KR101371681B1 - deposition method for magnetic refrigeration material - Google Patents

deposition method for magnetic refrigeration material Download PDF

Info

Publication number
KR101371681B1
KR101371681B1 KR1020110120226A KR20110120226A KR101371681B1 KR 101371681 B1 KR101371681 B1 KR 101371681B1 KR 1020110120226 A KR1020110120226 A KR 1020110120226A KR 20110120226 A KR20110120226 A KR 20110120226A KR 101371681 B1 KR101371681 B1 KR 101371681B1
Authority
KR
South Korea
Prior art keywords
crucible
evaporation rate
qcm
moniter
quartz crystal
Prior art date
Application number
KR1020110120226A
Other languages
Korean (ko)
Other versions
KR20130054689A (en
Inventor
김호섭
오상수
백승규
하홍수
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110120226A priority Critical patent/KR101371681B1/en
Publication of KR20130054689A publication Critical patent/KR20130054689A/en
Application granted granted Critical
Publication of KR101371681B1 publication Critical patent/KR101371681B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 자기냉동물질 증착 방법에 관한 것으로, 챔버내에서 동시증발법을 이용하여 자기냉동물질을 증발시켜 박막을 형성시키는 자기냉동물질 증발방법에 있어서, 증발시키기 위한 이종의 원료물질이 수용된 두 개 이상의 도가니 중 하나의 도가니를 가열하여 원료물질을 증발시키고 동시에 1개의 QCM 증착률 측정기에 설치된 다수개의 QCM(quartz crystal moniter) 가이드 중 상기 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 QCM(quartz crystal moniter) 가이드로 증발되는 원료물질의 증발량을 QCM(quartz crystal moniter) 센서를 이용하여 증발율을 측정하여 기준 증발율이 되도록 도가니를 가열하고, 나머지 도가니에 대해서도 각각의 원료물질을 증발시켜 각각의 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 QCM(quartz crystal moniter) 가이드로 증발되는 각각의 원료물질의 증발량을 QCM(quartz crystal moniter) 센서를 이용하여 증발율을 측정하여 원료물질 각각의 기준 증발율이 되도록 도가니를 가열하는 기준 증발율 형성단계와; 상기 기준증발율 형성단계에서와 동일한 방법으로 각각의 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 각각의 도가니에서 증발되는 증발율을 QCM(quartz crystal moniter) 센서를 이용하여 순차적으로 측정하여 각각의 도가니에서 증발되는 원료물질의 증발율이 기준 증발율이 되도록 도가니의 가열설정온도를 미세조정시키는 기준 증발율 미세조정단계; 그리고, 상기 기준 증발율 미세조정단계에서 설정된 도가니의 가열설정온도가 되도록 도가니를 가열한 상태에서 각각의 도가니에서 증발된 원료물질을 기판에 증착하여 박막을 형성시키는 박막 형성단계;를 포함하여 구성되는 자기냉동물질 증착 방법을 기술적 요지로 한다. 이에 따라, 다수의 자기냉동물질의 원료물질을 증발시켜 박막을 형성시키되, 원료물질의 증발율을 기준치가 되도록 미세조정하여 증발시킴에 의해 증착된 자기냉동물질 박막의 증착 조성비를 일정하게 유지시키는 이점이 있다.The present invention relates to a method for depositing a magnetic refrigeration material, comprising: a method of evaporating a magnetic refrigeration material in a chamber using a simultaneous evaporation method to form a thin film, wherein two kinds of raw materials for evaporation are accommodated The crucible of one of the above crucibles is heated to evaporate the raw material, and at the same time, a quartz crystal moniter (QCM) guide corresponding to the crucible is selected from a plurality of quartz crystal moniter (QCM) guides installed in one QCM deposition rate meter. The evaporation rate of the raw material evaporated with the quartz crystal moniter guide is measured by using a quartz crystal moniter (QCM) sensor to heat the crucible to the reference evaporation rate, and the respective crucibles are evaporated for each remaining crucible. Guide to quartz crystal moniter (QCM) by selecting the corresponding quartz crystal moniter (QCM) guide Heating the crucible so that the evaporation quantity of each raw material to be evaporated QCM (quartz crystal moniter) sensors each reference source material evaporation rate by measuring the evaporation rate by using a standard evaporation rate forming step; In the same manner as in the step of forming the reference evaporation rate, by selecting a quartz crystal moniter (QCM) guide corresponding to each crucible, the evaporation rate evaporated in each crucible is sequentially measured by using a quartz crystal moniter (QCM) sensor. A standard evaporation rate fine adjustment step of finely adjusting the heating set temperature of the crucible so that the evaporation rate of the raw material evaporated in the crucible becomes the reference evaporation rate; And a thin film forming step of forming a thin film by depositing a raw material evaporated in each crucible onto a substrate while the crucible is heated to have a heating set temperature of the crucible set in the reference evaporation rate fine adjustment step. Frozen material deposition method is a technical point. Accordingly, the thin film is formed by evaporating a plurality of raw materials of the magnetic refrigeration material, and the evaporation rate of the raw material is finely adjusted to be a reference value to evaporate to maintain the deposition composition ratio of the deposited thin film of the magnetic refrigeration material. have.

Description

자기냉동물질 증착 방법{deposition method for magnetic refrigeration material}Deposition method for magnetic refrigeration material

본 발명은 자기냉동물질 증착 방법에 관한 것으로, 더욱 상세하게는, 자기냉동물질의 원료물질을 증발시킴에 의해 증착된 자기냉동물질 박막의 증착 조성비를 일정하게 유지시키는 자기냉동물질 증착 방법에 관한 것이다. The present invention relates to a method for depositing a magnetic refrigeration material, and more particularly, to a method for depositing a magnetic refrigeration material to maintain a constant deposition composition ratio of a thin film of the magnetic refrigeration material deposited by evaporating a raw material of the magnetic refrigeration material. .

일반적으로, 자기냉동기술은 자성재료의 자기열효과(Magnetocaloric effect, MCE)를 이용하여 물체를 냉각(냉동)하는 기술로 강자성 물질에 외부에서 강한 자기장을 걸어주면 자성물질의 온도는 증가하고 걸어준 자기장을 중지하면 강자성물질의 온도는 내려가는 MCE를 이용한다. In general, magnetic refrigeration technology is a technology that uses a magnetic heat effect (MCE) of the magnetic material to cool (freeze) an object. When a strong magnetic field is applied to the ferromagnetic material from outside, the temperature of the magnetic material increases and is applied. When the magnetic field is stopped, the temperature of the ferromagnetic material is reduced by using the MCE.

기존의 냉동기술은 가스의 압축과 팽창에 의한 발열과 냉각 싸이클을 이용하여 물체를 냉각하지만 자기냉동기술은 자성체의 자기열효과(MCE)를 이용하는 것이다.  Conventional refrigeration technology uses the heat and cooling cycle of the compression and expansion of the gas to cool the object, but magnetic refrigeration technology uses the magnetic heat effect (MCE) of the magnetic material.

즉, 자기변태온도(Curie temp. Tc)부근의 자성체에 자기장을 인가하면 자성체 내부에서 마그네틱 모멘트(magnetic moment)의 정렬이 일어나고 이는 마그네틱 엔트로피(magnetic entropy)를 저하시키며 총엔트로피 보존법칙에 의하여 래티스 엔트로피(lattice entropy)는 증가하게 된다. In other words, applying a magnetic field to a magnetic body near the magnetism temperature (Curie temp. Tc) causes magnetic moment alignment within the magnetic body, which reduces the magnetic entropy and the lattice entropy by the law of preservation of total entropy. (lattice entropy) increases.

래티스 엔트로피(Lattice entropy)의 증가는 래티스 바이브레이션(lattice vibration)의 증가로 이어지고 이로 인하여 자기장 안의 자성체의 온도는 상승하게 된다. An increase in lattice entropy leads to an increase in lattice vibration, thereby raising the temperature of the magnetic body in the magnetic field.

상온 자기냉동의 경우 물을 순환시켜 열을 방출시키고 이 과정에서 자성체의 온도는 다소 내려가며 자성체를 자석외부로 이동시켜 자기장을 중지시키면 자성체 내부의 마그네틱 모멘트(magnetic moment)가 무질서하게 배열되면서 온도 하강이 일어난다. 이때 냉장고나 냉동고의 내부 물체(열부하)와 연결하면 물체의 온도는 내려가고 자성체의 온도는 열을 흡수하여 상승하게 된다. In the case of room temperature magnetic refrigeration, heat is released by circulating water, and in this process, the temperature of the magnetic material decreases slightly, and when the magnetic material is moved outside the magnet to stop the magnetic field, the magnetic moment inside the magnetic body is disorderedly arranged and the temperature decreases. This happens. At this time, when connected to the internal object (heat load) of the refrigerator or freezer, the temperature of the object is lowered, and the temperature of the magnetic material absorbs heat and rises.

따라서, 상기 자기냉동을 위해서는 자기냉동물질의 선택이 중요하며, 상기 자기냉동물질은 현재 주로 입자형태, 벌크형태가 존재한다. Therefore, the selection of the magnetic refrigeration material is important for the magnetic refrigeration, the magnetic refrigeration material is present mainly in the form of particles, bulk.

그런데 실제 자기냉동효과는 표면에서 이루어지고, 적정 두께에서 최대의 효율을 발휘한다고 알려져 있는바, 진공증착법 등을 이용한 박막형태의 구조를 형성하여 두께를 수 미크론으로 조절하여 최대의 효율을 발휘하는 적정 두께를 찾아내는 것이 필요하다. However, the actual magnetic refrigeration effect is made on the surface, and it is known that it exhibits the maximum efficiency at the appropriate thickness. The thin film structure using the vacuum deposition method is formed to adjust the thickness to several microns to achieve the maximum efficiency. It is necessary to find the thickness.

또한 자기냉동 물질은 기본적으로 조성비 의존성이 강한 물질로 구성되어 있는바(예, Gd5(Si1 - xGex)4, La(FexSi1 -x)13), 박막으로 형성하더라도 박막에서의 조성비가 정확하게 맞아야만 효율을 발휘하게 된 것이다. In addition, the magnetic refrigeration material is basically composed of a material having a high dependency on composition ratio (eg, Gd 5 (Si 1 - x Ge x ) 4 , La (Fe x Si 1 -x ) 13 ). Only when the composition ratio of the correct ratio will be effective.

그리고, Ni2Mn1Ga1의 화합물의 경우 상온에서 Ni, Mn은 고체상으로 존재하지만 Ga의 경우는 액체상으로 존재한다. 따라서 기존의 3개의 QCM 증착률 측정기를 사용하여 각각 독립적으로 증착률을 측정할 경우 Ga이 센서에 고착되지 못하고 액상으로 흘려내려 증착률이 측정이 되지 못한다. 이 문제점을 해결하기 위하여 1개의 QCM 측정기를 이용하여 3개의 증착률을 각각 일정한 시간 간격을 두고 순차적, 반복적으로 증착하게 되면 1개의 센서에 3개의 물질이 증착되고 고착하여 Ga이 흘러내림을 방지할 수 있다.In the case of a compound of Ni 2 Mn 1 Ga 1 , Ni and Mn exist in a solid phase at room temperature, but Ga exists in a liquid phase. Therefore, when the deposition rate is independently measured using three existing QCM deposition rate meters, Ga is not fixed to the sensor and flows into the liquid phase, so that the deposition rate cannot be measured. In order to solve this problem, when three deposition rates are sequentially and repeatedly deposited by using a single QCM meter at regular time intervals, three materials are deposited and adhered to one sensor to prevent Ga from flowing down. Can be.

따라서, 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로, 자기냉동물질의 원료물질을 증발시킴에 의해 1개의 QCM 증착률 측정기를 이용하여 증착된 자기냉동물질 박막의 증착 조성비를 일정하게 유지시키는 자기냉동물질 증착 방법을 제공하는 것을 목적으로 한다. Accordingly, the present invention has been made to solve the above problems of the prior art, by evaporating the raw material of the magnetic refrigeration material by using a single QCM deposition rate meter deposited composition ratio of the thin film of the magnetic refrigeration material It is an object of the present invention to provide a method for depositing a magnetic refrigeration material which is maintained in a stable manner.

상기한 목적을 달성하기 위한 본 발명은, 챔버내에서 동시증발법을 이용하여 자기냉동물질을 증발시켜 박막을 형성시키는 자기냉동물질 증발방법에 있어서, 증발시키기 위한 이종의 원료물질이 수용된 두 개 이상의 도가니 중 하나의 도가니를 가열하여 원료물질을 증발시키고 동시에 1개의 QCM 증착률 측정기에 설치된 다수개의 QCM(quartz crystal moniter) 가이드 중 상기 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 QCM(quartz crystal moniter) 가이드로 증발되는 원료물질의 증발량을 QCM (quartz crystal moniter) 센서를 이용하여 증발율을 측정하여 기준 증발율이 되도록 도가니를 가열하고, 나머지 도가니에 대해서도 각각의 원료물질을 증발시켜 각각의 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 QCM(quartz crystal moniter) 가이드로 증발되는 각각의 원료물질의 증발량을 QCM(quartz crystal moniter) 센서를 이용하여 증발율을 측정하여 원료물질 각각의 기준 증발율이 되도록 도가니를 가열하는 기준 증발율 형성단계와; 상기 기준증발율 형성단계에서와 동일한 방법으로 각각의 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 각각의 도가니에서 증발되는 증발율을 QCM(quartz crystal moniter) 센서를 이용하여 순차적으로 측정하여 각각의 도가니에서 증발되는 원료물질의 증발율이 기준 증발율이 되도록 도가니의 가열설정온도를 미세조정시키는 기준 증발율 미세조정단계; 그리고, 상기 기준 증발율 미세조정단계에서 설정된 도가니의 가열설정온도가 되도록 도가니를 가열한 상태에서 각각의 도가니에서 증발된 원료물질을 기판에 증착하여 박막을 형성시키는 박막 형성단계;를 포함하여 형성되는 자기냉동물질 증착 방법을 기술적 특징으로 한다.The present invention for achieving the above object, in the evaporation method of the magnetic refrigeration material to evaporate the magnetic refrigeration material to form a thin film using a co-evaporation method in the chamber, two or more kinds of raw materials for evaporation are accommodated One of the crucibles is heated to evaporate the raw materials, and at the same time, a quartz crystal moniter (QCM) guide corresponding to the crucible is selected from a plurality of quartz crystal moniter (QCM) guides installed in one QCM deposition rate meter. The evaporation rate of the raw material evaporated with the crystal moniter guide is measured by using a quartz crystal moniter (QCM) sensor, and the crucible is heated to the standard evaporation rate. Select the corresponding quartz crystal moniter (QCM) guide and evaporate to the quartz crystal moniter (QCM) guide. Each (quartz crystal moniter) QCM the evaporation of the source material evaporation rate forming the reference phase by using a sensor measuring the evaporation rate of heating the crucible so that the respective reference source material and the evaporation rate; In the same manner as in the step of forming the reference evaporation rate, by selecting a quartz crystal moniter (QCM) guide corresponding to each crucible, the evaporation rate evaporated in each crucible is sequentially measured by using a quartz crystal moniter (QCM) sensor. A standard evaporation rate fine adjustment step of finely adjusting the heating set temperature of the crucible so that the evaporation rate of the raw material evaporated in the crucible becomes the reference evaporation rate; And a thin film forming step of forming a thin film by depositing a raw material evaporated in each crucible onto a substrate while the crucible is heated to have a heating set temperature of the crucible set in the reference evaporation rate fine adjustment step. Frozen material deposition method is a technical feature.

여기서, 상기 챔버는 10-5 Torr이하가 되고, 이종의 원료물질이 기판에 도달하는 경로 상에 형성된 증착영역제어판에 의해 박막의 조성비가 기판의 위치에 따라 경사적으로 형성되는 것이 바람직하다. Here, the chamber is less than 10 -5 Torr, it is preferable that the composition ratio of the thin film is formed obliquely in accordance with the position of the substrate by the deposition region control plate formed on the path to the heterogeneous raw material reaches the substrate.

그리고, 상기 기준 증발율 미세조정단계는 2회 이상 진행되는 것이 바람직하다.In addition, the reference evaporation rate fine adjustment step is preferably performed two or more times.

이에 따라, 자기냉동물질의 원료물질을 증발시킴에 의해 증착된 자기냉동물질 박막의 증착 조성비를 1개의 QCM 증착률 측정기를 이용하여 일정하게 유지시키는 이점이 있다. Accordingly, there is an advantage in that the deposition composition ratio of the thin film of the magnetic refrigeration material deposited by evaporating the raw material of the magnetic refrigeration material is kept constant by using one QCM deposition rate meter.

상기의 구성에 의한 본 발명은, 다수의 자기냉동물질의 원료물질을 증발시켜 박막을 형성시키되, 원료물질의 증발율을 기준치가 되도록 미세조정하여 증발시킴에 의해 증착된 자기냉동물질 박막의 증착 조성비를 일정하게 유지된다는 효과가 있다. The present invention by the above configuration, while evaporating the raw material of a plurality of magnetic refrigeration material to form a thin film, the evaporation composition ratio of the thin film of the magnetic refrigeration material deposited by fine-adjusting the evaporation rate of the raw material to a reference value to evaporate The effect is to remain constant.

도 1은 본 발명에 따른 동시증발장치의 개략도이고,
도 2는 본 발명에 따른 동시증발장치에서 원료물질 기판에 증착되는 형상을 나타낸 모식도이다.
1 is a schematic view of a simultaneous evaporation apparatus according to the present invention,
Figure 2 is a schematic diagram showing the shape deposited on the raw material substrate in the simultaneous evaporation apparatus according to the present invention.

이하 본 발명의 바람직한 실시예를 도시된 도면을 참조로 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명에 따른 동시증발장치의 개략도이고, 도 2는 본 발명에 따른 동시증발장치에서 원료물질 기판에 증착되는 형상을 나타낸 모식도이다.1 is a schematic diagram of a co-evaporation apparatus according to the present invention, Figure 2 is a schematic diagram showing the shape deposited on the raw material substrate in the co-evaporation apparatus according to the present invention.

도시된 바와 같이 본 발명에 따른 자기냉동물질 증착 방법은 동시증발장치의 챔버내에서 동시증발법을 이용하여 이루어지는바, 크게 기준 증발율 형성단계와, 기준 증발율 미세조정단계, 그리고 박막 형성단계로 구성된다. As shown, the method for depositing a self-cooling material according to the present invention is performed by using a co-evaporation method in a chamber of a co-evaporation apparatus, and is composed of a reference evaporation rate forming step, a reference evaporation rate fine tuning step, and a thin film forming step. .

이하 본 발명의 편리한 설명을 위하여 자기냉동물질로 잘 알려진 Ni2MnGa물질을 이용하여 본 발명을 상세히 설명하는바, 상기 Ni2MnGa물질을 박막으로 증착하여 자기 냉동물질로 사용하기 위해서는 상기 니켈;망간;갈륨의 증착조성비가 2;1;1로 일정하게 유지되어야만 하는 것입니다. 본 발명의 종래기술에서도 설명한 바와 같이 자기냉동물질을 박막으로 증착하는 경우 증착 조성비가 일정하게 유지되어야만 자기냉동물질로서의 효율을 발휘하는 것입니다. Hereinafter, the present invention will be described in detail using a Ni 2 MnGa material which is well known as a magnetic refrigeration material for the convenience of the present invention. In order to deposit the Ni 2 MnGa material as a thin film and use it as a magnetic refrigeration material, the nickel; The deposition composition ratio of gallium should be kept constant at 2; 1; 1. As described in the prior art of the present invention, when the magnetic refrigeration material is deposited as a thin film, the efficiency of the magnetic refrigeration material is exhibited only when the deposition composition ratio is kept constant.

따라서 본 발명은 원료물질을 박막으로 조성하는 경우 박막에서의 원하는 조성비로 일정하게 유지하도록 하는 것에 관한 것입니다. Therefore, the present invention relates to maintaining a constant composition ratio in a thin film when the raw material is formed into a thin film.

먼저 본 발명의 기준 증발율 형성단계는 챔버(100)내에서 이루어지는바, 챔버(100)내의 진공도를 10-5 Torr이하 바람직하게는 10-5 Torr ~ 10-8 Torr 가 되게 한상태에서 각각의 도가니(200) 내에 이종의 원료물질인 니켈(Ni), 망간(Mn) 갈륨(Ga) 등을 수용시킨다.First, the reference evaporation rate forming step of the present invention is performed in the chamber 100, and each crucible in a state in which the vacuum degree in the chamber 100 is 10 -5 Torr or less, preferably 10 -5 Torr ~ 10 -8 Torr. The heterogeneous raw materials nickel (Ni), manganese (Mn) gallium (Ga) and the like are accommodated in the 200).

상기의 상태에서 니켈이 수용된 도가니(200)를 가열시켜 니켈 원료분말을 증발시킴과 동시에 상기 챔버(100) 내에 설치되고 니켈의 증발을 안내하는 니켈안내용 QCM(quartz crystal moniter) 가이드(300)를 선택하여, 니켈안내용 QCM 가이드(300)로 증발되는 원료물질의 증발량을 QCM(quartz crystal moniter) 센서(400)를 이용하여 증발율을 측정한다. 측정된 증발율을 분석하여 기준 증발율이 되도록 도가니의 가열정도를 조절하여 이 가열 정도를 니켈 기준 증발율 온도로 설정한다.In the above state, the nickel-containing crucible 200 is heated to evaporate the nickel raw powder, and at the same time, a nickel crystal QCM (quartz crystal moniter) guide 300 is installed in the chamber 100 to guide evaporation of nickel. Selectively, the evaporation rate of the raw material evaporated to the nickel guide QCM guide 300 is measured using a quartz crystal moniter (QCM) sensor 400. The degree of heating of the crucible is adjusted to the reference evaporation rate by analyzing the measured evaporation rate, and the heating degree is set to the nickel reference evaporation rate temperature.

즉, 이는 박막으로 증착하는 경우 니켈;망간;갈륨의 증착조성비가 2;1;1이 되도록 니켈의 증발율을 조절하는 것으로 증발율을 측정함으로써 기준 증발율이 되도록 니켈이 수용된 도가니의 가열온도를 제어함으로써 이루어진다. That is, this is achieved by controlling the evaporation rate of nickel so that the deposition composition ratio of nickel; manganese; gallium is 2; 1; 1 when the thin film is deposited, and controlling the heating temperature of the crucible containing nickel so as to be the reference evaporation rate. .

다음은 상기 니켈과 동일한 방법으로 망간이 수용된 도가니(200)를 가열시켜 망간 원료분말을 증발시킴과 동시에 상기 챔버(100) 내에 설치되고 망간의 증발을 안내하는 망간안내용 QCM(quartz crystal moniter) 가이드(300)를 선택하여, 망간안내용 QCM 가이드(300)로 증발되는 원료물질의 증발량을 QCM(quartz crystal moniter) 센서(400)를 이용하여 증발율을 측정한다. 측정된 증발율을 분석하여 기준 증발율이 되도록 도가니(200)의 가열 정도를 조절하여 이 가열 정도를 망간 기준 증발율 온도로 설정한다. 즉, 이는 박막으로 증착하는 경우 니켈;망간;갈륨의 증착 조성비가 2;1;1이 되도록 망간의 증발율을 조절하는 것으로 증발율을 측정함으로써 기준 증발율이 되도록 망간이 수용된 가열도가니의 온도를 제어함으로써 이루어진다.Next, a manganese guide quartz crystal moniter (QCM) guide for evaporating manganese raw powder by heating the crucible 200 containing manganese in the same manner as the nickel and installed in the chamber 100 to guide evaporation of manganese By selecting 300, the evaporation rate of the raw material evaporated by the manganese guide QCM guide 300 is measured using a quartz crystal moniter (QCM) sensor 400. The heating degree of the crucible 200 is adjusted by analyzing the measured evaporation rate to set the reference evaporation rate, and the heating degree is set to the manganese reference evaporation rate temperature. In other words, this is achieved by controlling the evaporation rate of manganese so that the deposition composition ratio of nickel; manganese; gallium is 2; 1; .

다음은 상기 니켈과 동일한 방법으로 갈륨이 수용된 도가니(200)를 가열시켜 갈륨 원료분말을 증발시킴과 동시에 상기 챔버(100) 내에 설치되고 갈륨의 증발을 안내하는 갈륨안내용 QCM(quartz crystal moniter) 가이드(300)를 선택하여, 갈륨안내용 QCM 가이드(300)로 증발되는 원료물질의 증발량을 QCM(quartz crystal moniter) 센서(400)를 이용하여 증발율을 측정한다. 측정된 증발율을 분석하여 기준 증발율이 되도록 도가니(200)의 가열 정도를 조절하여 이 가열 정도를 갈륨 기준 증발율 온도로 설정한다. 즉, 이는 박막으로 증착하는 경우 니켈;망간;갈륨의 증착 조성비가 2;1;1이 되도록 갈륨의 증발율을 조절하는 것으로 증발율을 측정함으로써 기준 증발율이 되도록 갈륨이 수용된 도가니(200)의 가열온도를 제어함으로써 이루어진다.Next, the gallium-containing crucible 200 is heated in the same manner as the nickel to evaporate the gallium raw powder and at the same time, the gallium guide QCM (quartz crystal moniter) guide for gallium guided to guide the evaporation of gallium By selecting 300, the evaporation rate of the raw material evaporated by the gallium guide QCM guide 300 is measured using a quartz crystal moniter (QCM) sensor 400. The heating degree of the crucible 200 is adjusted by analyzing the measured evaporation rate to set the reference evaporation rate, and the heating degree is set to the gallium reference evaporation rate temperature. That is, when the thin film is deposited, the evaporation rate of the gallium is adjusted by adjusting the evaporation rate of nickel; manganese; gallium so that the deposition composition ratio is 2; 1; 1, and the heating temperature of the crucible 200 containing the gallium to be the reference evaporation rate is measured. By controlling.

상기와 같은 방법으로 모든 도가니(200)에 수용된 원료물질에 대한 기준 증발율을 형성시킨다. In the same manner as described above to form a reference evaporation rate for the raw material contained in all the crucible (200).

상기 기준증발율 형성단계후에는, 상기 기준증발율 형성단계에서 형성된 도가니(200)의 가열온도를 미세조정하기 위한 기준 증발율 미세조정단계가 진행되는바, 니켈안내용 QCM(quartz crystal moniter) 가이드(300)를 선택하여 니켈의 증발율을 측정하고 니켈이 수용된 도가니(200)의 온도를 미세조정하고, 순차적으로 망간안내용 망간안내용 QCM(quartz crystal moniter) 가이드(300)를 선택하여 망간의 증발율을 측정하고 망간이 수용된 도가니(200)의 온도를 미세조정하고, 갈륨안내용 QCM(quartz crystal moniter) 가이드(300)를 선택하여 갈륨의 증발율을 측정하고 갈륨이 수용된 도가니(200)의 온도를 미세조정하는 방식으로 니켈;망간;갈륨의 증착 조성비가 2;1;1이 되도록 하는 각각의 원료물질의 증발율을 제어한다. After the reference evaporation rate forming step, a reference evaporation rate fine adjustment step for finely adjusting the heating temperature of the crucible 200 formed in the reference evaporation rate forming step is carried out, the nickel guide QCM (quartz crystal moniter) guide 300 Select to measure the evaporation rate of nickel and finely adjust the temperature of the crucible 200 containing nickel, and sequentially select the manganese guide manganese guide QCM (quartz crystal moniter) guide 300 to measure the evaporation rate of manganese The method of finely adjusting the temperature of the crucible 200 accommodated with manganese, selecting the gallium guide QCM (quartz crystal moniter) guide 300 to measure the evaporation rate of gallium and finely adjust the temperature of the crucible 200 accommodated gallium By controlling the evaporation rate of each raw material such that the deposition composition ratio of nickel; manganese; gallium is 2;

상기 기준증발율 미세조정단계는 오차를 줄이기 위하여 일정한 시간 간격을 두고 증착실험이 끝날 때 까지 반복하는 것이 바람직하다.The reference evaporation rate fine adjustment step is preferably repeated until the end of the deposition experiment at regular intervals in order to reduce the error.

상기 기준증발율 미세조정단계후에는 니켈;망간;갈륨의 증착 조성비가 2;1;1이 되도로 하는 니켈과 갈륨과 망간의 증발율이 일정하게 결정된 상태이며, 이는 주로 각각의 원료물질이 수용된 도가니(200)의 가열온도를 제어함에 의해 달성된다. After the standard evaporation rate fine tuning step, the evaporation rate of nickel, gallium, and manganese in which the deposition composition ratio of nickel; manganese; gallium is set to 2; 1; 1 is determined, and this is mainly a crucible containing each raw material ( By controlling the heating temperature of 200).

상기의 상태에서 기판(500)에 원료물질을 증착시키는 박막형성단계가 진행되는바, 챔버내에는 원료물질이 수용된 도가니(200)와 기판(500) 사이에는 증착영역제어판(600)이 형성된다. 그리고 기판(500)은 일측은 풀림롤(510)에 감겨져 있고, 타측은 감김롤(520)에 연결되어 풀림롤(510)에서 풀려져 원료물질이 증착된 후 감김롤(520)에 감겨지게 된다. In the above state, the thin film forming step of depositing the raw material on the substrate 500 is performed. In the chamber, the deposition area control panel 600 is formed between the crucible 200 in which the raw material is accommodated and the substrate 500. And one side of the substrate 500 is wound on the unwinding roll 510, the other side is connected to the unwinding roll 520 is unwinded from the unwinding roll 510 is wound on the unwinding roll 520 after the raw material is deposited. .

박막 형성단계는 상기 기준 증발율 미세조정단계에서 형성된 기준 증발율에 따라 주로 도가니(200)의 가열온도를 제어하는 방식으로 각각의 도가니(200)에 수용된 원료물질을 증발시킨다. The thin film forming step evaporates the raw material contained in each crucible 200 in such a way as to mainly control the heating temperature of the crucible 200 according to the reference evaporation rate formed in the reference evaporation rate fine adjustment step.

증발된 원료물질은 상기 기판(500)에 박막형태로 증착된다. 이때 상기 증착영역제어판(600)을 제어시킴에 의해 상기 기판(500)에 형성되는 박막의 증착영역이 결정되며, 필요에 따라 증착되는 원료물질의 조성분포가 경사형으로 다르게 형성되도록 제어할 수도 있다. 이는 예를 들자면 도가니(200)를 배치하는 것에 따라, 기판(500)의 중앙부분은 니켈의 조성비가 망간 갈륨보다 상대적으로 많게 하고, 가장자리부분은 적게 할 수 있다는 의미이다. The evaporated raw material is deposited on the substrate 500 in a thin film form. In this case, the deposition region of the thin film formed on the substrate 500 is determined by controlling the deposition region control panel 600, and if necessary, the composition distribution of the raw material to be deposited may be controlled to be differently formed in an inclined shape. . This means that, for example, by arranging the crucible 200, the central portion of the substrate 500 may have a nickel composition ratio relatively higher than that of manganese gallium, and the edge portion may be reduced.

상기와 같이 형성된 박막은 증발율을 미세조정함에 의해 사용자가 원하는 조성비가 형성된 박막이 되는 것이다. The thin film formed as described above becomes a thin film having a composition ratio desired by a user by fine-tuning the evaporation rate.

이러한 박막은 기판의 각 영역에서의 조성비의 정밀제어가 요구되는 자기냉동물질에 사용이 가능 하나, 조성비의 균일화가 요구되는 박막에도 사용이 가능함은 물론이고 이 또한 본 발명의 범주에 속함은 자명하다 할 것이다. Such thin films can be used for magnetic refrigeration materials that require precise control of the composition ratio in each area of the substrate, but can also be used for thin films that require uniform composition ratio, as well as belonging to the scope of the present invention. something to do.

100 : 챔버 200 : 도가니
300 : QCM가이드 400 : QCM센서
500 : 기판 510 : 풀림롤
520 : 감김롤 600 : 증착영역제어판
100: chamber 200: crucible
300: QCM guide 400: QCM sensor
500: substrate 510: unrolling roll
520: winding roll 600: deposition area control panel

Claims (4)

챔버내에서 동시증발법을 이용하여 자기냉동물질을 증발시켜 박막을 형성시키는 자기냉동물질 증발방법에 있어서,
증발시키기 위한 이종의 원료물질이 수용된 두 개 이상의 도가니 중 하나의 도가니를 가열하여 원료물질을 증발시키고 동시에 1개의 QCM 증착률 측정기에 설치된 다수개의 QCM(quartz crystal moniter) 가이드 중 상기 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 QCM(quartz crystal moniter) 가이드로 증발되는 원료물질의 증발량을 QCM(quartz crystal moniter) 센서를 이용하여 증발율을 측정하여 기준 증발율이 되도록 도가니를 가열하고, 나머지 도가니에 대해서도 각각의 원료물질을 증발시켜 각각의 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 QCM(quartz crystal moniter) 가이드로 증발되는 각각의 원료물질의 증발량을 QCM(quartz crystal moniter) 센서를 이용하여 증발율을 측정하여 원료물질 각각의 기준 증발율이 되도록 도가니를 가열하는 기준 증발율 형성단계와; 상기 기준증발율 형성단계에서와 동일한 방법으로 각각의 도가니에 대응되는 QCM(quartz crystal moniter) 가이드를 선택하여 각각의 도가니에서 증발되는 증발율을 QCM(quartz crystal moniter) 센서를 이용하여 순차적으로 측정하여 각각의 도가니에서 증발되는 원료물질의 증발율이 기준 증발율이 되도록 도가니의 가열설정온도를 미세조정시키는 기준 증발율 미세조정단계; 그리고, 상기 기준 증발율 미세조정단계에서 설정된 도가니의 가열설정온도가 되도록 도가니를 가열한 상태에서 각각의 도가니에서 증발된 원료물질을 기판에 증착하여 박막을 형성시키는 박막 형성단계;를 포함하여 구성되고,
이종의 원료물질이 기판에 도달하는 경로 상에 형성된 증착영역제어판에 의해 박막의 조성비가 기판의 위치에 따라 경사적으로 형성된 것을 특징으로 하는 자기냉동물질 증착 방법.
In the self-freezing material evaporation method of forming a thin film by evaporating the self-freezing material using a co-evaporation method in the chamber,
One of two or more crucibles containing different raw materials for evaporation is heated to evaporate the raw materials, and at the same time, the QCM corresponding to the crucible among the plurality of quartz crystal moniter (QCM) guides installed in one QCM deposition rate meter. Select the (quartz crystal moniter) guide and measure the evaporation rate of the raw material evaporated by the quartz crystal moniter (QCM) guide using a quartz crystal moniter (QCM) sensor to heat the crucible to the standard evaporation rate, In addition, each raw material is evaporated to select a quartz crystal moniter (QCM) guide corresponding to each crucible, and the evaporation amount of each raw material evaporated with a quartz crystal moniter (QCM) guide is used by using a quartz crystal moniter (QCM) sensor. To measure the evaporation rate to heat the crucible to the reference evaporation rate of each raw material Forming a rate; In the same manner as in the step of forming the reference evaporation rate, by selecting a quartz crystal moniter (QCM) guide corresponding to each crucible, the evaporation rate evaporated in each crucible is sequentially measured by using a quartz crystal moniter (QCM) sensor. A standard evaporation rate fine adjustment step of finely adjusting the heating set temperature of the crucible so that the evaporation rate of the raw material evaporated in the crucible becomes the reference evaporation rate; And a thin film forming step of forming a thin film by depositing a raw material evaporated in each crucible onto a substrate while the crucible is heated to have a heating set temperature of the crucible set in the reference evaporation rate fine adjustment step.
And a composition ratio of the thin film is formed obliquely according to the position of the substrate by a deposition region control plate formed on a path where heterogeneous raw materials reach the substrate.
제1항에 있어서, 상기 챔버는 10-5 Torr이하가 됨을 특징으로 하는 자기냉동물질 증착방법.The method of claim 1, wherein the chamber is 10 −5 Torr or less. 삭제delete 제1항 또는 제2항에 있어서, 상기 기준 증발율 미세조정단계는 2회 이상 진행됨을 특징으로 하는 자기냉동물질 증착 방법.The method of claim 1 or 2, wherein the step of fine tuning the reference evaporation rate is performed two or more times.
KR1020110120226A 2011-11-17 2011-11-17 deposition method for magnetic refrigeration material KR101371681B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110120226A KR101371681B1 (en) 2011-11-17 2011-11-17 deposition method for magnetic refrigeration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110120226A KR101371681B1 (en) 2011-11-17 2011-11-17 deposition method for magnetic refrigeration material

Publications (2)

Publication Number Publication Date
KR20130054689A KR20130054689A (en) 2013-05-27
KR101371681B1 true KR101371681B1 (en) 2014-03-10

Family

ID=48663435

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110120226A KR101371681B1 (en) 2011-11-17 2011-11-17 deposition method for magnetic refrigeration material

Country Status (1)

Country Link
KR (1) KR101371681B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042238A (en) 2017-10-16 2019-04-24 한국전기연구원 Self-hysteresis curve continuously measuring apparatus and measurement method for a composition gradient thin film using permanent magnet
KR20190042235A (en) 2017-10-16 2019-04-24 한국전기연구원 Self-hysteresis curve continuous measurement apparatus using permanent magnet
KR20190128394A (en) 2018-05-08 2019-11-18 한국전기연구원 Self-hysteresis curve continuously measuring apparatus and measurement method the same
KR20200039209A (en) 2018-10-05 2020-04-16 한국전기연구원 Fe-Co-Sm Magnetic Material and Measurement Method for the Dependence of Magnetic Properties on Composition Ratio
KR20200067062A (en) 2018-12-03 2020-06-11 한국전기연구원 Method for optimizing magnetic material comprised soft magnetic-hard magnetic multi layer thin film and optimized magnetic material by the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031138A1 (en) * 2014-08-26 2016-03-03 株式会社アルバック Film-thickness monitor and film-thickness determination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010962A (en) * 2002-06-06 2004-01-15 Shibafu Engineering Corp Film with gradient composition and method of forming the film with gradient composition
KR20050036227A (en) * 2003-10-15 2005-04-20 삼성에스디아이 주식회사 Effusion cell and method for depositing substrate with the effusion cell
US20050172643A1 (en) * 2003-06-30 2005-08-11 Lewis Laura J.H. Enhanced magnetocaloric effect material
KR20080062168A (en) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 Apparatus and method for fabricating flat display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010962A (en) * 2002-06-06 2004-01-15 Shibafu Engineering Corp Film with gradient composition and method of forming the film with gradient composition
US20050172643A1 (en) * 2003-06-30 2005-08-11 Lewis Laura J.H. Enhanced magnetocaloric effect material
KR20050036227A (en) * 2003-10-15 2005-04-20 삼성에스디아이 주식회사 Effusion cell and method for depositing substrate with the effusion cell
KR20080062168A (en) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 Apparatus and method for fabricating flat display

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042238A (en) 2017-10-16 2019-04-24 한국전기연구원 Self-hysteresis curve continuously measuring apparatus and measurement method for a composition gradient thin film using permanent magnet
KR20190042235A (en) 2017-10-16 2019-04-24 한국전기연구원 Self-hysteresis curve continuous measurement apparatus using permanent magnet
KR20190128394A (en) 2018-05-08 2019-11-18 한국전기연구원 Self-hysteresis curve continuously measuring apparatus and measurement method the same
KR20200039209A (en) 2018-10-05 2020-04-16 한국전기연구원 Fe-Co-Sm Magnetic Material and Measurement Method for the Dependence of Magnetic Properties on Composition Ratio
KR20200067062A (en) 2018-12-03 2020-06-11 한국전기연구원 Method for optimizing magnetic material comprised soft magnetic-hard magnetic multi layer thin film and optimized magnetic material by the same

Also Published As

Publication number Publication date
KR20130054689A (en) 2013-05-27

Similar Documents

Publication Publication Date Title
KR101371681B1 (en) deposition method for magnetic refrigeration material
Dho et al. Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19
Kamilov et al. Magnetocaloric effect in La1− xAgyMnO3 (y⩽ x): direct and indirect measurements
Van Driel et al. Compositional dependence of the giant magnetoresistance in Fe x Rh 1− x thin films
Doblas et al. Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect
Anjum et al. Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films
Betto et al. Structure, site-specific magnetism, and magnetotransport properties of epitaxial D 0 22-structure Mn 2 Fe x Ga thin films
Lampen-Kelley et al. Tablelike magnetocaloric effect and enhanced refrigerant capacity in Eu O 1-δ thin films
Bhoi Bulk-like magnetization and improved microwave properties of polycrystalline YIG (Y3Fe5O12) films grown on quartz substrates by pulsed laser deposition
Xiao et al. Structural, magnetic and magnetocaloric properties of hexagonal MnCoGe-based thin films
Kim et al. Thickness and Temperature Effects on Magnetic Properties and Roughness of ${\rm L} 1_ {0} $-Ordered FePt Films
Meng et al. In-plane c-axis oriented barium hexaferrite films prepared by magnetron sputtering
Speliotis et al. Microstructure and magnetic properties of SmCo films
CN106929812A (en) One kind is in MgO(111)The method of the various phase structure iron nitride thin films of substrate Epitaxial growth
Lai et al. Room-temperature growth of epitaxial Fe 3 O 4 films by ion beam deposition
Piramanayagam et al. Perpendicular magnetic anisotropy in NdFeB thin films
Samarasekara et al. Polycrystalline Ni ferrite films deposited by RF sputtering techniques
Prokhorov et al. Long-aging effects on the properties of La 0.5 Sr 0.5 CoO 3− δ films
CN105470116B (en) A method of regulation dilute magnetic semiconductor material room temperature magnetism
Guo et al. Influence of substrate temperature on the texture of barium ferrite film by magnetron sputtering
Kaewrawang et al. Crystallographic and magnetic properties of SrM thin films on Pt underlayer prepared at various substrate temperatures
Elanchezhiyan et al. Substrates effect on Zn1− xMnxO thin films grown by RF magnetron sputtering
Kranov et al. Barium hexaferrite thick films made by liquid phase epitaxy reflow method
Gu et al. Structural and magnetic properties of RF sputtered FePt/Fe multilayers
KR102522549B1 (en) Method for optimizing magnetic material comprised soft magnetic-hard magnetic multi layer thin film and optimized magnetic material by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee