JP2004011035A - Surface-electroconductive fabric having flexibility and softness - Google Patents

Surface-electroconductive fabric having flexibility and softness Download PDF

Info

Publication number
JP2004011035A
JP2004011035A JP2002162762A JP2002162762A JP2004011035A JP 2004011035 A JP2004011035 A JP 2004011035A JP 2002162762 A JP2002162762 A JP 2002162762A JP 2002162762 A JP2002162762 A JP 2002162762A JP 2004011035 A JP2004011035 A JP 2004011035A
Authority
JP
Japan
Prior art keywords
flexibility
cloth
weft
warp
surface conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162762A
Other languages
Japanese (ja)
Inventor
Susumu Ogura
小椋 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2002162762A priority Critical patent/JP2004011035A/en
Publication of JP2004011035A publication Critical patent/JP2004011035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-electroconductive fabric having both excellent flexibility and excellent softness. <P>SOLUTION: This surface-electroconductive fabric in which a metal film layer formed by an electroless metal plating method is disposed on at least one surface of a base fabric comprising a woven fabric and which has flexibility and softness is characterized in that the fabric is a woven fabric having a warp total fineness of 55 to 280 dtex, a weft total fineness of 55 to 280 dtex, a warp-woven density of 30 to 150 warps/2.54 cm, a weft-woven density of 30 to 150 wefts/2.54 cm and a warp or weft flexing rate of 80 to 250 flexes/10 cm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の乗員検知センサー用布帛として好適な、優れた耐屈曲性と柔軟性を兼ね備えた耐屈曲性と柔軟性を有する表面導電性布帛に関するものである。
【0002】
【従来の技術】
近年、導電性を有する布帛(導電布)が、電極間に電界を発生させ、この電界の変動から人や物体の存在を検知する乗員検知センサーとして使用されている。例えば特許第1939785号や特許第2541990号などでは、金属メッキを施した織物や、金属メッキを施した糸で形成された織物からなる導電布を乗員検知センサーとしてシートクッション部に用いる方法が提案されている。
【0003】
しかしながら、単に基布に金属メッキを施した導電布では、乗員の立ち座りの繰り返しにより、導電布に屈曲疲労や揉み疲労が生じ、導電布表面の金属メッキ層、特に布帛の糸交差部において金属メッキ層のクラックが生じ、導電性が著しく低下するという問題があった。このような問題は、特に、導電布が車のシートの電極として使用された場合、エアバッグの誤動作を招き、人体の安全に影響を及ぼす恐れがあり、極めて深刻であった。
【0004】
かかる屈曲疲労を低減させるために、単に金属メッキ層の厚みを厚くしても、金メッキ層が基布上に積みあがるだけで充分な耐屈曲効果は得られていない。
【0005】
また、屈曲疲労を低減させる方法として、単に基布の密度を下げて基布内部まで金属メッキを施す方法もあげられるが、かかる方法では、耐屈曲性は向上するものの、風合いが硬くなり、柔軟性が求められるフレキシブルセンサー等の電極材の用途には適さないという問題があった。
【0006】
以上のような理由から、優れた耐屈曲性と柔軟性を兼備した表面導電性布帛の提案が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明は、前記従来技術の問題を解消するためになされたものであり、その課題は、優れた耐屈曲性と柔軟性を兼ね備えた、自動車等の乗員検知センサー用布帛として好適な、耐屈曲性と柔軟性を有する表面導電性布帛を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記の課題を達成するため鋭意検討した結果、特定の織密度及び経糸と緯糸との交錯点の個数を有する織物からなる基布の表面に、無電解金属メッキを施すことにより、基布の内部まで適度に金属メッキが施され、所望の耐屈曲性と柔軟性を有する表面導電性布帛が得られることを知り、さらに鋭意検討を重ねることにより、本発明を完成するに至った。
【0009】
かくして、本発明によれば、「織物からなる基布の少なくとも1表面に無電解金属メッキによる金属皮膜層が設けられた表面導電性布帛であって、前記の織物が、経糸の総繊度55〜280dtex、緯糸の総繊度55〜280dtex、経糸の織密度30〜150本/2.54cm、緯糸の織密度30〜150本/2.54cm、経糸又は緯糸の屈曲数80〜250回/10cmの織物であることを特徴とする耐屈曲性と柔軟性を有する表面導電性布帛」が提供される。
【0010】
その際、基布のカバーファクターfとしては400〜900の範囲が好ましく、該基布の厚みdとして0.15〜0.35mmの範囲が好ましい。特に、基布のカバーファクターfと基布の厚みd(mm)との比f/dが1500〜3000の範囲であると、より優れた耐屈曲性と柔軟性が得られ好ましい。
【0011】
また、表面導電性布帛の両表面に、平均厚さが5〜30μmの樹脂層が形成され、かつ金属皮膜層の少なくとも一部が、該樹脂層の外に露出していると、表面導電性を失うことなく、金属皮膜層を保護することができ、好ましい。
【0012】
本発明の表面導電性布帛において、屈曲性としては、スコット摩耗試験5000回後において表面導電性布帛の表面導電抵抗が600Ω/10cm以下であることが好ましい。また、柔軟性としては、柔軟度で経方向、緯方向ともに70cm以下であることが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
まず、本発明の表面導電性布帛は、織物からなる基布の少なくとも1表面に無電解金属メッキによる金属皮膜層が設けられたものである。
【0014】
前記の基布(織物)を構成する繊維材料は特に限定されるものではなく、綿、麻、絹等の天然繊維、レーヨンなどの再生繊維、アセテートなどの半合成繊維、さらには、ポリエチレンテレフタレートやポリ乳酸に代表されるポリエステル繊維、ポリエーテルエステル繊維、アクリル繊維、ナイロン繊維、アラミド繊維、ポリベンズイミダゾール繊維、ポリテトラフルオロエチレン繊維、ポリベンゾオキサゾール繊維、炭素繊維、フェノール繊維などの合成繊維が例示される。これらの繊維は1種でもよいし、複数の組み合わせであってもよい。使用する繊維材料の種類により、高強度、耐摩耗性、難燃性、易リサイクル性、生分解性等の機能を本発明の表面導電性布帛に付加することも可能になる。
【0015】
これらの繊維は長繊維や短繊維、または、それらの複合繊維の加工糸、紡績糸等の糸条となし、これらの糸条を用いて織物の形態となして用いられる。そして、かかる織物の織組織としては、後記の要件が満足される範囲内において特に限定されないが、平織、綾織、朱子織、またはこれらの変化組織などが好ましく用いられる。
【0016】
前記の織物を構成する経糸及び緯糸の総繊度は、ともに55〜280dtex(好ましくは110〜230dtex)の範囲である必要がある。該総繊度が55dtexよりも小さいと、布帛の引張り強力が低下してしまい、電極材等の使用に適さず好ましくない。逆に、該総繊度が280dtexよりも大きいと、糸条の剛性が高くなり、布帛としての柔軟性が低下するため好ましくない。経糸及び緯糸の単糸繊度については特に限定されないが、布帛を加工する際の取り扱い上、0.5〜5.0デシテックスの範囲内にあるものが好ましい。
【0017】
前記の織物において、経糸の密度と緯糸の織密度はともに30〜150本/2.54cm(好ましくは50〜80本/2.54cm)である必要がある。該織密度が30本/2.54cmよりも小さいと正常な織物組織とはならず厚みが不安定となり好ましくない。逆に、該織密度が150本/2.54cmよりも大きいと製織が困難となるため好ましくない。
【0018】
次に、前記の織物において、経糸又は緯糸の屈曲数が80〜250回/10cm(好ましくは100〜220回/10cm)である必要がある。該屈曲数は、経糸又は緯糸においてこの範囲内にあればよいが、経糸と緯糸の両方において、前記の範囲内であることが好ましい。ここで、緯糸(経糸)の屈曲数とは、織物を緯方向(経方向)に切断した際の織物の緯方向(経方向)の長さ10cm間における緯糸(経糸)の屈曲回数である。すなわち、織物の側断面をみると、緯糸(経糸)が経糸(緯糸)の上に浮いたところと経糸(緯糸)の下に沈んだところがある。そして、緯糸(経糸)が経糸(緯糸)の上に浮いたところの個数(回数)と緯糸(経糸)が経糸(緯糸)の下に沈んだところの個数(回数)との合計を屈曲数(回/10cm)とする。該屈曲数は、側断面の写真を撮影し、緯方向(経方向)の長さ10cm間の屈曲数を数える(n数10)ものとする。
【0019】
参考までに付言しておくと、理論上、例えば平織の場合では、緯糸密度(経糸密度)(本/2.54cm)に係数(10/2.54)を掛け合わせたものが屈曲数に相当し、2/2綾織の場合では、緯糸密度(経糸密度)(本/2.54cm)に係数(2/4×10/2.54)を掛け合わせたものが屈曲数に相当する。
【0020】
前記屈曲数が250回/10cmよりも大きいと、経糸と緯糸との交錯点(組織点)が多くなりすぎて柔軟性が低くなるため好ましくない。さらには、このように屈曲数が大きいと、基布に金属メッキを施す際、基布の内部にまで金属メッキがゆき渡らないため、十分な耐屈曲性が得られず好ましくない。逆に、前記屈曲数が80回/10cmよりも小さいと、基布に金属メッキを施す際、糸間空隙に金属が堆積しやすく、風合いの硬い布帛となり好ましくない。さらには、屈曲数がこのように少ないと、製織も困難となり好ましくない。
【0021】
前記の布帛において、基布のカバーファクターfと基布の厚みは、各々、400〜900、0.15〜0.35(mm)の範囲内であることが好ましい。カバーファクターfが900よりも大きいと、基布内部に金属メッキが施され難く、その結果、金属皮膜層が容易に剥離し、充分な耐屈曲性が得られない恐れがある。逆に、カバーファクターfが400よりも小さいと、基布内部への金属メッキの浸透が高まりすぎて、表面導電性布帛の柔軟性が損なわれる恐れがある。また、基布の厚みが0.35mmよりも厚いと、表面導電性布帛の柔軟性が低下する恐れがある。逆に、基布の厚みが0.15mmよりも小さいと、屈曲により基布構造が保持されにくく、その結果、金属皮膜層が脱落する恐れがある。
【0022】
特に、前記カバーファクターfと厚みd(mm)との比f/dが1500〜3000の範囲にあると、耐屈曲性と柔軟性の両方の特性において、優れた効果が得られるので特に好ましい。
【0023】
本発明において、上記基布の少なくとも1表面に無電解金属メッキによる金属皮膜層が設けられている。かかる無電解金属メッキの加工工程としては、例えば下記の工程が例示される。すなわち、前記の基布を前処理工程に供給して、該基布表面にある糊剤、油剤を除去するために精錬処理を行い、その後、必要に応じて、アルカリ性溶液に該基布を浸漬して減量加工を行う。該精錬処理された基布について、例えば、キャタリスト工程として無電解金属メッキの核となるパラジウムをスズでコロイド化した処理剤を繊維表面に吸着させ、水洗した後、アクセレート工程にて該コロイドの活性化処理を行い、その後、再び水洗して、銅などのメッキ浴に浸漬して布帛表面に金属層を形成させる方法などが例示される。
【0024】
上記金属皮膜層用に使用される金属としては、金、銀、銅、亜鉛、ニッケル、スズ、またはそれらの合金等が例示され、中でも、導電性と製造コストを考慮して銅およびニッケルが好ましい。これらの金属により形成される金属皮膜層は、1層であっても、2層以上の多層であってもかまわない。
【0025】
これらの処理により形成される金属皮膜層の厚さとしては、平均値で0.5〜10μmの範囲内であることが好ましい。金属皮膜層の厚さがこの範囲よりも小さいと十分な導電性が得られない恐れがある。逆に金属皮膜層の厚さがこの範囲よりも大きいとコストアップを招く恐れがある。
【0026】
本発明において、上記金属皮膜層上に、保護のための樹脂層が積層されていることが好ましい。かかる樹脂層を形成する樹脂としては、ウレタン樹脂、アクリル樹脂、シリコン樹脂、フッ素樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリ塩化ビニリデン樹脂、ポリイミド樹脂、ポリプロピレン樹脂等の非導電性樹脂が好適に例示される。これらの樹脂を金属皮膜層上に積層させる方法としては、コーテイング、ラミネート、含浸、デイップラミネート等公知技術を使用することができる。また、前記樹脂層は、耐薬品性の高いシート状の未加硫ゴムを金属皮膜層上に貼り合わせた後加硫させて得られるゴム皮膜であってもよい。
【0027】
ここで、金属皮膜層上に前記の樹脂層が積層される場合には、表面導電性を損なわないために、金属メッキされた繊維の一部が樹脂層の外に出ている必要がある。そのために、前記樹脂層の厚さは、平均厚みで5〜30μm(より好ましくは7〜20μm)の範囲内にあることが好ましい。樹脂層の厚みが30μmよりも大きいと、金属メッキされた繊維が樹脂層に被覆されてしまい、充分な表面導電性が得られない恐れがある。逆に、該樹脂層の厚みが5μmよりも小さいと、金属皮膜層の保護効果が充分に得られない恐れがある。また、かかる樹脂層は、布帛の両表面に形成されていることが、保護効果を高める上で好ましい。
【0028】
次に、本発明の表面導電性布帛において、耐屈曲性が以下の値を有することが好ましい。すなわち、表面導電性布帛の表面において、表面導電性布帛をスコット法による摩耗試験5000回後において、10cmの間隔で離れた任意の2点間の表面導電抵抗が600Ω/10cm以下(より好ましくは50Ω/10cm以下)であることが好ましい。ここで、該表面導電抵抗の初期値(摩耗試験前の値)としては、1Ω/10cm以下(より好ましくは0.8Ω/10cm以下)であることが好ましい。
【0029】
さらに、本発明の表面導電性布帛において、柔軟度が経方向、緯方向ともに70cm以下(より好ましくは60cm以下)であることが好ましい。本発明でいう柔軟度とは、JIS L1096 8.19.1 A法に従い、布帛を2cm×15cmの大きさにタテヨコ裁断したものを試料とし、カンチレバー法で測定した値を用いるものとする。
【0030】
前記の耐屈曲性と柔軟性を有する表面導電性布帛は、前記の基布(織物)を用い、適宜加工条件を選定して前記の無電解メッキを施すことにより容易に得られる。
【0031】
このようにして得られた表面導電性布帛は、優れた耐屈曲性と柔軟性を兼ね備えている。
【0032】
【実施例】
次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
<スコット摩耗試験>JISL1096 8.17.2(スコット形法)に準じて、各布帛を3cm×12cmの大きさに裁断し、スコット型試験機で予め2cm間隔に開いた二つのつかみ間に固定し、両つかみ間の押し圧荷重を9.81Nとして4cm間の距離を5000回往復摩擦させた。
<表面導電性>三菱化学(株)製導電性測定装置「ロレスタ」を用い、サンプル表面上で10cmの間隔で離れた2点間の導電抵抗(Ω/10cm)をn数20で測定した。かかる表面導電性を初期(スコット摩耗試験前)と、耐屈曲性の代用特性として、スコット摩耗試験5000回後について測定した。
<柔軟性>JIS L1096 8.19.1 A法に従い、布帛を2cm×15cmの大きさにタテヨコ裁断したものを試料とし、測定した。
<カバーファクターf>下記の式により求めた。
f=(Nw×(Dw/1.1)1/2)+(Nf×(Df/1.1)1/2
ただし、Nwは経糸の織密度(本/2.54cm)、Nfは緯糸の織密度(本/2.54cm)、Dwは経糸の総繊度(dtex)、Dfは緯糸の総繊度(dtex)である。
<屈曲数>緯糸(経糸)の屈曲数は緯方向(経方向)に織物を切断して側断面写真を撮り、緯方向(経方向)の長さ10cmにおける緯糸(経糸)の屈曲回数を数えた(n数10)。
【0033】
[実施例1]
経糸として、総繊度220dtex/144filのポリエチレンテレフタレート繊維、緯糸として、総繊度220dtex/144filのポリエチレンテレフタレート繊維を用い、表1に記載する織密度及厚みを有する平織物を得て、基布とした。該基布の1表面に厚さ5μmで銅の無電解メッキを施し、さらにその上に厚さ5μmでニッケルの無電解メッキを施すことにより、金属皮膜層を形成した。ウレタン樹脂を、塗膜厚さ20μmで、前記布帛の両面にコーテイングを施すことにより、樹脂層を積層し、表面導電性布帛を得た。得られた表面導電性布帛は、優れた屈曲性と柔軟性を有するものであった。評価結果を表1に示す。
【0034】
[実施例2]
実施例1において、基布の織組織を2/1綾織に変え、かつ織密度を表1のように変える以外は実施例1と同様にして表面導電性布帛を得た。得られた表面導電性布帛は、優れた屈曲性と柔軟性を有するものであった。評価結果を表1に示す。
【0035】
[実施例3]
実施例1において、基布の織組織を2/2綾織に変え、かつ織密度を表1のように変える以外は実施例1と同様にして表面導電性布帛を得た。得られた表面導電性布帛は、優れた屈曲性と柔軟性を有するものであった。評価結果を表1に示す。
【0036】
[比較例1]
実施例1において、織密度を表1のように変える以外は実施例1と同様にして表面導電性布帛を得た。得られた表面導電性布帛において、屈曲性と柔軟性ともに不良であった。評価結果を表1に示す。
【0037】
【表1】

Figure 2004011035
【0038】
【発明の効果】
本発明によれば、耐屈曲性と柔軟性に優れた表面導電性布帛が提供される。かかる布帛は、耐屈曲性と柔軟性に優れているので、自動車等の乗員検知センサー用布帛や各種フレキシブルセンサー用布帛として極めて好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a surface conductive cloth having excellent bending resistance and flexibility and having flexibility and flexibility, which is suitable as a cloth for an occupant detection sensor of an automobile or the like.
[0002]
[Prior art]
In recent years, cloth (conductive cloth) having conductivity has been used as an occupant detection sensor that generates an electric field between electrodes and detects the presence of a person or an object based on the fluctuation of the electric field. For example, Japanese Patent No. 1939785 and Japanese Patent No. 2541990 propose a method in which a conductive cloth made of a metal-plated fabric or a fabric formed of a metal-plated thread is used as an occupant detection sensor in a seat cushion portion. ing.
[0003]
However, in the case of a conductive cloth in which the base cloth is simply subjected to metal plating, bending fatigue and kneading fatigue occur in the conductive cloth due to repeated standing and sitting of the occupant, and the metal plating layer on the conductive cloth surface, particularly at the yarn intersections of the cloth, has a problem. There was a problem that cracks occurred in the plating layer and the conductivity was significantly reduced. Such a problem is particularly serious when a conductive cloth is used as an electrode of a vehicle seat, which may cause a malfunction of the airbag and affect human safety.
[0004]
Even if the thickness of the metal plating layer is simply increased in order to reduce such bending fatigue, a sufficient bending resistance effect cannot be obtained simply because the gold plating layer is piled up on the base fabric.
[0005]
Further, as a method of reducing bending fatigue, there is a method of simply reducing the density of the base cloth and plating the inside of the base cloth with metal.However, in such a method, the bending resistance is improved, but the texture becomes hard and the softness is increased. However, there is a problem that it is not suitable for use in electrode materials such as a flexible sensor which requires high performance.
[0006]
For the reasons described above, there has been a demand for a proposal for a surface conductive cloth having both excellent bending resistance and flexibility.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems of the prior art, and its object is to provide a flexure-resistant fabric having excellent flexibility and flexibility, which is suitable as a fabric for an occupant detection sensor of an automobile or the like. An object of the present invention is to provide a surface conductive cloth having flexibility and flexibility.
[0008]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to achieve the above object, and as a result of performing electroless metal plating on the surface of a base fabric made of a woven fabric having a specific weaving density and the number of intersections between warps and wefts. It was found that the surface of the base cloth was appropriately metal-plated to obtain a surface conductive cloth having a desired bending resistance and flexibility, and further studies were conducted to complete the present invention. Was.
[0009]
Thus, according to the present invention, “a surface conductive cloth in which a metal film layer formed by electroless metal plating is provided on at least one surface of a base cloth made of a cloth, wherein the cloth has a total fineness of warp of 55 to 55; 280 dtex, total weft fineness 55 to 280 dtex, warp weave density 30 to 150 / 2.54 cm, weft weave density 30 to 150 / 2.54 cm, warp or weft bend number 80 to 250/10 cm A surface conductive cloth having bending resistance and flexibility ".
[0010]
At that time, the cover factor f of the base fabric is preferably in the range of 400 to 900, and the thickness d of the base fabric is preferably in the range of 0.15 to 0.35 mm. In particular, when the ratio f / d of the cover factor f of the base fabric to the thickness d (mm) of the base fabric is in the range of 1500 to 3000, more excellent bending resistance and flexibility are obtained, which is preferable.
[0011]
In addition, when a resin layer having an average thickness of 5 to 30 μm is formed on both surfaces of the surface conductive cloth and at least a part of the metal coating layer is exposed outside the resin layer, the surface conductivity is reduced. It is possible to protect the metal film layer without losing water, which is preferable.
[0012]
In the surface conductive cloth of the present invention, the flexibility is preferably such that the surface conductive resistance of the surface conductive cloth after 600 times of the Scott abrasion test is 600Ω / 10 cm or less. The flexibility is preferably 70 cm or less in both the warp direction and the weft direction in terms of flexibility.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
First, the surface conductive cloth of the present invention is one in which a metal film layer by electroless metal plating is provided on at least one surface of a base cloth made of a woven fabric.
[0014]
The fiber material constituting the base fabric (woven fabric) is not particularly limited, and natural fibers such as cotton, hemp, and silk, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, and polyethylene terephthalate and Examples include synthetic fibers such as polyester fibers represented by polylactic acid, polyetherester fibers, acrylic fibers, nylon fibers, aramid fibers, polybenzimidazole fibers, polytetrafluoroethylene fibers, polybenzoxazole fibers, carbon fibers, and phenol fibers. Is done. These fibers may be a single type or a combination of plural types. Depending on the type of fiber material used, it is also possible to add functions such as high strength, abrasion resistance, flame retardancy, easy recyclability, and biodegradability to the surface conductive cloth of the present invention.
[0015]
These fibers are formed into filaments such as processed fibers and spun yarns of long fibers or short fibers or their composite fibers, and are used in the form of a woven fabric using these yarns. The woven structure of the woven fabric is not particularly limited as long as the requirements described below are satisfied, but plain weave, twill weave, satin weave, or a changed structure thereof is preferably used.
[0016]
The total fineness of the warp and the weft constituting the woven fabric needs to be in the range of 55 to 280 dtex (preferably 110 to 230 dtex). If the total fineness is smaller than 55 dtex, the tensile strength of the fabric is reduced, and it is not suitable for use as an electrode material or the like, which is not preferable. On the other hand, if the total fineness is larger than 280 dtex, the rigidity of the yarn is increased, and the flexibility as a fabric is undesirably reduced. The single yarn fineness of the warp and weft yarns is not particularly limited, but is preferably in the range of 0.5 to 5.0 decitex for handling when processing the fabric.
[0017]
In the woven fabric, the warp density and the weft weave density must both be 30 to 150 yarns / 2.54 cm (preferably 50 to 80 yarns / 2.54 cm). If the weaving density is less than 30 yarns / 2.54 cm, a normal fabric structure is not obtained and the thickness becomes unstable, which is not preferable. Conversely, if the weaving density is greater than 150 yarns / 2.54 cm, weaving becomes difficult, which is not preferable.
[0018]
Next, in the woven fabric, the number of warp or weft bends needs to be 80 to 250 times / 10 cm (preferably 100 to 220 times / 10 cm). The number of bends may be within this range for the warp or the weft, but is preferably within the above range for both the warp and the weft. Here, the number of bends of the weft (warp) is the number of bends of the weft (warp) during a length of 10 cm in the weft direction (warp direction) of the woven fabric when the woven fabric is cut in the weft direction (warp direction). That is, looking at the side cross section of the woven fabric, there are places where the weft (warp) floats above the warp (weft) and places where it sinks below the warp (weft). The number of bends (number of times) where the weft (warp) floats above the warp (weft) and the number (number of times) where the weft (warp) sinks below the warp (weft) is calculated as the number of bends ( Times / 10 cm). For the number of bends, a photograph of a side cross section is taken, and the number of bends for a length of 10 cm in the weft direction (longitudinal direction) is counted (n = 10).
[0019]
For reference, in theory, for example, in the case of plain weave, the product of the weft density (warp density) (books / 2.54 cm) multiplied by the coefficient (10 / 2.54) corresponds to the number of bends. In the case of a 2/2 twill weave, the number of bends is obtained by multiplying the weft density (warp density) (books / 2.54 cm) by a coefficient (2/4 × 10 / 2.54).
[0020]
If the number of bends is greater than 250 times / 10 cm, the number of intersection points (texture points) between the warp and the weft becomes too large, and the flexibility is undesirably lowered. Further, if the number of bends is large, the metal plating does not spread to the inside of the base cloth when applying the metal plating to the base cloth, so that sufficient bending resistance cannot be obtained, which is not preferable. On the other hand, if the number of bends is less than 80/10 cm, the metal tends to deposit in the inter-gap when applying metal plating to the base fabric, and the fabric has a hard feeling, which is not preferable. Furthermore, if the number of bends is so small, weaving becomes difficult, which is not preferable.
[0021]
In the cloth, the cover factor f of the base cloth and the thickness of the base cloth are preferably in the range of 400 to 900 and 0.15 to 0.35 (mm), respectively. If the cover factor f is larger than 900, it is difficult to apply metal plating to the inside of the base fabric. As a result, the metal coating layer may be easily peeled off, and sufficient bending resistance may not be obtained. Conversely, if the cover factor f is smaller than 400, the penetration of the metal plating into the base fabric is too high, and the flexibility of the surface conductive cloth may be impaired. If the thickness of the base cloth is greater than 0.35 mm, the flexibility of the surface conductive cloth may be reduced. Conversely, if the thickness of the base fabric is smaller than 0.15 mm, the base fabric structure is hardly maintained due to bending, and as a result, the metal film layer may fall off.
[0022]
In particular, it is particularly preferable that the ratio f / d of the cover factor f to the thickness d (mm) is in the range of 1500 to 3000, since excellent effects can be obtained in both the bending resistance and the flexibility.
[0023]
In the present invention, a metal film layer formed by electroless metal plating is provided on at least one surface of the base cloth. Examples of the processing steps of the electroless metal plating include the following steps. That is, the base cloth is supplied to a pre-treatment step, and a refining treatment is performed to remove a sizing agent and an oil agent on the surface of the base cloth, and then, if necessary, the base cloth is immersed in an alkaline solution. And perform weight loss processing. For the smelted base fabric, for example, as a catalyst step, a treatment agent in which palladium, which is a nucleus of electroless metal plating, is made into a colloid with tin is adsorbed on the fiber surface, washed with water, and then the colloid is subjected to an accelerator step. And then rinsing again with water and dipping in a plating bath such as copper to form a metal layer on the surface of the fabric.
[0024]
Examples of the metal used for the metal film layer include gold, silver, copper, zinc, nickel, tin, and alloys thereof, and among them, copper and nickel are preferable in view of conductivity and production cost. . The metal film layer formed of these metals may be a single layer or a multilayer of two or more layers.
[0025]
The thickness of the metal film layer formed by these treatments is preferably in the range of 0.5 to 10 μm on average. If the thickness of the metal film layer is smaller than this range, sufficient conductivity may not be obtained. Conversely, if the thickness of the metal film layer is larger than this range, the cost may increase.
[0026]
In the present invention, it is preferable that a resin layer for protection is laminated on the metal film layer. Non-conductive resins such as urethane resin, acrylic resin, silicone resin, fluorine resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polyvinylidene chloride resin, polyimide resin, and polypropylene resin as the resin forming the resin layer. It is preferably exemplified. As a method for laminating these resins on the metal film layer, known techniques such as coating, laminating, impregnating, and dip laminating can be used. Further, the resin layer may be a rubber film obtained by bonding an unvulcanized rubber sheet having high chemical resistance on a metal film layer and then vulcanizing the metal film layer.
[0027]
Here, when the above-mentioned resin layer is laminated on the metal film layer, a part of the metal-plated fiber needs to be out of the resin layer in order not to impair the surface conductivity. For this purpose, the average thickness of the resin layer is preferably in the range of 5 to 30 μm (more preferably 7 to 20 μm). If the thickness of the resin layer is larger than 30 μm, the metal-plated fibers may be covered with the resin layer, and sufficient surface conductivity may not be obtained. Conversely, if the thickness of the resin layer is less than 5 μm, the metal coating layer may not be sufficiently protected. In addition, it is preferable that such a resin layer is formed on both surfaces of the fabric in order to enhance the protection effect.
[0028]
Next, in the surface conductive cloth of the present invention, the bending resistance preferably has the following value. That is, on the surface of the surface conductive cloth, after the surface conductive cloth is subjected to a wear test 5000 times by the Scott method, the surface conductive resistance between any two points separated by an interval of 10 cm is 600Ω / 10cm or less (more preferably 50Ω). / 10 cm or less). Here, the initial value of the surface conductive resistance (the value before the wear test) is preferably 1 Ω / 10 cm or less (more preferably 0.8 Ω / 10 cm or less).
[0029]
Further, in the surface conductive cloth of the present invention, the flexibility is preferably 70 cm or less (more preferably 60 cm or less) in both the warp and weft directions. The flexibility according to the present invention is defined as a value obtained by measuring a cloth obtained by cutting a cloth into a size of 2 cm x 15 cm according to JIS L1096 8.19.1 A method and using a cantilever method.
[0030]
The surface conductive cloth having the above-mentioned bending resistance and flexibility can be easily obtained by using the above-described base cloth (woven fabric), appropriately selecting processing conditions, and performing the above-described electroless plating.
[0031]
The surface conductive cloth thus obtained has both excellent bending resistance and flexibility.
[0032]
【Example】
Next, Examples and Comparative Examples of the present invention will be described in detail, but the present invention is not limited by these. In addition, each measurement item in an Example was measured by the following method.
<Scott abrasion test> Each fabric is cut into a size of 3 cm x 12 cm according to JIS L1096 8.17.2 (Scott-type method) and fixed between two grips previously opened at an interval of 2 cm by a Scott-type testing machine. Then, the pressing force load between the two grips was set to 9.81 N, and a reciprocating friction was performed 5000 times at a distance of 4 cm between the two grips.
<Surface Conductivity> The conductivity resistance (Ω / 10 cm) between two points separated by an interval of 10 cm on the sample surface was measured at n = 20 using a conductivity measuring device “Loresta” manufactured by Mitsubishi Chemical Corporation. The surface conductivity was measured at an initial stage (before the Scott abrasion test) and as a substitute characteristic of the bending resistance after the 5,000 Scott abrasion tests.
<Flexibility> According to JIS L1096 8.19.1 A method, a cloth was cut into a size of 2 cm x 15 cm and cut into a size, and the measurement was performed.
<Cover factor f> It was determined by the following equation.
f = (Nw × (Dw / 1.1) 1/2 ) + (Nf × (Df / 1.1) 1/2 )
Here, Nw is the weaving density of the warp (book / 2.54 cm), Nf is the weaving density of the weft (book / 2.54 cm), Dw is the total fineness of the warp (dtex), and Df is the total fineness of the weft (dtex). is there.
<Number of bends> The number of bends of the weft (warp) is determined by cutting the woven fabric in the weft direction (warp direction), taking a photograph of a side cross section, and counting the number of bends of the weft (warp) at a length of 10 cm in the weft direction (warp direction). (N = 10).
[0033]
[Example 1]
Using a polyethylene terephthalate fiber having a total fineness of 220 dtex / 144fil as the warp and a polyethylene terephthalate fiber having a total fineness of 220 dtex / 144fil as the weft, a plain woven fabric having a weaving density and thickness shown in Table 1 was obtained and used as a base cloth. One surface of the base cloth was electrolessly plated with copper to a thickness of 5 μm, and further electrolessly plated with nickel to a thickness of 5 μm to form a metal film layer. A urethane resin was coated at a coating thickness of 20 μm on both sides of the cloth to laminate resin layers to obtain a surface conductive cloth. The obtained surface conductive cloth had excellent flexibility and flexibility. Table 1 shows the evaluation results.
[0034]
[Example 2]
A surface conductive cloth was obtained in the same manner as in Example 1 except that the weaving structure of the base fabric was changed to 2/1 twill weave and the weaving density was changed as shown in Table 1. The obtained surface conductive cloth had excellent flexibility and flexibility. Table 1 shows the evaluation results.
[0035]
[Example 3]
A surface conductive cloth was obtained in the same manner as in Example 1 except that the weaving structure of the base fabric was changed to 2/2 twill weave and the weaving density was changed as shown in Table 1. The obtained surface conductive cloth had excellent flexibility and flexibility. Table 1 shows the evaluation results.
[0036]
[Comparative Example 1]
A surface conductive cloth was obtained in the same manner as in Example 1 except that the weaving density was changed as shown in Table 1. In the obtained surface conductive cloth, both the flexibility and the flexibility were poor. Table 1 shows the evaluation results.
[0037]
[Table 1]
Figure 2004011035
[0038]
【The invention's effect】
According to the present invention, a surface conductive cloth excellent in bending resistance and flexibility is provided. Such a fabric is excellent in bending resistance and flexibility, and thus is extremely suitable as a fabric for an occupant detection sensor of an automobile or the like or a fabric for various flexible sensors.

Claims (7)

織物からなる基布の少なくとも1表面に無電解金属メッキによる金属皮膜層が設けられた表面導電性布帛であって、前記の織物が、経糸の総繊度55〜280dtex、緯糸の総繊度55〜280dtex、経糸の織密度30〜150本/2.54cm、緯糸の織密度30〜150本/2.54cm、経糸又は緯糸の屈曲数80〜250回/10cmの織物であることを特徴とする耐屈曲性と柔軟性を有する表面導電性布帛。A surface-conductive cloth in which a metal film layer formed by electroless metal plating is provided on at least one surface of a base cloth made of a woven fabric, wherein the woven fabric has a total fineness of a warp of 55 to 280 dtex and a total fineness of a weft of 55 to 280 dtex. A woven fabric having a warp weave density of 30 to 150 yarns / 2.54 cm, a weft weave density of 30 to 150 yarns / 2.54 cm, and a warp or weft having a bend number of 80 to 250 times / 10 cm. A surface conductive cloth having flexibility and flexibility. 基布のカバーファクターfが400〜900の範囲にある請求項1に記載の耐屈曲性と柔軟性を有する表面導電性布帛。The surface conductive cloth having bending resistance and flexibility according to claim 1, wherein the cover factor f of the base cloth is in the range of 400 to 900. 基布の厚みdが0.15〜0.35mmの範囲にある請求項1または請求項2に記載の耐屈曲性と柔軟性を有する表面導電性布帛。The surface conductive cloth having bending resistance and flexibility according to claim 1 or 2, wherein the thickness d of the base cloth is in a range of 0.15 to 0.35 mm. 基布のカバーファクターfと基布の厚みd(mm)との比f/dが1500〜3000の範囲である請求項1〜3のいずれかに記載の耐屈曲性と柔軟性を有する表面導電性布帛。The surface conductivity having flexibility and flexibility according to any one of claims 1 to 3, wherein the ratio f / d of the cover factor f of the base cloth to the thickness d (mm) of the base cloth is in the range of 1500 to 3000. Fabric. 表面導電性布帛の両表面に、平均厚さが5〜30μmの樹脂層が形成されており、かつ金属皮膜層の少なくとも一部が、該樹脂層の外に露出している請求項1〜4のいずれかに記載の耐屈曲性と柔軟性を有する表面導電性布帛。5. A resin layer having an average thickness of 5 to 30 [mu] m is formed on both surfaces of the surface conductive cloth, and at least a part of the metal coating layer is exposed outside the resin layer. A surface conductive cloth having bending resistance and flexibility according to any one of the above. スコット摩耗試験5000回後において、表面導電性布帛の表面導電抵抗が600Ω/10cm以下である請求項1〜5のいずれかに記載の耐屈曲性と柔軟性を有する表面導電性布帛。The surface conductive cloth having flexibility and flexibility according to any one of claims 1 to 5, wherein the surface conductive resistance of the surface conductive cloth is 600Ω / 10cm or less after 5000 times of the Scott abrasion test. 表面導電性布帛の柔軟度が経方向、緯方向ともに70cm以下である請求項1〜6のいずれかに記載の耐屈曲性と柔軟性を有する表面導電性布帛。The flexible surface conductive cloth according to any one of claims 1 to 6, wherein the flexibility of the surface conductive cloth is 70 cm or less in both the warp direction and the weft direction.
JP2002162762A 2002-06-04 2002-06-04 Surface-electroconductive fabric having flexibility and softness Pending JP2004011035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162762A JP2004011035A (en) 2002-06-04 2002-06-04 Surface-electroconductive fabric having flexibility and softness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162762A JP2004011035A (en) 2002-06-04 2002-06-04 Surface-electroconductive fabric having flexibility and softness

Publications (1)

Publication Number Publication Date
JP2004011035A true JP2004011035A (en) 2004-01-15

Family

ID=30431422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162762A Pending JP2004011035A (en) 2002-06-04 2002-06-04 Surface-electroconductive fabric having flexibility and softness

Country Status (1)

Country Link
JP (1) JP2004011035A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510403A (en) * 2006-11-21 2010-04-02 ミリッツ デトレフ Method for metallizing polyester and metallized polyester
JP2012233270A (en) * 2011-04-28 2012-11-29 Fukui Prefecture Composite yarn and method for producing the same
JP2015183345A (en) * 2014-03-26 2015-10-22 ウラセ株式会社 Electric conductive slit yarn and method for producing the same
JP2017056621A (en) * 2015-09-16 2017-03-23 セーレン株式会社 Conductive member
JP2018162456A (en) * 2017-03-27 2018-10-18 亞洲電材股▲ふん▼有限公司 Multilayer anisotropic conductive cloth adhesive sheet and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510403A (en) * 2006-11-21 2010-04-02 ミリッツ デトレフ Method for metallizing polyester and metallized polyester
JP2012233270A (en) * 2011-04-28 2012-11-29 Fukui Prefecture Composite yarn and method for producing the same
JP2015183345A (en) * 2014-03-26 2015-10-22 ウラセ株式会社 Electric conductive slit yarn and method for producing the same
JP2017056621A (en) * 2015-09-16 2017-03-23 セーレン株式会社 Conductive member
WO2017047320A1 (en) * 2015-09-16 2017-03-23 セーレン株式会社 Conductive member
CN108025527A (en) * 2015-09-16 2018-05-11 世联株式会社 Electroconductive component
KR20180053704A (en) * 2015-09-16 2018-05-23 세렌가부시키가이샤 Conductive member
US20180250909A1 (en) * 2015-09-16 2018-09-06 Seiren Co., Ltd. Conductive member
US10737461B2 (en) 2015-09-16 2020-08-11 Seiren Co., Ltd. Conductive member
CN108025527B (en) * 2015-09-16 2020-09-18 世联株式会社 Conductive member
KR102164133B1 (en) * 2015-09-16 2020-10-12 세렌가부시키가이샤 Conductive member
JP2018162456A (en) * 2017-03-27 2018-10-18 亞洲電材股▲ふん▼有限公司 Multilayer anisotropic conductive cloth adhesive sheet and method for producing the same

Similar Documents

Publication Publication Date Title
EP2458952B1 (en) Electromagnetic shielding sheet
JP4302055B2 (en) Conductive yarn
JPWO2007083822A1 (en) Conductive gasket material
KR102164133B1 (en) Conductive member
WO2008023843A1 (en) Base fabric for airbag and airbag
JP2000273762A (en) Base fabric for electromagnetic wave-shielding material and electromagnetic wave-shielding material using the same
KR20150047558A (en) Magnetic field-shielding electromagnetic shielding material
JP2004011035A (en) Surface-electroconductive fabric having flexibility and softness
WO2022270461A1 (en) Conductive mesh fabric
JP2003166170A (en) Chemical-resistant surface-conductive fabric
JP2003266599A (en) Surface conductive cloth having bending resistance
JP2003278073A (en) Surface conductive fabric with excellent bending resistance
CN114829689B (en) Woven fabric and cable cover for mechanical arm
Islam 3D woven preforms for E-textiles and composites reinforcements
JP2000208984A (en) Electromagnetic wave shielding material and manufacture thereof
JP2004211247A (en) Flame-retardant conductive fabric
JPH11330778A (en) Laminate for electromagnetic wave shield and its manufacturing method
JP2003236996A (en) Conductive sheet and electromagnetic wave shielding material comprising the same
JP7303404B1 (en) conductive fabric
WO2023162424A1 (en) Conductive fabric
WO2021065955A1 (en) Electrically conductive woven/knitted material
JP7416632B2 (en) Fiber sheets, processed fiber bodies, cable shielding materials, and cables
JPS60116437A (en) Electrical and electromagnetic trouble preventive flexible sheet
JP2023104703A (en) Stretchable conductive fabric
JP2010131970A (en) Cloth material