になっていて、その細胞組織が一つ一つの空気を含む部屋になっている。このため、この請求項5に記載された建築物用難燃性断熱資材では、これらから形成された木質チップ及び木質繊維を嵩高植物片として用いることにより、輻射熱が少なく、吸放湿性が良く、更に高い断熱性を発揮する建築物用難燃性断熱資材を得ることができる。
また、杉やヒバにはテルペン類やセスキテルペン類を多く含み、木材の香りの成分利用として木香を与えるとともに、炭素固定に重要な役割を果たす。これにより、これらから成る木質チップ及び木質繊維を嵩高植物片とする請求項5に係る建築物用難燃性断熱資材は、消臭作用、防ダニ作用、殺虫作用、防カビ・抗菌作用も生じさせる。
【0013】
請求項6に係る発明は、請求項5に係る発明であって、木質チップは平均厚さが50μm〜3mmであって平均面積が10〜150mm2であり、木質繊維は平均直径が10〜30μmであって平均長さが50μm〜50mmである建築物用難燃性断熱資材である。
この請求項6に記載された建築物用難燃性断熱資材では、見掛比重が0.05〜0.3である建築物用難燃性断熱資材を有効に得ることが可能になる。
請求項7に係る発明は、請求項4ないし6いずれかに係る発明であって、茎片が草本類の茎を破砕して得られた茎チップ又は茎繊維のいずれか一方又は双方からなる建築物用難燃性断熱資材である。
草本類の茎の細胞の中は中空になっており、この請求項7に記載された建築物用難燃性断熱資材では、これらから形成された茎チップ及び茎繊維を嵩高植物片として用いることにより、特に高い断熱性を発揮する建築物用難燃性断熱資材を得ることができる。
【0014】
請求項8に係る発明は、図1及び図2に示すように、木造建築物10の内装板材22と外装板材23の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層24を形成することを特徴とする木造建築物の断熱層の形成方法である。
請求項9に係る発明は、図1及び図3に示すように、木造建築物10の床下板12と床面の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層16を形成することを特徴とする木造建築物の断熱層の形成方法である。
請求項10に係る発明は、図1及び図4に示すように、木造建築物10の天井板32の上に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み厚さが10〜30cmの断熱層33を形成することを特徴とする木造建築物の断熱層の形成方法である。
【0015】
この請求項8ないし10に係る木造建築物の断熱層の形成方法は、請求項1ないし5いずれかに記載された建築物用難燃性断熱資材を吹込むことにより断熱層24,16,33を形成するので、その作業工程も早く、凹凸を有する部分であっても継ぎ目のない一体的な断熱層24,16,33を形成することができ、粉砕樹皮などを通気性収納容器に収納した従来の断熱用建築資材を用いた場合のような合せ目などの隙間も生じさせることはない。
なお、この明細書の「木質チップ」及び「木質繊維」における「木質」とは、樹皮の内側に存在する木質部、即ち、樹木における心材及び辺材のいずれか一方又は双方からなる木質部を言う。また、「木質チップ」並びに「茎チップ」及び「木質繊維」並びに「茎繊維」とは、木質部又は草本類における茎を粉砕又は破砕して得られたチップ状物及び繊維状物をいうものとする。
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明の建築物用難燃性断熱資材は、繊維状物を含む樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とが混合されて形成される。上記樹皮細片としては、木材工業の廃材や建築廃材から得ることができ、間伐や製材若しくはその製造時に発生する産業廃棄物を利用するため資源の有効利用が図られる。樹皮細片の原料として用いられる樹木にはスギ,ヒノキ,ヒバ,カラマツ,マツなどの針葉樹や、クリ,カバ,カシ,シイ,南洋材(ラワン等),ポプラ,ヤナギなどの広葉樹が挙げられ、これら全ての樹木の樹皮を単独で或いは2種以上の樹木の樹皮を混合して使用することができる。特に靭皮繊維(茎で形成層から外側に発達する繊維組織であり、師部繊維を含む。)を含む樹木の樹皮を用いることが好ましい。例えば靭皮繊維を含む杉の内樹皮及び外樹皮の化学的な組成は、木質部分に比較してセルロースが少なく、タンニン、リグニン、スベリンなど炭素を高い比率で含む成分に富むため、脱臭性を有する建築物用難燃性断熱資材を得ることが可能になる。
【0017】
嵩高植物片に含浸されるは難燃性薬剤としては、金属アンチモン、リン酸エステル、酸化アンモニウム、有機リン・窒素系高分子、塩化物及び臭化物等が挙げられる。そして、嵩高植物片における難燃性を確保するために、嵩高植物片を100重量%とするとき、嵩高植物片に難燃性薬剤が10〜50重量%含浸されることが好ましい。ここで、嵩高植物片は、樹木における木質片又は草本類における茎片の一方を単独で或いはそれらの双方を混合して使用することができる。この木質片及び茎片は、予め難燃性薬剤が含浸された樹木における木質部又は草本類における茎を粉砕又は破砕することにより得ることができる。ここで、その粉砕又は破砕に関してはリングフレーカーやハンマーミル等のチップ粉砕機が用いられる。
【0018】
木質片は、杉及びヒバ及び檜からなる群より選ばれて形成された木質チップ又は木質繊維のいずれか一方又は双方であることが好ましい。杉及びヒバ及び檜の木質部は大量に入手可能であり、抗菌性や脱臭効果に優れ、木香が他の樹木に比較して優れているからである。木質繊維にあっては、いわゆる従来のインシュレーションボード製造時に発生する破材を粉砕したものであっても良い。ここで、木質チップは平均厚さが50μm〜3mmであって平均面積が10〜150mm2であることが好ましく、木質繊維は平均直径が10〜30μmであって平均長さが50μm〜50mmであることが好ましい。
また、茎片として用いられる草本類には一年草類、多年草類が挙げられ、一年草類としてケナフ、ハーブ、ワラ、高りゃん等の茎が用いられる。このような草本類の茎を破砕して得られた茎チップ又は茎繊維のいずれか一方又は双方を茎片として用いることが好ましい。なお、この茎チップ又は茎繊維は、草本類における茎をディファイブレーター、ハンマーミル、リングフレーカー等を用いて解繊することにより得られる。
【0019】
そして、本発明の建築物用難燃性断熱資材は、上述した樹皮細片と嵩高植物片との合計を100重量%とするとき、樹皮細片を50〜90重量%、好ましくは60〜80重量%含み、かつ見掛比重が0.05〜0.30、好ましくは0.05〜0.15、更に好ましくは0.08〜0.10である。樹皮細片を上記50〜90重量%の範囲に限定したのは、90重量%を越えると見掛比重が増して断熱性能が低下するとともにその施工作業が困難になる。一方、樹皮細片が50重量%未満であると、その樹皮細片が有するホルムアルデヒド等の有害ガスを吸収して固定する性能が低下するとともに、燃焼時における発煙性が増加する。更に見掛比重を0.05〜0.30に限定したのは、0.05未満では所定の難燃性が得られず、0.30を超えると断熱性能が低下するからである。
【0020】
次に、このように構成された建築物用難燃性断熱資材を用いた木造建築物の断熱層の形成方法を説明する。
図1に一般木造建築物10の断面を示し、図2にその床断面の拡大図を示す。この床構造は、根太11と、その根太11の下側に取付けられた防湿シートが上面に形成された床下板12と、その根太11の上側に張られた床下地合板13と床仕上げ材14を備え、床下板12と床面の間の空間、即ち、床下板12と床下地合板13との間の空間には、上述した建築物用難燃性断熱資材が吹込み充填されて断熱層16が形成される。断熱資材の吹込み充填は根太11の下側に床下板12が取付けられた段階で行われ、その吹込み厚さは根太11の高さ方向と略均一になるように行われる。その後、根太11の上側に床下地合板13と床仕上げ材14を張ることにより、床下板12と床面の間の空間に上述した建築物用難燃性断熱資材が吹込み充填された断熱層16が形成される。
【0021】
図3は図1における一般木造建築物10の壁断面の拡大図を示す。この壁構造は、木造建築物における間柱21の室内側に張られた内装板材22と、間柱21の室外側に張られた外装板材23を備え、内装板材22と外装板材23の間の空間に上述した建築物用難燃性断熱資材を吹込み充填することにより断熱層24が形成される。断熱資材の吹込み充填は、間柱21に内装板材22と外装板材23が張られた状態でその間の隙間の上端開口部から行われる。この場合、内装板材22と外装板材23が比較的高い場合には、内装板材22と外装板材23を2段、3段と分けて下側から間柱21に打ち付けて、その分けられた内装板材22と外装板材23が間柱21に打ち付けられる度に断熱資材を吹込んでいくことが好ましい。なお、図3における壁構造は外装板材23に幅方向に所定の間隔をあけて複数の木質棒26が互いに平行に鉛直方向に打ち付けられ、その複数の木質棒26に外壁仕上げ材27が打ち付けられ、外装板材23と外壁仕上げ材27との間に通気層が形成される。
【0022】
図4は図1における一般木造建築物10の天井の拡大図を示す。この天井構造は一般木造建築物10に組まれた天井野縁31の下側に天井板32を打ち付けることにより構成され、天井野縁31に天井板32を張り終えてから、その天井板32の上に上述した建築物用難燃性断熱資材が吹込まれて厚さが10〜30cmの断熱層33が形成される。
このような断熱層16,24,33の形成方法では、木造建築物10の床や壁の空隙に難燃性断熱資材を直接詰め込むため、断熱性能を低下させる隙間ができることはない。また、吹込み充填する断熱資材は難燃性薬剤による処理を行った嵩高植物片及び本来的に難燃性を有する樹皮細片を混合したものであるので本来的に難燃性を有し、熱源になる照明器具や台所の周辺にも使用することが可能になる。
【0023】
【発明の効果】
以上述べたように、本発明の建築物用難燃性断熱資材によれば、樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とを混合して形成するので、その見掛比重を0.05〜0.30に低下させることが可能となり、粉砕樹皮のみからなる断熱資材に比較してその断熱性を向上させることができる。一方、本来的に難燃性を有する樹皮細片に混合する嵩高植物片は難燃性薬剤が含浸されるので、全体として難燃性を有する建築物用難燃性断熱資材を得ることができる。ここで、嵩高植物片に難燃性薬剤を10〜50重量%含浸すれば、その難燃性を確実に確保することができ、嵩高植物片が樹木における木質片又は草本類における茎片のいずれか一方又は双方から作られたものであれば、見掛比重が0.05〜0.30である建築物用難燃性断熱資材を有効に得ることが可能になる。
【0024】
また、本発明の建築物用難燃性断熱資材を用いた木造建築物の断熱層の形成方法では、木造建築物の内装板材と外装板材の間の空間、床下板と床面の間の空間、又は天井板の上に建築物用難燃性断熱資材を吹込むことにより断熱層を形成するので、その作業工程も早く、凹凸を有する部分であっても継ぎ目のない一体的な断熱層を形成することができ、袋詰め断熱材のような合せ目などの隙間も生じさせない。
【図面の簡単な説明】
【図1】本発明実施形態の木質建築物を示す断面図。
【図2】木造建築物の床構造を示す図1のA部拡大断面図。
【図3】木造建築物の壁構造を示す図1のB−B線断面図。
【図4】木質建築物の天井構造を示す図1のC部拡大断面図。
【符号の説明】
10 木造建築物
12 床下板
22 内装板材
23 外装板材
32 天井板
16,24,33 断熱層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flame-retardant heat insulating material for buildings mainly filled or laid under the wall, ceiling, or floor of a building such as a wooden house, and a method for forming a heat insulating layer of a wooden building using the same. .
[0002]
[Prior art]
Conventionally, as a heat insulating material in wooden buildings, etc., inorganic heat insulating materials such as glass wool made from glass and rock wool made from rock, and organic heat insulating materials such as expanded polystyrene foam and urethane foam made from petroleum. It has been known. Glass wool and rock wool are excellent in productivity and heat insulation, but have insufficient moisture absorption and release properties, so that the expected heat insulation performance cannot be ensured, and there is a defect that becomes a nest of pests such as ticks and mites. In addition, petroleum-based organic materials such as polystyrene foam and urethane foam have a problem from the viewpoint of depletion of petroleum resources, and there is a problem that costs are increased because they are treated as industrial waste during the treatment.
[0003]
In order to solve these problems, in recent years, in consideration of the influence on the human body, there has been an increasing interest in the use of natural materials in place of the above-described use of inorganic heat insulating materials and organic heat insulating materials. Specifically, for example, an insulation board in which wood fibers are formed in a plate shape, and a heat insulating building material in which pulverized bark such as cedar firewood is stored in a breathable storage container are known (Japanese Patent Laid-Open No. 2001-49757).
However, because the insulation board described above is inflexible and difficult to deform, it is suitable for use as a tatami floor or a heat insulating material. Therefore, if the conventional insulation board is used as it is as a heat insulating material for a building, if the width of the board is larger than between the columns, the board cannot be inserted between the columns, or the width of the board is smaller than between the columns. There is a case where a gap is generated between the board and the pillar, and it is necessary to cut off the peripheral edge of the board or to correct the resin foam into the gap.
[0004]
On the other hand, since the building material for heat insulation in which the crushed bark of cedar and straw shown in the above-mentioned JP-A-2001-49757 is stored in a breathable storage container is flexible and deformable, It can be easily installed between the studs in the wall structure of the object, and it can be expected to lay on the ceiling plate relatively easily if it is a ceiling structure. In addition, cedar and birch bark fragments are microscopically divided into a large number of small rooms containing air, which prevents air convection, and also prevents heat conduction and radiation. Therefore, in addition to exhibiting high heat insulation properties, it exhibits excellent effects in terms of moisture absorption and desorption properties due to the above-described structure.
[0005]
[Problems to be solved by the invention]
However, since the building material disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2001-49757 stores only bark fragments in a breathable storage container, the apparent specific gravity is a relatively high value of 0.1 to 0.3. When used for ceiling structures, there was a problem that the building materials could not be laid thick. Further, in this building material, since the crushed bark moves in the breathable storage container, it is deformed, so that a gap is easily formed between the stud in the wall structure using this building material and the heat insulating material, and the ceiling structure. In this case, unevenness is caused by the ceiling edge where the ceiling board is struck, and if it is laid on the unevenness, it is necessary to devise a method such as double laying to easily create a gap at the joint between the building materials. There is a problem that the ceiling board is bent.
[0006]
Although the bark has the feature of absorbing and fixing harmful gases such as formaldehyde gas and ammonia gas, in the building materials disclosed in JP 2001-49757 A, the bark is impregnated with a flame retardant agent. In some cases, the inherent ability to absorb and fix the harmful gases in the bark is reduced.
Furthermore, if the main raw material is only crushed bark, there are few gaps between them, the apparent specific gravity of the building material in which the crushed bark is stored in a breathable storage container is relatively high, and the thermal conductivity indicating the performance as a heat insulating material is There is a correlation with the apparent specific gravity. When the apparent specific gravity increases, the thermal conductivity also increases, and a heat insulating material with low thermal conductivity cannot be obtained.
[0007]
The object of the present invention is to use a natural product as it is as much as possible and absorb and remove harmful gases for the human body so as to maintain environmental safety and use a flame-retardant heat insulating material for buildings. It is providing the formation method of the heat insulation layer of a wooden building.
Another object of the present invention is to provide a flame-retardant heat insulating material for buildings that is relatively lightweight and can be used for a ceiling structure, and a method for forming a heat insulating layer of a wooden building using the same.
Still another object of the present invention is to provide a flame-retardant heat insulating material for buildings having a relatively high heat insulating effect and a method for forming a heat insulating layer of a wooden building using the same.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is formed by mixing a bark strip containing a fibrous material and a bulky plant piece having a specific gravity of 0.2 to 0.5 impregnated with a flame retardant agent, It is a flame-retardant heat insulating material for buildings containing 50 to 90% by weight of bark strips and an apparent specific gravity of 0.05 to 0.30 when the total amount of bulky plant pieces is 100% by weight.
In conventional building materials, pulverized bark is the main raw material, so conventional building materials have a relatively large apparent specific gravity, whereas in the flame-retardant heat insulating material for buildings described in claim 1, Since the bulky plant pieces are mixed with the bark pieces, the apparent specific gravity can be reduced, and it can be used relatively thick as a heat insulating material in the ceiling structure. Moreover, since the apparent specific gravity becomes small compared with the conventional building material which consists only of a crushed bark, the heat insulation can also be improved.
In addition, the flame-retardant thermal insulation material for buildings according to claim 1 uses sick plants and bark, so that harmful substances contaminate the room and cause sick house syndrome that causes allergic disorders such as atopy. The effect of absorbing malodor such as formaldehyde and ammonia in the room and decomposing them to maintain the malodor absorption action is recognized.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the bark strip is a flame-retardant heat insulating material for buildings formed by being selected from the group consisting of conifers or hardwoods.
The bark strip consisting of the group shown in claim 2 is inherently flame retardant, and the bulky plant piece mixed with the bark strip is impregnated with a flame retardant agent so that it is flame retardant. Have For this reason, the heat insulation material which concerns on this Claim 2 also has a flame retardance as a whole, and can be used as a wood type heat insulation material in the heat source vicinity which requires a flame retardance.
[0010]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein when the bulky plant piece is 100% by weight, the bulky plant piece is impregnated with 10 to 50% by weight of a flame retardant agent. It is a flame retardant insulation material.
In the flame-retardant heat insulating material for buildings described in claim 3, it is possible to ensure the flame retardancy of the bulky straight piece. If the amount of the chemical is less than 10% by weight, the flame retardancy required for the bulky plant piece is not ensured. More preferably, the bulky plant piece is impregnated with 10 to 30% by weight of a flame retardant agent.
[0011]
The invention which concerns on Claim 4 is a flame-retardant heat insulating material for buildings in which the bulky plant piece was made from either or both of the wood piece in the tree and the stem piece in the herbaceous species.
In the flame-retardant heat insulating material for buildings described in claim 4, since the wooden piece or the stem piece is used as the bulky straight piece, the flame retardancy is surely ensured by impregnating the flame-retardant agent. can do.
[0012]
The invention according to claim 5 is the invention according to claim 4, wherein the wooden piece is made of one or both of a wood chip and a wood fiber formed by being selected from the group consisting of cedar, hiba and cocoon. It is a flame retardant insulation material.
There are innumerable temporary conduits in the woody parts of cedar, hiba and oak, and the cell walls are hollow, and the cellular tissue is a room containing air. For this reason, in the flame-retardant heat insulating material for buildings described in claim 5, by using the wood chips and wood fibers formed therefrom as bulky plant pieces, there is little radiant heat, and good moisture absorption and desorption. Furthermore, the flame-retardant heat insulation material for buildings which exhibits high heat insulation can be obtained.
Cedar and hiba contain a large amount of terpenes and sesquiterpenes, giving wood incense as a scent component of wood and playing an important role in carbon fixation. Thereby, the flame-retardant heat insulating material for buildings according to claim 5 in which the wood chip and the wood fiber made of these are bulky plant pieces also produces a deodorizing action, an acaricide action, an insecticidal action, an antifungal action and an antibacterial action. Let
[0013]
The invention according to claim 6 is the invention according to claim 5, wherein the wood chip has an average thickness of 50 μm to 3 mm and an average area of 10 to 150 mm 2 , and the wood fiber has an average diameter of 10 to 30 μm. And it is a flame-retardant heat insulating material for buildings having an average length of 50 μm to 50 mm.
In the flame-retardant heat insulating material for buildings described in claim 6, it is possible to effectively obtain the flame-retardant heat insulating material for buildings having an apparent specific gravity of 0.05 to 0.3.
The invention according to claim 7 is the invention according to any one of claims 4 to 6, wherein the stem piece is made of either one or both of a stem chip and a stem fiber obtained by crushing a herbaceous stem. It is a flame retardant insulation material.
The herbaceous stem cells are hollow, and in the flame-retardant heat insulating material for buildings described in claim 7, stem chips and stem fibers formed therefrom are used as bulky plant pieces. Thereby, the flame-retardant heat insulating material for buildings which exhibits especially high heat insulation can be obtained.
[0014]
As for the invention which concerns on Claim 8, as shown in FIG.1 and FIG.2, the difficulty for buildings described in any one of Claim 1 thru | or 7 in the space between the interior board material 22 and the exterior board | plate material 23 of the wooden building 10 is shown. A method for forming a heat insulation layer of a wooden building, wherein the heat insulation layer 24 is formed by blowing and filling a flammable heat insulation material.
The invention according to claim 9 is the flame retardant for building according to any one of claims 1 to 7 in the space between the under floor plate 12 and the floor surface of the wooden building 10 as shown in FIGS. 1 and 3. It is a formation method of the heat insulation layer of the wooden building characterized by forming the heat insulation layer 16 by blowing and filling a heat-insulating material.
As shown in FIGS. 1 and 4, the invention according to claim 10 blows the flame-retardant heat insulating material for buildings according to any one of claims 1 to 7 on the ceiling plate 32 of the wooden building 10. It is a formation method of the heat insulation layer of the wooden building characterized by forming the heat insulation layer 33 with a penetration thickness of 10-30 cm.
[0015]
In the method for forming a heat insulating layer of a wooden building according to claims 8 to 10, the heat insulating layers 24, 16, 33 are formed by blowing the flame retardant heat insulating material for buildings according to any one of claims 1 to 5. As a result, the work process is fast, and it is possible to form seamless heat-insulating layers 24, 16, and 33 that are seamless even in uneven portions, and the crushed bark and the like are stored in a breathable storage container. There is no gap such as a seam as in the case of using conventional heat insulating building materials.
In this specification, “wood” in “wood chip” and “wood fiber” refers to a wood part existing inside the bark, that is, a wood part composed of one or both of a heartwood and a sapwood in the tree. “Wood chips” and “stem chips” and “wood fibers” and “stem fibers” refer to chips and fibers obtained by crushing or crushing stems in woody parts or herbs. To do.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
The flame-retardant heat insulating material for buildings of the present invention is formed by mixing bark strips containing fibrous materials and bulky plant pieces having a specific gravity of 0.2 to 0.5 impregnated with a flame-retardant agent. The The bark strips can be obtained from wood industry wastes and construction wastes, and the resources can be effectively used because they use thinning, lumbering, or industrial waste generated during the production. Trees used as raw material for bark strips include conifers such as cedar, cypress, hiba, larch, and pine, and broad-leaved trees such as chestnuts, hippopotamus, oak, shii, southern wood (such as lauan), poplar, willow The bark of all these trees can be used alone or in a mixture of two or more tree barks. In particular, it is preferable to use a bark of a tree containing bast fibers (a fiber structure that develops outward from the formation layer with stems and includes phloem fibers). For example, the chemical composition of cedar inner bark and outer bark containing bast fibers is less cellulose than the wood part and rich in components containing a high proportion of carbon such as tannin, lignin, and suberin, so it has a deodorizing property. It becomes possible to obtain the flame-retardant heat insulating material for buildings which has.
[0017]
Examples of the flame retardant agent impregnated in the bulky plant piece include metal antimony, phosphate ester, ammonium oxide, organic phosphorus / nitrogen polymer, chloride and bromide. And in order to ensure the flame retardance in a bulky plant piece, when a bulky plant piece shall be 100 weight%, it is preferable that a flame retardant chemical | medical agent is impregnated with 10-50 weight% in a bulky plant piece. Here, the bulky plant piece can be used either alone or in a mixture of woody pieces in trees or stem pieces in herbs. This wood piece and stem piece can be obtained by crushing or crushing a wood part in a tree impregnated with a flame-retardant agent in advance or a stem in a herbaceous plant. Here, for the crushing or crushing, a chip crusher such as a ring flaker or a hammer mill is used.
[0018]
It is preferable that the wooden piece is one or both of a wooden chip and a wooden fiber selected from the group consisting of cedar, hiba and cocoon. This is because the woody parts of cedar, hiba and oak are available in large quantities, are excellent in antibacterial properties and deodorizing effects, and wood incense is superior to other trees. In the case of a wood fiber, it may be a material obtained by pulverizing a broken material generated at the time of manufacturing a so-called conventional insulation board. Here, it is preferable that the wood chip has an average thickness of 50 μm to 3 mm and an average area of 10 to 150 mm 2 , and the wood fiber has an average diameter of 10 to 30 μm and an average length of 50 μm to 50 mm. It is preferable.
Moreover, annual herbs and perennials are mentioned as herbs used as stem pieces, and stalks such as kenaf, herb, straw, and high nymph are used as annual grasses. It is preferable to use one or both of stem chips and stem fibers obtained by crushing such herbaceous stems as stem pieces. This stem chip or stem fiber can be obtained by defibrating a stem in herbs using a defibrator, a hammer mill, a ring flaker, or the like.
[0019]
And the flame-retardant heat insulating material for buildings of the present invention is 50 to 90% by weight, preferably 60 to 80%, when the total of the above-mentioned bark pieces and bulky plant pieces is 100% by weight. The apparent specific gravity is 0.05 to 0.30, preferably 0.05 to 0.15, and more preferably 0.08 to 0.10. The reason why the bark pieces are limited to the above-mentioned range of 50 to 90% by weight exceeds 90% by weight. On the other hand, when the bark pieces are less than 50% by weight, the ability to absorb and fix harmful gases such as formaldehyde of the bark pieces is lowered, and smoke generation during combustion is increased. Furthermore, the reason why the apparent specific gravity is limited to 0.05 to 0.30 is that if it is less than 0.05, the predetermined flame retardancy cannot be obtained, and if it exceeds 0.30, the heat insulating performance is deteriorated.
[0020]
Next, the formation method of the heat insulation layer of the wooden building using the flame-retardant heat insulating material for buildings comprised in this way is demonstrated.
FIG. 1 shows a cross section of a general wooden building 10, and FIG. 2 shows an enlarged view of the floor cross section. The floor structure includes a joist 11, an underfloor board 12 on which a moisture-proof sheet attached to the lower side of the joist 11 is formed, an underfloor plywood 13 and a floor finishing material 14 stretched on the upper side of the joist 11. In the space between the under floor board 12 and the floor surface, that is, the space between the under floor board 12 and the floor base plywood 13, the above-mentioned flame retardant heat insulating material for buildings is blown and filled to form a heat insulating layer. 16 is formed. The heat-insulating material is blown and filled when the underfloor plate 12 is attached to the lower side of the joists 11, and the blowing thickness is made to be substantially uniform with the height direction of the joists 11. After that, the floor base plywood 13 and the floor finishing material 14 are stretched on the upper side of the joists 11, so that the above-described flame-retardant heat insulating material for buildings is blown and filled into the space between the under floor board 12 and the floor surface. 16 is formed.
[0021]
FIG. 3 shows an enlarged view of the wall section of the general wooden building 10 in FIG. This wall structure includes an interior plate 22 stretched on the indoor side of the stud 21 in the wooden building, and an exterior plate 23 stretched on the outdoor side of the stud 21, in a space between the interior plate 22 and the exterior plate 23. The heat insulation layer 24 is formed by blowing and filling the flame-retardant heat insulating material for buildings described above. Insulating material is blown and filled from the upper end opening of the gap between the interior plate member 22 and the exterior plate member 23 in the state where the inter-column 21 is stretched. In this case, when the interior board material 22 and the exterior board material 23 are relatively high, the interior board material 22 and the exterior board material 23 are divided into two or three stages and are struck to the stud 21 from the lower side, and the divided interior board material 22 is divided. It is preferable that the heat insulating material be blown in each time the exterior plate member 23 is struck against the spacer 21. In the wall structure in FIG. 3, a plurality of wooden bars 26 are driven in the vertical direction in parallel to each other at a predetermined interval in the width direction on the exterior plate material 23, and an outer wall finishing material 27 is driven on the plurality of wooden bars 26. A ventilation layer is formed between the exterior plate member 23 and the outer wall finishing material 27.
[0022]
FIG. 4 shows an enlarged view of the ceiling of the general wooden building 10 in FIG. This ceiling structure is configured by hitting a ceiling board 32 on the lower side of the ceiling edge 31 built in the general wooden building 10, and after the ceiling board 32 has been stretched on the ceiling edge 31, The above-described flame-retardant heat insulating material for buildings is blown onto the heat insulating layer 33 having a thickness of 10 to 30 cm.
In such a method of forming the heat insulating layers 16, 24, and 33, since the flame-retardant heat insulating material is directly packed into the floor or wall gap of the wooden building 10, there is no gap that reduces the heat insulating performance. In addition, the heat-insulating material to be blown and filled is inherently flame retardant because it is a mixture of bulky plant pieces that have been treated with flame retardant chemicals and bark strips that are inherently flame retardant, It can also be used around lighting fixtures and kitchens as heat sources.
[0023]
【The invention's effect】
As described above, according to the flame-retardant heat insulating material for buildings of the present invention, a bark strip and a bulky plant fragment having a specific gravity of 0.2 to 0.5 impregnated with a flame-retardant agent are mixed. Therefore, the apparent specific gravity can be reduced to 0.05 to 0.30, and the heat insulating property can be improved as compared with a heat insulating material made only of crushed bark. On the other hand, a bulky plant piece that is inherently mixed with a flame-retardant bark piece is impregnated with a flame-retardant agent, so that it is possible to obtain a flame-retardant insulation material for buildings that has flame resistance as a whole. . Here, if the bulky plant piece is impregnated with 10 to 50% by weight of a flame retardant agent, the flame retardancy can be reliably ensured, and the bulky plant piece is either a wood piece in a tree or a stem piece in a herbaceous plant. If it is made from either or both, it becomes possible to effectively obtain a flame-retardant heat insulating material for buildings having an apparent specific gravity of 0.05 to 0.30.
[0024]
Further, in the method for forming a heat insulating layer of a wooden building using the flame-retardant heat insulating material for buildings of the present invention, a space between the interior board material and the exterior board material of the wooden building, a space between the under floor board and the floor surface. Or, because the heat insulation layer is formed by blowing a flame retardant insulation material for buildings on the ceiling board, the work process is also fast, and an integral heat insulation layer that is seamless even if it has uneven parts It can be formed and does not cause gaps such as seams like bag insulation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a wooden building according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a part A in FIG. 1 showing a floor structure of a wooden building.
3 is a cross-sectional view taken along the line BB of FIG. 1 showing the wall structure of the wooden building.
4 is an enlarged cross-sectional view of a portion C in FIG. 1 showing a ceiling structure of a wooden building.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Wooden building 12 Underfloor board 22 Interior board material 23 Exterior board material 32 Ceiling board 16,24,33 Thermal insulation layer

Claims (10)

繊維状物を含む樹皮細片と、難燃性薬剤が含浸された比重0.2〜0.5の嵩高植物片とが混合されて形成され、前記樹皮細片と前記嵩高植物片との合計を100重量%とするとき前記樹皮細片を50〜90重量%含みかつ見掛比重が0.05〜0.30である建築物用難燃性断熱資材。A bark strip containing a fibrous material and a bulky plant piece having a specific gravity of 0.2 to 0.5 impregnated with a flame retardant agent are mixed and formed, and the total of the bark strip and the bulky plant piece A flame-retardant heat insulating material for buildings which contains 50 to 90% by weight of the bark strips and has an apparent specific gravity of 0.05 to 0.30 when the content is 100% by weight. 樹皮細片が、針葉樹及び広葉樹からなる群より選ばれて形成された請求項1記載の建築物用難燃性断熱資材。The flame-retardant heat insulating material for buildings according to claim 1, wherein the bark pieces are selected from the group consisting of coniferous trees and hardwoods. 嵩高植物片を100重量%とするとき、前記嵩高植物片に難燃性薬剤が10〜50重量%含浸された請求項1又は2記載の建築物用難燃性断熱資材。The flame-retardant heat insulating material for buildings according to claim 1 or 2, wherein the bulky plant piece is impregnated with 10 to 50% by weight of a flame-retardant agent when the bulky plant piece is 100% by weight. 嵩高植物片が樹木における木質片又は草本類における茎片のいずれか一方又は双方から作られた請求項1ないし3いずれか記載の建築物用難燃性断熱資材。The flame-retardant heat insulating material for buildings according to any one of claims 1 to 3, wherein the bulky plant piece is made from one or both of a woody piece in a tree and a stem piece in a herbaceous plant. 木質片が杉及びヒバ及び檜からなる群より選ばれて形成された木質チップ又は木質繊維のいずれか一方又は双方からなる請求項4記載の建築物用難燃性断熱資材。The flame-retardant heat insulating material for buildings according to claim 4, wherein the wooden piece is composed of one or both of a wood chip and a wood fiber formed by being selected from the group consisting of cedar, hiba and straw. 木質チップは平均厚さが50μm〜3mmであって平均面積が10〜150mm2であり、木質繊維は平均直径が10〜30μmであって平均長さが50μm〜50mmである請求項5記載の建築物用難燃性断熱資材。6. The building according to claim 5, wherein the wood chip has an average thickness of 50 μm to 3 mm and an average area of 10 to 150 mm 2 , and the wood fiber has an average diameter of 10 to 30 μm and an average length of 50 μm to 50 mm. Flame retardant thermal insulation material. 茎片が草本類の茎を破砕して得られた茎チップ又は茎繊維のいずれか一方又は双方からなる請求項4ないし6いずれか記載の建築物用難燃性断熱資材。The flame-retardant heat insulating material for buildings according to any one of claims 4 to 6, wherein the stem piece comprises one or both of a stem chip and a stem fiber obtained by crushing a herbaceous stem. 木造建築物(10)の内装板材(22)と外装板材(23)の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層(24)を形成することを特徴とする木造建築物の断熱層の形成方法。Heat insulation by blowing and filling the space between the interior board (22) and the exterior board (23) of the wooden building (10) with the flame retardant insulation material for buildings according to any one of claims 1 to 7. A method for forming a heat insulating layer of a wooden building, characterized in that a layer (24) is formed. 木造建築物(10)の床下板(12)と床面の間の空間に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み充填することにより断熱層(16)を形成することを特徴とする木造建築物の断熱層の形成方法。Insulating layer (16) by injecting and filling the space between the under floor plate (12) of the wooden building (10) and the floor surface with the flame retardant heat insulating material for building according to any one of claims 1 to 7. ) Is formed. A method for forming a heat insulation layer of a wooden building. 木造建築物(10)の天井板(32)の上に請求項1ないし7いずれかに記載された建築物用難燃性断熱資材を吹込み厚さが10〜30cmの断熱層(33)を形成することを特徴とする木造建築物の断熱層の形成方法。Blowing the flame-retardant insulation material for buildings according to any one of claims 1 to 7 on the ceiling plate (32) of the wooden building (10), the insulation layer (33) having a thickness of 10 to 30 cm is formed. A method for forming a heat insulating layer of a wooden building, characterized by comprising:
JP2002163320A 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same Expired - Fee Related JP3670623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163320A JP3670623B2 (en) 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163320A JP3670623B2 (en) 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same

Publications (2)

Publication Number Publication Date
JP2004011188A JP2004011188A (en) 2004-01-15
JP3670623B2 true JP3670623B2 (en) 2005-07-13

Family

ID=30431836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163320A Expired - Fee Related JP3670623B2 (en) 2002-06-04 2002-06-04 Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same

Country Status (1)

Country Link
JP (1) JP3670623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175473A1 (en) * 2013-04-22 2014-10-30 Yoon In Hak Ecological building and insulation structural body thereof and method for assembling insulation structural body

Also Published As

Publication number Publication date
JP2004011188A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
Reinprecht Wood deterioration, protection and maintenance
Blaß et al. Timber engineering-principles for design
Ramage et al. The wood from the trees: The use of timber in construction
Asdrubali et al. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications
Taghiyari Fire-retarding properties of nano-silver in solid woods
Tondi et al. Comparison of disodium octaborate tetrahydrate‐based and tannin‐boron‐based formulations as fire retardant for wood structures
Elvira-León et al. Epsomite as flame retardant treatment for wood: Preliminary study
Asdrubali 19th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007
Rejeesh et al. Methods and materials for reducing flammability behaviour of coir fibre based composite boards: a review
Giannotas et al. Tree bark utilization in insulating bio‐aggregates: a review
Sandak et al. Biomaterials for building skins
JP3670623B2 (en) Flame-retardant heat insulating material for buildings and method for forming heat insulating layer of wooden building using the same
JP5170512B2 (en) Biodegradable heat insulating material, molded body thereof, production method thereof, plant growth material and fertilizer material using the production method
JP4308877B1 (en) Method for wet-blowing organic fiber-based heat insulating material, building component constructed by the method, and method for manufacturing organic fiber-based heat insulating material
JP2006214245A (en) On-ceiling-placed coal, ceiling structure and om-ceiling-placed noise insulating humidity control material
DE102019107982A1 (en) Flame, fire and glow-protected natural fiber insulation materials and their production and use, in particular for natural fiber insulation products
WO1996037668A1 (en) Air barrier and use thereof in roofs
Fouladi et al. Enhancement of coir fiber fire retardant property
Slováčková Thermal conductivity of spruce, beech and oak heartwood degraded with Trametes versicolor L. Lloyd
DE4339849A1 (en) Environmentally friendly, heat insulating building board suitable as plaster base
EP2360326A1 (en) Construction element for constructing the external shell of buildings
WO2018160112A1 (en) Structural element and method for its manufacture
JPH1037346A (en) Incombustible composite body
JP2002079506A (en) Fire retardant bark board
JP3768498B2 (en) Underfloor humidity control material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees