JP2004010962A - Film with gradient composition and method of forming the film with gradient composition - Google Patents

Film with gradient composition and method of forming the film with gradient composition Download PDF

Info

Publication number
JP2004010962A
JP2004010962A JP2002166123A JP2002166123A JP2004010962A JP 2004010962 A JP2004010962 A JP 2004010962A JP 2002166123 A JP2002166123 A JP 2002166123A JP 2002166123 A JP2002166123 A JP 2002166123A JP 2004010962 A JP2004010962 A JP 2004010962A
Authority
JP
Japan
Prior art keywords
film
evaporation source
raw material
substrate
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002166123A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
奥富 功
Atsushi Yamamoto
山本 敦史
Takashi Kusano
草野 貴史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2002166123A priority Critical patent/JP2004010962A/en
Publication of JP2004010962A publication Critical patent/JP2004010962A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film with a gradient composition of high quality which has a regular gradient in the distribution of the amount to be film-formed at each position going from one end to the other end on a substrate face. <P>SOLUTION: One or a plurality of shielding members 2 having a function of respectively shielding a part of the vapor evaporated from a plurality of the raw materials, are set between a plurality of evaporation sources 1 and 4 respectively evaporating a plurality of raw materials and one substrate 3 arranged so as to be confronted with them. The remaining vapor which is not shielded with the respective shielding members for the vapor of the plurality of the raw materials respectively evaporated in the plurality of the evaporation sources, is deposited on the surface of the substrate face. Thus, the film with a gradient composition in which a composition distribution continuously changes, is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、傾斜組成膜及び傾斜組成膜の成膜方法に関する。
【0002】
【従来の技術】
従来、一端から他端に向かって組成分布が変化する傾斜組成合金は、通常、目標組成を持つ複数個の合金をあらかじめ用意し、これらの組成比率の順に厚さ方向に張り合わせて焼結一体化することにより得ていて、この方法で得られる傾斜組成合金は、張り含わせた方向の組成分布に傾斜組成を有している。この方法で得られた傾斜組成合金は、例えば応力緩和を要する部品として活用されている(従来技術1)。
【0003】
また、1つの物質を蒸発させると、その物質の蒸気は空間のあらゆる方向に飛び出す性質を有している。この性質を利用して蒸発源の上部に基板を設置し、その基板で物質蒸気を受け止めるようにすれば、基板の表面上には円状や楕円状に模様を描きながら蒸気が付着するので、基板面に平行な方向に膜厚が傾斜した成膜量傾斜膜を製造することができる(従来技術2)。
【0004】
さらに、上記性質を利用して、図11に示すように、複数の原材料を複数の蒸発源1A,1B,1Cに別々に収容して同時に加熱し、これを蒸発源の上部に設置した基板3で受け止めるようにすれば、基板面上の成膜量は基板面に平行な方向に組成分布が傾斜した傾斜組成合金膜を製造することができる(従来技術3)。
【0005】
【発明が解決しようとする課題】
ところが、従来技術1の焼結一体化して得られる傾斜組成合金では、組成分布が段階的組成変化となるのが避けられず、これを是正するためには天文学的な個数の合金をあらかじめ用意し積層しなくてはならず、実用性に乏しい。
【0006】
また、従来技術2で得られる成膜量傾斜膜では、基板面上の位置による成膜厚さの変化には連続性があるものの、所定の定まった尺度で分布するのではなく、化学、金属、セラミックス材料分野で常用されているような良質な状態図的分布は得られず、やはり実用性に乏しい。
【0007】
また、従来技術3で得られる傾斜組成合金膜では、基板面上の成膜量が基板面に平行な方向で組成分布が傾斜しているものの、所定の定まった尺度で分布するのではなく、やはり化学、金属、セラミックス分野で常用されているような良質な状態図的分布は得られず、実用性に乏しい。
【0008】
本発明は、このような従来技術の課題を解決するためになされたもので、基板面上の一端から他端に向かう各位置(「所定位置」と称している)に対する成膜量の分布が連続的に変化する良質な傾斜組成膜及びそのような良質な傾斜組成膜が成膜できる傾斜組成膜の成膜方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明の傾斜組成膜は、基板面上に成膜した1つの原材料物質又は複数の原材料物質の傾斜組成膜であって、少なくとも1つの原材料の物質の存在量が当該基板面上の少なくとも1方向で連続的に変化する傾斜組成を有することを特徴とするものである。
【0010】
請求項2の発明の傾斜組成膜は、基板面上に成膜した複数の原材料物質の傾斜組成膜であって、前記複数の原材料物質のうちの少なくとも2者間の存在量の割合が当該基板面上の少なくとも1方向で連続的に変化する傾斜組成を有することを特徴とするものである。
【0011】
請求項3の発明の傾斜組成膜の成膜方法は、1つ又は複数の蒸発源において1つ又は複数の原材料を蒸発させ、前記1つ又は複数の蒸発源から基板面上の対象領域の各位置に対して前記原材料の蒸気の到達量に規則的な勾配を持つようにして当該原材料の物質を成膜することを特徴とするものである。
【0012】
請求項4の発明の傾斜組成膜の成膜方法は、原材料を蒸発させる1つの蒸発源とこれと対向するように配置した1つの基板との間に、前記原材料から蒸発した蒸気のうちの一部の移動を遮断する機能を有する遮蔽部材を設置し、前記1つの蒸発源において蒸発させた原材料の蒸気のうち前記遮蔽部材により遮断されない残部の蒸気を前記基板面上に付着させることを特徴とするものである。
【0013】
請求項5の発明は、請求項4の傾斜組成膜の成膜方法において、前記蒸発源と遮蔽部材との間隙をx、前記遮蔽部材と基板との間隙をyとした場合に、x/(x+y)=0.1〜0.9なる条件を満たす前記蒸発源と基板との間に前記遮蔽部材を設置し、前記蒸発源の原材料を前記基板面上に付着させることにより成膜することを特徴とするものである。
【0014】
請求項6の発明の傾斜組成膜の成膜方法は、複数の原材料各々を蒸発させる複数の蒸発源とこれらに対向するように配置した1つの基板との間に前記複数の原材料から蒸発した蒸気それぞれの一部を遮断する機能を有する1個又は複数個の遮蔽部材を設置し、前記複数の蒸発源それぞれにおいて蒸発させた複数の原材料の蒸気それぞれの前記遮蔽部材により遮断されない残部の蒸気を前記基板面上に付着させることにより成膜することを特徴とするものである。
【0015】
請求項7の発明は、請求項6の傾斜組成膜の成膜方法において、前記蒸発源と遮蔽部材との間隙をx、前記遮蔽部材と基板との間隙をyとした場合に、x/(x+y)=0.1〜0.9なる条件を満たす前記蒸発源と基板との間に前記遮蔽部材を設置し、前記蒸発源の原材料を前記基板面上に付着させることにより成膜することを特徴とするものである。
【0016】
請求項8の発明の傾斜組成膜の成膜方法は、第1の原材料を蒸発させる第1の蒸発源と、第2の原材料を蒸発させる第2の蒸発源と、これらと対向するように配置した基板とを備えた成膜装置を使用して、前記第1の蒸発源と基板との間に、前記原材料から蒸発した蒸気の一部を遮断させるための遮蔽部材を設置し、前記第1の蒸発源によって蒸発させた原材料の蒸気のうち当該遮蔽部材によって遮断されない残部の蒸気を前記基板面上に誘導し、前記基板面上の少なくとも1方向での成膜量に勾配を持たせて成膜する工程(A)と、第2の原材料を蒸発させる第2の蒸発源を前記遮蔽部材の設置効果の現れない位置に設置し、前記第2の原材料の蒸気を前記基板面上に誘導し、前記基板面上の全方向に均一な存在量で成膜する工程(B)とを、そのいずれかを先にして相前後して実施することにより、前記基板面の少なくもと1方向で前記第1の原材料物質の存在割合が連続的に変化する傾斜組成膜を成膜することを特徴とするものである。
【0017】
請求項9の発明の傾斜組成膜の成膜方法は、第1の原材料を蒸発させる第1の蒸発源と、第2の原材料を蒸発させる第2の蒸発源と、これらと対向するように配置した基板とを備えた成膜装置を使用して、前記第1の蒸発源と基板との間に、前記原材料から蒸発した蒸気の一部を遮断させるための遮蔽部材を設置し、前記第1の蒸発源によって蒸発させた原材料の蒸気のうち当該遮蔽部材によって遮断されない残部の蒸気を前記基板面上に誘導し、前記基板面上の少なくとも1方向での成膜量に勾配を持たせて成膜する工程(A)と、第2の原材料を蒸発させる第2の蒸発源を前記遮蔽部材の設置効果の現れない位置に設置し、前記第2の原材料の蒸気を前記基板面上に誘導し、前記基板面上の全方向に均一な存在量で成膜する工程(B)とを同時に実施することにより、前記基板面上の成膜量に対して、基板面に直角な方向の組成分布と当該基板面に平行な少なくとも1方向の組成分布との両者に規則的な勾配を有する傾斜組成膜を成膜することを特徴とするものである。
【0018】
請求項10の発明は、請求項3〜9の傾斜組成膜の成膜方法において、前記蒸発源は、線状、棒状、板状、舟状のいずれかの形状を持ち、かつ線状又は棒状の場合にはその直径に対して2倍以上の長さを持つ細長い形状の蒸発孔を備え、板状又は舟状の場合にはその幅に対して2倍以上の長さを持つ細長い形状の蒸発孔を備えたものを用いて成膜することを特徴とするものである。
【0019】
請求項11の発明は、請求項10の傾斜組成膜の成膜方法において、前記蒸発源とこれに対応する遮蔽部材とは対を成すよう配置し、当該蒸発源の長手方向と遮蔽部材の端面がなす辺が作る直線方向とは、立面図上で120度〜60度の角度、好ましくは90度の角度で交差するように配置した成膜装置を用いて成膜することを特徴とするものである。
【0020】
請求項12の発明は、請求項3〜11の傾斜組成膜の成膜方法において、前記遮蔽部材の端面は、最大10μm以下、好ましくは0.1μmの粗度の蒸気通過面とし、規則的な勾配を持たせたものを用いて成膜することを特徴とするものである。
【0021】
請求項13の発明は、請求項3〜12の傾斜組成膜の成膜方法において、前記蒸発源と遮蔽部材と基板とを備え、1個の蒸発源に対応する1個又は複数個の遮蔽部材、複数個の蒸発源の各蒸発源に対応する複数個の遮蔽部材とを備えた成膜装置を用いて成膜することにより得た、前記基板面上での所定位置に対する成膜量に規則的な勾配を有することを特徴とするものである。
【0022】
請求項14の発明は、請求項3〜13の傾斜組成膜の成膜方法において、真空蒸着法又はスパッタ法により成膜することを特徴とするものである。
【0023】
請求項15の発明は、請求項3〜14の傾斜組成膜の成膜方法において、真空雰囲気中もしくは酸素雰囲気中、窒素雰囲気中、アルゴン雰囲気中で成膜することを特徴とするものである。
【0024】
請求項16の発明は、請求項3〜15の傾斜組成膜の成膜方法において、前記蒸発源を抵抗加熱、電子衝撃加熱、レーザ加熱、アーク加熱のいずれかで加熱して原材料を蒸発させることを特徴とするものである。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。
【0026】
本発明の傾斜組成膜は、原材料を蒸発させる1つ又は複数の蒸発源から、基板面上の対象領域の各位置への物質の到達量に規則的な勾配を持たせて成膜することにより得られた基板面上の少なくとも1方向において傾斜組成を有する薄膜若しくはそれと同等の傾斜組成を有する薄膜のことである。
【0027】
図1は、本発明の第1の実施の形態の傾斜組成膜の成膜に用いる成膜装置と、それによって成膜される傾斜組成膜の傾斜組成を模式的に示している。この成膜装置は、被蒸発物の原材料を収納した蒸発源1を細長い形状とし、その蒸発源1の上方における蒸発源1からの蒸気の一部を遮蔽しながら残部の蒸気をさらに上方に誘導する位置に遮蔽板2を設置し、この遮蔽板2の上方の基板3の対向面に蒸発原1からの蒸気を付着させる構成である。
【0028】
蒸発源1は、線状、棒状、板状、舟状のいずれかの形状を持ち、かつ線状又は棒状の場合にはその直径に対して2倍以上の長さを持つ細長い形状の蒸発孔を備え、板状又は舟状の場合にはその幅に対して2倍以上の長さを持つ細長い形状の蒸発孔を備えたものを用いる。
【0029】
遮蔽板2は、原材料の蒸気の一部を通り過ごさせる端面の表面粗さを最大12μm以下、好ましくは0.1μmの粗度に制御した上で、細長い形状の蒸発源1の長手方向と遮蔽板2の前記端面がなす辺の作る直線の方向とを、立面図上で特に60度〜120度以内の角度で交差するように、好ましくは直交するように配置している。
【0030】
上記の構成の成膜装置では、蒸発源1においた原材料を加熱して蒸発させ、基板3の対向面に付着させることにより、遮蔽板2の遮蔽効果によって、蒸発源1と遮蔽板2とを結ぶ線の上方に設置した基板面上での所定位置に対する成膜量の分布に規則的な勾配を持った傾斜組成膜が形成される。このときの基板面上の傾斜組成膜形成のメカニズムは、次の通りである。
【0031】
(イ)図1において、蒸発源1の蒸発点bから蒸発した原材料の蒸気は、遮蔽板2の端面gと結ばれるb−g線の延長線が基板3と交わる交点sに到達し、蒸発源1の一端の蒸発点aから蒸発した蒸気と重畳するように付着する。
【0032】
(ロ)蒸発源1の蒸発点cからの蒸気は、遮蔽板2の端面gと結ばれるc−g線の延長線が基板3と交わる交点rに到達し、蒸発点aや蒸発点bから蒸発した蒸気とを重畳するように付着する。
【0033】
(ハ)蒸発源1の一端の蒸発点aから蒸発した蒸気は、一部は遮蔽板2に遮蔽されるが、その大部分は基板3に到着し、遮蔽板2の端面gと結ばれるa−g線の延長線が基板3と交わる交点tに到達する。しかし図1において、基板3との交点tのわずか右側は、蒸発した蒸気が全く到達しない部分となる。つまり、この交点tが蒸発源1からの蒸気の到達する領域の境界点となる。
【0034】
(ニ)蒸発源1の他端の蒸発点dから蒸発した蒸気は、その大部分が遮蔽板2に遮蔽されるが、蒸気の一部は、遮蔽板2の端面gと蒸発源1の他端の蒸発点dとを結ぶd−g線の延長線が基板3と交わる交点qに到達する。したがって、図1において、交点qから右側は、蒸発源1のあらゆる蒸発点d,c,b,aからの蒸気のすべてが重畳して到達する領域となる。
【0035】
上の蒸発源1、遮蔽板2及び基板3から構成される成膜装置では、蒸発源1を細長い形状とすることによって基板3の面上に到達する蒸気量にムラのない勾配を持たせ、遮蔽板2の遮蔽効果と相俟って規則的な勾配を持つ傾斜組成膜を基板面上に成膜することができる。
【0036】
また、蒸発源1、遮蔽板2及び基板3より構成される成膜装置では、遮蔽板2の端面の蒸気通過面を最大10μm以下、好ましくは0.1μmの粗度に制御することが重要である。これによって、基板3の表面に到達する蒸気量に一層スムーズな勾配を持たせることができる。
【0037】
さらに、上記の成膜装置では、蒸発源1の長手方向と遮蔽板2の端面がなす辺の方向とを、立体図的に見たときに60度〜120度の角度で交差するように、好ましくは直交するように配置することも重要であり、これによって、基板3の面上の所定位置に対する成膜量の分布に規則的な勾配を持たせることができるからである。なお、ここにおいて、基板3から下方を見た場合、蒸発源1の長手方向と遮蔽板2とは交差して見える。この場合の交差して見える角度を、立体図的に定めた角度として定義した。
【0038】
加えて、本実施の態様の傾斜組成膜の成膜に用いる成膜装置は、原材料を蒸発させる1つの蒸発源1と、これと対向するように配置した基板3との間に、蒸発源1から蒸発した蒸気のうちの一部を遮断させる機能を有する遮蔽板2を設置し、この遮蔽板2の設置効果によって、遮断されない残部の蒸発を基板3の面上の所定位置に誘導し、基板3の面上で蒸発源1と基板3とを結ぶ軸に対してほぼ直角の方向での成膜量に規則的な勾配を持たせて傾斜組成膜を形成することができる。
【0039】
すなわち、図1において、蒸発源1と遮蔽板2との間隔をx、遮蔽板2と基板3との間隔をyとした時、x/(x+y)=0.1〜0.9で定まる立体的空間の所定位置に遮蔽板2を配置することによって、基板面上での所定位置に対する成膜量の分布に、規則的な勾配を持たせることができる。
【0040】
上記の成膜装置を用いて傾斜組成膜を成膜する場合、用途や目的に応じて真空蒸着法又はスパッタ法のいずれを採用することもできる。同様に、真空雰囲気中もしくは酸素雰囲気中、窒素雰囲気中、アルゴン雰囲気中のいずれかの雰囲気中で成膜することができる。さらに、蒸発源1の原材料の加熱も、用途や目的に応じて、抵抗加熱、電子衝撃加熱、レーザ加熱、アーク加熱のいずれを採用することもできる。これらは、以下の各実施の形態においても同様である。
【0041】
本発明の第2の実施の形態の傾斜組成膜及びその成膜方法について、図2を用いて説明する。図2は、本発明の第2の実施の形態の傾斜組成膜を成膜するための成膜装置を示している。この成膜装置には、原材料を蒸発させる複数の蒸発源、例えば第1と第2の蒸発源1,4が設置してある。そして、これらと対向するように基板3を配置し、これら複数の蒸発源1,4と基板3とで形成される立体的空間の所定位置に、蒸発源1,4から蒸発した蒸気のうちの一部を遮断させる機能を有する単一の遮蔽板2を設置している。
【0042】
この成膜装置では、遮蔽板2の遮蔽効果によって、遮断されない残部の蒸気を基板3の面上の所定位置に誘導し、基板3の面上で蒸発源1,4と基板3とを結ぶ軸に対してほぼ直角の方向での成膜量が、面方向に2種以上の物質の割合に規則的な勾配を持たせた傾斜組成膜を形成することができる。
【0043】
なお、図3に示した第3の実施の形態の傾斜組成膜の成膜に用いる成膜装置のように、2個の蒸発源1,4に対して、2個の遮蔽板2A,2Bを設置することもできる。この図3に示した成膜装置では、原材料を蒸発させる複数の蒸発源1,4を設置し、これらと対向するように基板3を配置し、蒸発源1,4と基板3とで形成される立体的空間の所定位置に、蒸発源1,4それぞれから蒸発した蒸気のうちの一部を遮断させる機能を有する2個の遮蔽板2A,2Bを設置し、この遮蔽板2A,2Bの設置効果によって、遮蔽板によって遮断されない残部の蒸気を基板3の面上の所定位置に誘導し、付着させる。
【0044】
この図3に示した成膜装置では、基板3の面上で蒸発源1,4と基板3とを結ぶ軸に対してほぼ直角の方向での成膜量が、面方向に2種以上の物質の割合に規則的な勾配を持った傾斜組成膜を成膜することができる。
【0045】
図2に示した成膜装置で成膜した第2の実施の形態の傾斜組成膜と、図3に示した成膜装置で成膜した第3の実施の形態の傾斜組成膜とでは、基板3の面上での付着物質の組成割合の0%、100%の位置関係が逆転するが、傾斜組成膜としては同一である。
【0046】
次に、本発明の第4の実施の形態の傾斜組成膜とその成膜方法について説明する。図4は第4の実施の形態の傾斜組成膜を成膜するための成膜装置を示している。この成膜装置では、原材料を蒸発させる主たる蒸発源1と、これと対向するように配置した基板3とを備えた成膜装置を使用して、主たる蒸発源1と基板3とで形成される立体的空間の所定位置に、主たる蒸発源1の原材料から蒸発した蒸気の一部を遮断させるための遮蔽板2を設置し、その設置効果によって、遮断されない残部の蒸気を基板3の面上の所定位置に誘導し、蒸発源1と基板3とを結ぶ軸方向とほぼ直角な方向での成膜量に勾配を持たせる工程(A)と、別の原材料を蒸発させる補助の蒸発源5を用意し、この補助の蒸発源5を遮蔽板2の設置効果の現れない位置に設置し、補助の蒸発源5内の別の原材料の蒸気を基板3の面上の所定位置に誘導し、基板面上での蒸発源5の長手方向に平行な方向での成膜量を一様にする工程(B)を実施することにより、基板3の表面の成膜量に対して、基板3の面に平行な方向の組成分布に規則的な勾配を持つ2次元傾斜組成膜を形成する。なお、工程(A)と工程(B)とはいずれを先に実施することもできる。
【0047】
この図4に示した成膜装置により得られる第4の実施の形態の2次元傾斜組成膜は、遮蔽板2の設置効果の現れない位置に、別の原材料を蒸発させる補助の蒸発源5を設置し、工程(A)で得た規則的な勾配を持った傾斜組成膜の上面又は下面に別の原材料の蒸気を被覆させた2次元傾斜構造の組成膜である。
【0048】
次に、本発明の第5の実施の形態の傾斜組成膜及びその成膜方法について説明する。図5に示す成膜装置は第5の実施の形態の傾斜組成膜を成膜するためのものであり、図2又は図3に示した成膜装置に対して、さらに、遮蔽板の設置効果の現れない位置に補助の蒸発源5を設置した構成である。この成膜装置による傾斜組成膜の成膜方法は、次の通りである。
【0049】
第2の実施の形態の場合と同様に、第1の蒸発源1から蒸発した原材料の蒸気と第2の蒸発源2から蒸発した別の原材料の蒸気とを基板3の面上の所定位置に誘導し、基板3の面上で蒸発源1,4と基板3とを結ぶ軸に対してほぼ直角の方向での成膜量を一定にし、かつ面方向に2種以上の物質の割合に規則的な勾配を持った傾斜組成膜を形成する工程(A)と、これらとはさらに別の原材料を蒸発させる補助の蒸発源5からの蒸気を基板3の面上の所定位置に誘導し、基板3の面上の傾斜組成膜の上又は下に一定の成膜量(成膜の厚さ)の膜を形成する工程(B)を実施する。この実施の形態でも、工程(A)と工程(B)とはいずれを先に実施することもできる。
【0050】
この図5に示す成膜装置を用いて得られる第5の実施の形態の傾斜組成膜は、基板3の面上で蒸発源1,4それぞれの長手方向に平行な方向それぞれでの2種以上の物質の組成割合が連続的に変化する傾斜組成である上に、さらに別の原材料の蒸気を被覆させた若しくは下層とした2次元傾斜構造の組成膜である。
【0051】
これらの第4及び第5の実施の形態の傾斜組成膜では、蒸発源1(及び蒸発源2)による傾斜組成膜の上を覆うように成膜する場合、特に、補助の蒸発源5に収納した材料として耐環境性に安定なものを用いるならば、内部の蒸発源1(及び蒸発源2)による成膜を耐環境的に、また機械的に保護するのに利用することができる。一方、上記とは逆に、先に補助の蒸発源5の原材料を蒸発させ、後から蒸発源1(及び蒸発源2)を蒸発させれば、補助の蒸発源5の材料を基板とする形で、蒸発源1(及び蒸発源2)による傾斜組成膜を得ることができ、基板3との付着性の劣る傾斜組成膜の場合の対策として有効である。
【0052】
次に、本発明の第6、第7の実施の形態の傾斜組成膜及びその成膜方法について説明する。図4又は図5に示した成膜装置を用いて、前述の工程(A)と、工程(B)とを同時に実施することによって、傾斜組成薄膜を得る。
【0053】
こうして得られた第6、第7の実施の形態の傾斜組成薄膜は、基板3の表面の成膜量に対して、基板面に直角な方向の組成分布と基板面に平行な方向の組成分布の両方で規則的な組成勾配を持ち、かつ、さらに別の原材料が一定量ずつ混在する3次元傾斜組成膜である。
【0054】
このように、蒸発源1(及び蒸発源2)からの成膜動作と同時に補助の蒸発源5の原材料をも蒸発させれば、蒸発源1(及び蒸発源2)と蒸発源5に収納した材料との混合膜が得られる。これによって、基板面上の起点からの距離に対する成膜量の分布を拡大して成膜することができ、その結果、多元合金の成膜量の分布に対応した材料物性を詳細に調査するのに有効に活用することができる。
【0055】
次に、本発明の第8の実施の形態の傾斜組成膜及びその成膜方法について説明する。図6に示す成膜装置は、図3に示した第2の実施の形態の傾斜組成膜を成膜する成膜装置に対して、基板3を2倍の寸法のものにし、中心を軸に回転させる構成にしたものであり、この成膜装置を用いて第8の実施の形態の傾斜組成膜を成膜する。
【0056】
図6に示した成膜装置では、基板3の中心を軸に回転させながら第1の蒸発源1、第2の蒸発源4それぞれから原材料を蒸発させて蒸気を基板3の表面に付着させることにより、基板3の回転面全面に均一な膜厚ながら、中心側には第1の蒸発源1からの蒸気が多く成膜され、外周側には第2の蒸発源からの蒸気が多く成膜され、円状の傾斜組成膜が基板3の面上に形成できる。
【0057】
次に、本発明の第9の実施の形態の傾斜組成膜及びその成膜方法について説明する。図7に示すように3個の蒸発源、すなわち蒸発源1(21)、蒸発源2(22)、蒸発源3(23)を約120度ずつの間隔にスター状に設置し、あるいは図8に示すように3個の蒸発源、蒸発源1(21)、蒸発源2(22)、蒸発源3(23)を約60度ずつの間隔にデルタ状に設置し、これら3個の蒸発源の上方に遮蔽板24を設置し、その上方に基板25を配置した成膜装置を構成する。ただし、24は各蒸発源に設けた蒸気通過用のスリット、31は遮蔽板3に設けた蒸気通過孔である。また、xとyの比率をx/(x+y)=0.1〜0.9の範囲に設置する。
【0058】
これらの構成の成膜装置に用いて、3個の蒸発源1(21)、蒸発源2(22)、蒸発源3(23)をほぼ同時に蒸発させることにより、基板面上には、規則的な組成分布を持つ3成分傾斜組成膜を得ることができる。
【0059】
なお、以上の実施の形態において、蒸発源に収納する原材料としては、Cu,Niなどの金属、NiAlなどの金属間化合物が代表的な物質であるが、蒸気化又は昇華が可能な材料であれば、材質には関係なく、遮蔽板の設置効果が発揮され基板面上には規則的な組成分布を持つ傾斜組成膜を得ることができる。
【0060】
また、蒸発源の材質としてW,Moが好ましいが、その他にも、Ta,Nb,Ti,Ni−Cr−Al合金、WC−Coなどの炭化物、AlNなどの窒化物も有効である。
【0061】
蒸発源を蒸発させる加熱手段には、真空中でのWの抵抗加熱を使用した例について示したが、Mo,Taなども利用できる。条件は、被蒸発材料を蒸発させるだけの加熱能力があればよく、抵抗加熱、電子衝撃加熱、レーザ加熱、アーク加熱のいずれかを選択できる。
【0062】
遮蔽板の材質としてはステンレスを利用するのが好ましいが、Ni,Ta,Feなども利用できる。条件は、通過時の蒸気によって溶融しない融点を有することと、形状を維持できる程度の機械的特性、低いガス放出特性を有することである。
【0063】
基板の材質としてはガラスを使用するのが好ましいが、石英、ステンレスも利用できる。条件は、表面の平滑化が可能な材料である。
【0064】
【実施例】
<実施例1〜3、比較例1,2>
図2に示した成膜装置を用い、真空容器中(真空度10−4Pa)に厚さ0.8mmで、幅L=5mm、長さW=100mmのW(タングステン)製の蒸発源1と、同じ幅5mm、長さ100mmの蒸発源4とを設置した(幅Wと長さLとの比率(L/W)値=20)。これらと対向するように、縦250mm、横320mm、厚さ1mmのガラス板製の基板3を設置した。次に、蒸発源1と蒸発源4と基板3とで形成される立体的空間の所定位置に、ステンレス製の遮蔽板2を設置した。
【0065】
なお、ここでは幅5mm、長さ100mmのボート状の蒸発源1を使用したが、蒸発源1の上面でほぼ接する位置に、この幅5mm、長さ100mmの大きさの蒸発孔を持つ板を配置しても同等であり、かつその場合には、蒸発源1の長さは幅5mm、長さ100mmよりも大きい蒸発源を使用することができると共に、基板3上の組成成膜の勾配はよりシャープな組成分布とすることができる。また、蒸発源1は例えば直径1mmのW棒(Mo、Ta、Nb、Ni−Cr−AI棒)を使用することもできる。金属以外でも炭化物系、窒化物系であっても同様に利用できる。
【0066】
蒸発源1の長手方向と遮蔽板2の端面がなす辺の方向とが、立体図的に作る角度は90度とした。さらに、遮蔽板2の蒸気が通過する端面部分の表面粗さは1.5μmに一定とした。
【0067】
上記の一定の条件の下で、立体的空間の所定位置である蒸発源1と遮蔽板2との間隙xと、遮蔽板2と基板3との間隙yとの効果的位置を確認した。
【0068】
図9の表1に示したように、この遮蔽板2を設置する立体的空間の所定位置として、x=0.01mm、y=99.9mm(比較例1)。x=10mm、y=90mm(実施例1)。x=50mm、y=50mm(実施例2)。x=90mm、y=10mm(実施例3)。x=99.9mm、y=0.01mm(比較例2)とした。したがって、これらのxとyとの比率であるx/(x+y)の値は、おのおの0.0001、0.9、0.5、0.1、0.999である。
【0069】
[蒸発条件]図2の成膜装置において、Cuを載置した蒸発源1に5V、850Aの電力を投入し、Niを載置した蒸発源4には9V、1100Aの電力を投入して、これらを約45秒間ほぼ同時に蒸発させ、基板3の表面上にCu−Ni合金を成膜した。
【0070】
[評価条件]x=50mm、y=50mmとした実施例2の成膜を代表試料として、基板面上の一端から他端に向かってのCuとNiの組成分布をX線分析評価し、CuとNiの合計厚さ分布をエリプソメータで評価した。ここで実施例2の成膜を代表試料とした理由は、xとyとが同じ値であるため、蒸発源1の有効長さである100mmが、そのまま基板面上にほぼ100mmの間に付着され、かつその間に0%から100%が存在すると予想されるためである。基板3の表面上で、実施例1では拡大した成膜が得られ、実施例3では縮小した成膜が得られた(評価1)。
【0071】
縦250mm、横320mmのガラス板製の基板3の表面の端部から110mmだけ中央によった位置を起点と定める。起点から5〜10mm毎にCuの強度、Niの強度をX線の加速電圧15kVで、60秒間の積算値を計測した(評価2)。
【0072】
直径1.0mmのPt−Ir合金の先端を、曲率半径5mmに加工し、これを電極として、これに5grの荷重を与え、基板3の端部からの各測定地点(i)〜(xi)における極微小面積領域の抵抗を測定し、純Cuに相当する部分の測定値を1.0としたときの相対値で整理した。なお、測定試料は、成膜のままのものと成膜後600℃×10分の熱処理を与えたものとの両方について測定した(評価3)。
【0073】
[評価結果1](i)基板端部から55mmの点のCu値は8〜18(カウント/60秒)、(ii)同110mmの点のCu値は8〜17(カウント/60秒)を示し、両数値は同等の値を示した。基板3の表面上でCu成膜の全く蒸着されていない部分について同じ条件でCuの強度を測定すると、16〜19(カウント/60秒)であった。このことから、基板3の端部から55mmの(i)点のCu値である8〜18(カウント/60秒)、110mmの点のCu値である8〜17(カウント/60秒)は、ほぼ同じ値であり、Cuゼロの部分と考えられる。そこでこの場所を起点とした。
【0074】
そして、起点からの距離が、(iii)5mm、(iv)15mm、(v)25mm、(vi)50mm、(vii)75mm、(viii)95mm、(ix)100mm、(x)125mm、(xi)190mmの各地点のCu値をカウントした。カウント結果では、(iii)の地点で4710(カウント/60秒)、(iv)の地点で14320、(v)の地点で23410、(vi)の地点で47790、(vii)の地点で71820、(viii)の地点で90800、(ix)の地点で95310、(x)の地点で95280、(xi)の地点で95410(カウント/60秒)を示した。すなわち起点からの距離に対するCu値が、ほぼ直線的な勾配を持って増加していることが確認できた。
【0075】
(i)の基板端部から55mmの点のNi値は142880(カウント/60秒)、(ii)の同110mmの点のNi値は142780(カウント/60秒)を示し、両数値はほぼ同等の値を示した。基板3の表面でNi成膜のみの部分(Niが100%蒸着された部分)のNiの強度を同じ条件で測定すると、142830〜142910(カウント/60秒)であった。このことから、基板3の端部から55mmの(i)点のNi値である142880(カウント/60秒)、110mmの(ii)点のNi値である142780(カウント/60秒)は、ほぼ同じ値であり、Niが100%の部分と考えられる。そこで、この場所を起点とした。
【0076】
そして起点からの距離が、(iii)5mm、(iv)15mm、(v)25mm、(vi)50mm、(vii)75mm、(viii)95mm、(ix)100mm、(x)125mm、(xi)190mmの各地点のNi値をカウントした。カウント結果では、(iii)の地点で135550(カウント/60秒)、(iv)の地点で122520、(v)の地点で107110、(vi)の地点で71410、(vii)の地点で35750、(viii)の地点で7090、(ix)の地点で16〜23、(x)の地点で18〜25、(xi)の地点で17〜24を示した。すなわち起点からの距離に対するNi値が、ほぼ直線的な勾配を持って減少していることが確認できた。
【0077】
[評価結果2]基板3の端部からの各測定地点(i)〜(xi)における成膜厚さ(Cu+Niの合計に相当)を測定すると、図10の表2に示したように、4210〜4380(オングストローム)の範囲でほぼ一定の厚さであることを示している。
【0078】
[評価結果3]基板3の端部からの各測定地点(i)〜(xi)における抵抗値を測定すると、図10の表2に示したように基板3の端部からの各地点に対応して抵抗変化が見られた。これはブロック状態のCu−Ni合金の変化と相似した変化である。
【0079】
以上の評価結果1〜3によって、起点からの距離に対するCuの強度が直線的な勾配を持って減少し、これと対応してNiの強度が直線的な勾配を持って増加し、しかもその成膜量(成膜厚さ)がほぼ一定であり、これと対応して、電気抵抗も合金が示す変化と同等の変化を示し、成膜におけるCu、Niの存在割合に面方向に規則的な勾配が見られる傾斜組成膜であることが確認できた。なお、成膜のままのものと成膜後600℃×10分に熱処理を与えたものとの間には、測定誤差程度の極く僅かな差異は見られたが、抵抗変化の傾向は全く同等であった。
【0080】
一方、比較例1では、蒸発源1と遮蔽板2とが過度に近接しているため、遮蔽板2の端面効果が十分に発揮されず、規則的な勾配を持つ良質な成膜状態が得られなかった。この状態は、遮蔽板2を配置しない場合とほぼ同じであった。また、巨大な成膜装置が必要となり、現実的でなくなる上に目的も達成できない。
【0081】
また、比較例2でも、遮蔽板2と基板3とが過度に近接しているため、やはり遮蔽板2の端面効果がほとんど見られず、規則的な勾配を持つ成膜が得られなかった。この状態は、遮蔽板2を配置しない場合とほぼ同じであった。
【0082】
これらから、実施例1〜実施例3のように、第1の蒸発源1と第2の蒸発源4と基板3とで形成される立体的空間の所定位置に遮蔽板2を設置することにより、遮蔽板2の設置効果によって基板3の表面上に規則的な勾配を持つ良質な成膜が得られることが確認でき、他方、比較例1、比較例2のように遮蔽板を設置する場合には設置効果が得られないことも確認できた。
【0083】
[評価結果4]結果1〜2のデータを使用して、各測定区間の成膜量と、起点(ii)から終点(ix)までの間の平均成膜量とを比較した。起点(ii)から終点(ix)までの間のCuの成膜量の平均勾配は、953([カウント/60秒]/mm)である。各測定区間の成膜量の勾配は、それぞれ(iii)〜(ii)間が940、(iv)〜(iii)間が961、(v)〜(vi)間が909、(vi)〜(v)間が961、(vii)〜(vi)間が961、(viii)〜(vii)間が949、(ix)〜(viii)間が902、(x)〜(ix)間が2.0であった。これらの値は、起点(ii)から終点(ix)までの間の平均勾配の953と近似している。これは規則的な勾配を持って成分が変化していることを示唆するものである。
【0084】
起点(ii)から終点(ix)までの間のNiの成膜量の平均勾配は、1429([カウント/60秒]/mm)である。各測定区間の成膜量の勾配は、それぞれ、(iii)〜(ii)間が1446、(iv)〜(iii)間が1435、(v)〜(iv)間が1409、(vi)〜(v)間が1428、(vii)〜(vi)間が1426、(viii)〜(vii)間が1433、(ix)〜(viii)間が1414、(x)〜(ix)間が0.16、(xi)〜(x)間が0.03であった。これらの値は、起点(ii)から終点(ix)までの間の平均勾配の1429と近似している。これは規則的な勾配を持って成分が変化していることを示唆するものである。
【0085】
<実施例4〜7、比較例3,4>
上記の実施例1〜3では、蒸発源1の幅Wと長さLとの比率L/Wの値を20に固定としたときに、基板3の表面上の所定位置に対する成膜量の分布に規則的な勾配を持たせた傾斜組成膜について示した。しかし本発明ではL/Wの値は上記20に限らず、遮蔽板2の設置効果を得ることができる。
【0086】
図9の表1に示した他の実施例4〜7では、図2の成膜装置において、遮蔽板2を設置する立体的空間の所定位置を、x=50mm、y=50mmに一定とした上で、Cuを載置した第1の蒸発源1には5V、900Aの電力を約60秒間投入し、Niを載置した第2の蒸発源4には9V、1200Aの電力を約60秒間投入して、ほぼ同時に蒸発させ、基板面上にCu−Ni合金を成膜する。そしてこの各場合に、蒸発源1の幅Wは5mmとし、長さLを1000mm,500mm,50mm,10mmとすることによって、L/Wの値=200,100,10,2.0と変えてみた。
【0087】
[評価結果]基板3の表面上には、起点からの距離に対してCuの強度が直線的な勾配を持って減少し、これと対応して、Niの強度は直線的な勾配を持って増加する傾斜組成膜が得られた。しかもその成膜量(成膜厚さ)はほぼ一定であった。
【0088】
これに対して、第1の蒸発源1の幅Wを5mm、長さLを1500mmとすることによってL/Wの値=300とした比較例3の場合では、基板面上の所定位置に対する成膜量の分布に規則的な勾配を持つ傾斜組成膜は得られなかった。これは、蒸発源1の長さLが1500mmに亘って均一に蒸発させることが難しいことが原因となっている。
【0089】
また、第1の蒸発源1の幅Wを5mm、長さLを5mmとすることによってL/Wの値=1.0とした比較例4の場合では、基板面上の所定位置に対する成膜量の分布に規則的な勾配が見られず、傾斜組成膜が得られなかった。これは、遮蔽板2の端面効果が十分に発揮されないためである。
【0090】
以上によって、第1の蒸発源1の幅Wと長さLとの比率L/Wの値は、実施例4〜7で示される200〜2.0の範囲のときに良好な傾斜組成膜を得ることができることが確認できた。
【0091】
<実施例8〜10、比較例5,6>
上記の実施例1〜7では、蒸発源の長手方向と遮蔽板の端面がなす辺とが立体図的に作る角度を90度に一定とした時の成膜状態を評価したが、本発明の成膜装置では、90度に限らなくても傾斜組成膜が得られる。
【0092】
すなわち、図2の成膜装置において、遮蔽板2を設置する立体的空間の所定位置を、x=50mm、y=50mmに一定とした上で、両者の立体図的に作る角度を60度、100度、120度として成膜し、Cuを載置した第1の蒸発源1に5V、900Aの電力を約60秒間投入し、Niを載置した第2の蒸発源4には9V、1200Aの電力を約60秒間投入してほぼ同時に蒸発させ、基板面上にCu−Ni合金を成膜した(表1の実施例8〜10)。
【0093】
[評価詰果]基板面上には、起点からの距離に対するCuの強度が、直線的な勾配を持って減少し、これと対応してNiの強度は直線的な勾配を持って増加した傾斜粗成膜を得た。しかもその成膜量(成膜厚さ)はほぼ一定であった(実施例8〜10)。
【0094】
これに対して、蒸発源の長手方向と遮蔽板の端面がなす辺とが立体図的に作る角度を10度及び170度とした比較例5,6の場合では、基板面上での所定位置に対する成膜量の分布に規則的な勾配を持たせた傾斜組成膜が得られなかった。これは遮蔽板2の端面効果が十分に発揮されないためである。
【0095】
以上によって、蒸発源1の長手方向と遮蔽板2の端面がなす辺とは、実施例8〜10で示される60度〜120度の範囲が好ましいことが確認できた。
【0096】
<実施例11〜13、比較例7>
上記の実施例1〜10では、遮蔽板2の端面(蒸気の通過部分)の表面粗さを1.5μmに一定としたが、本発明では、端面の表面粗さを1.5μmに限らなくても良好な成膜を得ることができる。
【0097】
すなわち、表1の実施例11〜13に示したように、遮蔽板2を設置する立体的空間の所定位置を、x=50mm、y=50mmに一定とし、蒸発源1の蒸発孔の形状をL/W=20に一定とし、蒸発源1の長手方向と遮蔽板2の端面がなす辺との立体図的に作る角度を90度に一定とした上で、遮蔽板2の端面(蒸気の通過部分)の表面粗さを12μm,6μm,0.1μmにした成膜装置、また、比較例7として表面粗さを30μmにした成膜装置により、基板面上にCu−Ni合金を成膜した。なお、Cuを載置した第1の蒸発源1には5v、850Aの電力を投入し、Niを載置した第2の蒸発源4には9V、1100Aの電力を投入して、これらを約45秒間ほぼ同時に蒸発させ、基板3の表面上に蒸着させた。
【0098】
[評価結果]実施例11〜13では、基板面上に、起点からの距離に対するCuの強度が直線的な勾配を持って減少し、これと対応してNiの強度が直線的な勾配を持って増加する傾斜組成膜を得た。しかもその成膜量(成膜厚さ)はほぼ一定であった。また、基板面上で起点から0mmでのCuの成膜量は予定通り0%であり、Niも予定通り100%であった。
【0099】
これに対して、比較例7の場合では、基板面上で起点から0mm近傍及び100mm近傍での成膜量は、本来Cuが0%、Niが100%となる筈であるが、前者の成膜量は0.5〜2%、後者では97.5〜99.5%にばらついていた。これは、遮蔽板2を通過する際に蒸気が散乱したためと考えられる。
【0100】
以上の評価によって、遮蔽板2の端面(蒸気の通過部分)の表面粗さは12μm〜0.1μmが好ましいことが確認できた。なお、電解研磨などによって、表面粗さをさらに平滑化して0.1μm以下とした場合でも、加工に対する経費は加わるものの、遮蔽板2の端面効果はさらに十分に発揮され、直線的な勾配を持った傾斜組成膜を得られる。
【0101】
【発明の効果】
以上のように本発明の傾斜組成膜によれば、基板面上の少なくとも1方向において原材料の存在量が連続的に変化する傾斜組成を有するので、化学、金属材料、セラミックス材料などで最も基本となる状態図を確保するのに利用することができ、このため新素材の開発に利用することができ、さらには、熱的、機械的応力を緩和した新機能を持つ新素材の開発にも利用することができるなど、多岐に渡り、素材開発の試料として利用することができる。
【0102】
また本発明の傾斜組成膜によれば、基板面上の少なくとも1方向において複数種の原材料の存在量の割合が連続的に変化する傾斜組成を有するので、化学、金属材料、セラミックス材料などで最も基本となる状態図を確保するのに利用することができ、このため新素材の開発に利用することができ、さらには、熱的、機械的応力を緩和した新機能を持つ新素材の開発にも利用することができるなど、多岐に渡り、素材開発の試料として利用することができる。
【0103】
また本発明の傾斜組成膜の成膜方法によれば、原材料を蒸発させる蒸発源と、これと対向するように配置した基板との間に遮蔽板を設置した成膜装置を用い、この遮蔽板の設置効果によって基板面上に形成された成膜量に規則的な勾配を持つ、上記特長を有する傾斜組成膜を成膜することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の傾斜組成膜を成膜するための成膜装置の断面図及びそれにより得られた傾斜組成膜の組成分布の説明図。
【図2】本発明の第2の実施の形態の傾斜組成膜を成膜するための成膜装置の断面図及びそれにより得られた傾斜組成膜の組成分布の説明図。
【図3】本発明の第3の実施の形態の傾斜組成膜を成膜するための成膜装置の断面図及びそれにより得られた傾斜組成膜の組成分布の説明図。
【図4】本発明の第4の実施の形態の傾斜組成膜を成膜するための成膜装置の断面図及びそれにより得られた傾斜組成膜の組成分布の説明図。
【図5】本発明の第5の実施の形態の傾斜組成膜を成膜するための成膜装置の断面図及びそれにより得られた傾斜組成膜の組成分布の説明図。
【図6】本発明の第6の実施の形態の傾斜組成膜を成膜するための成膜装置の断面図及びそれにより得られた傾斜組成膜の組成分布の説明図。
【図7】本発明の第9の実施の形態の傾斜組成膜を成膜するための成膜装置の基板の下側から下方を見た平面図。
【図8】本発明の第10の実施の形態の傾斜組成膜を成膜するための成膜装置の基板の下側から下方を見た平面図。
【図9】本発明の実施例1〜11の実施条件の表1。
【図10】本発明の実施例1〜11の評価結果の表2。
【図11】従来例の説明図。
【符号の説明】
1 蒸発源
2 遮蔽板
2A,2B 遮蔽板
3 基板
4 蒸発源
5 補助の蒸発源
21 蒸発源1
22 蒸発源2
23 蒸発源3
24 スリット
31 蒸気通過孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gradient composition film and a method for forming a gradient composition film.
[0002]
[Prior art]
Conventionally, for graded composition alloys whose composition distribution changes from one end to the other end, usually, a plurality of alloys having a target composition are prepared in advance, and they are laminated and sintered in the thickness direction in the order of their composition ratio. The graded composition alloy obtained by this method has a graded composition in the composition distribution in the direction of sticking. The gradient composition alloy obtained by this method is used, for example, as a component requiring stress relaxation (Prior Art 1).
[0003]
In addition, when one substance is evaporated, the vapor of the substance has a property of jumping out in all directions in the space. If a substrate is placed on top of the evaporation source using this property and material vapor is received by the substrate, the vapor adheres to the surface of the substrate in a circular or elliptical pattern, It is possible to manufacture a film with a film thickness gradient in which the film thickness is inclined in a direction parallel to the substrate surface (prior art 2).
[0004]
Further, utilizing the above-mentioned properties, as shown in FIG. 11, a plurality of raw materials are separately accommodated in a plurality of evaporation sources 1A, 1B, and 1C, and are heated simultaneously. In this case, a gradient composition alloy film having a composition distribution inclined in a direction parallel to the substrate surface with respect to the film formation amount on the substrate surface can be manufactured (prior art 3).
[0005]
[Problems to be solved by the invention]
However, in the gradient composition alloy obtained by sintering and integration according to the prior art 1, it is inevitable that the composition distribution changes stepwise, and in order to correct this, an astronomical number of alloys must be prepared in advance. It has to be laminated and is not practical.
[0006]
Further, in the film thickness gradient film obtained in the prior art 2, although the change in the film thickness depending on the position on the substrate surface has continuity, the film thickness is not distributed on a predetermined fixed scale, but is changed by chemical, metal, or the like. However, a high quality phase diagram distribution, which is commonly used in the field of ceramic materials, cannot be obtained, and the method is still poor in practicality.
[0007]
Further, in the graded composition alloy film obtained in the prior art 3, although the film formation amount on the substrate surface is inclined in the composition distribution in a direction parallel to the substrate surface, it is not distributed on a predetermined fixed scale. Also, a high quality phase diagram distribution, which is commonly used in the fields of chemistry, metals, and ceramics, cannot be obtained, and is not practical.
[0008]
The present invention has been made in order to solve such a problem of the related art, and the distribution of the film formation amount at each position (referred to as “predetermined position”) from one end to the other end on the substrate surface is determined. An object of the present invention is to provide a high-quality gradient composition film that changes continuously and a method for forming a gradient composition film capable of forming such a high-quality gradient composition film.
[0009]
[Means for Solving the Problems]
The gradient composition film according to the first aspect of the present invention is a gradient composition film of one raw material substance or a plurality of raw material substances formed on a substrate surface, wherein at least one raw material substance is present on the substrate surface. It has a gradient composition that changes continuously in at least one direction.
[0010]
The gradient composition film according to the invention of claim 2 is a gradient composition film of a plurality of raw material substances formed on a substrate surface, wherein a ratio of an abundance between at least two of the plurality of raw material substances is equal to the substrate content. It has a gradient composition that changes continuously in at least one direction on the surface.
[0011]
In the method for forming a gradient composition film according to the invention of claim 3, one or a plurality of raw materials are evaporated in one or a plurality of evaporation sources, and each of the target regions on the substrate surface is evaporated from the one or a plurality of evaporation sources. The material of the raw material is formed so as to have a regular gradient in the amount of the vapor of the raw material with respect to the position.
[0012]
According to a fourth aspect of the present invention, there is provided a method for forming a gradient composition film, wherein one of the vapors evaporated from the raw material is provided between one evaporation source for evaporating the raw material and one substrate disposed so as to face the source. A shielding member having a function of blocking the movement of the part is provided, and the remaining vapor that is not blocked by the shielding member among the vapors of the raw material evaporated in the one evaporation source is attached to the substrate surface. Is what you do.
[0013]
According to a fifth aspect of the present invention, in the method for forming a gradient composition film according to the fourth aspect, x / (x is a gap between the evaporation source and the shielding member and y is a gap between the shielding member and the substrate. x + y) = the shielding member is provided between the evaporation source and the substrate satisfying the condition of 0.1 to 0.9, and a film is formed by attaching a raw material of the evaporation source onto the substrate surface. It is a feature.
[0014]
7. The method for forming a gradient composition film according to claim 6, wherein the vapor evaporated from the plurality of raw materials is provided between a plurality of evaporation sources for evaporating each of the plurality of raw materials and one substrate disposed to face the plurality of evaporation sources. One or a plurality of shielding members having a function of blocking a part of each of them are installed, and the remaining vapor that is not blocked by the respective shielding members of the plurality of raw material vapors evaporated in each of the plurality of evaporation sources is removed. It is characterized in that a film is formed by attaching it on a substrate surface.
[0015]
According to a seventh aspect of the present invention, in the method for forming a gradient composition film according to the sixth aspect, x / (x is a gap between the evaporation source and the shielding member and y is a gap between the shielding member and the substrate. x + y) = the shielding member is provided between the evaporation source and the substrate satisfying the condition of 0.1 to 0.9, and a film is formed by attaching a raw material of the evaporation source onto the substrate surface. It is a feature.
[0016]
In the method for forming a gradient composition film according to the present invention, a first evaporation source for evaporating a first raw material, a second evaporation source for evaporating a second raw material, and a plurality of evaporation sources are arranged so as to be opposed to each other. Using a film forming apparatus provided with a substrate, a shielding member for blocking a part of vapor evaporated from the raw material is provided between the first evaporation source and the substrate; The remaining vapor that is not blocked by the shielding member among the vapors of the raw material evaporated by the evaporation source is guided onto the substrate surface, and the film deposition amount in at least one direction on the substrate surface is provided with a gradient. In the film forming step (A), a second evaporation source for evaporating the second raw material is installed at a position where the installation effect of the shielding member does not appear, and the vapor of the second raw material is guided on the substrate surface. (B) forming a film in a uniform amount in all directions on the substrate surface; Forming a gradient composition film in which the proportion of the first raw material changes continuously in at least one direction on at least the surface of the substrate by performing any one of them in succession. It is characterized by the following.
[0017]
According to a ninth aspect of the present invention, there is provided a method for forming a gradient composition film, comprising: a first evaporation source for evaporating a first raw material; a second evaporation source for evaporating a second raw material; Using a film forming apparatus provided with a substrate, a shielding member for blocking a part of vapor evaporated from the raw material is provided between the first evaporation source and the substrate; The remaining vapor that is not blocked by the shielding member among the vapors of the raw material evaporated by the evaporation source is guided onto the substrate surface, and the film deposition amount in at least one direction on the substrate surface is provided with a gradient. In the film forming step (A), a second evaporation source for evaporating the second raw material is installed at a position where the installation effect of the shielding member does not appear, and the vapor of the second raw material is guided on the substrate surface. (B) forming a film in a uniform amount in all directions on the substrate surface; Simultaneous execution has a regular gradient in both the composition distribution in the direction perpendicular to the substrate surface and the composition distribution in at least one direction parallel to the substrate surface with respect to the film formation amount on the substrate surface. It is characterized in that a gradient composition film is formed.
[0018]
According to a tenth aspect of the present invention, in the method for forming a gradient composition film according to any one of the third to ninth aspects, the evaporation source has any one of a linear shape, a bar shape, a plate shape, and a boat shape, and has a linear or rod shape. In the case of (1), the evaporator is provided with an elongated evaporation hole having a length at least twice as long as its diameter. It is characterized in that a film is formed by using one having an evaporation hole.
[0019]
According to an eleventh aspect of the present invention, in the method for forming a gradient composition film according to the tenth aspect, the evaporation source and the corresponding shielding member are arranged so as to form a pair, and the longitudinal direction of the evaporation source and an end surface of the shielding member are arranged. The film is formed by using a film forming apparatus arranged so as to intersect at an angle of 120 ° to 60 °, preferably 90 ° in the elevation view with the linear direction formed by the sides formed by the sides. Things.
[0020]
According to a twelfth aspect of the present invention, in the method for forming a gradient composition film according to any one of the third to eleventh aspects, the end surface of the shielding member has a maximum of 10 μm or less, preferably a vapor passage surface having a roughness of 0.1 μm. The film is formed by using a material having a gradient.
[0021]
A thirteenth aspect of the present invention is the method for forming a gradient composition film according to any one of the third to twelfth aspects, wherein the evaporation source, the shielding member, and the substrate are provided, and one or more shielding members corresponding to one evaporation source are provided. A film formation amount at a predetermined position on the substrate surface obtained by forming a film using a film forming apparatus having a plurality of shielding members corresponding to each of the plurality of evaporation sources. It has a characteristic gradient.
[0022]
According to a fourteenth aspect, in the method for forming a gradient composition film according to any of the third to thirteenth aspects, the film is formed by a vacuum evaporation method or a sputtering method.
[0023]
According to a fifteenth aspect, in the method for forming a gradient composition film according to any one of the third to fourteenth aspects, the film is formed in a vacuum atmosphere, an oxygen atmosphere, a nitrogen atmosphere, or an argon atmosphere.
[0024]
According to a sixteenth aspect of the present invention, in the method for forming a gradient composition film according to any one of the third to fifteenth aspects, the raw material is evaporated by heating the evaporation source by any one of resistance heating, electron impact heating, laser heating, and arc heating. It is characterized by the following.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
The gradient composition film of the present invention is formed by giving a regular gradient to the amount of the substance reaching each position of the target region on the substrate surface from one or a plurality of evaporation sources for evaporating the raw material. A thin film having a gradient composition in at least one direction on the obtained substrate surface or a thin film having a gradient composition equivalent thereto.
[0027]
FIG. 1 schematically shows a film forming apparatus used for forming a gradient composition film according to the first embodiment of the present invention, and a gradient composition of the gradient composition film formed thereby. In this film forming apparatus, the evaporation source 1 containing the raw material of the material to be evaporated is formed into an elongated shape, and the remaining steam is guided further upward while shielding a part of the steam from the evaporation source 1 above the evaporation source 1. The shield plate 2 is installed at a position where the heat from the evaporation source 1 adheres to the surface of the substrate 3 above the shield plate 2.
[0028]
The evaporation source 1 has an elongated evaporation hole having a linear, rod-like, plate-like, or boat-like shape, and in the case of a linear or rod-like shape, having a length twice or more the diameter thereof. In the case of a plate-like or boat-like shape, one having an elongated evaporation hole having a length twice or more the width thereof is used.
[0029]
The shielding plate 2 controls the surface roughness of the end face through which a part of the raw material vapor passes through to a maximum of 12 μm or less, preferably 0.1 μm, and shields the longitudinal direction of the elongated evaporation source 1 from the longitudinal direction. The plate 2 is disposed so as to intersect, preferably orthogonally intersect, with a direction of a straight line formed by a side formed by the end face in the elevation view, particularly at an angle within 60 to 120 degrees.
[0030]
In the film forming apparatus having the above-described configuration, the raw material placed in the evaporation source 1 is heated and evaporated and adhered to the opposing surface of the substrate 3, so that the evaporation source 1 and the shielding plate 2 are separated by the shielding effect of the shielding plate 2. A gradient composition film having a regular gradient in the distribution of the deposition amount with respect to a predetermined position on the substrate surface provided above the connecting line is formed. The mechanism of the formation of the gradient composition film on the substrate surface at this time is as follows.
[0031]
(A) In FIG. 1, the vapor of the raw material evaporated from the evaporation point b of the evaporation source 1 reaches an intersection s where an extension of the b-g line connected to the end face g of the shielding plate 2 intersects with the substrate 3 and is evaporated. It adheres so as to overlap with the vapor evaporated from the evaporation point a at one end of the source 1.
[0032]
(B) The vapor from the evaporation point c of the evaporation source 1 reaches the intersection r at which the extension of the c-g line connected to the end face g of the shielding plate 2 intersects with the substrate 3, and from the evaporation point a and the evaporation point b. It adheres so as to overlap with the evaporated vapor.
[0033]
(C) The vapor evaporated from the evaporation point a at one end of the evaporation source 1 is partially shielded by the shielding plate 2, but most of the vapor reaches the substrate 3 and is connected to the end face g of the shielding plate 2. The intersection of the extension of the -g line and the substrate 3 reaches the intersection point t. However, in FIG. 1, the slightly right side of the intersection point t with the substrate 3 is a portion where the evaporated vapor does not reach at all. That is, the intersection point t is a boundary point of a region where the vapor from the evaporation source 1 reaches.
[0034]
(D) Most of the vapor evaporated from the evaporation point d at the other end of the evaporation source 1 is shielded by the shielding plate 2, but a part of the steam is removed from the end face g of the shielding plate 2 and other portions of the evaporation source 1. The extension line of the dg line connecting the end evaporation point d reaches the intersection point q intersecting with the substrate 3. Therefore, in FIG. 1, the right side from the intersection q is a region where all the vapors from all the evaporation points d, c, b, and a of the evaporation source 1 overlap and reach.
[0035]
In the film forming apparatus including the evaporation source 1, the shielding plate 2, and the substrate 3, the evaporation source 1 has an elongated shape so that the vapor amount reaching the surface of the substrate 3 has a uniform gradient. In combination with the shielding effect of the shielding plate 2, a gradient composition film having a regular gradient can be formed on the substrate surface.
[0036]
Further, in a film forming apparatus including the evaporation source 1, the shielding plate 2 and the substrate 3, it is important to control the vapor passage surface at the end face of the shielding plate 2 to a maximum of 10 μm or less, preferably 0.1 μm. is there. Thus, the amount of vapor reaching the surface of the substrate 3 can have a smoother gradient.
[0037]
Furthermore, in the above-described film forming apparatus, the longitudinal direction of the evaporation source 1 and the direction of the side formed by the end face of the shielding plate 2 intersect at an angle of 60 to 120 degrees when viewed three-dimensionally. It is also important that they are preferably arranged orthogonally, so that the distribution of the film deposition amount at a predetermined position on the surface of the substrate 3 can have a regular gradient. Here, when viewed from below the substrate 3, the longitudinal direction of the evaporation source 1 and the shielding plate 2 appear to intersect. In this case, the angle that appears to intersect was defined as an angle determined in a stereoscopic view.
[0038]
In addition, the film forming apparatus used for forming the gradient composition film according to the present embodiment includes an evaporation source 1 between one evaporation source 1 for evaporating a raw material and a substrate 3 arranged to face the evaporation source. A shield plate 2 having a function of blocking a part of the vapor evaporated from the water is installed, and the installation effect of the shield plate 2 guides the remaining unblocked evaporation to a predetermined position on the surface of the substrate 3. The inclined composition film can be formed by giving a regular gradient to the film formation amount in a direction substantially perpendicular to the axis connecting the evaporation source 1 and the substrate 3 on the surface 3.
[0039]
That is, in FIG. 1, when the interval between the evaporation source 1 and the shielding plate 2 is x and the interval between the shielding plate 2 and the substrate 3 is y, a solid determined by x / (x + y) = 0.1 to 0.9. By disposing the shielding plate 2 at a predetermined position in the target space, the distribution of the film deposition amount at a predetermined position on the substrate surface can have a regular gradient.
[0040]
When a gradient composition film is formed using the above-described film forming apparatus, any of a vacuum evaporation method and a sputtering method can be adopted depending on the application and purpose. Similarly, a film can be formed in a vacuum atmosphere, an oxygen atmosphere, a nitrogen atmosphere, or an argon atmosphere. Furthermore, the heating of the raw material of the evaporation source 1 can also employ any of resistance heating, electron impact heating, laser heating, and arc heating depending on the application and purpose. These are the same in the following embodiments.
[0041]
A gradient composition film and a method of forming the same according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows a film forming apparatus for forming a gradient composition film according to a second embodiment of the present invention. In this film forming apparatus, a plurality of evaporation sources for evaporating raw materials, for example, first and second evaporation sources 1 and 4 are provided. Then, the substrate 3 is arranged so as to face these, and at a predetermined position in a three-dimensional space formed by the plurality of evaporation sources 1 and 4 and the substrate 3, of the vapor evaporated from the evaporation sources 1 and 4, A single shielding plate 2 having a function of partially blocking is provided.
[0042]
In this film forming apparatus, the remaining vapor that is not blocked is guided to a predetermined position on the surface of the substrate 3 by the shielding effect of the shielding plate 2, and an axis connecting the evaporation sources 1 and 4 and the substrate 3 on the surface of the substrate 3. In this case, a gradient composition film can be formed in which the film formation amount in a direction substantially perpendicular to the surface has a regular gradient in the ratio of two or more substances in the plane direction.
[0043]
As shown in FIG. 3, two shielding plates 2A and 2B are provided for two evaporation sources 1 and 4 like the film forming apparatus used for forming the gradient composition film according to the third embodiment. Can also be installed. In the film forming apparatus shown in FIG. 3, a plurality of evaporation sources 1 and 4 for evaporating raw materials are provided, and a substrate 3 is disposed so as to face the evaporation sources 1 and 4. Two shielding plates 2A and 2B having a function of blocking a part of the vapor evaporated from each of the evaporation sources 1 and 4 at predetermined positions in the three-dimensional space, and installing the shielding plates 2A and 2B. By the effect, the remaining vapor that is not blocked by the shielding plate is guided to a predetermined position on the surface of the substrate 3 and adheres thereto.
[0044]
In the film forming apparatus shown in FIG. 3, the amount of film formed on the surface of the substrate 3 in a direction substantially perpendicular to the axis connecting the evaporation sources 1 and 4 and the substrate 3 is two or more in the surface direction. A gradient composition film having a regular gradient in the proportion of the substance can be formed.
[0045]
The graded composition film of the second embodiment formed by the film forming apparatus shown in FIG. 2 and the graded composition film of the third embodiment formed by the film forming apparatus shown in FIG. The positional relationship of 0% and 100% of the composition ratio of the adhered substance on the surface of No. 3 is reversed, but the same as the gradient composition film.
[0046]
Next, a gradient composition film and a method for forming the same according to a fourth embodiment of the present invention will be described. FIG. 4 shows a film forming apparatus for forming a gradient composition film according to the fourth embodiment. In this film forming apparatus, the main evaporation source 1 and the substrate 3 are formed by using a film forming apparatus including a main evaporation source 1 for evaporating a raw material and a substrate 3 arranged to face the main source. At a predetermined position in the three-dimensional space, a shielding plate 2 for blocking a part of the vapor evaporated from the raw material of the main evaporation source 1 is installed. A step (A) of guiding to a predetermined position and giving a gradient to the film formation amount in a direction substantially perpendicular to the axial direction connecting the evaporation source 1 and the substrate 3, and an auxiliary evaporation source 5 for evaporating another raw material The auxiliary evaporation source 5 is provided at a position where the installation effect of the shielding plate 2 does not appear, and the vapor of another raw material in the auxiliary evaporation source 5 is guided to a predetermined position on the surface of the substrate 3. Uniformizing the film formation amount in a direction parallel to the longitudinal direction of the evaporation source 5 on the surface By implementing B), relative to the amount of film forming surface of the substrate 3 to form a two-dimensional gradient composition film having a regular gradient in composition distribution of the direction parallel to the surface of the substrate 3. In addition, any of the step (A) and the step (B) can be performed first.
[0047]
The two-dimensional gradient composition film of the fourth embodiment obtained by the film forming apparatus shown in FIG. 4 includes an auxiliary evaporation source 5 for evaporating another raw material at a position where the installation effect of the shielding plate 2 does not appear. It is a composition film having a two-dimensional gradient structure in which a vapor of another raw material is coated on the upper or lower surface of the gradient composition film having a regular gradient obtained in the step (A).
[0048]
Next, a description will be given of a gradient composition film and a method of forming the same according to a fifth embodiment of the present invention. The film forming apparatus shown in FIG. 5 is for forming the gradient composition film according to the fifth embodiment, and is different from the film forming apparatus shown in FIG. In this configuration, an auxiliary evaporation source 5 is provided at a position where no 現 れ appears. The method of forming a gradient composition film by this film forming apparatus is as follows.
[0049]
As in the case of the second embodiment, the vapor of the raw material evaporated from the first evaporation source 1 and the vapor of another raw material evaporated from the second evaporation source 2 are placed at predetermined positions on the surface of the substrate 3. Induction, the film deposition amount in a direction substantially perpendicular to the axis connecting the evaporation sources 1 and 4 and the substrate 3 on the surface of the substrate 3 is made constant, and the ratio of two or more substances in the surface direction is regulated. (A) of forming a gradient composition film having a specific gradient, and guiding vapor from an auxiliary evaporation source 5 for evaporating another raw material to a predetermined position on the surface of the substrate 3, Step (B) of forming a film having a constant film formation amount (film formation thickness) above or below the gradient composition film on the surface of No. 3 is performed. Also in this embodiment, any of the steps (A) and (B) can be performed first.
[0050]
The gradient composition film according to the fifth embodiment obtained by using the film forming apparatus shown in FIG. 5 has two or more types in the direction parallel to the longitudinal direction of each of the evaporation sources 1 and 4 on the surface of the substrate 3. Is a composition film having a two-dimensional gradient structure in which the composition ratio of the substance is continuously changed, and further, a vapor of another raw material is coated or a lower layer is formed.
[0051]
In the gradient composition films according to the fourth and fifth embodiments, when the film is formed so as to cover the gradient composition film formed by the evaporation source 1 (and the evaporation source 2), the film is stored in the auxiliary evaporation source 5. If a material that is stable in environmental resistance is used as the material, it can be used to protect the film formed by the internal evaporation source 1 (and the evaporation source 2) environmentally and mechanically. On the other hand, contrary to the above, if the raw material of the auxiliary evaporation source 5 is evaporated first and the evaporation source 1 (and the evaporation source 2) is evaporated later, the material of the auxiliary evaporation source 5 is used as a substrate. Thus, a gradient composition film by the evaporation source 1 (and the evaporation source 2) can be obtained, which is effective as a countermeasure for a gradient composition film having poor adhesion to the substrate 3.
[0052]
Next, a gradient composition film and a method of forming the same according to the sixth and seventh embodiments of the present invention will be described. Using the film forming apparatus shown in FIG. 4 or 5, the above-described step (A) and step (B) are simultaneously performed to obtain a gradient composition thin film.
[0053]
The gradient composition thin films of the sixth and seventh embodiments obtained in this manner have a composition distribution in a direction perpendicular to the substrate surface and a composition distribution in a direction parallel to the substrate surface with respect to the film formation amount on the surface of the substrate 3. Is a three-dimensionally graded composition film having a regular composition gradient and further mixed with other raw materials by a fixed amount.
[0054]
As described above, when the raw material of the auxiliary evaporation source 5 is evaporated at the same time as the film forming operation from the evaporation source 1 (and the evaporation source 2), the raw material is stored in the evaporation source 1 (and the evaporation source 2). A mixed film with the material is obtained. As a result, it is possible to form a film by enlarging the distribution of the film formation amount with respect to the distance from the starting point on the substrate surface. As a result, it is possible to investigate in detail the material properties corresponding to the distribution of the film formation amount of the multi-component alloy. Can be used effectively.
[0055]
Next, a gradient composition film and a method of forming the same according to an eighth embodiment of the present invention will be described. The film forming apparatus shown in FIG. 6 has a substrate 3 having twice the size of the film forming apparatus for forming the gradient composition film of the second embodiment shown in FIG. The gradient composition film according to the eighth embodiment is formed using this film forming apparatus.
[0056]
In the film forming apparatus shown in FIG. 6, the raw material is evaporated from each of the first evaporation source 1 and the second evaporation source 4 while rotating about the center of the substrate 3 so that the vapor adheres to the surface of the substrate 3. Accordingly, a large amount of vapor from the first evaporation source 1 is formed on the center side and a large amount of vapor from the second evaporation source is formed on the outer peripheral side while the film thickness is uniform on the entire rotating surface of the substrate 3. Thus, a circular gradient composition film can be formed on the surface of the substrate 3.
[0057]
Next, a description will be given of a gradient composition film and a method of forming the same according to a ninth embodiment of the present invention. As shown in FIG. 7, three evaporation sources, that is, evaporation source 1 (21), evaporation source 2 (22), and evaporation source 3 (23) are arranged in a star shape at intervals of about 120 degrees, or FIG. As shown in the figure, three evaporation sources, evaporation source 1 (21), evaporation source 2 (22), and evaporation source 3 (23) are installed in a delta at intervals of about 60 degrees, and these three evaporation sources A film forming apparatus in which a shielding plate 24 is disposed above the substrate and a substrate 25 is disposed above the shielding plate 24 is provided. Here, reference numeral 24 denotes a slit for vapor passage provided in each evaporation source, and 31 denotes a vapor passage hole provided in the shielding plate 3. Further, the ratio of x and y is set in the range of x / (x + y) = 0.1 to 0.9.
[0058]
The three evaporation sources 1 (21), the evaporation source 2 (22), and the evaporation source 3 (23) are almost simultaneously evaporated by using the film forming apparatus having these configurations, so that the substrate surface is regularly arranged. A three-component gradient composition film having an appropriate composition distribution can be obtained.
[0059]
In the above-described embodiment, as the raw materials to be stored in the evaporation source, metals such as Cu and Ni and intermetallic compounds such as NiAl are typical substances, but any material that can be vaporized or sublimated is used. Thus, regardless of the material, the effect of installing the shielding plate is exhibited, and a gradient composition film having a regular composition distribution can be obtained on the substrate surface.
[0060]
In addition, W and Mo are preferable as the material of the evaporation source, but in addition, carbides such as Ta, Nb, Ti, Ni—Cr—Al alloy, WC—Co, and nitrides such as AlN are also effective.
[0061]
Although an example in which the resistance heating of W in vacuum is used as the heating means for evaporating the evaporation source, Mo, Ta, or the like can be used. The condition only needs to have a heating capacity enough to evaporate the material to be evaporated, and any one of resistance heating, electron impact heating, laser heating, and arc heating can be selected.
[0062]
It is preferable to use stainless steel as the material of the shielding plate, but Ni, Ta, Fe, etc. can also be used. The conditions are to have a melting point that is not melted by the vapor when passing, and to have mechanical properties enough to maintain the shape and low outgassing properties.
[0063]
Preferably, glass is used as the material of the substrate, but quartz and stainless steel can also be used. The condition is a material capable of smoothing the surface.
[0064]
【Example】
<Examples 1 to 3, Comparative Examples 1 and 2>
Using a film forming apparatus shown in FIG. -4 Pa), an evaporation source 1 made of W (tungsten) having a thickness of 0.8 mm, a width L = 5 mm and a length W = 100 mm, and an evaporation source 4 having the same width of 5 mm and a length of 100 mm were installed (width W). (L / W) value of length L and length L = 20). A glass plate substrate 3 having a length of 250 mm, a width of 320 mm, and a thickness of 1 mm was placed so as to face these. Next, a stainless steel shielding plate 2 was installed at a predetermined position in a three-dimensional space formed by the evaporation source 1, the evaporation source 4, and the substrate 3.
[0065]
Here, a boat-shaped evaporation source 1 having a width of 5 mm and a length of 100 mm was used, but a plate having an evaporation hole having a width of 5 mm and a length of 100 mm was provided at a position almost in contact with the upper surface of the evaporation source 1. Even if they are arranged, they are the same, and in this case, the evaporation source 1 can use an evaporation source having a width of more than 5 mm and a length of more than 100 mm. A sharper composition distribution can be obtained. Further, as the evaporation source 1, for example, a W rod (Mo, Ta, Nb, Ni-Cr-AI rod) having a diameter of 1 mm can be used. Other than metals, carbides and nitrides can be similarly used.
[0066]
The angle between the longitudinal direction of the evaporation source 1 and the direction of the side formed by the end face of the shielding plate 2 was set to 90 degrees in a three-dimensional view. Further, the surface roughness of the end face portion of the shielding plate 2 through which the vapor passes was kept constant at 1.5 μm.
[0067]
Under the above-mentioned certain conditions, the effective positions of the gap x between the evaporation source 1 and the shielding plate 2 and the gap y between the shielding plate 2 and the substrate 3 which are predetermined positions in the three-dimensional space were confirmed.
[0068]
As shown in Table 1 of FIG. 9, x = 0.01 mm and y = 99.9 mm (Comparative Example 1) as predetermined positions in the three-dimensional space where the shielding plate 2 is installed. x = 10 mm, y = 90 mm (Example 1). x = 50 mm, y = 50 mm (Example 2). x = 90 mm, y = 10 mm (Example 3). x = 99.9 mm and y = 0.01 mm (Comparative Example 2). Therefore, the values of x / (x + y), which are the ratios of x and y, are 0.0001, 0.9, 0.5, 0.1, and 0.999, respectively.
[0069]
[Evaporation Conditions] In the film forming apparatus shown in FIG. 2, a power of 5 V and 850 A is applied to the evaporation source 1 on which Cu is mounted, and a power of 9 V and 1100 A is applied to the evaporation source 4 on which Ni is mounted. These were vaporized almost simultaneously for about 45 seconds to form a Cu—Ni alloy on the surface of the substrate 3.
[0070]
[Evaluation Conditions] The composition distribution of Cu and Ni from one end to the other end on the substrate surface was evaluated by X-ray analysis using the film formed in Example 2 in which x = 50 mm and y = 50 mm as a representative sample. And the total thickness distribution of Ni were evaluated with an ellipsometer. Here, the reason why the film formation of Example 2 was used as the representative sample is that the effective length of the evaporation source 1 of 100 mm adheres to the substrate surface as it is between about 100 mm because x and y have the same value. Because it is expected that between 0% and 100% will exist during that time. In Example 1, an enlarged film was obtained on the surface of the substrate 3, and in Example 3, a reduced film was obtained (evaluation 1).
[0071]
A starting point is defined as a position 110 mm from the center of the surface of the glass plate substrate 3 having a length of 250 mm and a width of 320 mm. The integrated values of the intensity of Cu and the intensity of Ni were measured every 5 to 10 mm from the starting point at an X-ray acceleration voltage of 15 kV for 60 seconds (Evaluation 2).
[0072]
The tip of a Pt-Ir alloy having a diameter of 1.0 mm was processed to have a radius of curvature of 5 mm, and this was used as an electrode. A load of 5 gr was applied to the electrode, and each measurement point (i) to (xi) from the end of the substrate 3 was measured. The resistance of the extremely small area region was measured, and the measured values of the portion corresponding to pure Cu were arranged as relative values when 1.0 was set. In addition, the measurement sample was measured for both a film as-formed and a film subjected to a heat treatment at 600 ° C. for 10 minutes after the film formation (Evaluation 3).
[0073]
[Evaluation Result 1] (i) The Cu value at the point 55 mm from the edge of the substrate was 8 to 18 (count / 60 seconds), and (ii) The Cu value at the point 110 mm was 8 to 17 (count / 60 seconds). And both values were equivalent. When the strength of Cu was measured under the same conditions on the portion of the substrate 3 where the Cu film was not deposited at all, the value was 16 to 19 (counts / 60 seconds). From this, the Cu value of 8 to 18 (count / 60 seconds) at the point (i) of 55 mm from the end of the substrate 3 and the 8 to 17 (count / 60 seconds) of the Cu value at the point of 110 mm are: The values are almost the same, and are considered to be a portion where Cu is zero. Therefore, this place was the starting point.
[0074]
And the distance from the starting point is (iii) 5 mm, (iv) 15 mm, (v) 25 mm, (vi) 50 mm, (vii) 75 mm, (viii) 95 mm, (ix) 100 mm, (x) 125 mm, (xi) ) The Cu value at each point of 190 mm was counted. In the counting result, 4710 (count / 60 seconds) at the point (iii), 14320 at the point (iv), 23410 at the point (v), 47790 at the point (vi), 71820 at the point (vii), 90800 at the point (viii), 95310 at the point (ix), 95280 at the point (x), and 95410 (count / 60 seconds) at the point (xi). That is, it was confirmed that the Cu value with respect to the distance from the starting point increased with a substantially linear gradient.
[0075]
The Ni value at a point 55 mm from the end of the substrate in (i) is 142880 (counts / 60 seconds), and the Ni value at a point 110 mm in the case (ii) is 142780 (counts / 60 seconds). The value of was shown. When the strength of Ni in the portion of the surface of the substrate 3 where only the Ni film was formed (the portion where 100% of Ni was deposited) was measured under the same conditions, it was 14280 to 142910 (counts / 60 seconds). From this, the Ni value at the point (i) 55 mm from the end of the substrate 3, 142880 (count / 60 seconds), and the Ni value at the point (ii) 110 mm, 142780 (count / 60 seconds), are almost the same. The values are the same, and it is considered that Ni is 100%. Therefore, this place was the starting point.
[0076]
The distances from the starting point are (iii) 5 mm, (iv) 15 mm, (v) 25 mm, (vi) 50 mm, (vii) 75 mm, (viii) 95 mm, (ix) 100 mm, (x) 125 mm, and (xi). The Ni value at each point of 190 mm was counted. In the counting result, 135550 (count / 60 seconds) at the point (iii), 122520 at the point (iv), 107110 at the point (v), 71410 at the point (vi), 35750 at the point (vii), 7090 at (viii), 16-23 at (ix), 18-25 at (x), and 17-24 at (xi). That is, it was confirmed that the Ni value with respect to the distance from the starting point decreased with a substantially linear gradient.
[0077]
[Evaluation Result 2] When the film thickness (corresponding to the sum of Cu + Ni) at each of the measurement points (i) to (xi) from the end of the substrate 3 was measured, as shown in Table 2 of FIG. It shows that the thickness is almost constant in the range of 434380 (angstrom).
[0078]
[Evaluation Result 3] When the resistance values at the respective measurement points (i) to (xi) from the end of the substrate 3 were measured, as shown in Table 2 of FIG. And a change in resistance was observed. This is a change similar to the change of the Cu-Ni alloy in the block state.
[0079]
According to the above evaluation results 1 to 3, the intensity of Cu with respect to the distance from the starting point decreases with a linear gradient, and the intensity of Ni increases with a linear gradient in correspondence with this. The film amount (film thickness) is almost constant, and in response, the electric resistance also shows a change equivalent to the change shown by the alloy. It was confirmed that the film was a gradient composition film having a gradient. Although a slight difference in the degree of measurement error was observed between the as-deposited film and the film subjected to the heat treatment at 600 ° C. × 10 minutes after the film formation, there was no tendency for the resistance change. It was equivalent.
[0080]
On the other hand, in Comparative Example 1, since the evaporation source 1 and the shielding plate 2 were too close to each other, the end surface effect of the shielding plate 2 was not sufficiently exhibited, and a good quality film formation state having a regular gradient was obtained. I couldn't. This state was almost the same as when the shielding plate 2 was not provided. In addition, a huge film forming apparatus is required, which is not practical and cannot achieve the purpose.
[0081]
Also in Comparative Example 2, since the shielding plate 2 and the substrate 3 were too close to each other, the edge effect of the shielding plate 2 was hardly observed, and a film having a regular gradient could not be obtained. This state was almost the same as when the shielding plate 2 was not provided.
[0082]
From these, by installing the shielding plate 2 at a predetermined position in a three-dimensional space formed by the first evaporation source 1, the second evaporation source 4, and the substrate 3, as in the first to third embodiments. It can be confirmed that a good quality film having a regular gradient can be obtained on the surface of the substrate 3 by the effect of the installation of the shielding plate 2. On the other hand, when the shielding plate is installed as in Comparative Examples 1 and 2, It was also confirmed that no installation effect was obtained.
[0083]
[Evaluation Result 4] Using the data of results 1 and 2, the film formation amount in each measurement section was compared with the average film formation amount from the start point (ii) to the end point (ix). The average gradient of the Cu film deposition amount from the start point (ii) to the end point (ix) is 953 ([count / 60 seconds] / mm). The gradient of the film deposition amount in each measurement section is 940 between (iii) and (ii), 961 between (iv) and (iii), 909 between (v) and (vi), and (vi) through (vi). 961 between (v), 961 between (vii) and (vi), 949 between (viii) and (vii), 902 between (ix) and (viii), and 2. between (x) and (ix). It was 0. These values approximate 953 of the average slope from the starting point (ii) to the ending point (ix). This suggests that the components are changing with a regular gradient.
[0084]
The average gradient of the Ni film deposition amount from the start point (ii) to the end point (ix) is 1429 ([count / 60 seconds] / mm). The gradient of the film formation amount in each measurement section is 1446 between (iii) and (ii), 1435 between (iv) and (iii), 1409 between (v) and (iv), and (vi) and (vi), respectively. (V) is 1428, (vii) to (vi) is 1426, (viii) to (vii) is 1433, (ix) to (viii) is 1414, and (x) to (ix) is 0. .16, and between (xi) and (x) was 0.03. These values are close to the average slope 1429 from the starting point (ii) to the ending point (ix). This suggests that the components are changing with a regular gradient.
[0085]
<Examples 4 to 7, Comparative Examples 3 and 4>
In the first to third embodiments, when the value of the ratio L / W between the width W and the length L of the evaporation source 1 is fixed to 20, the distribution of the film formation amount at a predetermined position on the surface of the substrate 3 Fig. 1 shows a gradient composition film having a regular gradient. However, in the present invention, the value of L / W is not limited to the value of 20, and the effect of installing the shielding plate 2 can be obtained.
[0086]
In other examples 4 to 7 shown in Table 1 of FIG. 9, in the film forming apparatus of FIG. 2, the predetermined positions of the three-dimensional space where the shielding plate 2 is installed are fixed at x = 50 mm and y = 50 mm. Above, a power of 5 V, 900 A is applied to the first evaporation source 1 on which Cu is mounted for about 60 seconds, and a power of 9 V, 1200 A is applied to the second evaporation source 4 on which Ni is mounted for about 60 seconds. It is charged and evaporated almost simultaneously, and a Cu—Ni alloy is formed on the substrate surface. In each case, the width W of the evaporation source 1 is set to 5 mm and the length L is set to 1000 mm, 500 mm, 50 mm, and 10 mm, thereby changing the value of L / W to 200, 100, 10, and 2.0. saw.
[0087]
[Evaluation Result] On the surface of the substrate 3, the intensity of Cu decreases with a linear gradient with respect to the distance from the starting point, and in correspondence with this, the intensity of Ni decreases with a linear gradient. An increasing graded composition film was obtained. In addition, the film formation amount (film formation thickness) was almost constant.
[0088]
On the other hand, in the case of Comparative Example 3 in which the width W of the first evaporation source 1 is 5 mm and the length L is 1500 mm, and the value of L / W is 300, the component relative to the predetermined position on the substrate surface is formed. A gradient composition film having a regular gradient in the distribution of the film amount was not obtained. This is because it is difficult to uniformly evaporate the length L of the evaporation source 1 over 1500 mm.
[0089]
In Comparative Example 4 in which the width W of the first evaporation source 1 was 5 mm and the length L was 5 mm, and the value of L / W was 1.0, the film was formed on a predetermined position on the substrate surface. No regular gradient was observed in the amount distribution, and a gradient composition film was not obtained. This is because the end surface effect of the shielding plate 2 is not sufficiently exhibited.
[0090]
As described above, when the value of the ratio L / W between the width W and the length L of the first evaporation source 1 is in the range of 200 to 2.0 shown in Examples 4 to 7, a good gradient composition film can be obtained. It was confirmed that it could be obtained.
[0091]
<Examples 8 to 10, Comparative Examples 5 and 6>
In the above Examples 1 to 7, the film formation state when the angle formed by the three-dimensional view between the longitudinal direction of the evaporation source and the side formed by the end face of the shielding plate was fixed at 90 degrees was evaluated. In the film forming apparatus, a gradient composition film can be obtained even if the film is not limited to 90 degrees.
[0092]
That is, in the film forming apparatus shown in FIG. 2, the predetermined position of the three-dimensional space in which the shielding plate 2 is installed is fixed at x = 50 mm and y = 50 mm, and the angle at which the three-dimensional space is formed is 60 degrees. A film is formed at 100 degrees and 120 degrees, 5V, 900A power is applied to the first evaporation source 1 on which Cu is mounted for about 60 seconds, and 9V, 1200A is applied to the second evaporation source 4 on which Ni is mounted. Was applied for about 60 seconds to evaporate almost simultaneously, thereby forming a Cu—Ni alloy on the substrate surface (Examples 8 to 10 in Table 1).
[0093]
[Evaluation Packing] On the substrate surface, the intensity of Cu with respect to the distance from the starting point decreased with a linear gradient, and the intensity of Ni correspondingly increased with a linear gradient. A coarse film was obtained. Moreover, the film formation amount (film formation thickness) was almost constant (Examples 8 to 10).
[0094]
On the other hand, in Comparative Examples 5 and 6, where the angle formed by the three-dimensional view between the longitudinal direction of the evaporation source and the side formed by the end face of the shielding plate is 10 degrees and 170 degrees, the predetermined position on the substrate surface No graded composition film having a regular gradient in the distribution of the film formation amount with respect to was obtained. This is because the end face effect of the shielding plate 2 is not sufficiently exhibited.
[0095]
From the above, it was confirmed that the side formed by the longitudinal direction of the evaporation source 1 and the end face of the shielding plate 2 was preferably in the range of 60 to 120 degrees shown in Examples 8 to 10.
[0096]
<Examples 11 to 13, Comparative Example 7>
In the first to tenth embodiments, the surface roughness of the end face (portion through which steam passes) of the shielding plate 2 is fixed to 1.5 μm. However, in the present invention, the surface roughness of the end face is not limited to 1.5 μm. Thus, a good film can be obtained.
[0097]
That is, as shown in Examples 11 to 13 of Table 1, the predetermined position of the three-dimensional space where the shielding plate 2 is installed is fixed at x = 50 mm and y = 50 mm, and the shape of the evaporation hole of the evaporation source 1 is changed. L / W = 20, the angle between the longitudinal direction of the evaporation source 1 and the side formed by the end face of the shielding plate 2 is made constant at 90 degrees, and then the end surface of the shielding plate 2 (the vapor A Cu—Ni alloy is formed on the substrate surface by a film forming apparatus having a surface roughness of 12 μm, 6 μm, and 0.1 μm, and a film forming apparatus having a surface roughness of 30 μm as Comparative Example 7. did. It should be noted that a power of 5 V and 850 A is applied to the first evaporation source 1 on which Cu is mounted, and a power of 9 V and 1100 A is applied to the second evaporation source 4 on which Ni is mounted. Evaporation was carried out almost simultaneously for 45 seconds, and evaporated on the surface of the substrate 3.
[0098]
[Evaluation Results] In Examples 11 to 13, on the substrate surface, the intensity of Cu with respect to the distance from the starting point decreases with a linear gradient, and the intensity of Ni has a linear gradient corresponding to this. As a result, a gradient composition film was obtained. In addition, the film formation amount (film formation thickness) was almost constant. In addition, the film formation amount of Cu at 0 mm from the starting point on the substrate surface was 0% as planned, and Ni was also 100% as planned.
[0099]
On the other hand, in the case of Comparative Example 7, the film formation amounts near 0 mm and 100 mm from the starting point on the substrate surface should originally be 0% for Cu and 100% for Ni. The amount of the film varied from 0.5 to 2%, and the latter varied from 97.5 to 99.5%. This is considered to be because the vapor was scattered when passing through the shielding plate 2.
[0100]
From the above evaluation, it was confirmed that the surface roughness of the end face (the portion through which steam passes) of the shielding plate 2 is preferably 12 μm to 0.1 μm. In addition, even when the surface roughness is further smoothed to 0.1 μm or less by electrolytic polishing or the like, although the cost for the processing is added, the end surface effect of the shielding plate 2 is more sufficiently exerted and the shielding plate 2 has a linear gradient. A gradient composition film can be obtained.
[0101]
【The invention's effect】
As described above, the gradient composition film of the present invention has a gradient composition in which the amount of the raw material continuously changes in at least one direction on the substrate surface. It can be used to secure new phase diagrams and therefore can be used to develop new materials, and also to develop new materials with new functions that reduce thermal and mechanical stress. It can be used as a sample for material development in a wide variety of ways.
[0102]
Further, according to the graded composition film of the present invention, the graded composition film has a graded composition in which the ratio of the abundance of a plurality of types of raw materials continuously changes in at least one direction on the substrate surface. It can be used to secure the basic phase diagram, and therefore can be used for the development of new materials, and also for the development of new materials with new functions that reduce thermal and mechanical stress. It can also be used as a sample for material development in a wide variety of ways, such as
[0103]
Further, according to the method for forming a gradient composition film of the present invention, a film forming apparatus in which a shielding plate is provided between an evaporation source for evaporating a raw material and a substrate arranged so as to face the evaporation source, Due to the effect of the above, a gradient composition film having the above-mentioned characteristics and having a regular gradient in the amount of film formed on the substrate surface can be formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a film forming apparatus for forming a gradient composition film according to a first embodiment of the present invention and an explanatory diagram of a composition distribution of the gradient composition film obtained by the same.
FIG. 2 is a cross-sectional view of a film forming apparatus for forming a gradient composition film according to a second embodiment of the present invention and an explanatory diagram of a composition distribution of the gradient composition film obtained by the apparatus.
FIG. 3 is a cross-sectional view of a film forming apparatus for forming a gradient composition film according to a third embodiment of the present invention, and an explanatory diagram of a composition distribution of the gradient composition film obtained thereby.
FIG. 4 is a cross-sectional view of a film forming apparatus for forming a gradient composition film according to a fourth embodiment of the present invention, and an explanatory diagram of a composition distribution of the gradient composition film obtained thereby.
FIG. 5 is a cross-sectional view of a film forming apparatus for forming a gradient composition film according to a fifth embodiment of the present invention and an explanatory diagram of a composition distribution of the gradient composition film obtained by the apparatus.
FIG. 6 is a cross-sectional view of a film forming apparatus for forming a gradient composition film according to a sixth embodiment of the present invention and an explanatory diagram of a composition distribution of the gradient composition film obtained by the deposition apparatus.
FIG. 7 is a plan view of a film forming apparatus for forming a gradient composition film according to a ninth embodiment of the present invention as viewed from below a substrate.
FIG. 8 is a plan view of a film-forming apparatus for forming a gradient composition film according to a tenth embodiment of the present invention, as viewed from below a substrate.
FIG. 9 is a table 1 showing implementation conditions of Examples 1 to 11 of the present invention.
FIG. 10 is a table 2 showing evaluation results of Examples 1 to 11 of the present invention.
FIG. 11 is an explanatory diagram of a conventional example.
[Explanation of symbols]
1 evaporation source
2 Shield plate
2A, 2B shielding plate
3 substrate
4 evaporation sources
5 auxiliary evaporation sources
21 evaporation source 1
22 evaporation source 2
23 evaporation source 3
24 slits
31 steam passage hole

Claims (16)

基板面上に成膜した1つの原材料物質又は複数の原材料物質の傾斜組成膜であって、少なくとも1つの原材料の物質の存在量が当該基板面上の少なくとも1方向で連続的に変化する傾斜組成を有することを特徴とする傾斜組成膜。A gradient composition film of one raw material substance or a plurality of raw material substances formed on a substrate surface, wherein the abundance of at least one raw material substance continuously changes in at least one direction on the substrate surface. A gradient composition film comprising: 基板面上に成膜した複数の原材料物質の傾斜組成膜であって、前記複数の原材料物質のうちの少なくとも2者間の存在量の割合が当該基板面上の少なくとも1方向で連続的に変化する傾斜組成を有することを特徴とする傾斜組成膜。A gradient composition film of a plurality of raw material substances formed on a substrate surface, wherein a ratio of an abundance between at least two of the plurality of raw material substances continuously changes in at least one direction on the substrate surface. A gradient composition film characterized by having a gradient composition. 1つ又は複数の蒸発源において1つ又は複数の原材料を蒸発させ、前記1つ又は複数の蒸発源から基板面上の対象領域の各位置に対して前記原材料の蒸気の到達量に規則的な勾配を持つようにして当該原材料の物質を成膜することを特徴とする傾斜組成膜の成膜方法。One or more raw materials are evaporated in one or more evaporation sources, and the amount of vapor of the raw materials reaches the position of the target region on the substrate surface from the one or more evaporation sources in a regular manner. A method for forming a gradient composition film, wherein the material of the raw material is formed to have a gradient. 原材料を蒸発させる1つの蒸発源とこれと対向するように配置した1つの基板との間に、前記原材料から蒸発した蒸気のうちの一部の移動を遮断する機能を有する遮蔽部材を設置し、前記1つの蒸発源において蒸発させた原材料の蒸気のうち前記遮蔽部材により遮断されない残部の蒸気を前記基板面上に付着させることを特徴とする傾斜組成膜の成膜方法。A shielding member having a function of blocking movement of a part of the vapor evaporated from the raw material is provided between one evaporation source for evaporating the raw material and one substrate disposed so as to face the evaporation source, A method for forming a gradient composition film, wherein the remaining vapor that is not blocked by the shielding member out of the vapor of the raw material evaporated in the one evaporation source is attached to the substrate surface. 前記蒸発源と遮蔽部材との間隙をx、前記遮蔽部材と基板との間隙をyとした場合に、x/(x+y)=0.1〜0.9なる条件を満たす前記蒸発源と基板との間に前記遮蔽部材を設置し、前記蒸発源の原材料を前記基板面上に付着させることにより成膜することを特徴とする請求項4に記載の傾斜組成膜の成膜方法。Assuming that a gap between the evaporation source and the shielding member is x and a gap between the shielding member and the substrate is y, the evaporation source and the substrate satisfy a condition of x / (x + y) = 0.1 to 0.9. The method according to claim 4, wherein the shielding member is provided between the substrates, and the raw material of the evaporation source is deposited on the substrate surface to form a film. 複数の原材料各々を蒸発させる複数の蒸発源とこれらに対向するように配置した1つの基板の間に、前記複数の原材料から蒸発した蒸気それぞれの一部を遮断する機能を有する1個又は複数個の遮蔽部材を設置し、前記複数の蒸発源それぞれにおいて蒸発させた複数の原材料の蒸気それぞれの前記遮蔽部材により遮断されない残部の蒸気を前記基板面上に付着させることにより成膜することを特徴とする傾斜組成膜の成膜方法。One or more of a plurality of evaporation sources for evaporating each of the plurality of raw materials, and one or a plurality of substrates having a function of blocking a part of each of the vapors evaporated from the plurality of raw materials, between one substrate disposed so as to face the plurality of evaporation sources The shielding member is installed, and the remaining vapor that is not blocked by the shielding member of each of the plurality of raw material vapors evaporated in each of the plurality of evaporation sources is deposited on the substrate surface by depositing the film. To form a gradient composition film. 前記蒸発源と遮蔽部材との間隙をx、前記遮蔽部材と基板との間隙をyとした場合に、x/(x+y)=0.1〜0.9なる条件を満たす前記蒸発源と基板との間に前記遮蔽部材を設置し、前記蒸発源の原材料を前記基板面上に付着させることにより成膜することを特徴とする請求項6に記載の傾斜組成膜の成膜方法。Assuming that a gap between the evaporation source and the shielding member is x and a gap between the shielding member and the substrate is y, the evaporation source and the substrate satisfy a condition of x / (x + y) = 0.1 to 0.9. The method for forming a gradient composition film according to claim 6, wherein the shielding member is provided between the substrates, and the raw material of the evaporation source is attached to the substrate surface to form a film. 第1の原材料を蒸発させる第1の蒸発源と、第2の原材料を蒸発させる第2の蒸発源と、これらと対向するように配置した基板とを備えた成膜装置を使用して、
前記第1の蒸発源と基板との間に、前記原材料から蒸発した蒸気の一部を遮断させるための遮蔽部材を設置し、前記第1の蒸発源によって蒸発させた原材料の蒸気のうち当該遮蔽部材によって遮断されない残部の蒸気を前記基板面上に誘導し、前記基板面上の少なくとも1方向での成膜量に勾配を持たせて成膜する工程(A)と、第2の原材料を蒸発させる第2の蒸発源を前記遮蔽部材の設置効果の現れない位置に設置し、前記第2の原材料の蒸気を前記基板面上に誘導し、前記基板面上の全方向に均一な存在量で成膜する工程(B)とを、そのいずれかを先にして相前後して実施することにより、前記基板面の少なくもと1方向で前記第1の原材料物質の存在割合が連続的に変化する傾斜組成膜を成膜することを特徴とする傾斜組成膜の成膜方法。
Using a film forming apparatus including a first evaporation source for evaporating a first raw material, a second evaporation source for evaporating a second raw material, and a substrate arranged to face the first evaporation source,
A shielding member for blocking a part of the vapor evaporated from the raw material is provided between the first evaporation source and the substrate, and the shielding member is provided in the vapor of the raw material evaporated by the first evaporation source. (A) guiding the remaining vapor not blocked by the member onto the substrate surface, forming a film with a gradient in the film formation amount in at least one direction on the substrate surface, and evaporating the second raw material The second evaporation source to be installed is installed at a position where the installation effect of the shielding member does not appear, and the vapor of the second raw material is guided on the substrate surface, and the amount of the second raw material is uniformly distributed in all directions on the substrate surface. The step (B) of forming the film is performed one after the other, and the existence ratio of the first raw material changes continuously in at least one direction on the substrate surface. Forming a graded composition film, wherein the graded composition film is formed. Method.
第1の原材料を蒸発させる第1の蒸発源と、第2の原材料を蒸発させる第2の蒸発源と、これらと対向するように配置した基板とを備えた成膜装置を使用して、
前記第1の蒸発源と基板との間に、前記原材料から蒸発した蒸気の一部を遮断させるための遮蔽部材を設置し、前記第1の蒸発源によって蒸発させた原材料の蒸気のうち当該遮蔽部材によって遮断されない残部の蒸気を前記基板面上に誘導し、前記基板面上の少なくとも1方向での成膜量に勾配を持たせて成膜する工程(A)と、第2の原材料を蒸発させる第2の蒸発源を前記遮蔽部材の設置効果の現れない位置に設置し、前記第2の原材料の蒸気を前記基板面上に誘導し、前記基板面上の全方向に均一な存在量で成膜する工程(B)とを同時に実施することにより、前記基板面上の成膜量に対して、基板面に直角な方向の組成分布と当該基板面に平行な少なくとも1方向の組成分布との両者に規則的な勾配を有する傾斜組成膜を成膜することを特徴とする傾斜組成膜の成膜方法。
Using a film forming apparatus including a first evaporation source for evaporating a first raw material, a second evaporation source for evaporating a second raw material, and a substrate arranged to face the first evaporation source,
A shielding member for blocking a part of the vapor evaporated from the raw material is provided between the first evaporation source and the substrate, and the shielding member is provided in the vapor of the raw material evaporated by the first evaporation source. (A) guiding the remaining vapor not blocked by the member onto the substrate surface, forming a film with a gradient in the film formation amount in at least one direction on the substrate surface, and evaporating the second raw material The second evaporation source to be installed is installed at a position where the installation effect of the shielding member does not appear, and the vapor of the second raw material is guided on the substrate surface, and the amount of the second raw material is uniformly distributed in all directions on the substrate surface. By simultaneously performing the step (B) of forming a film, a composition distribution in a direction perpendicular to the substrate surface and a composition distribution in at least one direction parallel to the substrate surface with respect to the film formation amount on the substrate surface. To form a gradient composition film having a regular gradient Method of forming a gradient composition film according to claim.
前記蒸発源は、線状、棒状、板状、舟状のいずれかの形状を持ち、かつ線状又は棒状の場合にはその直径に対して2倍以上の長さを持つ細長い形状の蒸発孔を備え、板状又は舟状の場合にはその幅に対して2倍以上の長さを持つ細長い形状の蒸発孔を備えたものを用いて成膜することを特徴とする請求項3〜9のいずれかに記載の傾斜組成膜の成膜方法。The evaporation source has a shape of any of a line, a bar, a plate, and a boat, and, in the case of a line or a bar, has an elongated evaporation hole having a length twice or more the diameter thereof. The film is formed using an elongate evaporation hole having a length twice or more the width thereof in the case of a plate shape or a boat shape. The method for forming a gradient composition film according to any one of the above. 前記蒸発源とこれに対応する遮蔽部材とは対を成すよう配置し、当該蒸発源の長手方向と遮蔽部材の端面がなす辺が作る直線方向とは、立面図上で120度〜60度の角度、好ましくは90度の角度で交差するように配置した成膜装置を用いて成膜することを特徴とする請求項10に記載の傾斜組成膜の成膜方法。The evaporation source and the corresponding shielding member are arranged so as to form a pair, and a longitudinal direction of the evaporation source and a linear direction formed by a side formed by an end surface of the shielding member are 120 degrees to 60 degrees in an elevation view. The method for forming a gradient composition film according to claim 10, wherein the film is formed using a film forming apparatus arranged so as to intersect at an angle of, preferably, 90 degrees. 前記遮蔽部材の端面は、最大10μm以下、好ましくは0.1μmの粗度の蒸気通過面とし、規則的な勾配を持たせたものを用いて成膜することを特徴とする請求項3〜11のいずれかに記載の傾斜組成膜の成膜方法。The end face of the shielding member is a vapor passage surface having a roughness of 10 μm or less, preferably 0.1 μm at a maximum, and is formed using a material having a regular gradient. The method for forming a gradient composition film according to any one of the above. 前記蒸発源と遮蔽部材と基板とを備え、1個の蒸発源に対応する1個又は複数個の遮蔽部材、複数個の蒸発源の各蒸発源に対応する複数個の遮蔽部材とを備えた成膜装置を用いて成膜することを特徴とする請求項3〜12のいずれかに記載の傾斜組成膜の成膜方法。One or a plurality of shielding members corresponding to one evaporation source, and a plurality of shielding members corresponding to each evaporation source of the plurality of evaporation sources, comprising the evaporation source, the shielding member, and the substrate. The method for forming a gradient composition film according to claim 3, wherein the film is formed using a film forming apparatus. 真空蒸着法又はスパッタ法により成膜することを特徴とする請求項3〜13のいずれかに記載の傾斜組成膜の成膜方法。The method for forming a gradient composition film according to any one of claims 3 to 13, wherein the film is formed by a vacuum deposition method or a sputtering method. 真空雰囲気中もしくは酸素雰囲気中、窒素雰囲気中、アルゴン雰囲気中で成膜することを特徴とする請求項3〜14のいずれかに記載の傾斜組成膜の成膜方法。15. The method for forming a gradient composition film according to claim 3, wherein the film is formed in a vacuum atmosphere, an oxygen atmosphere, a nitrogen atmosphere, or an argon atmosphere. 前記蒸発源を抵抗加熱、電子衝撃加熱、レーザ加熱、アーク加熱のいずれかで加熱して原材料を蒸発させることを特徴とする請求項3〜15のいずれかに記載の傾斜組成膜の成膜方法。The method for forming a gradient composition film according to any one of claims 3 to 15, wherein the raw material is evaporated by heating the evaporation source by any one of resistance heating, electron impact heating, laser heating, and arc heating. .
JP2002166123A 2002-06-06 2002-06-06 Film with gradient composition and method of forming the film with gradient composition Pending JP2004010962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166123A JP2004010962A (en) 2002-06-06 2002-06-06 Film with gradient composition and method of forming the film with gradient composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166123A JP2004010962A (en) 2002-06-06 2002-06-06 Film with gradient composition and method of forming the film with gradient composition

Publications (1)

Publication Number Publication Date
JP2004010962A true JP2004010962A (en) 2004-01-15

Family

ID=30433792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166123A Pending JP2004010962A (en) 2002-06-06 2002-06-06 Film with gradient composition and method of forming the film with gradient composition

Country Status (1)

Country Link
JP (1) JP2004010962A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298971A (en) * 2004-03-18 2005-10-27 Nippon Seiki Co Ltd Mask for vapor deposition and vapor deposition method using the mask
KR101371681B1 (en) * 2011-11-17 2014-03-10 한국전기연구원 deposition method for magnetic refrigeration material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298971A (en) * 2004-03-18 2005-10-27 Nippon Seiki Co Ltd Mask for vapor deposition and vapor deposition method using the mask
JP4591134B2 (en) * 2004-03-18 2010-12-01 日本精機株式会社 Vapor deposition mask and vapor deposition method using the mask
KR101371681B1 (en) * 2011-11-17 2014-03-10 한국전기연구원 deposition method for magnetic refrigeration material

Similar Documents

Publication Publication Date Title
US9105379B2 (en) Tunable resistance coatings
Besnard et al. A theoretical model for the electrical properties of chromium thin films sputter deposited at oblique incidence
Arshi et al. Thickness effect on properties of titanium film deposited by dc magnetron sputtering and electron beam evaporation techniques
Butt et al. Deposition and characterization of multilayer DLC: Mo thin films grown on silicon substrate by off-axis pulsed laser deposition technique
Deniz et al. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition
Zenkin et al. Thickness dependent wetting properties and surface free energy of HfO2 thin films
Agapov et al. Protecting TERS probes from degradation: extending mechanical and chemical stability
Biederman et al. Nanocomposite and nanostructured films with plasma polymer matrix
Shaginyan et al. The properties of Cr–Co–Cu–Fe–Ni alloy films deposited by magnetron sputtering
Hollerweger et al. Controlling microstructure, preferred orientation, and mechanical properties of Cr-Al-N by bombardment and alloying with Ta
Bae et al. Gold-tantalum alloy films deposited by high-density-plasma magnetron sputtering
Arshi et al. Effects of nitrogen content on the phase and resistivity of TaN thin films deposited by electron beam evaporation
JP2004010962A (en) Film with gradient composition and method of forming the film with gradient composition
KR102083239B1 (en) Measuring method of thin film thickness by secondary ion mass spectrometry
Christen et al. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes
Radić et al. Preparation and structure of AlW thin films
Dobrzański et al. Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials
JPH02107757A (en) Production of amorphous superlattice alloy
Landälv et al. Influence of Si doping and O2 flow on arc-deposited (Al, Cr) 2O3 coatings
Zemsky et al. Structure and morphology of pulsed laser depos ited boron carbide films: Influence of deposition geometry
Di Pietrantonio et al. Flower-like aluminium nitride nanostructures deposited by rf magnetron sputtering on superhard rhodium boride films
Yang et al. Properties of graded TiCxNy coatings deposited by a low-temperature HCD ion coating technique
Batra et al. A Refresher Guide to Thin Film Technology
Uchida et al. Effect of preparation conditions on pinhole defect of TiN films by ion mixing and vapor deposition
Zhang et al. Effect of Al target power density on tribological properties of (Ti, Al) N coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401