JP2004010921A - Method and apparatus for vacuum arc vapor deposition - Google Patents

Method and apparatus for vacuum arc vapor deposition Download PDF

Info

Publication number
JP2004010921A
JP2004010921A JP2002162728A JP2002162728A JP2004010921A JP 2004010921 A JP2004010921 A JP 2004010921A JP 2002162728 A JP2002162728 A JP 2002162728A JP 2002162728 A JP2002162728 A JP 2002162728A JP 2004010921 A JP2004010921 A JP 2004010921A
Authority
JP
Japan
Prior art keywords
magnet
duct
vapor deposition
vacuum arc
designated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162728A
Other languages
Japanese (ja)
Other versions
JP3744467B2 (en
Inventor
Yasuo Murakami
村上 泰夫
Takashi Mikami
三上 隆司
Kiyoshi Ogata
緒方 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2002162728A priority Critical patent/JP3744467B2/en
Priority to US10/305,008 priority patent/US7033462B2/en
Priority to DE60212551T priority patent/DE60212551T2/en
Priority to EP02026683A priority patent/EP1316986B1/en
Priority to TW91134753A priority patent/TW575672B/en
Priority to KR1020020075172A priority patent/KR100569905B1/en
Priority to CNB02160651XA priority patent/CN1205353C/en
Publication of JP2004010921A publication Critical patent/JP2004010921A/en
Application granted granted Critical
Publication of JP3744467B2 publication Critical patent/JP3744467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To regulate the magnetic field of one or a plurality of magnets located at one end side of a curving or inflecting duct from a terminal magnet located closest to an injection hole of the duct, to prevent deterioration in film forming characteristics due to the magnetic field characteristics of a magnetic filter, and to attain vacuum arc vapor deposition with uniform film forming characteristics. <P>SOLUTION: The one or the plurality of specified magnets (magnetic coil 14b') located at an evaporation source 11 side from the terminal magnet (magnetic coil 14d) located closest to the injection hole 13 among the respective magnets (magnetic coils 14a, 14b', 14c, 14d) forming the magnetic filter 18b of the curving or inflecting duct 9 are set in such a manner as to be inclined with respect to the cross section of the duct 9, and the flying direction of ions is controlled by the magnetic field generated by the specified magnets. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車部品、機械部品、工具、金型等の基材の耐摩耗性を向上するための薄膜形成に用いる真空アーク蒸発方法及びその装置に関する。
【0002】
【従来の技術】
一般に、真空アーク蒸着は、陰極と陽極の間にアーク放電を生じさせ、陰極材料を蒸発させて基材に蒸着するという簡便な薄膜形成方法であり、生産性に優れるという特徴を持つ。
【0003】
しかし、陰極材料から(放電状態によっては陰極からも)、直径が数μmにもなる大きな固まりの粗大粒子(ドロップレット)が飛出し、このドロップレットが基材に付着して成膜特性が劣下することが知られている。
【0004】
このドロップレットによる成膜特性の劣下を防止するため、近年、電磁コイル等の磁石により磁場を発生し、この磁場によってドロップレットを除去してプラズマ流だけを磁場に沿って基材方向に輸送したり、前記磁場でプラズマを集束させて高密度化することによってドロップレットを溶解することが提案されている。
【0005】
そして、ドロップレットを除去してプラズマ流だけを基材方向に輸送する従来の真空アーク蒸着は、本出願人の既出願に係る特開平2001−59165号公報(C23C 14/32)等に記載されているように、ほぼ図9の平面図に示す構造に形成される。
【0006】
この図9の従来装置において、成膜室1を形成する金属製の接地された真空容器2は、図示省略した真空排気装置によって右側の排気口3から排気され、左側のガス導入口4から、場合によっては、アルゴンガス等の不活性ガスや反応性ガスが導入される。
【0007】
また、前記公報においては、成膜室1の円筒形のホルダに基材を複数個取付けた構造が示されているが、図9においては、説明を簡単にするため、成膜室1のほぼ中央に平板状の1個のホルダ5が、その表面を前方に向けて、かつ、回転自在に設けられ、このホルダ5の表面側に基材6が着脱自在に保持される。
【0008】
この基材6はホルダ5を介してバイアス電源7の陰極に接続され、基材6が真空容器2に対して代表的には−0.5kV〜−5.0kVに直流パルスバイアスされる。
【0009】
なお、図中の8はバイアス電源7の陰極を絶縁する真空容器2の後面板2′の絶縁体である。
【0010】
つぎに、真空容器2の前方にほぼ「ノ」の字状に湾曲した断面矩形の金属製のダクト9が設けられ、このダクト9は、前側一端の接地された端板9′の中央部に絶縁体10を介して蒸発源11が設けられ、この蒸発源11に陽極接地の数10V程度のアーク電源12の陰極が接続され、ダクト9が陽極、蒸発源11が陰極を形成する。
【0011】
なお、ダクト9を陽極に兼用する代わりに、ダクト9と別個に陽極電極が設けられることもある。
【0012】
また、蒸発源11は、図示省略した水冷機構、真空シール機構、トリガ機構等も備える。
【0013】
さらに、ダクト9の他端が真空容器2の前面板2″の中央部に取付けられ、ダクト9の他端の放出口13が成膜室1に連通し、このとき、放出口13の左右方向(水平方向)の放出面の中心がホルダ5、基材6の中心に重なる。
【0014】
つぎに、ダクト9の両端間の複数個所それぞれにダクト9を囲んだ磁石として、例えばダクト9の一端側から順の#1,#2,#3,#4の電磁コイル14a,14b,14c,14dが設けられる。
【0015】
このとき、放出口13に最も近い#4の終端磁石としての電磁コイル14d及び#1〜#3の他の磁石の電磁コイル14a〜14cは、それぞれ複数ターンのコイルからなり、同じ大きさ(寸法)である。
【0016】
また、電磁コイル14dは、2点鎖線のダクト9の延長方向に直角なダクト9の横断面にほぼ平行に設けられて放出口13の放出面に平行であり、残りの各電磁コイル14もそれぞれの位置でダクト9の横断面にほぼ平行に設けられる。
【0017】
そして、各電磁コイル14a〜14dは電流源としてのコイル電源15の出力両端間に直列接続され、制御装置16の電流制御によって、各電磁コイル14a〜14dの通電が制御され、この制御に基づく各電磁コイル14a〜14dの通電により、ダクト9に沿って湾曲した図中の実線矢印ループの偏向磁場17aが形成され、この磁場17aが磁気フィルタ18aを形成する。
【0018】
そして、陽極であるダクト9と陰極である蒸発源11との間の真空アーク放電により、蒸発源11のTi,Cr,Mo,Ta,W,Al,Cuのような単体金属、TiAlのような合金或いはC等の導電体の陰極材料19が蒸発する。
【0019】
さらに、アーク放電によって生成された電子及び陰極材料19のイオンを含んだ破線矢印のプラズマ流20aが偏向磁場17aに沿ってダクト9の一端から他端の放出口13に輸送される。
【0020】
このとき、蒸発源11から飛出したドロップレットは、電気的に中性であるか、又は、プラズマ中で負に帯電したりするが、いずれにしても質量が非常に大きいため、偏向磁場17aに関係なく直進し、ダクト9の内壁に衝突して除去されて基材6やホルダ5の表面には到達しない。
【0021】
そして、放出口13に到達した陰極材料19のイオンは、バイアス電源7による基材6の大きな負電位のバイアスに基づき、成膜室1に引出されて基材6の表面に飛着し、基材6の表面に陰極材料19の蒸着膜が成膜される。
【0022】
なお、陰極材料19のイオンの引出しに連動してガス導入口4から成膜室1内に反応性ガスを導入すると、このガスが陰極材料19のイオンと反応し、基材6の表面に、例えば炭化チタンや窒化チタン等の金属化合物薄膜が蒸着される。
【0023】
【発明が解決しようとする課題】
前記図9の従来装置の真空アーク蒸着においては、終端磁石の電磁コイル14dがダクト9の横断面に平行で放出口13の放出面及び基材6に平行に設けられるだけでなく、他の電磁コイル14a〜14cも、それぞれの位置でのダクト9の横断面にほぼ平行に設けられる。
【0024】
一方、一様な磁場中で電子が輸送される状態を考えると、よく知られるように、電荷qの電子はつぎの数1の式のローレンツ力Fを受ける。
【0025】
【数1】
F=q・(v×B),(v:電子の磁場に対し垂直な方向の速度、B:磁場、×:ベクトル積(外積)演算子、・:内積演算子)
【0026】
そして、このローレンツ力Fにより、電子が螺旋状に回転しながら偏向磁場17aの磁力線に沿って進み、陰極材料19のイオンは、この電子に引張られるようにダクト9内を進んで放出口13に輸送される。
【0027】
さらに、終端磁石の電磁コイル14dの付近では図10の(a),(b)の実線矢印の磁力線に示すように発散磁場になり、放出口13に到達した電子やイオンはこの発散磁場に沿って飛行する。
【0028】
なお、図10の(a),(b)は図9の4個の電磁コイル14a〜14dのうちの1つおきの#2,#4の2個の電磁コイル14b,14dのみ通電した場合の磁力線を示す平面図,右側面図である。
【0029】
そして、図10の(a),(b)の磁力線に基づく電子の飛行軌跡は、図11の(a),(b)の平面図,右側面図の実線に示すようになる。
【0030】
すなわち、前記の発散磁場により、電子の基材到達位置は、湾曲の向きに応じて、基材6の中心から左右方向に偏向し、上下方向(垂直方向)に発散する。
【0031】
ところで、磁場17aのような真空湾曲磁場中の電子には、図12に示すように、磁場ベクトルBの曲率中心からみて外向きの遠心力Fcfと内向きの磁場傾斜(勾配)∇Bが作用し、つぎの数2の式に示すドリフトが生じる。
【0032】
【数2】
v(R)+v(∇B)=(m/q)・(Rc×B)/(Rc・B)・(v(‖)+v(⊥)/2),(v(R):Fcfの速度ドリフト、v(∇B):(∇B)の速度ドリフト、m:質量、Rc:図12の×印の電子位置での曲率半径、v(‖):B方向の速度、v(⊥):Bに直角方向(法線方向)の速度)
【0033】
なお、数2の式中の外積Rc×Bは、RcをBに重ねるように回転したときに右ねじが進む方向のベクトルである。
【0034】
そして、蒸発源11が上下方向に3個設けられ、上から順の各蒸発源11が上カソード,中央カソード,下カソードを形成するときは、主に上カソードの電子が磁場Bの上向きの湾曲の影響を受け、主に下カソードの電子が磁場Bの下向きの湾曲の影響を受け、上カソード,下カソードの電子のドリフト方向は、カソードから基材6方向をみたときのコイル電流の正,逆(時計回り,反時計回り)に応じてつぎの表1に示すようになり、カソードの上下,コイル電流の正逆に対して対称的である。
【0035】
【表1】

Figure 2004010921
【0036】
そして、プラズマ20a中のイオンが電子に引張られて飛行する傾向にあることから、前記のドリフトの効果により、イオンの蒸着位置も同様に所期位置からずれる。
【0037】
そのため、磁気フィルタ18によってドロップレットを除去する従来の真空アーク蒸着にあっては、基材6の所望位置に陰極材料19の薄膜を蒸着して所期の膜厚に成膜することが困難であり、均一な成膜特性等の所望の成膜特性を得るには十分とはいえない問題点がある。
【0038】
そして、蒸発源11の個数等によらず、磁場フィルタの作用でドロップレットを除去するこの種の真空アーク蒸着においては、同様の問題点が生じる。
【0039】
なお、ダクト9及び電磁コイル14a〜14dが断面矩形の場合、矩形の電磁コイル14a〜14dの磁場特性に基づき、中心部よりも外寄りになる程、磁場の傾斜∇Bが大きくなるため、斜め下方向のドリフト速度が大きくなって下方向の発散が大きくなる。
【0040】
本発明は、とくに磁気フィルタの終端磁石(電磁コイル14d)よりダクト9の一端側(蒸発源側)の磁石の磁場による前記のドリフトに着目して基材の成膜特性を向上することを課題とし、さらには、陰極材料のイオンの基材到達位置を自由に制御して成膜特性の一層の向上等を図ることも課題とする。
【0041】
【課題を解決するための手段】
前記の課題を解決するために、本発明の請求項1の真空アーク蒸着方法は、磁気フィルタを形成する各磁石のうちの放出口に最も近い終端磁石より蒸発源側の1又は複数個の指定磁石を、ダクトの横断面に対して傾けて設置し、指定磁石の発生磁場により、イオンの飛着方向を制御する。
【0042】
この場合、磁気フィルタを形成する各磁石のうちの終端磁石以外の1又は複数個の磁石が、ダクトの横断面に対して積極的に傾けてダクトの周囲に設けられ、それらが発生する偏向磁場の方向が、ダクトの横断面にほぼ平行に設ける従来方法の発生磁場方向と異なり、傾きの角度を適当に設定することにより、前記電子やプラズマ流から引出されたイオンの飛行方向が修正されて前記ドリフトが抑制され、陰極材料の基材蒸着位置が前記ドリフトの影響を受けにくくなって成膜特性が向上する。
【0043】
つぎに、請求項2の真空アーク蒸着方法は、請求項1と同様に指定磁石をダクトの横断面に対して傾けて設置するとともに、終端磁石を放出口の放出面に対して傾けて設置し、
指定磁石及び終端磁石の発生磁場により、陰極材料のイオンの飛行方向を制御する。
【0044】
この場合、終端磁石の発生磁場も、従来の終端磁石を放出面に平行に設置する場合と異なる。
【0045】
そして、指定磁石及び終端磁石の角度を適当に設定することにより、指定磁石及び終端磁石の発生磁場で電子やイオンの飛行方向が修正されて前記ドリフトが抑制され、成膜特性が一層向上する。
【0046】
つぎに、請求項3の真空アーク蒸着方法は、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を可変自在にする。
【0047】
したがって、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を成膜前及び成膜中に自在に変えることができ、種々の成膜特性の蒸着薄膜を、所期の特性で自在に成膜することができる。
【0048】
そして、請求項1,2,3の真空アーク蒸着方法において、各磁石は電磁コイルからなることが実用的で好ましい。
【0049】
また、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度は自動制御されることが好ましい。
【0050】
さらに、各磁石が電磁コイルからなり、指定磁石の設置角度の制御又は指定磁石及び終端磁石の設置角度の制御に連動して各磁石の電磁コイルのコイル電流を制御することが、成膜特性上からは一層好ましい。
【0051】
つぎに、蒸発源を複数個にすれば、成膜能力の向上が図れ、複数種類の陰極材料の同時成膜等も行える。
【0052】
また、各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にすれば、電子のドリフト方向を逆転することによって陰極材料のイオン飛着位置を周期的にずらすことができ、大面積の基材の均一蒸着等が可能になる。
【0053】
つぎに、請求項9の真空アーク蒸着装置は、磁気フィルタの各磁石のうちの放出口に最も近い終端磁石より蒸発源側の1又は複数個の指定磁石を、ダクトの横断面に対して傾けて設置したものである。
【0054】
また、請求項10の真空アーク蒸着装置は、指定磁石を、ダクトの横断面に対して傾けて設置するとともに、終端磁石を、放出口の放出面に対し傾けて設置したものである。
【0055】
したがって、請求項1,2の蒸着方法に用いられる真空アーク蒸着装置を提供することができる。
【0056】
さらに、請求項11の真空アーク蒸着装置は、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を可変する手段を備えたものであり、請求項3の蒸着方法を実現するものである。
【0057】
そして、請求項9,10又は11の蒸着装置において、各磁石が電磁コイルからなることが実用的であり、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度の自動制御手段を備えることが望ましい。
【0058】
また、各磁石が電磁コイルからなり、指定磁石の設置角度の制御又は指定磁石及び終端磁石の設置角度の制御に連動して各磁石の電磁コイルのコイル電流を制御する手段を備えることが、成膜特性を向上する上からは、一層好ましい。
【0059】
さらに、蒸発源が複数個であってもよく、各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にする通電制御手段を備えることが、より一層好ましい。
【0060】
【発明の実施の形態】
本発明の実施の形態につき、図1〜図8を参照して説明する。
(1形態)
まず、本発明の実施の1形態につき、図1〜図4を参照して説明する。
図1は図9に対応する真空アーク蒸着装置の平面図であり、図と同一記号は同一のものを示す。
そして、本発明はダクト9の周囲の終端磁石よりダクト9の一端側(蒸発源11側)の1又は複数個の磁石を指定磁石とするものであり、この形態にあっては、蒸発源11から2番目の#2の磁石を指定磁石とする。
【0061】
さらに、この指定磁石の電磁コイルを、図中の破線で示したダクト9の横断方向の従来コイル14bでなく、ダクト9の横断面に対して所望角度に積極的に傾けた実線の電磁コイル14b′により形成する。
【0062】
なお、図1の2点破線はダクト9の延長方向であり、横断面はそれぞれの位置でのこの延長方向に直角な面であり、湾曲部分においては横断面は曲率中心を通る法線方向の面になる。
【0063】
そして、ダクト9の湾曲部分に位置する電磁コイル14b′も、他の電磁コイル14a,14c,14dと同様、図2の斜視図に示すように矩形枠状に複数ターン巻回して形成される。
【0064】
一方、図3の(a)のダクト取付状態の平面図に示すように、X軸とこの軸に直角なY軸とがなすX−Y平面(水平面)において、ダクト9の曲率中心を通る図中の1点鎖線がダクト9の横断面方向である。
【0065】
また、図3の(b)のダクト取付状態の右側面図に示すように、前記のY軸と上下方向のZ軸とがなすY−Z平面(垂直面)において、ダクト9の横断面は1点破線のZ軸に平行な面である。
【0066】
そして、電磁コイル14b′は、図3の(a),(b)の1点鎖線の横断面に平行な破線の従来コイル14bの設置状態から、X−Y平面,Y−Z平面のいずれか一方又は両方において、適当な角度α(X−Y平面),β(Y−Z平面)傾けた(回転した)図3の(a),(b)の実線の状態に設置される。
【0067】
このとき、角度α,βは事前の荷電粒子軌道解析シミュレーション及び試験蒸着等に基づき、基材6の蒸発位置が基材6の表面中心等の所期位置になるように定められる。
【0068】
そして、例えば作業員の手作業で電磁コイル14b′のダクト9への取付け角度等が調整され、電磁コイル14b′がダクト9の横断面から最適角度α,β傾けて設置される。
【0069】
この場合、電磁コイル14b′の発生磁場により、従来磁場17aを適当に補正した図1の偏向磁場17bの磁気フィルタ18bが形成される。
【0070】
そして、磁気フィルタ18bによって生成されたプラズマ流20bの電子やイオンは、電磁コイル14b′の発生磁場により、ダクト9の湾曲等によるドリフトの影響が打消されて補正される。
【0071】
そのため、図4の(a),(b)の電子軌道の1例の平面図,右側面図に示すように、ダクト9を通って基材6の表面に到達する電子の軌道の中心が、ほぼ基材6表面の中心に一致するように補正され、基材6表面のイオン蒸着位置もほぼ基材6表面の中心に一致して所期位置に蒸着が行われ、成膜特性が向上する。
【0072】
なお、図4の(a),(b)においては、図11の(a),(b)と同様、実線の1つおきの#2,#4の2個の電磁コイル14b′,14dにのみ通電している。
【0073】
そして、ドリフト補正を一層精度よく行うため、他の電磁コイル14a,14cについても、必要に応じてダクト9の横断面に対して傾けて設ければよい。
【0074】
その際、各電磁コイルのいずれか1個又は複数個を前記のX−Y平面内で傾け、残りの電磁コイルをY−Z平面内で傾けてドリフトを補正するようにしてもよい。
【0075】
(他の形態)
つぎに、本発明の実施の他の形態につき、図5〜図8を参照して説明する。
図5の平面図において、図1と同一符合は同一もしくは相当するものを示し、図1と異なる点は、#2の指定磁石をダクト9の横断面に対して傾けた電磁コイル14b′により形成するとともに、#4の終端磁石を、放出口13の放出面に平行な従来コイル14dでなく、前記放出面に対して傾けた電磁コイル14d′により形成した点である。
【0076】
なお、図5の場合、放出面は図1と同様にY−Z面に平行であり電磁コイル14b′だけでなく、電磁コイル14d′も例えばX−Y平面内,Y−Z平面内のいずれか一方又は両方の平面内で適当な角度傾けてダクト9に取付けられる。
【0077】
そして、電磁コイル14b′の磁場補正により軌道修正された電子やイオンが、ダクト9から飛出すときに、電磁コイル14d′の磁場補正によって更に軌道修正され、ダクト9の湾曲に基づくドリフトの影響が一層良好に抑制される。
【0078】
具体的には、図6の平面図に示すように、#2の電磁コイル14b′により、電子やイオンの軌跡が、破線イから実線ロに移動してダクト9の中央寄りに修正され、#4の電磁コイル14b′により、電子やイオンがほぼ後方に直進して基材6の表面中央に到達するようになる。
【0079】
ところで、電磁コイル14b′,14d′は他の電磁コイル14a,14cと大きさが異なっていてもよく、とくに、上下方向の磁場発散を良好に抑えるため、電磁コイル14d′は他の電磁コイル14a,14b′,14cより大型にすることが好ましい。
【0080】
つぎに、具体的な電子軌道解析結果について説明する。
まず、#2の電磁コイル14b′をX−Y面内(水平面内)で傾けた場合、#4の電磁コイル14d′をX−Y面内で傾けた場合、#2の電磁コイル14b′をX−Y面内で傾け、かつ、#4の電磁コイル14d′をY−Z面内(垂直面内)で傾けた場合の電子やイオンの軌跡の1例は、図7の破線ハ,1点破線ニ,実線ホそれぞれに示すようになり、#2の電磁コイル14bをX−Y面内で傾け、かつ、#4の電磁コイル14d′をY−Z面内で傾けたときに、発散が抑制されるとともに上方に修正されて中央寄りになり、最も良好な補正が行われることが確かめられた。
【0081】
また、#2の電磁コイル14b′をX−Y面内で10度傾けた場合(iの場合)、#4の電磁コイル14d′をX−Y面内で10度傾けた場合(iiの場合)、#4の電磁コイル14d′をY−Z面内で5度傾けた場合(iiiの場合)及び#2の電磁コイル14b′をX−Y面内で10度傾けて#4の電磁コイル14d′をY−Z面内で5度傾けた場合(ivの場合)の電子やイオンの基材6の表面到達位置の中心からのX軸,Z軸方向のずれの電子軌道解析値は、図8に示すようになった。
【0082】
図8において、■はiの場合、▲はiiの場合、●はiiiの場合、×はivの場合のプロット点(蒸着位置の点)であり、◆は横断面方向の電磁コイル14b,14dを設けた場合の基準プロットである。
【0083】
この図8からも明らかなように、ivの場合に最も良好な成膜特性が得られることが確かめられた。
【0084】
なお、図8において、電磁コイル14b′の通電電流は40A、電磁コイル14d′の通電電流は30Aとした。
【0085】
ところで、通常は陰極材料19を基材6表面の中央部を中心に飛着させて蒸着するように補正すればよいが、基材6によってはその表面中央部から離れた位置を中心に蒸着することが好ましい場合もあり、このような場合は、例えば電磁コイル14b′につき、その傾きの角度α,βの一方又は両方を目的に応じて設定し、基材6表面の任意の位置を中心に蒸着するようにすればよい。
【0086】
つぎに、例えば電磁コイル14b′,14d′を傾けて設置する場合、電磁コイル14b′,14d′をX−X軸の平面内で回動自在に傾ける治具と、電磁コイル14b′,14d′をZ−Y軸の平面内で回動自在に傾ける治具とのいずれか一方又は両方を、電磁コイル14b′,14d′毎に、それらの設置角度を自在に可変する手段として設け、事前の試験成膜の結果に基づいて電磁コイル14b′,14d′の設置角度を初期設定したり、実際の蒸着中に電磁コイル14b′,14d′の設置角度を可変するようにしてもよい。
【0087】
また、前記形態では各電磁コイルとしたが、これらの磁石はいわゆる永久磁石で形成してもよい。
【0088】
さらに、基材6が大面積の場合や複数種類の陰極材料を同時に蒸着する場合等には、蒸発源11を、例えば上下方向に複数個設ければよい。
【0089】
つぎに、指定磁石又は指定磁石と終端磁石の設置角度は、例えば図9の制御装置16の代わりに設けた図1,図5の制御装置24のシーケンス制御,プログラム制御等が形成する自動制御手段により、図示省略した膜厚計による基材6表面の膜厚の計測等に基づき、事前に又は実際の成膜の進行に応じて前記の両治具を自動制御し、この自動制御によって自動設定したり成膜中に自動可変することが、実用的であり、また、成膜作業の効率化等の面からも、好ましい。
【0090】
さらに、各磁石が電磁コイル14a,14b′,14c,14d′からなる場合、制御装置24の通電制御手段により、前記の膜厚計の計測に基づき、成膜中の電磁コイルの設置角度の制御に連動して各電磁コイルのコイル電流を制御すれば、一層精度の高い成膜が行える。
【0091】
つぎに、制御装置24の通電制御手段により、各電磁コイル14a,14b′,14c,14d′のコイル電流の向きを一定時間毎に切換えて逆にすれば、電流方向の逆転により、磁場Bの勾配∇Bの方向は変化しないが、磁場Bの方向が反転して変化するため、プラズマ流23の輸送に作用するドリフト方向が変わり、基材6の表面への陰極材料19の飛着方向が変化して膜厚分布の一層の均一化を図ることができ、成膜特性が一層向上する。
【0092】
また、各電磁コイル14a,14b′,14c,14d′のコイル電流を交流電源から得るようにすれば、前記の通電制御手段による切換えを行うことなく、各電磁コイルの電流方向を一定時間毎に逆転することができる。
【0093】
つぎに、前記形態においては、ダクト9を断面矩形としたが、ダクト9は断面が円形,楕円形等であってもよく、この場合、ダクト9の断面形状に応じて各磁石の断面も円形,楕円形等にすることが好ましい。
【0094】
また、前記形態においては、1個のダクト9を真空容器2に接続して真空アーク蒸着装置を形成したが、真空容器2に複数のダクトを接続し、各ダクトの終端磁石を、各ダクトの放出口の放出面に対して、それぞれ傾けるようにしてもよい。
【0095】
さらに、前記形態では説明を簡単にするため、成膜室1内に、1個のホルダ5を設け、1個の基材6を蒸着して成膜するようにしたが、例えば、前記公報に記載のアーク式イオンブレーディング装置のように、成膜室内に円筒形の回転式のホルダを設け、このホルダの各面に基材を保持して複数の基材の真空アーク蒸着を行う場合にも、本発明は同様に適用することができる。
【0096】
つぎに、終端磁石は、放出口13と基材6の距離が近いなど成膜条件等によっては、終端磁石を他の磁石より小さくして良好な成膜特性を得ることができる場合もあり、このような場合には、終端磁石を他の磁石より小さくしてもよい。
【0097】
また、前記形態では湾曲したダクト9を用いた場合について説明したが、ダクト9の代わりに屈曲したダクトを用いた場合にも、本発明は同様に適用することができる。
【0098】
【発明の効果】
本発明は、以下に記載する効果を奏する。
まず、請求項1の真空アーク蒸着方法の場合、磁気フィルタ18bを形成する各磁石のうちの終端磁石(電磁コイル14d)より蒸発源11側の1又は複数個の磁石(電磁コイル14b′)が、ダクト9の横断面に対して積極的に傾けてダクト9の周囲に設けられ、この場合、ダクト9の横断面に平行に設けられる従来方法とは発生する偏向磁場方向が異なり、傾ける角度を適当に設定することにより、電子やプラズマ流から引出されたイオンの飛行方向を修正してダクト9の磁場等に基づくドリフトを抑制し、陰極材料の基材6蒸着位置がドリフトの影響を極力受けないようにして基材6の表面に均一な薄膜を成膜することができ、成膜特性を向上することができる。
【0099】
つぎに、請求項2の真空アーク蒸着方法の場合は、指定磁石(電磁コイル14b′)をダクト9の横断面に対して傾けて設置するとともに、終端磁石(電磁コイル14d′)を放出口13の放出面に対して傾けて設置したため、終端磁石の発生磁場も、従来の終端磁石を放出面に平行に設置する場合と異なり、指定磁石及び終端磁石の角度を適当に設定することにより、指定磁石及び終端磁石の発生磁場で電子やイオンの飛行方向を修正して前記ドリフトを抑制することができ、成膜特性を一層向上することができる。
【0100】
つぎに、請求項3の真空アーク蒸着方法は、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を可変自在にしたため、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を成膜前及び成膜中に自在に変えることができ、種々の成膜特性の蒸着薄膜を、所期の特性で自在に成膜することができる。
【0101】
そして、請求項1,2,3の真空アーク蒸着方法において、各磁石は電磁コイル14a,14b′,14c,14d,14d′からなることが実用的で好ましく、指定磁石の設置角度又は指定磁石及び終端磁石の設置角度は、自動制御されることが好ましい。
【0102】
さらに、各磁石が電磁コイル14a〜14d′からなり、指定磁石の設置角度の制御又は指定磁石及び終端磁石の設置角度の制御に連動して各磁石の電磁コイル14a〜14d′のコイル電流を制御することが、成膜特性上からは一層好ましい。
【0103】
つぎに、蒸発源11を複数個にすれば、成膜能力の一層の向上を図ることができ、複数種類の陰極材料の同時成膜等も行える。
【0104】
また、各磁石を形成する電磁コイル14a〜14d′のコイル電流の向きを一定時間毎に切換えて逆にすれば、陰極材料19のイオンの飛着位置を周期的にずらすことができ、大面積の基材6の均一な蒸着成膜を行うことができる。
【0105】
つぎに、請求項9〜16の真空アーク蒸着装置は、前記の各真空アーク蒸着方法を実現する具体的な装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の1形態の真空アーク蒸着装置の平面図である。
【図2】図1の指定磁石としての電磁コイルの斜視図である。
【図3】(a),(b)は図2の電磁コイルの傾きを説明する平面図,右側面図である。
【図4】(a),(b)は図1の電子到達位置を説明する平面図,右側面図である。
【図5】本発明の実施の他の形態の真空アーク蒸着装置の平面図である。
【図6】図5の電子軌道を説明する平面図である。
【図7】図5の電子軌道を説明する右側面図である。
【図8】基板表面の電子到達位置の説明図である。
【図9】従来装置の平面図である。
【図10】(a),(b)は図9の従来装置の発散磁場説明図の平面図,右側面図である。
【図11】図9の従来装置の電子到達位置を説明する平面図,右側面図である。
【図12】図9の従来装置の磁場勾配のドリフト説明図である。
【符号の説明】
1 成膜室
6 基材
9 ダクト
11 蒸発源
13 放出口
14a〜14d,14b′,14d′ 電磁コイル
17a〜17c 偏向磁場
18a〜18c 磁気フィルタ
19 陰極材料
20a〜20c プラズマ流[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum arc evaporation method used for forming a thin film for improving abrasion resistance of a base material such as an automobile part, a machine part, a tool, and a mold, and an apparatus therefor.
[0002]
[Prior art]
In general, vacuum arc deposition is a simple method of forming a thin film in which an arc discharge is generated between a cathode and an anode to evaporate a cathode material and deposit the material on a base material, and is characterized by excellent productivity.
[0003]
However, from the cathode material (or from the cathode depending on the discharge state), large clusters of coarse particles (droplets) having a diameter of several μm fly out, and the droplets adhere to the base material, resulting in poor film formation characteristics. It is known to go down.
[0004]
In recent years, a magnetic field has been generated by a magnet such as an electromagnetic coil in order to prevent the deterioration of the film forming characteristics due to the droplet, and the droplet is removed by the magnetic field to transport only the plasma flow along the magnetic field toward the substrate. It has been proposed that the droplets be dissolved by converging the plasma with the magnetic field to increase the density.
[0005]
A conventional vacuum arc deposition method for removing only droplets and transporting only the plasma flow toward the substrate is described in Japanese Patent Application Laid-Open No. 2001-59165 (C23C 14/32) and the like, which have been filed by the present applicant. As shown in FIG.
[0006]
In the conventional apparatus shown in FIG. 9, the metal grounded vacuum vessel 2 forming the film forming chamber 1 is evacuated from a right exhaust port 3 by a vacuum exhaust device (not shown), and from a gas inlet port 4 on the left side. In some cases, an inert gas such as an argon gas or a reactive gas is introduced.
[0007]
In addition, the above publication discloses a structure in which a plurality of substrates are attached to a cylindrical holder of the film forming chamber 1, but in FIG. A single flat plate-shaped holder 5 is provided at the center so that its surface faces forward and is rotatable, and the base material 6 is detachably held on the surface side of this holder 5.
[0008]
The substrate 6 is connected to a cathode of a bias power supply 7 via a holder 5, and the substrate 6 is subjected to DC pulse bias to the vacuum vessel 2 typically at −0.5 kV to −5.0 kV.
[0009]
In the figure, reference numeral 8 denotes an insulator for the rear plate 2 'of the vacuum vessel 2 for insulating the cathode of the bias power supply 7.
[0010]
Next, a metal duct 9 having a rectangular cross section which is curved in a substantially “H” shape is provided in front of the vacuum vessel 2, and this duct 9 is provided at the center of a grounded end plate 9 ′ at one front end. An evaporation source 11 is provided through an insulator 10, and a cathode of an arc power supply 12 of about several tens of volts grounded to the anode is connected to the evaporation source 11, the duct 9 forms an anode, and the evaporation source 11 forms a cathode.
[0011]
Note that, instead of using the duct 9 as an anode, an anode electrode may be provided separately from the duct 9.
[0012]
The evaporation source 11 also includes a water cooling mechanism, a vacuum seal mechanism, a trigger mechanism, and the like, which are not shown.
[0013]
Further, the other end of the duct 9 is attached to the center of the front plate 2 ″ of the vacuum vessel 2, and the discharge port 13 at the other end of the duct 9 communicates with the film forming chamber 1. The center of the (horizontal direction) emission surface overlaps the centers of the holder 5 and the base material 6.
[0014]
Next, as magnets surrounding the duct 9 at a plurality of locations between both ends of the duct 9, for example, the electromagnetic coils 14 a, 14 b, 14 c, # 1, # 2, # 3, # 4 in order from one end of the duct 9. 14d is provided.
[0015]
At this time, the electromagnetic coil 14d as the # 4 end magnet closest to the discharge port 13 and the electromagnetic coils 14a to 14c of the other magnets of # 1 to # 3 are each composed of a plurality of turns of coils and have the same size (dimensions). ).
[0016]
Further, the electromagnetic coil 14d is provided substantially parallel to the cross section of the duct 9 perpendicular to the direction of extension of the two-dot chain line of the duct 9, is parallel to the emission surface of the emission port 13, and each of the remaining electromagnetic coils 14 At a position substantially parallel to the cross section of the duct 9.
[0017]
Each of the electromagnetic coils 14a to 14d is connected in series between both ends of the output of a coil power supply 15 as a current source, and the current control of the control device 16 controls the energization of each of the electromagnetic coils 14a to 14d. By the energization of the electromagnetic coils 14a to 14d, a deflection magnetic field 17a of a solid arrow loop in the figure curved along the duct 9 is formed, and this magnetic field 17a forms a magnetic filter 18a.
[0018]
Then, a vacuum arc discharge between the duct 9 serving as an anode and the evaporation source 11 serving as a cathode causes the evaporation source 11 to use a single metal such as Ti, Cr, Mo, Ta, W, Al, or Cu, or a metal such as TiAl. The conductive cathode material 19 such as an alloy or C evaporates.
[0019]
Further, a plasma flow 20a indicated by a dashed arrow containing electrons generated by the arc discharge and ions of the cathode material 19 is transported from one end of the duct 9 to the outlet 13 at the other end along the deflection magnetic field 17a.
[0020]
At this time, the droplets ejected from the evaporation source 11 are electrically neutral or negatively charged in the plasma, but in any case, the mass is extremely large, so that the deflection magnetic field 17a Irrespective of the height of the base member 6 and collides with the inner wall of the duct 9 and is removed, and does not reach the surface of the base member 6 or the holder 5.
[0021]
Then, the ions of the cathode material 19 reaching the emission port 13 are drawn out to the film forming chamber 1 and fly on the surface of the base material 6 based on a large negative potential bias of the base material 6 by the bias power supply 7. A deposition film of the cathode material 19 is formed on the surface of the material 6.
[0022]
When a reactive gas is introduced into the film forming chamber 1 from the gas inlet 4 in conjunction with the extraction of the ions of the cathode material 19, the gas reacts with the ions of the cathode material 19, and For example, a metal compound thin film such as titanium carbide or titanium nitride is deposited.
[0023]
[Problems to be solved by the invention]
In the vacuum arc vapor deposition of the conventional apparatus shown in FIG. 9, the electromagnetic coil 14d of the terminating magnet is provided not only in parallel to the cross section of the duct 9 and in parallel to the emission surface of the emission port 13 and the base material 6, but also to other electromagnetic fields. The coils 14a to 14c are also provided substantially parallel to the cross section of the duct 9 at each position.
[0024]
On the other hand, considering the state in which electrons are transported in a uniform magnetic field, as is well known, an electron having a charge q receives a Lorentz force F expressed by the following equation (1).
[0025]
(Equation 1)
F = q · (v × B), (v: velocity in the direction perpendicular to the magnetic field of the electron, B: magnetic field, ×: vector product (outer product) operator, ·: inner product operator)
[0026]
Then, due to the Lorentz force F, the electrons proceed along the lines of magnetic force of the deflecting magnetic field 17 a while rotating in a spiral, and the ions of the cathode material 19 travel in the duct 9 so as to be pulled by the electrons and reach the emission port 13. Be transported.
[0027]
Further, in the vicinity of the electromagnetic coil 14d of the terminal magnet, a diverging magnetic field is formed as shown by the magnetic force lines indicated by solid arrows in FIGS. 10 (a) and 10 (b), and the electrons and ions reaching the emission port 13 follow this diverging magnetic field. To fly.
[0028]
FIGS. 10A and 10B show the case where only two electromagnetic coils 14b and 14d of # 2 and # 4 of the four electromagnetic coils 14a to 14d of FIG. 9 are energized. It is the top view which shows a magnetic force line, and a right view.
[0029]
The flight trajectories of the electrons based on the magnetic force lines in FIGS. 10A and 10B are as shown by the solid lines in the plan views and the right side views in FIGS. 11A and 11B.
[0030]
That is, due to the divergent magnetic field, the position at which the electrons reach the base material is deflected in the left-right direction from the center of the base material 6 according to the direction of the curvature, and diverges in the vertical direction (vertical direction).
[0031]
As shown in FIG. 12, an outward centrifugal force Fcf and an inward magnetic field gradient (gradient) ∇B act on electrons in a vacuum bending magnetic field such as the magnetic field 17a, as shown in FIG. Then, a drift shown by the following equation 2 occurs.
[0032]
(Equation 2)
v (R) + v (∇B ) = (m / q) · (Rc × B) / (Rc 2 · B 2) · (v ( ||) + v (⊥) 2/ 2), (v (R): Fcf velocity drift, v (∇B): velocity drift of (∇B), m: mass, Rc: radius of curvature at the electron position indicated by x in FIG. 12, v (‖): velocity in B direction, v ( ⊥): Speed perpendicular to B (normal direction)
[0033]
The outer product Rc × B in the equation (2) is a vector in the direction in which the right-hand thread advances when Rc is rotated so as to overlap B.
[0034]
When three evaporation sources 11 are provided in the up-down direction, and the respective evaporation sources 11 form an upper cathode, a center cathode, and a lower cathode in order from the top, the electrons of the upper cathode mainly cause the upward bending of the magnetic field B. , The electrons of the lower cathode are mainly affected by the downward bending of the magnetic field B, and the drift directions of the electrons of the upper and lower cathodes are positive and negative of the coil current when the direction from the cathode to the substrate 6 is viewed. According to the reverse (clockwise, counterclockwise), the results are as shown in Table 1 below, which is symmetric with respect to the vertical direction of the cathode and the forward and reverse of the coil current.
[0035]
[Table 1]
Figure 2004010921
[0036]
Since the ions in the plasma 20a tend to fly by being pulled by the electrons, the position of ion deposition similarly deviates from the expected position due to the drift effect.
[0037]
Therefore, in the conventional vacuum arc vapor deposition in which droplets are removed by the magnetic filter 18, it is difficult to deposit a thin film of the cathode material 19 at a desired position on the substrate 6 to form a film having an intended thickness. However, there is a problem that it cannot be said that it is sufficient to obtain desired film forming characteristics such as uniform film forming characteristics.
[0038]
A similar problem occurs in this type of vacuum arc vapor deposition in which droplets are removed by the action of a magnetic field filter regardless of the number of evaporation sources 11 or the like.
[0039]
When the duct 9 and the electromagnetic coils 14a to 14d are rectangular in cross section, the gradient ΔB of the magnetic field becomes larger toward the outside from the center based on the magnetic field characteristics of the rectangular electromagnetic coils 14a to 14d. The drift speed in the downward direction increases, and the divergence in the downward direction increases.
[0040]
An object of the present invention is to improve the film-forming characteristics of a base material by focusing on the drift caused by the magnetic field of the magnet on one end side (evaporation source side) of the duct 9 from the end magnet (electromagnetic coil 14d) of the magnetic filter. It is another object of the present invention to freely control the position at which the ions of the cathode material reach the base material to further improve the film forming characteristics.
[0041]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a vacuum arc vapor deposition method according to claim 1 of the present invention is directed to a method of specifying one or more of the magnets forming the magnetic filter, which is closer to the evaporation source side than the terminal magnet closest to the discharge port. The magnet is installed at an angle with respect to the cross section of the duct, and the flying direction of ions is controlled by the magnetic field generated by the designated magnet.
[0042]
In this case, one or a plurality of magnets other than the end magnet among the magnets forming the magnetic filter are provided around the duct so as to be positively inclined with respect to the cross section of the duct, and the deflection magnetic field generated by them is generated. The direction of the generated magnetic field is different from the direction of the generated magnetic field of the conventional method provided substantially parallel to the cross section of the duct, and by appropriately setting the angle of inclination, the flight direction of the electrons extracted from the electron or plasma flow is corrected. The drift is suppressed, and the deposition position of the base material of the cathode material is hardly affected by the drift, so that the film forming characteristics are improved.
[0043]
Next, in the vacuum arc vapor deposition method of claim 2, similarly to claim 1, the designated magnet is installed inclined with respect to the cross section of the duct, and the terminal magnet is installed inclined with respect to the discharge surface of the discharge port. ,
The flight direction of ions of the cathode material is controlled by the magnetic field generated by the designated magnet and the terminating magnet.
[0044]
In this case, the generated magnetic field of the terminal magnet is also different from the case where the conventional terminal magnet is installed in parallel with the emission surface.
[0045]
By appropriately setting the angles of the designated magnet and the terminating magnet, the flying directions of electrons and ions are corrected by the magnetic field generated by the designated magnet and the terminating magnet, thereby suppressing the drift and further improving the film forming characteristics.
[0046]
Next, in the vacuum arc vapor deposition method of claim 3, the installation angle of the designated magnet or the installation angles of the designated magnet and the terminal magnet are made variable.
[0047]
Therefore, the installation angle of the designated magnet or the installation angle of the designated magnet and the terminal magnet can be freely changed before and during film formation, and a deposited thin film having various film formation characteristics can be freely formed with desired characteristics. Can be membrane.
[0048]
In the vacuum arc vapor deposition method of the first, second, and third aspects, it is practically preferable that each magnet is formed of an electromagnetic coil.
[0049]
Preferably, the installation angle of the designated magnet or the installation angles of the designated magnet and the terminal magnet are automatically controlled.
[0050]
Furthermore, since each magnet is composed of an electromagnetic coil, the coil current of the electromagnetic coil of each magnet is controlled in conjunction with the control of the installation angle of the designated magnet or the control of the installation angle of the designated magnet and the terminating magnet. Is more preferable.
[0051]
Next, if a plurality of evaporation sources are used, the film forming ability can be improved, and a plurality of kinds of cathode materials can be formed simultaneously.
[0052]
In addition, if the direction of the coil current of the electromagnetic coil forming each magnet is switched at regular time intervals and reversed, the ion drift position of the cathode material can be periodically shifted by reversing the electron drift direction. In addition, uniform deposition of a large-area substrate can be performed.
[0053]
Next, in the vacuum arc vapor deposition apparatus of claim 9, one or more designated magnets closer to the evaporation source than the terminal magnet closest to the discharge port among the magnets of the magnetic filter are inclined with respect to the cross section of the duct. It was installed.
[0054]
In a vacuum arc evaporation apparatus according to a tenth aspect, the designated magnet is installed to be inclined with respect to the cross section of the duct, and the terminal magnet is installed to be inclined with respect to the emission surface of the emission port.
[0055]
Therefore, it is possible to provide a vacuum arc vapor deposition apparatus used in the vapor deposition method according to claims 1 and 2.
[0056]
Further, the vacuum arc vapor deposition apparatus according to claim 11 is provided with means for changing the installation angle of the designated magnet or the installation angles of the designated magnet and the terminal magnet, and realizes the vapor deposition method of claim 3.
[0057]
In the vapor deposition apparatus according to the ninth, tenth, or eleventh aspect, it is practical that each magnet is formed of an electromagnetic coil, and the apparatus is provided with automatic control means for setting the installation angle of the designated magnet or the installation angles of the designated magnet and the terminal magnet. desirable.
[0058]
Further, each magnet is composed of an electromagnetic coil, and means for controlling the coil current of the electromagnetic coil of each magnet in conjunction with control of the installation angle of the designated magnet or control of the installation angle of the designated magnet and the terminal magnet is provided. It is more preferable from the viewpoint of improving film characteristics.
[0059]
Further, a plurality of evaporation sources may be provided, and it is still more preferable to include an energization control means for switching the direction of the coil current of the electromagnetic coil forming each magnet at regular intervals to reverse the direction.
[0060]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
(1 form)
First, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a plan view of a vacuum arc evaporation apparatus corresponding to FIG. 9, and the same symbols as those in FIG.
According to the present invention, one or more magnets on one end side (evaporation source 11 side) of the duct 9 with respect to the terminal magnet around the duct 9 are designated as the designated magnets. The second magnet # 2 is designated as the designated magnet.
[0061]
Further, the electromagnetic coil of the designated magnet is not a conventional coil 14b in a direction transverse to the duct 9 shown by a broken line in the figure, but a solid line electromagnetic coil 14b which is positively inclined at a desired angle with respect to the cross section of the duct 9. '.
[0062]
Note that the two-dot dashed line in FIG. 1 is the extension direction of the duct 9, the cross section is a plane perpendicular to this extension direction at each position, and the cross section of the curved portion is the normal direction passing through the center of curvature. Face.
[0063]
The electromagnetic coil 14b 'located at the curved portion of the duct 9 is formed by winding a plurality of turns in a rectangular frame shape as shown in the perspective view of FIG. 2, similarly to the other electromagnetic coils 14a, 14c, and 14d.
[0064]
On the other hand, as shown in the plan view of the duct mounting state in FIG. 3A, a diagram passing through the center of curvature of the duct 9 in an XY plane (horizontal plane) formed by the X axis and the Y axis perpendicular to this axis. The alternate long and short dash line in the drawing is the direction of the cross section of the duct 9.
[0065]
Further, as shown in the right side view of the duct mounting state in FIG. 3B, the cross section of the duct 9 is a YZ plane (vertical plane) formed by the Y axis and the vertical Z axis. This is a plane parallel to the one-dot broken line Z axis.
[0066]
Then, the electromagnetic coil 14b 'is moved to one of the XY plane and the YZ plane from the installation state of the conventional coil 14b indicated by a broken line parallel to the dashed line cross section of FIGS. 3 (a) and 3 (b). At one or both sides, it is installed in the state of the solid lines of FIGS. 3A and 3B in FIG. 3 inclined (rotated) at appropriate angles α (XY plane) and β (YZ plane).
[0067]
At this time, the angles α and β are determined based on a charged particle trajectory analysis simulation and a test deposition in advance so that the evaporation position of the base material 6 is a predetermined position such as the center of the surface of the base material 6.
[0068]
Then, for example, the angle at which the electromagnetic coil 14b 'is attached to the duct 9 and the like are adjusted manually by a worker, and the electromagnetic coil 14b' is installed at an optimum angle α, β from the cross section of the duct 9.
[0069]
In this case, the magnetic filter 18b of the deflection magnetic field 17b of FIG. 1 in which the conventional magnetic field 17a is appropriately corrected is formed by the magnetic field generated by the electromagnetic coil 14b '.
[0070]
Then, electrons and ions of the plasma flow 20b generated by the magnetic filter 18b are corrected by the magnetic field generated by the electromagnetic coil 14b 'so as to cancel the influence of drift due to the curvature of the duct 9 and the like.
[0071]
Therefore, as shown in the plan view and the right side view of an example of the electron trajectory in FIGS. 4A and 4B, the center of the trajectory of the electron reaching the surface of the base material 6 through the duct 9 is: Correction is performed so that the center substantially coincides with the center of the surface of the substrate 6, and the ion deposition position on the surface of the substrate 6 substantially coincides with the center of the surface of the substrate 6, and vapor deposition is performed at a desired position, thereby improving the film forming characteristics. .
[0072]
In FIGS. 4 (a) and 4 (b), as in FIGS. 11 (a) and 11 (b), every other electromagnetic coil 14b 'and 14d of # 2 and # 4 on the solid line Only energized.
[0073]
Then, in order to perform drift correction with higher accuracy, the other electromagnetic coils 14a and 14c may be provided to be inclined with respect to the cross section of the duct 9 as necessary.
[0074]
At this time, any one or more of the electromagnetic coils may be inclined in the XY plane, and the remaining electromagnetic coils may be inclined in the YZ plane to correct the drift.
[0075]
(Other forms)
Next, another embodiment of the present invention will be described with reference to FIGS.
In the plan view of FIG. 5, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the difference from FIG. 1 is that the designated magnet # 2 is formed by an electromagnetic coil 14b 'inclined with respect to the cross section of the duct 9. In addition, the # 4 terminal magnet is formed not by the conventional coil 14d parallel to the emission surface of the emission port 13 but by the electromagnetic coil 14d 'inclined with respect to the emission surface.
[0076]
In the case of FIG. 5, the emission surface is parallel to the YZ plane similarly to FIG. 1, and not only the electromagnetic coil 14b 'but also the electromagnetic coil 14d' can be in either the XY plane or the YZ plane. It is attached to the duct 9 at an appropriate angle in one or both planes.
[0077]
When the electrons and ions whose trajectories have been corrected by the magnetic field correction of the electromagnetic coil 14b 'fly out of the duct 9, the trajectories are further corrected by the magnetic field correction of the electromagnetic coil 14d', and the influence of drift due to the curvature of the duct 9 is reduced. It is better suppressed.
[0078]
Specifically, as shown in the plan view of FIG. 6, the trajectory of electrons and ions moves from the dashed line A to the solid line B and is corrected to the center of the duct 9 by the # 2 electromagnetic coil 14b '. The fourth electromagnetic coil 14 b ′ allows electrons and ions to travel substantially straight back and reach the center of the surface of the base material 6.
[0079]
Incidentally, the electromagnetic coils 14b 'and 14d' may be different in size from the other electromagnetic coils 14a and 14c. In particular, in order to suppress the vertical magnetic field divergence well, the electromagnetic coil 14d 'is , 14b ', 14c.
[0080]
Next, a specific electron orbit analysis result will be described.
First, if the # 2 electromagnetic coil 14b 'is tilted in the XY plane (horizontal plane), if the # 4 electromagnetic coil 14d' is tilted in the XY plane, the # 2 electromagnetic coil 14b ' One example of the trajectories of electrons and ions when the # 4 electromagnetic coil 14d 'is tilted in the YZ plane (vertical plane) when tilted in the XY plane is shown by broken lines C and 1 in FIG. When the electromagnetic coil 14b of # 2 is tilted in the XY plane and the electromagnetic coil 14d 'of # 4 is tilted in the YZ plane, divergence is obtained as shown by the dotted broken line d and the solid line E, respectively. Was suppressed and corrected upward toward the center, confirming that the best correction was performed.
[0081]
When the # 2 electromagnetic coil 14b 'is tilted 10 degrees in the XY plane (in the case of i), when the # 4 electromagnetic coil 14d' is tilted 10 degrees in the XY plane (in the case of ii) ), When the # 4 electromagnetic coil 14d 'is tilted 5 degrees in the YZ plane (in the case of iii), and when the # 2 electromagnetic coil 14b' is tilted 10 degrees in the XY plane, the # 4 electromagnetic coil When 14d 'is inclined 5 degrees in the YZ plane (in the case of iv), the electron trajectory analysis value of the deviation of the electrons and ions in the X-axis and Z-axis directions from the center of the surface arrival position of the substrate 6 is As shown in FIG.
[0082]
In FIG. 8, Δ indicates a plot point (point of a deposition position) in the case of i, ▲ indicates a case of ii, ● indicates a case of iii, X indicates a point of deposition (point of vapor deposition position), and Δ indicates electromagnetic coils 14b and 14d in the cross-sectional direction. 7 is a reference plot in a case where is provided.
[0083]
As is clear from FIG. 8, it was confirmed that the best film forming characteristics were obtained in the case of iv.
[0084]
In FIG. 8, the current supplied to the electromagnetic coil 14b 'was set to 40A, and the current supplied to the electromagnetic coil 14d' was set to 30A.
[0085]
By the way, it is usually sufficient to correct the cathode material 19 so that the cathode material 19 is deposited so as to fly around the center of the surface of the base material 6. However, depending on the base material 6, the deposition is performed at a position away from the center of the surface. In such a case, for example, one or both of the inclination angles α and β of the electromagnetic coil 14 b ′ are set according to the purpose, and an arbitrary position on the surface of the base material 6 is centered. What is necessary is just to vapor-deposit.
[0086]
Next, for example, when installing the electromagnetic coils 14b 'and 14d' at an angle, a jig for tilting the electromagnetic coils 14b 'and 14d' so as to be rotatable in the plane of the XX axis, and the electromagnetic coils 14b 'and 14d' And / or a jig for tilting freely in the plane of the Z-Y axis is provided for each of the electromagnetic coils 14b 'and 14d' as means for freely changing their installation angle. The installation angles of the electromagnetic coils 14b 'and 14d' may be initialized based on the results of the test film formation, or the installation angles of the electromagnetic coils 14b 'and 14d' may be changed during actual deposition.
[0087]
In the above embodiment, each of the electromagnetic coils is used. However, these magnets may be formed of so-called permanent magnets.
[0088]
Further, when the substrate 6 has a large area or when a plurality of types of cathode materials are simultaneously deposited, a plurality of evaporation sources 11 may be provided, for example, in the vertical direction.
[0089]
Next, the installation angle of the designated magnet or the designated magnet and the terminating magnet is determined, for example, by automatic control means formed by sequence control, program control, or the like of the control device 24 of FIGS. 1 and 5 provided in place of the control device 16 of FIG. Based on the measurement of the film thickness on the surface of the substrate 6 by a film thickness meter (not shown), both the jigs are automatically controlled in advance or in accordance with the actual progress of the film formation, and are automatically set by this automatic control. It is practical to automatically change the thickness during film formation, and it is also preferable from the viewpoint of improving the efficiency of the film formation work.
[0090]
Further, when each magnet is composed of the electromagnetic coils 14a, 14b ', 14c and 14d', the energization control means of the control device 24 controls the installation angle of the electromagnetic coil during film formation based on the measurement of the film thickness meter. If the coil current of each electromagnetic coil is controlled in conjunction with the above, film formation with higher accuracy can be performed.
[0091]
Next, if the direction of the coil current of each of the electromagnetic coils 14a, 14b ', 14c, and 14d' is switched at regular intervals and reversed by the energization control means of the control device 24, the reversal of the current direction causes the magnetic field B to change. Although the direction of the gradient ∇B does not change, the direction of the magnetic field B changes by reversing, so that the drift direction acting on the transport of the plasma flow 23 changes, and the flying direction of the cathode material 19 to the surface of the substrate 6 changes. By changing the thickness, the film thickness distribution can be made more uniform, and the film forming characteristics can be further improved.
[0092]
If the coil current of each of the electromagnetic coils 14a, 14b ', 14c, and 14d' is obtained from an AC power supply, the current direction of each of the electromagnetic coils is changed at regular time intervals without switching by the above-described energization control means. Can be reversed.
[0093]
Next, in the above embodiment, the duct 9 has a rectangular cross section, but the duct 9 may have a circular or elliptical cross section. In this case, the cross section of each magnet is also circular according to the cross sectional shape of the duct 9. , Ellipse, etc.
[0094]
Further, in the above-described embodiment, a single duct 9 is connected to the vacuum vessel 2 to form a vacuum arc vapor deposition apparatus. However, a plurality of ducts are connected to the vacuum vessel 2, and a terminating magnet of each duct is connected to each duct. You may make it each incline with respect to the discharge surface of a discharge port.
[0095]
Further, in the above-described embodiment, for the sake of simplicity, one holder 5 is provided in the film forming chamber 1 and one substrate 6 is formed by vapor deposition. As in the case of the described arc ion braiding apparatus, when a cylindrical rotary holder is provided in the film forming chamber, and the base material is held on each surface of the holder to perform vacuum arc evaporation of a plurality of base materials. However, the present invention can be similarly applied.
[0096]
Next, depending on the film forming conditions such as the distance between the discharge port 13 and the base material 6 being short, the terminal magnet may be smaller than the other magnets to obtain good film forming characteristics, depending on the film forming conditions. In such a case, the end magnet may be smaller than the other magnets.
[0097]
In the above embodiment, the case where the curved duct 9 is used has been described. However, the present invention can be similarly applied to a case where a bent duct is used instead of the duct 9.
[0098]
【The invention's effect】
The present invention has the following effects.
First, in the case of the vacuum arc vapor deposition method of claim 1, one or a plurality of magnets (electromagnetic coil 14b ') closer to the evaporation source 11 than the terminal magnet (electromagnetic coil 14d) of the magnets forming the magnetic filter 18b. Is provided around the duct 9 so as to be positively inclined with respect to the cross section of the duct 9. In this case, the direction of the deflection magnetic field generated differs from the conventional method provided in parallel with the cross section of the duct 9. By appropriately setting, the flight direction of the electrons extracted from the electrons and the plasma flow is corrected to suppress the drift based on the magnetic field of the duct 9, and the deposition position of the base material 6 of the cathode material is affected by the drift as much as possible. In this way, a uniform thin film can be formed on the surface of the base material 6, and the film forming characteristics can be improved.
[0099]
Next, in the case of the vacuum arc evaporation method of claim 2, the designated magnet (electromagnetic coil 14b ') is installed at an angle to the cross section of the duct 9, and the terminating magnet (electromagnetic coil 14d') is discharged from the discharge port 13. Because the magnetic field generated by the terminating magnet is different from the conventional case where the terminating magnet is installed in parallel to the emitting surface, the designated magnet and the angle of the terminating magnet are set appropriately to specify the magnetic field generated by the terminating magnet. The drift can be suppressed by correcting the flight direction of electrons or ions by the magnetic field generated by the magnet and the terminal magnet, and the film forming characteristics can be further improved.
[0100]
Next, in the vacuum arc vapor deposition method of claim 3, since the installation angle of the designated magnet or the installation angle of the designated magnet and the terminal magnet is made variable, the deposition angle of the designated magnet or the installation angle of the designated magnet and the terminal magnet is formed. It can be changed freely before and during film formation, and a deposited thin film having various film formation characteristics can be freely formed with desired characteristics.
[0101]
In the vacuum arc vapor deposition method according to claims 1, 2, and 3, it is practically and preferably that each magnet comprises an electromagnetic coil 14a, 14b ', 14c, 14d, 14d'. It is preferable that the installation angle of the terminal magnet is automatically controlled.
[0102]
Furthermore, each magnet is composed of electromagnetic coils 14a to 14d ', and controls the coil current of the electromagnetic coils 14a to 14d' of each magnet in conjunction with the control of the installation angle of the designated magnet or the control of the installation angle of the designated magnet and the terminal magnet. Is more preferable from the viewpoint of film forming characteristics.
[0103]
Next, if a plurality of evaporation sources 11 are used, the film forming ability can be further improved, and a plurality of kinds of cathode materials can be formed simultaneously.
[0104]
In addition, if the direction of the coil current of the electromagnetic coils 14a to 14d 'forming each magnet is switched at regular intervals and reversed, the position at which ions of the cathode material 19 fly can be shifted periodically, and a large area can be obtained. A uniform vapor deposition of the base material 6 can be performed.
[0105]
Next, the vacuum arc vapor deposition apparatus according to claims 9 to 16 can provide a specific apparatus for realizing each of the above vacuum arc vapor deposition methods.
[Brief description of the drawings]
FIG. 1 is a plan view of a vacuum arc evaporation apparatus according to one embodiment of the present invention.
FIG. 2 is a perspective view of an electromagnetic coil as a designated magnet of FIG.
FIGS. 3A and 3B are a plan view and a right side view for explaining the inclination of the electromagnetic coil of FIG. 2;
FIGS. 4A and 4B are a plan view and a right side view illustrating an electron arrival position in FIG. 1;
FIG. 5 is a plan view of a vacuum arc evaporation apparatus according to another embodiment of the present invention.
FIG. 6 is a plan view illustrating an electron trajectory in FIG.
FIG. 7 is a right side view illustrating the electron orbit of FIG. 5;
FIG. 8 is an explanatory diagram of an electron arrival position on a substrate surface.
FIG. 9 is a plan view of a conventional device.
10 (a) and (b) are a plan view and a right side view of a divergent magnetic field explanatory diagram of the conventional apparatus of FIG.
11A and 11B are a plan view and a right side view illustrating an electron arrival position of the conventional device of FIG.
FIG. 12 is an explanatory diagram of a drift of a magnetic field gradient of the conventional device of FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Film-forming chamber 6 Substrate 9 Duct 11 Evaporation source 13 Outlet 14a-14d, 14b ', 14d' Electromagnetic coil 17a-17c Deflection magnetic field 18a-18c Magnetic filter 19 Cathode material 20a-20c Plasma flow

Claims (16)

湾曲又は屈曲したダクトの一端に位置した蒸発源から、アーク放電により陰極材料を蒸発し、
前記ダクトの複数個所それぞれに前記ダクトを囲んだ磁石を設けて磁気フィルタを形成し、
前記磁気フィルタにより前記ダクトの内部に偏向磁場を発生し、
前記偏向磁場に基づき、前記蒸発によって発生した粗大粒子を除去しつつ、前記陰極材料のイオンを含むプラズマ流を前記ダクトの一端から他端の放出口に輸送し、
前記プラズマ流の前記イオンを前記放出口から成膜室に引出して前記成膜室の基材に飛着し、
前記基材に前記陰極材料を蒸着する真空アーク蒸着方法において、
前記各磁石のうちの前記放出口に最も近い終端磁石より前記蒸発源側の1又は複数個の指定磁石を、前記ダクトの横断面に対して傾けて設置し、
前記指定磁石の発生磁場により、前記イオンの飛着方向を制御することを特徴とする真空アーク蒸着方法。
From the evaporation source located at one end of the curved or bent duct, the cathode material is evaporated by arc discharge,
Providing a magnet surrounding the duct at each of a plurality of locations of the duct to form a magnetic filter,
Generating a deflection magnetic field inside the duct by the magnetic filter,
Based on the deflecting magnetic field, while removing coarse particles generated by the evaporation, transport the plasma flow containing the ions of the cathode material from one end of the duct to the other end of the duct,
The ions of the plasma flow are drawn out from the emission port into a film formation chamber and fly to a substrate in the film formation chamber,
In the vacuum arc deposition method of depositing the cathode material on the substrate,
One or more designated magnets closer to the evaporation source than the end magnet closest to the discharge port of the magnets are installed at an angle to the cross section of the duct,
A vacuum arc vapor deposition method, wherein a flying direction of the ions is controlled by a magnetic field generated by the designated magnet.
終端磁石を放出口の放出面に対して傾けて設置し、指定磁石及び前記終端磁石の発生磁場により、陰極材料のイオンの飛行方向を制御することを特徴とする請求項1記載の真空アーク蒸着方法。2. The vacuum arc vapor deposition according to claim 1, wherein the terminal magnet is installed at an angle with respect to the discharge surface of the discharge port, and the flight direction of ions of the cathode material is controlled by the magnetic field generated by the designated magnet and the terminal magnet. Method. 指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を可変自在にしたことを特徴とする請求項1又は2記載の真空アーク蒸着方法。3. The vacuum arc vapor deposition method according to claim 1, wherein an installation angle of the designated magnet or an installation angle of the designated magnet and the terminal magnet is made variable. 各磁石が電磁コイルからなることを特徴とする請求項1,2又は3記載の真空アーク蒸着方法。4. The vacuum arc vapor deposition method according to claim 1, wherein each magnet comprises an electromagnetic coil. 指定磁石の設置角度又は指定磁石及び終端磁石の設置角度が自動制御されることを特徴とする請求項1,2,3又は4記載の真空アーク蒸着方法。5. The vacuum arc vapor deposition method according to claim 1, wherein the installation angle of the designated magnet or the installation angles of the designated magnet and the terminal magnet are automatically controlled. 各磁石が電磁コイルからなり、指定磁石の設置角度の制御又は指定磁石及び終端磁石の設置角度の制御に連動して前記各磁石の電磁コイルのコイル電流を制御することを特徴とする請求項1,2,3,4又は5記載の真空アーク蒸着方法。2. The magnet according to claim 1, wherein each magnet comprises an electromagnetic coil, and the coil current of the electromagnetic coil of each magnet is controlled in conjunction with control of the installation angle of the designated magnet or control of the installation angle of the designated magnet and the terminal magnet. , 2, 3, 4 or 5. 蒸発源が複数個であることを特徴とする請求項1,2,3,4,5又は6記載の真空アーク蒸着方法。7. The vacuum arc vapor deposition method according to claim 1, wherein a plurality of evaporation sources are provided. 各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にしたことを特徴とする請求項1,2,3,4,5,6又は7記載の真空アーク蒸着方法。8. The vacuum arc vapor deposition method according to claim 1, wherein the direction of the coil current of the electromagnetic coil forming each magnet is switched at predetermined time intervals and reversed. 基材が設けられた成膜室と、
湾曲又は屈曲したダクトと、
前記ダクトの一端に位置し、真空中でのアーク放電により陰極材料が蒸発する蒸発源と、
前記成膜室に連通した前記ダクトの他端の放出口と、
前記ダクトの複数個所それぞれに前記ダクトを囲んだ磁石を設けて形成され、前記ダクト内に偏向磁場を発生し、前記蒸発により発生した粗大粒子を除去しつつ、前記陰極材料のイオンを含むプラズマ流を前記ダクトの一端から前記放出口に輸送する磁気フィルタとを備え、
前記プラズマ流の前記イオンを前記放出口から前記成膜室に引出して前記基材に飛着し、前記基材に前記陰極材料を蒸着する真空アーク蒸着装置において、
前記各磁石のうちの前記放出口に最も近い終端磁石より前記蒸発源側の1又は複数個の指定磁石を、前記ダクトの横断面に対して傾けて設置したことを特徴とする真空アーク蒸着装置。
A film forming chamber provided with a base material,
A curved or bent duct;
An evaporation source located at one end of the duct, wherein the cathode material evaporates due to arc discharge in a vacuum;
An outlet at the other end of the duct communicating with the film forming chamber,
A plasma flow including ions of the cathode material is formed by providing a magnet surrounding the duct at each of a plurality of locations of the duct, generating a deflecting magnetic field in the duct, and removing coarse particles generated by the evaporation. A magnetic filter that transports from one end of the duct to the discharge port,
In the vacuum arc vapor deposition apparatus that draws out the ions of the plasma flow from the emission port to the film formation chamber and flies to the substrate, and deposits the cathode material on the substrate.
A vacuum arc vapor deposition apparatus, wherein one or more designated magnets closer to the evaporation source than the terminal magnet closest to the discharge port among the magnets are installed at an angle to the cross section of the duct. .
終端磁石を放出口の放出面に対して傾けて設置したことを特徴とする請求項9記載の真空アーク蒸着装置。10. The vacuum arc vapor deposition apparatus according to claim 9, wherein the terminal magnet is installed at an angle with respect to the emission surface of the emission port. 指定磁石の設置角度又は指定磁石及び終端磁石の設置角度を可変する手段を備えたことを特徴とする請求項9又は10記載の真空アーク蒸着装置。11. The vacuum arc vapor deposition apparatus according to claim 9, further comprising means for changing an installation angle of the designated magnet or an installation angle of the designated magnet and the terminal magnet. 各磁石が電磁コイルからなることを特徴とする請求項9,10又は11記載の真空アーク蒸着装置。The vacuum arc evaporation apparatus according to claim 9, 10 or 11, wherein each magnet comprises an electromagnetic coil. 指定磁石の設置角度又は指定磁石及び終端磁石の設置角度の自動制御手段を備えたことを特徴とする請求項9,10,11又は12記載の真空アーク蒸着装置。13. The vacuum arc vapor deposition apparatus according to claim 9, further comprising automatic control means for setting an installation angle of a designated magnet or an installation angle of a designated magnet and a terminal magnet. 各磁石が電磁コイルからなり、指定磁石の設置角度の制御又は指定磁石及び終端磁石の設置角度の制御に連動して前記各磁石の電磁コイルのコイル電流を制御する手段を備えたことを特徴とする請求項9,10,11.12又は13記載の真空アーク蒸着装置。Each magnet is formed of an electromagnetic coil, and a means for controlling a coil current of the electromagnetic coil of each magnet in conjunction with control of the installation angle of the designated magnet or control of the installation angle of the designated magnet and the terminal magnet is provided. 14. The vacuum arc vapor deposition apparatus according to claim 9, 10, 11, 12, or 13. 蒸発源が複数個であることを特徴とする請求項9,10,11,12,13又は14記載の真空アーク蒸着装置。15. The vacuum arc vapor deposition apparatus according to claim 9, wherein a plurality of evaporation sources are provided. 各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にする通電制御手段を備えたとを特徴とする請求項10,11,12,13,14又は15記載の真空アーク蒸着装置。16. The vacuum arc vapor deposition according to claim 10, further comprising an energization control means for switching a direction of a coil current of an electromagnetic coil forming each magnet at predetermined time intervals to reverse the direction. apparatus.
JP2002162728A 2001-11-30 2002-06-04 Vacuum arc deposition method and apparatus Expired - Fee Related JP3744467B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002162728A JP3744467B2 (en) 2002-06-04 2002-06-04 Vacuum arc deposition method and apparatus
US10/305,008 US7033462B2 (en) 2001-11-30 2002-11-27 Vacuum arc vapor deposition process and apparatus
EP02026683A EP1316986B1 (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
TW91134753A TW575672B (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
DE60212551T DE60212551T2 (en) 2001-11-30 2002-11-29 Apparatus and method for vacuum coating by means of an arc
KR1020020075172A KR100569905B1 (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
CNB02160651XA CN1205353C (en) 2001-11-30 2002-11-30 Method and device for vacuum arc vapour deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162728A JP3744467B2 (en) 2002-06-04 2002-06-04 Vacuum arc deposition method and apparatus

Publications (2)

Publication Number Publication Date
JP2004010921A true JP2004010921A (en) 2004-01-15
JP3744467B2 JP3744467B2 (en) 2006-02-08

Family

ID=30431394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162728A Expired - Fee Related JP3744467B2 (en) 2001-11-30 2002-06-04 Vacuum arc deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP3744467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097328A (en) * 2010-11-02 2012-05-24 Fuji Electric Co Ltd Method and apparatus for manufacturing thin-film
JP2013218881A (en) * 2012-04-09 2013-10-24 Chugai Ro Co Ltd Plasma generator and vapor deposition device and vapor deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097328A (en) * 2010-11-02 2012-05-24 Fuji Electric Co Ltd Method and apparatus for manufacturing thin-film
JP2013218881A (en) * 2012-04-09 2013-10-24 Chugai Ro Co Ltd Plasma generator and vapor deposition device and vapor deposition method

Also Published As

Publication number Publication date
JP3744467B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP4003448B2 (en) Vacuum arc deposition method and apparatus
EP1316986B1 (en) Vacuum arc vapor deposition process and apparatus
US5798029A (en) Target for sputtering equipment
TWI224149B (en) Thin-film formation system and thin-film formation process
CN1108231C (en) Amorphous diamond coating of knife blade
JPH04236770A (en) Method for controlling arc spot in vacuum arc deposition and vaporization source
JP2002294433A (en) Vacuum arc deposition apparatus
JP2002509988A (en) Method and apparatus for depositing a biaxially textured coating
KR20130121078A (en) Arc deposition source having a defined electric field
WO2011001739A1 (en) Multi-split anode wall plasma generating device and plasma treating device
US9624570B2 (en) Compact, filtered ion source
JPH0219459A (en) Evaporation source assembly having cruucible
US7022209B2 (en) PVD method and PVD apparatus
JP3744467B2 (en) Vacuum arc deposition method and apparatus
JPH02194167A (en) Vacuum arc evaporation device
JP2021528815A (en) Single beam plasma source
WO2014142737A1 (en) Arrangement and method for high power pulsed magnetron sputtering
JP2001059165A (en) Arc type ion plating device
JPH02111878A (en) Sputtering device
CN112004958B (en) Sputtering cathode, sputtering cathode assembly, and sputtering apparatus
JP2004010920A (en) Vacuum arc vapor deposition apparatus
JP2004018899A (en) Evaporation source and film-formation equipment
EP3355338A1 (en) Apparatus and method for surface processing
US10971332B2 (en) Plasma processing apparatus and plasma processing method
JP2005187864A (en) Film deposition apparatus and film deposition method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050922

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101202

LAPS Cancellation because of no payment of annual fees