JP2004010362A - Dielectric porcelain composition for high frequency wave and its manufacturing method - Google Patents

Dielectric porcelain composition for high frequency wave and its manufacturing method Download PDF

Info

Publication number
JP2004010362A
JP2004010362A JP2002161345A JP2002161345A JP2004010362A JP 2004010362 A JP2004010362 A JP 2004010362A JP 2002161345 A JP2002161345 A JP 2002161345A JP 2002161345 A JP2002161345 A JP 2002161345A JP 2004010362 A JP2004010362 A JP 2004010362A
Authority
JP
Japan
Prior art keywords
powder
high frequency
dielectric
band
basm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002161345A
Other languages
Japanese (ja)
Inventor
Shuichi Fukuhara
福原 周一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2002161345A priority Critical patent/JP2004010362A/en
Publication of JP2004010362A publication Critical patent/JP2004010362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain composition for high frequency waves suitable for use in manufacturing an electronic component such as a dielectric resonator or a dielectric filter used in a high frequency band of microwaves or extremely high frequency waves or the like, and its manufacturing method. <P>SOLUTION: The dielectric porcelain composition is composed of a solid solution consisting of the three components of xBaNd<SB>2</SB>Ti<SB>4</SB>O<SB>12</SB>-yBaSm<SB>2</SB>Ti<SB>4</SB>O<SB>12</SB>-zBaBi<SB>2</SB>Ti<SB>4</SB>O<SB>12</SB>using crystal powders of BaNd<SB>2</SB>Ti<SB>4</SB>O<SB>12</SB>, BaSm<SB>2</SB>Ti<SB>4</SB>O<SB>12</SB>and BaBi<SB>2</SB>Ti<SB>4</SB>O<SB>12</SB>, wherein x, y, z are respectively represented in 0≤x≤70.9, 0≤y≤70.9, and 29.1≤z≤34.1(mol%) and satisfy x+y+z=100. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波などの高周波領域で使用される誘電体共振器や誘電体フィルタ等の電子部品に用いるのに適した高周波用誘電体磁器組成物及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、情報・通信分野ではマイクロ波、ミリ波といった高周波帯域を使用する電子機器が実用化されつつあり、この様な電子機器に用いられる電子部品もその使用される範囲が高周波領域に広がりつつある。また、マイクロ波回路の集積化に伴って、小型で高性能の誘電体共振器が求められている。この様な誘電体共振器に使用される誘電体磁器組成物には、比誘電率εrが大きいこと、無負荷Qが大きいこと、共振周波数の温度係数τfが安定していること等が要求されている。
【0003】
【発明が解決しようとする課題】
従来の誘電体磁器組成物としては、BaO−TiO−Nd−Bi系や、BaO−TiO−Sm−Nd系の材料が知られている。これらの誘電体磁器組成物は、比誘電率εrが90程度で、無負荷Qが5000程度であった。近年、電子機器の軽薄短小化に伴って誘電体共振器や誘電体フィルタ等の寸法をさらに小さくする必要があり、そのためには比誘電率εrをさらに大きくしなければならなかった。しかしながら、これらの誘電体磁器組成物は、比誘電率εrを大きくすると、無負荷Qが小さくなる傾向があった。そこで、無負荷Qが劣化することなく比誘電率εrを大きくできる誘電体磁器組成物が求められている。
また、従来の誘電体磁器組成物は、酸化物を混合して結晶化させる際、その過程において、高周波領域で使用される誘電体共振器の材料として用いた場合に特性の劣化を引き起こす不安定な結晶構造が生じることがあるという問題があった。
【0004】
本発明は、無負荷Qを劣化させることなく比誘電率εrを大きくできると共に、共振周波数の温度係数τfの安定性のよい高周波用誘電体磁器組成物を提供することを目的とする。また、本発明は、比誘電率εrと無負荷Qが劣化することがなく、共振周波数の温度係数τfが不安定になることのない高周波用誘電体磁器組成物の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、原料の混合の仕方を改善することにより、上記の課題を解決するものである。すなわち、本発明による高周波用誘電体磁器組成物は、BaNdTi12、BaSmTi12及び、BaBiTi12の結晶粉体を用いたxBaNdTi12・yBaSmTi12・zBaBiTi12の3成分の固溶体からなり、x、y、zをそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)(ただし、x+y+z=100)にする。
また、本発明の高周波用誘電体磁器組成物の製造方法は、バリウム、チタン、ネオジウム、サマリウム、ビスマスの酸化物をそれぞれ(A)BaO・4TiO・Nd、(B)BaO・4TiO・Sm、(C)BaO・4TiO・Biで表せる組成になる様に混合した後、これらを粉体状態のまま焼成してそれぞれ(a)BaNdTi12、(b)BaSmTi12、(c)BaBiTi12の結晶粉体を形成する工程と、この(a)BaNdTi12、(b)BaSmTi12、(c)BaBiTi12の結晶粉体を組成式:xBaNdTi12・yBaSmTi12・zBaBiTi12
(x、y、zがそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)、ただし、x+y+z=100)になる様に混合し、焼成する工程を備える。
【0006】
【発明の実施の形態】
本発明に係る高周波用誘電体磁器組成物は、予め、原料の酸化物を結晶化させたBaNdTi12、BaSmTi12及び、BaBiTi12の3種類の結晶粉体を、xBaNdTi12・yBaSmTi12・zBaBiTi12
(x、y、zがそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)、ただし、x+y+z=100)になる様に混合し、焼成するので、焼結する際に所定の結晶構造にスムーズに移行させることができ、従来の様に高周波領域で使用される誘電体共振器の材料として用いた場合に特性の劣化を引き起こす不安定な結晶構造が生じることがない。
【0007】
【実施例】
以下、本発明の実施例について説明する。
まず、本発明による高周波用誘電体磁器組成物の製造方法について説明する。原料として炭酸バリウム(BaCO)粉末、酸化チタン(TiO)粉末、酸化ネオジウム(Nd)粉末をそれぞれBaO・4TiO・Ndとなる様に秤量(例えば、BaCOを10モル、TiOを40モル、Ndを10モル)し、ボールミル等で約16時間湿式混合した後、混合物の水分を蒸発させて、メッシュを通過させて顆粒状にした。この顆粒状の粉体を空気雰囲気下において1350℃で焼結した後、焼結した粉体を乳鉢等で解砕してBaNdTi12の結晶粉体を得た。
また、原料として炭酸バリウム(BaCO)粉末、酸化チタン(TiO)粉末、酸化サマリウム(Sm)粉末をそれぞれBaO・4TiO・Smとなる様に秤量(例えば、BaCOを10モル、TiOを40モル、Smを10モル)し、ボールミル等で約16時間湿式混合した後、混合物の水分を蒸発させて、メッシュを通過させて顆粒状にした。この顆粒状の粉体を空気雰囲気下において1350℃で焼結した後、焼結した粉体を乳鉢等で解砕してBaSmTi12の結晶粉体を得た。
さらに、原料として炭酸バリウム(BaCO)粉末、酸化チタン(TiO)粉末、酸化ビスマス(Bi)粉末をそれぞれBaO・4TiO・Biとなる様に秤量(例えば、BaCOを10モル、TiOを40モル、Biを10モル)し、湿式混合した後、混合物の水分を蒸発させ、メッシュを通過させて顆粒状にした粉体を空気雰囲気下において1050℃で焼結し、焼結した粉体を乳鉢等で解砕してBaBiTi12の結晶粉体を得た。
次に、このBaNdTi12、BaSmTi12及び、BaBiTi12の3種類の結晶粉体を所定の組成となる様に秤量し、ボールミル等で約16時間湿式混合した後、混合物の水分を蒸発させ、らいかい機で有機バインダーと共に混合均質化し、メッシュを通過させて顆粒状にした。この顆粒状の粉体を成形し、焼成して本発明による材料を得た。
【0008】
本発明による高周波用誘電体磁器組成物の特性の測定は、この顆粒状の粉体を直径11mm、高さ10mmの円板になる様に成形し、1280℃まで脱脂、焼成して評価サンプルを得て行った。この特性の測定は、誘電共振法によって測定し、比誘電率と2〜6GHzの共振周波数fにおける無負荷Qを求めた。また、2〜6GHzの共振周波数における温度依存性については−25〜85℃の範囲で測定し、温度係数τfを求めた。
【0009】
図1は、BaNdTi12、BaSmTi12及び、BaBiTi12の結晶粉体をxBaNdTi12・yBaSmTi12・zBaBiTi12になる様に混合し、焼成したものについて、BaNdTi12の結晶粉体のモル比x、BaSmTi12の結晶粉体のモル比y、BaBiTi12の結晶粉体のモル比zを変えたときの特性をまとめた表であり、図2はこれを三元図に表示したものである。
本発明による高周波用誘電体磁器組成物は、BaNdTi12の結晶粉体のモル比xが0≦x≦70.9、BaSmTi12の結晶粉体のモル比yが0≦y≦70.9、BaBiTi12の結晶粉体のモル比zが29.1≦z≦34.1の範囲(ただし、x+y+z=100)で、比誘電率εrを111〜125にすることができた。また、BaNdTi12の結晶粉体のモル比xを33.2、BaSmTi12の結晶粉体のモル比yを37.7、BaBiTi12の結晶粉体のモル比zを29.1としたところ、比誘電率εrが120、2〜6GHzの共振周波数fにおける無負荷Qが2100、−25℃の時の温度係数τfが29.2、85℃の時の温度係数τfが35.4となった。さらに、xを13.2、yを55.2、zを31.6としたところ、比誘電率εrが118、fQが2400、−25℃の時の温度係数τfが10.4、85℃の時の温度係数τfが14.5となった。また、xを43.2、yを27.7、zを29.1としたところ、比誘電率εrが117、fQが2400、−25℃の時の温度係数τfが19.7、85℃の時の温度係数τfが27.1となった。またさらに、xを13.2、yを57.7、zを29.1としたところ、比誘電率εrが116、fQが2600、−25℃の時の温度係数τfが1.9、85℃の時の温度係数τfが11.6となった。
【0010】
【発明の効果】
本発明の高周波用誘電体磁器組成物は、BaNdTi12、BaSmTi12及び、BaBiTi12の結晶粉体を用いたxBaNdTi12・yBaSmTi12・zBaBiTi12の3成分の固溶体からなり、x、y、zがそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)(ただし、x+y+z=100)なので、無負荷Qを劣化させることなく比誘電率εrを大きくできると共に、共振周波数の温度係数τfの安定性を改善することができる。これによって、マイクロ波、ミリ波などの高周波領域で使用される誘電体共振器や誘電体フィルタ等の電子部品に用いるのに適した高周波用誘電体磁器組成物を得られる。
また、本発明の高周波用誘電体磁器組成物の製造方法は、バリウム、チタン、ネオジウム、サマリウム、ビスマスの酸化物をそれぞれ(A)BaO・4TiO・Nd、(B)BaO・4TiO・Sm、(C)BaO・4TiO・Biで表せる組成になる様に混合した後、これらを粉体状態のまま焼成してそれぞれ(a)BaNdTi12、(b)BaSmTi12、(c)BaBiTi12の結晶粉体を形成する工程と、この(a)BaNdTi12、(b)BaSmTi12、(c)BaBiTi12の結晶粉体を組成式:xBaNdTi12・yBaSmTi12・zBaBiTi12
(x、y、zがそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)、ただし、x+y+z=100)になる様に混合し、焼成する工程を備えるので、比誘電率εrと無負荷Qが劣化することがなく、かつ、共振周波数の温度係数τfが不安定になるのを防止できる。
【図面の簡単な説明】
【図1】本発明の高周波用誘電体磁器組成物の特性を説明するための特性の表である。
【図2】本発明の高周波用誘電体磁器組成物の三元図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency dielectric ceramic composition suitable for use in electronic components such as dielectric resonators and dielectric filters used in high-frequency regions such as microwaves and millimeter waves, and a method for producing the same. .
[0002]
[Prior art]
In recent years, in the information and communication fields, electronic devices using high frequency bands such as microwaves and millimeter waves have been put into practical use, and the range of use of electronic components used in such electronic devices has been expanding to the high frequency range. . Also, with the integration of microwave circuits, a small and high-performance dielectric resonator is required. The dielectric ceramic composition used in such a dielectric resonator is required to have a large relative dielectric constant εr, a large unloaded Q, a stable temperature coefficient τf of the resonance frequency, and the like. ing.
[0003]
[Problems to be solved by the invention]
The conventional dielectric ceramic composition, or BaO-TiO 2 -Nd 2 O 3 -Bi 2 O 3 system, are known materials BaO-TiO 2 -Sm 2 O 3 -Nd 2 O 3 system. These dielectric ceramic compositions had a relative dielectric constant 誘 電 r of about 90 and an unloaded Q of about 5000. In recent years, as electronic devices have become lighter and thinner, it has been necessary to further reduce the dimensions of dielectric resonators, dielectric filters, and the like, and for that purpose, the relative permittivity εr had to be further increased. However, in these dielectric ceramic compositions, when the relative dielectric constant εr is increased, the unloaded Q tends to decrease. Therefore, a dielectric ceramic composition capable of increasing the relative dielectric constant εr without deteriorating the unloaded Q has been demanded.
In addition, when a conventional dielectric ceramic composition is mixed with an oxide and crystallized, in the process, when used as a material for a dielectric resonator used in a high-frequency region, instability causing deterioration of characteristics is caused. There is a problem that a complicated crystal structure may be generated.
[0004]
An object of the present invention is to provide a high-frequency dielectric ceramic composition that can increase the relative dielectric constant εr without deteriorating the no-load Q and has good stability in the temperature coefficient τf of the resonance frequency. Further, the present invention provides a method for producing a high-frequency dielectric ceramic composition in which the relative permittivity εr and the no-load Q do not deteriorate, and the temperature coefficient τf of the resonance frequency does not become unstable. Aim.
[0005]
[Means for Solving the Problems]
The present invention solves the above problems by improving the method of mixing the raw materials. That is, high-frequency dielectric ceramic composition according to the present invention, BaNd 2 Ti 4 O 12, BaSm 2 Ti 4 O 12 and, xBaNd 2 Ti 4 O 12 · yBaSm using crystalline powder BaBi 2 Ti 4 O 12 2 Ti 4 O 12 .zBaBi 2 It consists of a solid solution of three components of Ti 4 O 12 , and x, y, and z are respectively 0 ≦ x ≦ 70.9, 0 ≦ y ≦ 70.9, 29.1 ≦ z ≦ 34 .1 (mol%) (provided that x + y + z = 100).
A method of manufacturing a high frequency dielectric ceramic composition of the present invention, barium, titanium, neodymium, samarium, bismuth oxide, respectively (A) BaO · 4TiO 2 · Nd 2 O 3, (B) BaO · 4TiO After mixing so that the composition can be represented by 2 · Sm 2 O 3 and (C) BaO · 4TiO 2 · Bi 2 O 3 , they are fired in a powder state and (a) BaNd 2 Ti 4 O 12. , (b) BaSm 2 Ti 4 O 12, forming a crystalline powder of (c) BaBi 2 Ti 4 O 12, the (a) BaNd 2 Ti 4 O 12, (b) BaSm 2 Ti 4 O 12 , (C) a crystal powder of BaBi 2 Ti 4 O 12 having the composition formula: xBaNd 2 Ti 4 O 12 .yBaSm 2 Ti 4 O 12 .zBaBi 2 Ti 4 O 12
(X, y, z are respectively 0 ≦ x ≦ 70.9, 0 ≦ y ≦ 70.9, 29.1 ≦ z ≦ 34.1 (mol%), where x + y + z = 100). And a firing step.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
High frequency dielectric ceramic composition according to the present invention, in advance, BaNd 2 Ti 4 O 12 to the oxide of the material was crystallized, BaSm 2 Ti 4 O 12 and three crystals of BaBi 2 Ti 4 O 12 powder, xBaNd 2 Ti 4 O 12 · yBaSm 2 Ti 4 O 12 · zBaBi 2 Ti 4 O 12
(X, y, z are respectively 0 ≦ x ≦ 70.9, 0 ≦ y ≦ 70.9, 29.1 ≦ z ≦ 34.1 (mol%), where x + y + z = 100). Since it is fired, it can be smoothly shifted to a predetermined crystal structure during sintering, and when used as a material of a dielectric resonator used in a high-frequency region as in the related art, it does not cause deterioration of characteristics. No stable crystal structure occurs.
[0007]
【Example】
Hereinafter, examples of the present invention will be described.
First, a method for producing a dielectric ceramic composition for high frequencies according to the present invention will be described. Barium carbonate (BaCO 3 ) powder, titanium oxide (TiO 2 ) powder, and neodymium oxide (Nd 2 O 3 ) powder are weighed as raw materials such that BaO.4TiO 2 .Nd 2 O 3 is obtained (for example, BaCO 3 is 10%). Mol, 40 mol of TiO 2 and 10 mol of Nd 2 O 3 ), and wet-mixed with a ball mill or the like for about 16 hours. Then, the water content of the mixture was evaporated and passed through a mesh to form granules. After sintering the granular powder at 1350 ° C. in an air atmosphere, the sintered powder was crushed in a mortar or the like to obtain a crystal powder of BaNd 2 Ti 4 O 12 .
In addition, barium carbonate (BaCO 3 ) powder, titanium oxide (TiO 2 ) powder, and samarium oxide (Sm 2 O 3 ) powder are weighed as raw materials so as to be BaO.4TiO 2 .Sm 2 O 3 (for example, BaCO 3). Was added, 10 mol of TiO 2 and 10 mol of Sm 2 O 3 were mixed by a ball mill or the like for about 16 hours, and then the mixture was evaporated, and the mixture was passed through a mesh to form granules. After sintering the granular powder at 1350 ° C. in an air atmosphere, the sintered powder was crushed in a mortar or the like to obtain a crystal powder of BaSm 2 Ti 4 O 12 .
Further, barium carbonate as the raw material (BaCO 3) powder, titanium oxide (TiO 2) powder, bismuth oxide (Bi 2 O 3) were weighed powder as respectively a BaO · 4TiO 2 · Bi 2 O 3 ( e.g., BaCO 3 , 10 mol of TiO 2 and 10 mol of Bi 2 O 3 ), and after wet mixing, evaporating the water content of the mixture, passing the mixture through a mesh to give a granular powder at 1050 ° C. in an air atmosphere. And the sintered powder was disintegrated in a mortar or the like to obtain a crystal powder of BaBi 2 Ti 4 O 12 .
Next, the three types of crystal powders of BaNd 2 Ti 4 O 12 , BaSm 2 Ti 4 O 12 and BaBi 2 Ti 4 O 12 are weighed so as to have a predetermined composition, and wet weighed by a ball mill or the like for about 16 hours. After mixing, the water content of the mixture was evaporated, mixed and homogenized with an organic binder using a grinder, and passed through a mesh to form granules. This granular powder was molded and calcined to obtain a material according to the present invention.
[0008]
The measurement of the characteristics of the dielectric ceramic composition for a high frequency wave according to the present invention is performed by molding this granular powder into a disk having a diameter of 11 mm and a height of 10 mm, degreased to 1280 ° C., and baked. I got it. This characteristic was measured by the dielectric resonance method, and the relative permittivity and the no-load Q at the resonance frequency f0 of 2 to 6 GHz were obtained. The temperature dependency at the resonance frequency of 2 to 6 GHz was measured in the range of -25 to 85 ° C, and the temperature coefficient τf was obtained.
[0009]
1, BaNd 2 Ti 4 O 12, BaSm 2 Ti 4 O 12 and, BaBi 2 Ti 4 xBaNd 2 the crystal powder of O 12 Ti 4 O 12 · yBaSm 2 Ti 4 O 12 · zBaBi 2 Ti 4 O 12 mixed so as to become, for those sintered, BaNd 2 Ti 4 O 12 molar ratio x of the crystal powder, BaSm 2 Ti 4 O 12 molar ratio y of the crystal powder, crystals of BaBi 2 Ti 4 O 12 FIG. 2 is a table summarizing the characteristics when the molar ratio z of the powder is changed, and FIG. 2 shows this in a ternary diagram.
In the dielectric ceramic composition for high frequency wave according to the present invention, the molar ratio x of the BaNd 2 Ti 4 O 12 crystal powder is 0 ≦ x ≦ 70.9, and the molar ratio y of the BaSm 2 Ti 4 O 12 crystal powder is y. 0 ≦ y ≦ 70.9, the molar ratio z of the crystal powder of BaBi 2 Ti 4 O 12 is in the range of 29.1 ≦ z ≦ 34.1 (where x + y + z = 100), and the relative dielectric constant εr is 111-111. 125. Further, the molar ratio x of the crystal powder BaNd 2 Ti 4 O 12 33.2, BaSm 2 Ti 4 37.7 molar ratio y of the crystal powder of O 12, crystal powder BaBi 2 Ti 4 O 12 Is 29.1, the relative permittivity εr is 120, the no-load Q at the resonance frequency f 0 of 2 to 6 GHz is 2100, the temperature coefficient τf at −25 ° C. is 29.2, 85 ° C. At this time was 35.4. Furthermore, 13.2 x, 55.2 and y, was 31.6 to z, relative dielectric constant εr is 118, f 0 Q is 2400, the temperature coefficient τf at a -25 ° C. 10.4, The temperature coefficient τf at 85 ° C. was 14.5. Further, 43.2 and x, 27.7 and y, was 29.1 to z, relative dielectric constant εr is 117, f 0 Q is 2400, the temperature coefficient τf at a -25 ° C. 19.7, The temperature coefficient τf at 85 ° C. was 27.1. Furthermore, 13.2 x, 57.7 and y, was 29.1 to z, relative dielectric constant εr is 116, f 0 Q 2600, the temperature coefficient τf at a -25 ° C. 1.9 , 85 ° C., the temperature coefficient τf was 11.6.
[0010]
【The invention's effect】
High frequency dielectric ceramic composition of the present invention, BaNd 2 Ti 4 O 12, BaSm 2 Ti 4 O 12 and, xBaNd 2 Ti 4 O 12 · yBaSm 2 Ti with crystal powder of BaBi 2 Ti 4 O 12 4 O 12 · zBaBi 2 Ti 4 O consists 12 ternary solid solution, x, y, z are each 0 ≦ x ≦ 70.9,0 ≦ y ≦ 70.9,29.1 ≦ z ≦ 34.1 (Mol%) (where x + y + z = 100), the relative permittivity εr can be increased without deteriorating the no-load Q, and the stability of the temperature coefficient τf of the resonance frequency can be improved. As a result, a high-frequency dielectric ceramic composition suitable for use in electronic components such as dielectric resonators and dielectric filters used in high-frequency regions such as microwaves and millimeter waves can be obtained.
A method of manufacturing a high frequency dielectric ceramic composition of the present invention, barium, titanium, neodymium, samarium, bismuth oxide, respectively (A) BaO · 4TiO 2 · Nd 2 O 3, (B) BaO · 4TiO After mixing so that the composition can be represented by 2 · Sm 2 O 3 and (C) BaO · 4TiO 2 · Bi 2 O 3 , they are fired in a powder state and (a) BaNd 2 Ti 4 O 12. , (b) BaSm 2 Ti 4 O 12, forming a crystalline powder of (c) BaBi 2 Ti 4 O 12, the (a) BaNd 2 Ti 4 O 12, (b) BaSm 2 Ti 4 O 12 , (C) a crystal powder of BaBi 2 Ti 4 O 12 having the composition formula: xBaNd 2 Ti 4 O 12 .yBaSm 2 Ti 4 O 12 .zBaBi 2 Ti 4 O 12
(X, y, z are respectively 0 ≦ x ≦ 70.9, 0 ≦ y ≦ 70.9, 29.1 ≦ z ≦ 34.1 (mol%), where x + y + z = 100). Since the baking step is provided, the relative permittivity εr and the no-load Q do not deteriorate, and the temperature coefficient τf of the resonance frequency can be prevented from becoming unstable.
[Brief description of the drawings]
FIG. 1 is a table of characteristics for explaining characteristics of a dielectric ceramic composition for high frequency waves of the present invention.
FIG. 2 is a ternary diagram of the dielectric ceramic composition for high frequency wave of the present invention.

Claims (2)

BaNdTi12、BaSmTi12及び、BaBiTi12の結晶粉体を用いたxBaNdTi12・yBaSmTi12・zBaBiTi12の3成分の固溶体からなり、x、y、zがそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)(ただし、x+y+z=100)であることを特徴とする高周波用誘電体磁器組成物。 BaNd 2 Ti 4 O 12, BaSm 2 Ti 4 O 12 and, BaBi 2 Ti 4 xBaNd 2 using crystalline powder O 12 Ti 4 O 12 · yBaSm 2 Ti 4 O 12 · zBaBi 2 Ti 4 3 of O 12 X, y, and z are 0 ≦ x ≦ 70.9, 0 ≦ y ≦ 70.9, 29.1 ≦ z ≦ 34.1 (mol%) (where x + y + z = 100). A dielectric ceramic composition for high frequencies, characterized in that: バリウム、チタン、ネオジウム、サマリウム、ビスマスの酸化物をそれぞれ(A)BaO・4TiO・Nd、(B)BaO・4TiO・Sm、(C)BaO・4TiO・Biで表せる組成になる様に混合した後、これらを粉体状態のまま焼成してそれぞれ(a)BaNdTi12、(b)BaSmTi12、(c)BaBiTi12の結晶粉体を形成する工程と、この(a)BaNdTi12、(b)BaSmTi12、(c)BaBiTi12の結晶粉体を組成式:xBaNdTi12・yBaSmTi12・zBaBiTi12
(x、y、zがそれぞれ0≦x≦70.9、0≦y≦70.9、29.1≦z≦34.1(モル%)、ただし、x+y+z=100)になる様に混合し、焼成する工程を備えたことを特徴とする高周波用誘電体磁器組成物の製造方法。
Barium, titanium, neodymium, samarium, oxides of bismuth, respectively (A) BaO · 4TiO 2 · Nd 2 O 3, (B) BaO · 4TiO 2 · Sm 2 O 3, (C) BaO · 4TiO 2 · Bi 2 After mixing such that the composition can be represented by O 3 , these are baked in a powder state and (a) BaNd 2 Ti 4 O 12 , (b) BaSm 2 Ti 4 O 12 , (c) BaBi 2 Ti A step of forming a crystal powder of 4 O 12 and a crystal powder of (a) BaNd 2 Ti 4 O 12 , (b) BaSm 2 Ti 4 O 12 , and (c) BaBi 2 Ti 4 O 12 : XBaNd 2 Ti 4 O 12 · yBaSm 2 Ti 4 O 12 · zBaBi 2 Ti 4 O 12
(X, y, z are respectively 0 ≦ x ≦ 70.9, 0 ≦ y ≦ 70.9, 29.1 ≦ z ≦ 34.1 (mol%), where x + y + z = 100). A method for producing a dielectric ceramic composition for high frequencies, comprising a step of firing.
JP2002161345A 2002-06-03 2002-06-03 Dielectric porcelain composition for high frequency wave and its manufacturing method Pending JP2004010362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161345A JP2004010362A (en) 2002-06-03 2002-06-03 Dielectric porcelain composition for high frequency wave and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161345A JP2004010362A (en) 2002-06-03 2002-06-03 Dielectric porcelain composition for high frequency wave and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004010362A true JP2004010362A (en) 2004-01-15

Family

ID=30430443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161345A Pending JP2004010362A (en) 2002-06-03 2002-06-03 Dielectric porcelain composition for high frequency wave and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004010362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347820A (en) * 2005-06-16 2006-12-28 Ntn Corp Dielectric ceramic and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347820A (en) * 2005-06-16 2006-12-28 Ntn Corp Dielectric ceramic and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2004277226A (en) Dielectric porcelain composition and dielectric resonator using it
JP2004010362A (en) Dielectric porcelain composition for high frequency wave and its manufacturing method
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
EP0540029B1 (en) Sintered ceramic Ba-Mg-W perowskite used as high-frequency resonator and dielectric substrate
JP2003146752A (en) Dielectric ceramic composition
JPH06338221A (en) Dielectric ceramic composition for high frequency
JP3363296B2 (en) High frequency dielectric ceramic composition
JP2543221B2 (en) Dielectric porcelain
JP2842756B2 (en) High frequency dielectric ceramic composition
JP3340008B2 (en) High frequency dielectric ceramic composition
JP3359427B2 (en) High frequency dielectric ceramic composition
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JP3318396B2 (en) High frequency dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JP3242243B2 (en) Microwave dielectric porcelain composition
JP2887244B2 (en) High frequency dielectric ceramic composition
JPH05270887A (en) Production of ceramic composition for high-frequency dielectric material
JP3340019B2 (en) High frequency dielectric ceramic composition
JPH01234358A (en) Dielectric ceramic composition
JP3347613B2 (en) Dielectric porcelain composition
JPH06215624A (en) High-frequency dielectric porcelain composition
JPH06103602B2 (en) Dielectric porcelain composition for microwave
JPH09241073A (en) Dielectric porcelain composition for high frequency
JPH0815012B2 (en) High permittivity dielectric ceramic composition for microwave
JPH0676630A (en) Dielectric ceramic composition for high frequency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408